xref: /linux/tools/perf/util/header.c (revision 3bdab16c55f57a24245c97d707241dd9b48d1a91)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "util.h"
5 #include "string2.h"
6 #include <sys/param.h>
7 #include <sys/types.h>
8 #include <byteswap.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/stringify.h>
17 #include <sys/stat.h>
18 #include <sys/utsname.h>
19 #include <linux/time64.h>
20 #include <dirent.h>
21 #include <bpf/libbpf.h>
22 
23 #include "evlist.h"
24 #include "evsel.h"
25 #include "header.h"
26 #include "memswap.h"
27 #include "../perf.h"
28 #include "trace-event.h"
29 #include "session.h"
30 #include "symbol.h"
31 #include "debug.h"
32 #include "cpumap.h"
33 #include "pmu.h"
34 #include "vdso.h"
35 #include "strbuf.h"
36 #include "build-id.h"
37 #include "data.h"
38 #include <api/fs/fs.h>
39 #include "asm/bug.h"
40 #include "tool.h"
41 #include "time-utils.h"
42 #include "units.h"
43 #include "cputopo.h"
44 #include "bpf-event.h"
45 
46 #include "sane_ctype.h"
47 
48 /*
49  * magic2 = "PERFILE2"
50  * must be a numerical value to let the endianness
51  * determine the memory layout. That way we are able
52  * to detect endianness when reading the perf.data file
53  * back.
54  *
55  * we check for legacy (PERFFILE) format.
56  */
57 static const char *__perf_magic1 = "PERFFILE";
58 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
59 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
60 
61 #define PERF_MAGIC	__perf_magic2
62 
63 const char perf_version_string[] = PERF_VERSION;
64 
65 struct perf_file_attr {
66 	struct perf_event_attr	attr;
67 	struct perf_file_section	ids;
68 };
69 
70 struct feat_fd {
71 	struct perf_header	*ph;
72 	int			fd;
73 	void			*buf;	/* Either buf != NULL or fd >= 0 */
74 	ssize_t			offset;
75 	size_t			size;
76 	struct perf_evsel	*events;
77 };
78 
79 void perf_header__set_feat(struct perf_header *header, int feat)
80 {
81 	set_bit(feat, header->adds_features);
82 }
83 
84 void perf_header__clear_feat(struct perf_header *header, int feat)
85 {
86 	clear_bit(feat, header->adds_features);
87 }
88 
89 bool perf_header__has_feat(const struct perf_header *header, int feat)
90 {
91 	return test_bit(feat, header->adds_features);
92 }
93 
94 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
95 {
96 	ssize_t ret = writen(ff->fd, buf, size);
97 
98 	if (ret != (ssize_t)size)
99 		return ret < 0 ? (int)ret : -1;
100 	return 0;
101 }
102 
103 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
104 {
105 	/* struct perf_event_header::size is u16 */
106 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
107 	size_t new_size = ff->size;
108 	void *addr;
109 
110 	if (size + ff->offset > max_size)
111 		return -E2BIG;
112 
113 	while (size > (new_size - ff->offset))
114 		new_size <<= 1;
115 	new_size = min(max_size, new_size);
116 
117 	if (ff->size < new_size) {
118 		addr = realloc(ff->buf, new_size);
119 		if (!addr)
120 			return -ENOMEM;
121 		ff->buf = addr;
122 		ff->size = new_size;
123 	}
124 
125 	memcpy(ff->buf + ff->offset, buf, size);
126 	ff->offset += size;
127 
128 	return 0;
129 }
130 
131 /* Return: 0 if succeded, -ERR if failed. */
132 int do_write(struct feat_fd *ff, const void *buf, size_t size)
133 {
134 	if (!ff->buf)
135 		return __do_write_fd(ff, buf, size);
136 	return __do_write_buf(ff, buf, size);
137 }
138 
139 /* Return: 0 if succeded, -ERR if failed. */
140 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
141 {
142 	u64 *p = (u64 *) set;
143 	int i, ret;
144 
145 	ret = do_write(ff, &size, sizeof(size));
146 	if (ret < 0)
147 		return ret;
148 
149 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
150 		ret = do_write(ff, p + i, sizeof(*p));
151 		if (ret < 0)
152 			return ret;
153 	}
154 
155 	return 0;
156 }
157 
158 /* Return: 0 if succeded, -ERR if failed. */
159 int write_padded(struct feat_fd *ff, const void *bf,
160 		 size_t count, size_t count_aligned)
161 {
162 	static const char zero_buf[NAME_ALIGN];
163 	int err = do_write(ff, bf, count);
164 
165 	if (!err)
166 		err = do_write(ff, zero_buf, count_aligned - count);
167 
168 	return err;
169 }
170 
171 #define string_size(str)						\
172 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
173 
174 /* Return: 0 if succeded, -ERR if failed. */
175 static int do_write_string(struct feat_fd *ff, const char *str)
176 {
177 	u32 len, olen;
178 	int ret;
179 
180 	olen = strlen(str) + 1;
181 	len = PERF_ALIGN(olen, NAME_ALIGN);
182 
183 	/* write len, incl. \0 */
184 	ret = do_write(ff, &len, sizeof(len));
185 	if (ret < 0)
186 		return ret;
187 
188 	return write_padded(ff, str, olen, len);
189 }
190 
191 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
192 {
193 	ssize_t ret = readn(ff->fd, addr, size);
194 
195 	if (ret != size)
196 		return ret < 0 ? (int)ret : -1;
197 	return 0;
198 }
199 
200 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
201 {
202 	if (size > (ssize_t)ff->size - ff->offset)
203 		return -1;
204 
205 	memcpy(addr, ff->buf + ff->offset, size);
206 	ff->offset += size;
207 
208 	return 0;
209 
210 }
211 
212 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
213 {
214 	if (!ff->buf)
215 		return __do_read_fd(ff, addr, size);
216 	return __do_read_buf(ff, addr, size);
217 }
218 
219 static int do_read_u32(struct feat_fd *ff, u32 *addr)
220 {
221 	int ret;
222 
223 	ret = __do_read(ff, addr, sizeof(*addr));
224 	if (ret)
225 		return ret;
226 
227 	if (ff->ph->needs_swap)
228 		*addr = bswap_32(*addr);
229 	return 0;
230 }
231 
232 static int do_read_u64(struct feat_fd *ff, u64 *addr)
233 {
234 	int ret;
235 
236 	ret = __do_read(ff, addr, sizeof(*addr));
237 	if (ret)
238 		return ret;
239 
240 	if (ff->ph->needs_swap)
241 		*addr = bswap_64(*addr);
242 	return 0;
243 }
244 
245 static char *do_read_string(struct feat_fd *ff)
246 {
247 	u32 len;
248 	char *buf;
249 
250 	if (do_read_u32(ff, &len))
251 		return NULL;
252 
253 	buf = malloc(len);
254 	if (!buf)
255 		return NULL;
256 
257 	if (!__do_read(ff, buf, len)) {
258 		/*
259 		 * strings are padded by zeroes
260 		 * thus the actual strlen of buf
261 		 * may be less than len
262 		 */
263 		return buf;
264 	}
265 
266 	free(buf);
267 	return NULL;
268 }
269 
270 /* Return: 0 if succeded, -ERR if failed. */
271 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
272 {
273 	unsigned long *set;
274 	u64 size, *p;
275 	int i, ret;
276 
277 	ret = do_read_u64(ff, &size);
278 	if (ret)
279 		return ret;
280 
281 	set = bitmap_alloc(size);
282 	if (!set)
283 		return -ENOMEM;
284 
285 	p = (u64 *) set;
286 
287 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
288 		ret = do_read_u64(ff, p + i);
289 		if (ret < 0) {
290 			free(set);
291 			return ret;
292 		}
293 	}
294 
295 	*pset  = set;
296 	*psize = size;
297 	return 0;
298 }
299 
300 static int write_tracing_data(struct feat_fd *ff,
301 			      struct perf_evlist *evlist)
302 {
303 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
304 		return -1;
305 
306 	return read_tracing_data(ff->fd, &evlist->entries);
307 }
308 
309 static int write_build_id(struct feat_fd *ff,
310 			  struct perf_evlist *evlist __maybe_unused)
311 {
312 	struct perf_session *session;
313 	int err;
314 
315 	session = container_of(ff->ph, struct perf_session, header);
316 
317 	if (!perf_session__read_build_ids(session, true))
318 		return -1;
319 
320 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
321 		return -1;
322 
323 	err = perf_session__write_buildid_table(session, ff);
324 	if (err < 0) {
325 		pr_debug("failed to write buildid table\n");
326 		return err;
327 	}
328 	perf_session__cache_build_ids(session);
329 
330 	return 0;
331 }
332 
333 static int write_hostname(struct feat_fd *ff,
334 			  struct perf_evlist *evlist __maybe_unused)
335 {
336 	struct utsname uts;
337 	int ret;
338 
339 	ret = uname(&uts);
340 	if (ret < 0)
341 		return -1;
342 
343 	return do_write_string(ff, uts.nodename);
344 }
345 
346 static int write_osrelease(struct feat_fd *ff,
347 			   struct perf_evlist *evlist __maybe_unused)
348 {
349 	struct utsname uts;
350 	int ret;
351 
352 	ret = uname(&uts);
353 	if (ret < 0)
354 		return -1;
355 
356 	return do_write_string(ff, uts.release);
357 }
358 
359 static int write_arch(struct feat_fd *ff,
360 		      struct perf_evlist *evlist __maybe_unused)
361 {
362 	struct utsname uts;
363 	int ret;
364 
365 	ret = uname(&uts);
366 	if (ret < 0)
367 		return -1;
368 
369 	return do_write_string(ff, uts.machine);
370 }
371 
372 static int write_version(struct feat_fd *ff,
373 			 struct perf_evlist *evlist __maybe_unused)
374 {
375 	return do_write_string(ff, perf_version_string);
376 }
377 
378 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
379 {
380 	FILE *file;
381 	char *buf = NULL;
382 	char *s, *p;
383 	const char *search = cpuinfo_proc;
384 	size_t len = 0;
385 	int ret = -1;
386 
387 	if (!search)
388 		return -1;
389 
390 	file = fopen("/proc/cpuinfo", "r");
391 	if (!file)
392 		return -1;
393 
394 	while (getline(&buf, &len, file) > 0) {
395 		ret = strncmp(buf, search, strlen(search));
396 		if (!ret)
397 			break;
398 	}
399 
400 	if (ret) {
401 		ret = -1;
402 		goto done;
403 	}
404 
405 	s = buf;
406 
407 	p = strchr(buf, ':');
408 	if (p && *(p+1) == ' ' && *(p+2))
409 		s = p + 2;
410 	p = strchr(s, '\n');
411 	if (p)
412 		*p = '\0';
413 
414 	/* squash extra space characters (branding string) */
415 	p = s;
416 	while (*p) {
417 		if (isspace(*p)) {
418 			char *r = p + 1;
419 			char *q = r;
420 			*p = ' ';
421 			while (*q && isspace(*q))
422 				q++;
423 			if (q != (p+1))
424 				while ((*r++ = *q++));
425 		}
426 		p++;
427 	}
428 	ret = do_write_string(ff, s);
429 done:
430 	free(buf);
431 	fclose(file);
432 	return ret;
433 }
434 
435 static int write_cpudesc(struct feat_fd *ff,
436 		       struct perf_evlist *evlist __maybe_unused)
437 {
438 	const char *cpuinfo_procs[] = CPUINFO_PROC;
439 	unsigned int i;
440 
441 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
442 		int ret;
443 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
444 		if (ret >= 0)
445 			return ret;
446 	}
447 	return -1;
448 }
449 
450 
451 static int write_nrcpus(struct feat_fd *ff,
452 			struct perf_evlist *evlist __maybe_unused)
453 {
454 	long nr;
455 	u32 nrc, nra;
456 	int ret;
457 
458 	nrc = cpu__max_present_cpu();
459 
460 	nr = sysconf(_SC_NPROCESSORS_ONLN);
461 	if (nr < 0)
462 		return -1;
463 
464 	nra = (u32)(nr & UINT_MAX);
465 
466 	ret = do_write(ff, &nrc, sizeof(nrc));
467 	if (ret < 0)
468 		return ret;
469 
470 	return do_write(ff, &nra, sizeof(nra));
471 }
472 
473 static int write_event_desc(struct feat_fd *ff,
474 			    struct perf_evlist *evlist)
475 {
476 	struct perf_evsel *evsel;
477 	u32 nre, nri, sz;
478 	int ret;
479 
480 	nre = evlist->nr_entries;
481 
482 	/*
483 	 * write number of events
484 	 */
485 	ret = do_write(ff, &nre, sizeof(nre));
486 	if (ret < 0)
487 		return ret;
488 
489 	/*
490 	 * size of perf_event_attr struct
491 	 */
492 	sz = (u32)sizeof(evsel->attr);
493 	ret = do_write(ff, &sz, sizeof(sz));
494 	if (ret < 0)
495 		return ret;
496 
497 	evlist__for_each_entry(evlist, evsel) {
498 		ret = do_write(ff, &evsel->attr, sz);
499 		if (ret < 0)
500 			return ret;
501 		/*
502 		 * write number of unique id per event
503 		 * there is one id per instance of an event
504 		 *
505 		 * copy into an nri to be independent of the
506 		 * type of ids,
507 		 */
508 		nri = evsel->ids;
509 		ret = do_write(ff, &nri, sizeof(nri));
510 		if (ret < 0)
511 			return ret;
512 
513 		/*
514 		 * write event string as passed on cmdline
515 		 */
516 		ret = do_write_string(ff, perf_evsel__name(evsel));
517 		if (ret < 0)
518 			return ret;
519 		/*
520 		 * write unique ids for this event
521 		 */
522 		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
523 		if (ret < 0)
524 			return ret;
525 	}
526 	return 0;
527 }
528 
529 static int write_cmdline(struct feat_fd *ff,
530 			 struct perf_evlist *evlist __maybe_unused)
531 {
532 	char pbuf[MAXPATHLEN], *buf;
533 	int i, ret, n;
534 
535 	/* actual path to perf binary */
536 	buf = perf_exe(pbuf, MAXPATHLEN);
537 
538 	/* account for binary path */
539 	n = perf_env.nr_cmdline + 1;
540 
541 	ret = do_write(ff, &n, sizeof(n));
542 	if (ret < 0)
543 		return ret;
544 
545 	ret = do_write_string(ff, buf);
546 	if (ret < 0)
547 		return ret;
548 
549 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
550 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
551 		if (ret < 0)
552 			return ret;
553 	}
554 	return 0;
555 }
556 
557 
558 static int write_cpu_topology(struct feat_fd *ff,
559 			      struct perf_evlist *evlist __maybe_unused)
560 {
561 	struct cpu_topology *tp;
562 	u32 i;
563 	int ret, j;
564 
565 	tp = cpu_topology__new();
566 	if (!tp)
567 		return -1;
568 
569 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
570 	if (ret < 0)
571 		goto done;
572 
573 	for (i = 0; i < tp->core_sib; i++) {
574 		ret = do_write_string(ff, tp->core_siblings[i]);
575 		if (ret < 0)
576 			goto done;
577 	}
578 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
579 	if (ret < 0)
580 		goto done;
581 
582 	for (i = 0; i < tp->thread_sib; i++) {
583 		ret = do_write_string(ff, tp->thread_siblings[i]);
584 		if (ret < 0)
585 			break;
586 	}
587 
588 	ret = perf_env__read_cpu_topology_map(&perf_env);
589 	if (ret < 0)
590 		goto done;
591 
592 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
593 		ret = do_write(ff, &perf_env.cpu[j].core_id,
594 			       sizeof(perf_env.cpu[j].core_id));
595 		if (ret < 0)
596 			return ret;
597 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
598 			       sizeof(perf_env.cpu[j].socket_id));
599 		if (ret < 0)
600 			return ret;
601 	}
602 done:
603 	cpu_topology__delete(tp);
604 	return ret;
605 }
606 
607 
608 
609 static int write_total_mem(struct feat_fd *ff,
610 			   struct perf_evlist *evlist __maybe_unused)
611 {
612 	char *buf = NULL;
613 	FILE *fp;
614 	size_t len = 0;
615 	int ret = -1, n;
616 	uint64_t mem;
617 
618 	fp = fopen("/proc/meminfo", "r");
619 	if (!fp)
620 		return -1;
621 
622 	while (getline(&buf, &len, fp) > 0) {
623 		ret = strncmp(buf, "MemTotal:", 9);
624 		if (!ret)
625 			break;
626 	}
627 	if (!ret) {
628 		n = sscanf(buf, "%*s %"PRIu64, &mem);
629 		if (n == 1)
630 			ret = do_write(ff, &mem, sizeof(mem));
631 	} else
632 		ret = -1;
633 	free(buf);
634 	fclose(fp);
635 	return ret;
636 }
637 
638 static int write_numa_topology(struct feat_fd *ff,
639 			       struct perf_evlist *evlist __maybe_unused)
640 {
641 	struct numa_topology *tp;
642 	int ret = -1;
643 	u32 i;
644 
645 	tp = numa_topology__new();
646 	if (!tp)
647 		return -ENOMEM;
648 
649 	ret = do_write(ff, &tp->nr, sizeof(u32));
650 	if (ret < 0)
651 		goto err;
652 
653 	for (i = 0; i < tp->nr; i++) {
654 		struct numa_topology_node *n = &tp->nodes[i];
655 
656 		ret = do_write(ff, &n->node, sizeof(u32));
657 		if (ret < 0)
658 			goto err;
659 
660 		ret = do_write(ff, &n->mem_total, sizeof(u64));
661 		if (ret)
662 			goto err;
663 
664 		ret = do_write(ff, &n->mem_free, sizeof(u64));
665 		if (ret)
666 			goto err;
667 
668 		ret = do_write_string(ff, n->cpus);
669 		if (ret < 0)
670 			goto err;
671 	}
672 
673 	ret = 0;
674 
675 err:
676 	numa_topology__delete(tp);
677 	return ret;
678 }
679 
680 /*
681  * File format:
682  *
683  * struct pmu_mappings {
684  *	u32	pmu_num;
685  *	struct pmu_map {
686  *		u32	type;
687  *		char	name[];
688  *	}[pmu_num];
689  * };
690  */
691 
692 static int write_pmu_mappings(struct feat_fd *ff,
693 			      struct perf_evlist *evlist __maybe_unused)
694 {
695 	struct perf_pmu *pmu = NULL;
696 	u32 pmu_num = 0;
697 	int ret;
698 
699 	/*
700 	 * Do a first pass to count number of pmu to avoid lseek so this
701 	 * works in pipe mode as well.
702 	 */
703 	while ((pmu = perf_pmu__scan(pmu))) {
704 		if (!pmu->name)
705 			continue;
706 		pmu_num++;
707 	}
708 
709 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
710 	if (ret < 0)
711 		return ret;
712 
713 	while ((pmu = perf_pmu__scan(pmu))) {
714 		if (!pmu->name)
715 			continue;
716 
717 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
718 		if (ret < 0)
719 			return ret;
720 
721 		ret = do_write_string(ff, pmu->name);
722 		if (ret < 0)
723 			return ret;
724 	}
725 
726 	return 0;
727 }
728 
729 /*
730  * File format:
731  *
732  * struct group_descs {
733  *	u32	nr_groups;
734  *	struct group_desc {
735  *		char	name[];
736  *		u32	leader_idx;
737  *		u32	nr_members;
738  *	}[nr_groups];
739  * };
740  */
741 static int write_group_desc(struct feat_fd *ff,
742 			    struct perf_evlist *evlist)
743 {
744 	u32 nr_groups = evlist->nr_groups;
745 	struct perf_evsel *evsel;
746 	int ret;
747 
748 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
749 	if (ret < 0)
750 		return ret;
751 
752 	evlist__for_each_entry(evlist, evsel) {
753 		if (perf_evsel__is_group_leader(evsel) &&
754 		    evsel->nr_members > 1) {
755 			const char *name = evsel->group_name ?: "{anon_group}";
756 			u32 leader_idx = evsel->idx;
757 			u32 nr_members = evsel->nr_members;
758 
759 			ret = do_write_string(ff, name);
760 			if (ret < 0)
761 				return ret;
762 
763 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
764 			if (ret < 0)
765 				return ret;
766 
767 			ret = do_write(ff, &nr_members, sizeof(nr_members));
768 			if (ret < 0)
769 				return ret;
770 		}
771 	}
772 	return 0;
773 }
774 
775 /*
776  * Return the CPU id as a raw string.
777  *
778  * Each architecture should provide a more precise id string that
779  * can be use to match the architecture's "mapfile".
780  */
781 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
782 {
783 	return NULL;
784 }
785 
786 /* Return zero when the cpuid from the mapfile.csv matches the
787  * cpuid string generated on this platform.
788  * Otherwise return non-zero.
789  */
790 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
791 {
792 	regex_t re;
793 	regmatch_t pmatch[1];
794 	int match;
795 
796 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
797 		/* Warn unable to generate match particular string. */
798 		pr_info("Invalid regular expression %s\n", mapcpuid);
799 		return 1;
800 	}
801 
802 	match = !regexec(&re, cpuid, 1, pmatch, 0);
803 	regfree(&re);
804 	if (match) {
805 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
806 
807 		/* Verify the entire string matched. */
808 		if (match_len == strlen(cpuid))
809 			return 0;
810 	}
811 	return 1;
812 }
813 
814 /*
815  * default get_cpuid(): nothing gets recorded
816  * actual implementation must be in arch/$(SRCARCH)/util/header.c
817  */
818 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
819 {
820 	return -1;
821 }
822 
823 static int write_cpuid(struct feat_fd *ff,
824 		       struct perf_evlist *evlist __maybe_unused)
825 {
826 	char buffer[64];
827 	int ret;
828 
829 	ret = get_cpuid(buffer, sizeof(buffer));
830 	if (ret)
831 		return -1;
832 
833 	return do_write_string(ff, buffer);
834 }
835 
836 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
837 			      struct perf_evlist *evlist __maybe_unused)
838 {
839 	return 0;
840 }
841 
842 static int write_auxtrace(struct feat_fd *ff,
843 			  struct perf_evlist *evlist __maybe_unused)
844 {
845 	struct perf_session *session;
846 	int err;
847 
848 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
849 		return -1;
850 
851 	session = container_of(ff->ph, struct perf_session, header);
852 
853 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
854 	if (err < 0)
855 		pr_err("Failed to write auxtrace index\n");
856 	return err;
857 }
858 
859 static int write_clockid(struct feat_fd *ff,
860 			 struct perf_evlist *evlist __maybe_unused)
861 {
862 	return do_write(ff, &ff->ph->env.clockid_res_ns,
863 			sizeof(ff->ph->env.clockid_res_ns));
864 }
865 
866 static int write_dir_format(struct feat_fd *ff,
867 			    struct perf_evlist *evlist __maybe_unused)
868 {
869 	struct perf_session *session;
870 	struct perf_data *data;
871 
872 	session = container_of(ff->ph, struct perf_session, header);
873 	data = session->data;
874 
875 	if (WARN_ON(!perf_data__is_dir(data)))
876 		return -1;
877 
878 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
879 }
880 
881 #ifdef HAVE_LIBBPF_SUPPORT
882 static int write_bpf_prog_info(struct feat_fd *ff,
883 			       struct perf_evlist *evlist __maybe_unused)
884 {
885 	struct perf_env *env = &ff->ph->env;
886 	struct rb_root *root;
887 	struct rb_node *next;
888 	int ret;
889 
890 	down_read(&env->bpf_progs.lock);
891 
892 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
893 		       sizeof(env->bpf_progs.infos_cnt));
894 	if (ret < 0)
895 		goto out;
896 
897 	root = &env->bpf_progs.infos;
898 	next = rb_first(root);
899 	while (next) {
900 		struct bpf_prog_info_node *node;
901 		size_t len;
902 
903 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
904 		next = rb_next(&node->rb_node);
905 		len = sizeof(struct bpf_prog_info_linear) +
906 			node->info_linear->data_len;
907 
908 		/* before writing to file, translate address to offset */
909 		bpf_program__bpil_addr_to_offs(node->info_linear);
910 		ret = do_write(ff, node->info_linear, len);
911 		/*
912 		 * translate back to address even when do_write() fails,
913 		 * so that this function never changes the data.
914 		 */
915 		bpf_program__bpil_offs_to_addr(node->info_linear);
916 		if (ret < 0)
917 			goto out;
918 	}
919 out:
920 	up_read(&env->bpf_progs.lock);
921 	return ret;
922 }
923 #else // HAVE_LIBBPF_SUPPORT
924 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
925 			       struct perf_evlist *evlist __maybe_unused)
926 {
927 	return 0;
928 }
929 #endif // HAVE_LIBBPF_SUPPORT
930 
931 static int write_bpf_btf(struct feat_fd *ff,
932 			 struct perf_evlist *evlist __maybe_unused)
933 {
934 	struct perf_env *env = &ff->ph->env;
935 	struct rb_root *root;
936 	struct rb_node *next;
937 	int ret;
938 
939 	down_read(&env->bpf_progs.lock);
940 
941 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
942 		       sizeof(env->bpf_progs.btfs_cnt));
943 
944 	if (ret < 0)
945 		goto out;
946 
947 	root = &env->bpf_progs.btfs;
948 	next = rb_first(root);
949 	while (next) {
950 		struct btf_node *node;
951 
952 		node = rb_entry(next, struct btf_node, rb_node);
953 		next = rb_next(&node->rb_node);
954 		ret = do_write(ff, &node->id,
955 			       sizeof(u32) * 2 + node->data_size);
956 		if (ret < 0)
957 			goto out;
958 	}
959 out:
960 	up_read(&env->bpf_progs.lock);
961 	return ret;
962 }
963 
964 static int cpu_cache_level__sort(const void *a, const void *b)
965 {
966 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
967 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
968 
969 	return cache_a->level - cache_b->level;
970 }
971 
972 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
973 {
974 	if (a->level != b->level)
975 		return false;
976 
977 	if (a->line_size != b->line_size)
978 		return false;
979 
980 	if (a->sets != b->sets)
981 		return false;
982 
983 	if (a->ways != b->ways)
984 		return false;
985 
986 	if (strcmp(a->type, b->type))
987 		return false;
988 
989 	if (strcmp(a->size, b->size))
990 		return false;
991 
992 	if (strcmp(a->map, b->map))
993 		return false;
994 
995 	return true;
996 }
997 
998 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
999 {
1000 	char path[PATH_MAX], file[PATH_MAX];
1001 	struct stat st;
1002 	size_t len;
1003 
1004 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1005 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1006 
1007 	if (stat(file, &st))
1008 		return 1;
1009 
1010 	scnprintf(file, PATH_MAX, "%s/level", path);
1011 	if (sysfs__read_int(file, (int *) &cache->level))
1012 		return -1;
1013 
1014 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1015 	if (sysfs__read_int(file, (int *) &cache->line_size))
1016 		return -1;
1017 
1018 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1019 	if (sysfs__read_int(file, (int *) &cache->sets))
1020 		return -1;
1021 
1022 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1023 	if (sysfs__read_int(file, (int *) &cache->ways))
1024 		return -1;
1025 
1026 	scnprintf(file, PATH_MAX, "%s/type", path);
1027 	if (sysfs__read_str(file, &cache->type, &len))
1028 		return -1;
1029 
1030 	cache->type[len] = 0;
1031 	cache->type = rtrim(cache->type);
1032 
1033 	scnprintf(file, PATH_MAX, "%s/size", path);
1034 	if (sysfs__read_str(file, &cache->size, &len)) {
1035 		free(cache->type);
1036 		return -1;
1037 	}
1038 
1039 	cache->size[len] = 0;
1040 	cache->size = rtrim(cache->size);
1041 
1042 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1043 	if (sysfs__read_str(file, &cache->map, &len)) {
1044 		free(cache->map);
1045 		free(cache->type);
1046 		return -1;
1047 	}
1048 
1049 	cache->map[len] = 0;
1050 	cache->map = rtrim(cache->map);
1051 	return 0;
1052 }
1053 
1054 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1055 {
1056 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1057 }
1058 
1059 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1060 {
1061 	u32 i, cnt = 0;
1062 	long ncpus;
1063 	u32 nr, cpu;
1064 	u16 level;
1065 
1066 	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1067 	if (ncpus < 0)
1068 		return -1;
1069 
1070 	nr = (u32)(ncpus & UINT_MAX);
1071 
1072 	for (cpu = 0; cpu < nr; cpu++) {
1073 		for (level = 0; level < 10; level++) {
1074 			struct cpu_cache_level c;
1075 			int err;
1076 
1077 			err = cpu_cache_level__read(&c, cpu, level);
1078 			if (err < 0)
1079 				return err;
1080 
1081 			if (err == 1)
1082 				break;
1083 
1084 			for (i = 0; i < cnt; i++) {
1085 				if (cpu_cache_level__cmp(&c, &caches[i]))
1086 					break;
1087 			}
1088 
1089 			if (i == cnt)
1090 				caches[cnt++] = c;
1091 			else
1092 				cpu_cache_level__free(&c);
1093 
1094 			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1095 				goto out;
1096 		}
1097 	}
1098  out:
1099 	*cntp = cnt;
1100 	return 0;
1101 }
1102 
1103 #define MAX_CACHES 2000
1104 
1105 static int write_cache(struct feat_fd *ff,
1106 		       struct perf_evlist *evlist __maybe_unused)
1107 {
1108 	struct cpu_cache_level caches[MAX_CACHES];
1109 	u32 cnt = 0, i, version = 1;
1110 	int ret;
1111 
1112 	ret = build_caches(caches, MAX_CACHES, &cnt);
1113 	if (ret)
1114 		goto out;
1115 
1116 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1117 
1118 	ret = do_write(ff, &version, sizeof(u32));
1119 	if (ret < 0)
1120 		goto out;
1121 
1122 	ret = do_write(ff, &cnt, sizeof(u32));
1123 	if (ret < 0)
1124 		goto out;
1125 
1126 	for (i = 0; i < cnt; i++) {
1127 		struct cpu_cache_level *c = &caches[i];
1128 
1129 		#define _W(v)					\
1130 			ret = do_write(ff, &c->v, sizeof(u32));	\
1131 			if (ret < 0)				\
1132 				goto out;
1133 
1134 		_W(level)
1135 		_W(line_size)
1136 		_W(sets)
1137 		_W(ways)
1138 		#undef _W
1139 
1140 		#define _W(v)						\
1141 			ret = do_write_string(ff, (const char *) c->v);	\
1142 			if (ret < 0)					\
1143 				goto out;
1144 
1145 		_W(type)
1146 		_W(size)
1147 		_W(map)
1148 		#undef _W
1149 	}
1150 
1151 out:
1152 	for (i = 0; i < cnt; i++)
1153 		cpu_cache_level__free(&caches[i]);
1154 	return ret;
1155 }
1156 
1157 static int write_stat(struct feat_fd *ff __maybe_unused,
1158 		      struct perf_evlist *evlist __maybe_unused)
1159 {
1160 	return 0;
1161 }
1162 
1163 static int write_sample_time(struct feat_fd *ff,
1164 			     struct perf_evlist *evlist)
1165 {
1166 	int ret;
1167 
1168 	ret = do_write(ff, &evlist->first_sample_time,
1169 		       sizeof(evlist->first_sample_time));
1170 	if (ret < 0)
1171 		return ret;
1172 
1173 	return do_write(ff, &evlist->last_sample_time,
1174 			sizeof(evlist->last_sample_time));
1175 }
1176 
1177 
1178 static int memory_node__read(struct memory_node *n, unsigned long idx)
1179 {
1180 	unsigned int phys, size = 0;
1181 	char path[PATH_MAX];
1182 	struct dirent *ent;
1183 	DIR *dir;
1184 
1185 #define for_each_memory(mem, dir)					\
1186 	while ((ent = readdir(dir)))					\
1187 		if (strcmp(ent->d_name, ".") &&				\
1188 		    strcmp(ent->d_name, "..") &&			\
1189 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1190 
1191 	scnprintf(path, PATH_MAX,
1192 		  "%s/devices/system/node/node%lu",
1193 		  sysfs__mountpoint(), idx);
1194 
1195 	dir = opendir(path);
1196 	if (!dir) {
1197 		pr_warning("failed: cant' open memory sysfs data\n");
1198 		return -1;
1199 	}
1200 
1201 	for_each_memory(phys, dir) {
1202 		size = max(phys, size);
1203 	}
1204 
1205 	size++;
1206 
1207 	n->set = bitmap_alloc(size);
1208 	if (!n->set) {
1209 		closedir(dir);
1210 		return -ENOMEM;
1211 	}
1212 
1213 	n->node = idx;
1214 	n->size = size;
1215 
1216 	rewinddir(dir);
1217 
1218 	for_each_memory(phys, dir) {
1219 		set_bit(phys, n->set);
1220 	}
1221 
1222 	closedir(dir);
1223 	return 0;
1224 }
1225 
1226 static int memory_node__sort(const void *a, const void *b)
1227 {
1228 	const struct memory_node *na = a;
1229 	const struct memory_node *nb = b;
1230 
1231 	return na->node - nb->node;
1232 }
1233 
1234 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1235 {
1236 	char path[PATH_MAX];
1237 	struct dirent *ent;
1238 	DIR *dir;
1239 	u64 cnt = 0;
1240 	int ret = 0;
1241 
1242 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1243 		  sysfs__mountpoint());
1244 
1245 	dir = opendir(path);
1246 	if (!dir) {
1247 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1248 			  __func__, path);
1249 		return -1;
1250 	}
1251 
1252 	while (!ret && (ent = readdir(dir))) {
1253 		unsigned int idx;
1254 		int r;
1255 
1256 		if (!strcmp(ent->d_name, ".") ||
1257 		    !strcmp(ent->d_name, ".."))
1258 			continue;
1259 
1260 		r = sscanf(ent->d_name, "node%u", &idx);
1261 		if (r != 1)
1262 			continue;
1263 
1264 		if (WARN_ONCE(cnt >= size,
1265 			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1266 			return -1;
1267 
1268 		ret = memory_node__read(&nodes[cnt++], idx);
1269 	}
1270 
1271 	*cntp = cnt;
1272 	closedir(dir);
1273 
1274 	if (!ret)
1275 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1276 
1277 	return ret;
1278 }
1279 
1280 #define MAX_MEMORY_NODES 2000
1281 
1282 /*
1283  * The MEM_TOPOLOGY holds physical memory map for every
1284  * node in system. The format of data is as follows:
1285  *
1286  *  0 - version          | for future changes
1287  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1288  * 16 - count            | number of nodes
1289  *
1290  * For each node we store map of physical indexes for
1291  * each node:
1292  *
1293  * 32 - node id          | node index
1294  * 40 - size             | size of bitmap
1295  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1296  */
1297 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1298 			      struct perf_evlist *evlist __maybe_unused)
1299 {
1300 	static struct memory_node nodes[MAX_MEMORY_NODES];
1301 	u64 bsize, version = 1, i, nr;
1302 	int ret;
1303 
1304 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1305 			      (unsigned long long *) &bsize);
1306 	if (ret)
1307 		return ret;
1308 
1309 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1310 	if (ret)
1311 		return ret;
1312 
1313 	ret = do_write(ff, &version, sizeof(version));
1314 	if (ret < 0)
1315 		goto out;
1316 
1317 	ret = do_write(ff, &bsize, sizeof(bsize));
1318 	if (ret < 0)
1319 		goto out;
1320 
1321 	ret = do_write(ff, &nr, sizeof(nr));
1322 	if (ret < 0)
1323 		goto out;
1324 
1325 	for (i = 0; i < nr; i++) {
1326 		struct memory_node *n = &nodes[i];
1327 
1328 		#define _W(v)						\
1329 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1330 			if (ret < 0)					\
1331 				goto out;
1332 
1333 		_W(node)
1334 		_W(size)
1335 
1336 		#undef _W
1337 
1338 		ret = do_write_bitmap(ff, n->set, n->size);
1339 		if (ret < 0)
1340 			goto out;
1341 	}
1342 
1343 out:
1344 	return ret;
1345 }
1346 
1347 static int write_compressed(struct feat_fd *ff __maybe_unused,
1348 			    struct perf_evlist *evlist __maybe_unused)
1349 {
1350 	int ret;
1351 
1352 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1353 	if (ret)
1354 		return ret;
1355 
1356 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1357 	if (ret)
1358 		return ret;
1359 
1360 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1361 	if (ret)
1362 		return ret;
1363 
1364 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1365 	if (ret)
1366 		return ret;
1367 
1368 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1369 }
1370 
1371 static void print_hostname(struct feat_fd *ff, FILE *fp)
1372 {
1373 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1374 }
1375 
1376 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1377 {
1378 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1379 }
1380 
1381 static void print_arch(struct feat_fd *ff, FILE *fp)
1382 {
1383 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1384 }
1385 
1386 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1387 {
1388 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1389 }
1390 
1391 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1392 {
1393 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1394 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1395 }
1396 
1397 static void print_version(struct feat_fd *ff, FILE *fp)
1398 {
1399 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1400 }
1401 
1402 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1403 {
1404 	int nr, i;
1405 
1406 	nr = ff->ph->env.nr_cmdline;
1407 
1408 	fprintf(fp, "# cmdline : ");
1409 
1410 	for (i = 0; i < nr; i++) {
1411 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1412 		if (!argv_i) {
1413 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1414 		} else {
1415 			char *mem = argv_i;
1416 			do {
1417 				char *quote = strchr(argv_i, '\'');
1418 				if (!quote)
1419 					break;
1420 				*quote++ = '\0';
1421 				fprintf(fp, "%s\\\'", argv_i);
1422 				argv_i = quote;
1423 			} while (1);
1424 			fprintf(fp, "%s ", argv_i);
1425 			free(mem);
1426 		}
1427 	}
1428 	fputc('\n', fp);
1429 }
1430 
1431 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1432 {
1433 	struct perf_header *ph = ff->ph;
1434 	int cpu_nr = ph->env.nr_cpus_avail;
1435 	int nr, i;
1436 	char *str;
1437 
1438 	nr = ph->env.nr_sibling_cores;
1439 	str = ph->env.sibling_cores;
1440 
1441 	for (i = 0; i < nr; i++) {
1442 		fprintf(fp, "# sibling cores   : %s\n", str);
1443 		str += strlen(str) + 1;
1444 	}
1445 
1446 	nr = ph->env.nr_sibling_threads;
1447 	str = ph->env.sibling_threads;
1448 
1449 	for (i = 0; i < nr; i++) {
1450 		fprintf(fp, "# sibling threads : %s\n", str);
1451 		str += strlen(str) + 1;
1452 	}
1453 
1454 	if (ph->env.cpu != NULL) {
1455 		for (i = 0; i < cpu_nr; i++)
1456 			fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1457 				ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1458 	} else
1459 		fprintf(fp, "# Core ID and Socket ID information is not available\n");
1460 }
1461 
1462 static void print_clockid(struct feat_fd *ff, FILE *fp)
1463 {
1464 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1465 		ff->ph->env.clockid_res_ns * 1000);
1466 }
1467 
1468 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1469 {
1470 	struct perf_session *session;
1471 	struct perf_data *data;
1472 
1473 	session = container_of(ff->ph, struct perf_session, header);
1474 	data = session->data;
1475 
1476 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1477 }
1478 
1479 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1480 {
1481 	struct perf_env *env = &ff->ph->env;
1482 	struct rb_root *root;
1483 	struct rb_node *next;
1484 
1485 	down_read(&env->bpf_progs.lock);
1486 
1487 	root = &env->bpf_progs.infos;
1488 	next = rb_first(root);
1489 
1490 	while (next) {
1491 		struct bpf_prog_info_node *node;
1492 
1493 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1494 		next = rb_next(&node->rb_node);
1495 
1496 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1497 					       env, fp);
1498 	}
1499 
1500 	up_read(&env->bpf_progs.lock);
1501 }
1502 
1503 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1504 {
1505 	struct perf_env *env = &ff->ph->env;
1506 	struct rb_root *root;
1507 	struct rb_node *next;
1508 
1509 	down_read(&env->bpf_progs.lock);
1510 
1511 	root = &env->bpf_progs.btfs;
1512 	next = rb_first(root);
1513 
1514 	while (next) {
1515 		struct btf_node *node;
1516 
1517 		node = rb_entry(next, struct btf_node, rb_node);
1518 		next = rb_next(&node->rb_node);
1519 		fprintf(fp, "# btf info of id %u\n", node->id);
1520 	}
1521 
1522 	up_read(&env->bpf_progs.lock);
1523 }
1524 
1525 static void free_event_desc(struct perf_evsel *events)
1526 {
1527 	struct perf_evsel *evsel;
1528 
1529 	if (!events)
1530 		return;
1531 
1532 	for (evsel = events; evsel->attr.size; evsel++) {
1533 		zfree(&evsel->name);
1534 		zfree(&evsel->id);
1535 	}
1536 
1537 	free(events);
1538 }
1539 
1540 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1541 {
1542 	struct perf_evsel *evsel, *events = NULL;
1543 	u64 *id;
1544 	void *buf = NULL;
1545 	u32 nre, sz, nr, i, j;
1546 	size_t msz;
1547 
1548 	/* number of events */
1549 	if (do_read_u32(ff, &nre))
1550 		goto error;
1551 
1552 	if (do_read_u32(ff, &sz))
1553 		goto error;
1554 
1555 	/* buffer to hold on file attr struct */
1556 	buf = malloc(sz);
1557 	if (!buf)
1558 		goto error;
1559 
1560 	/* the last event terminates with evsel->attr.size == 0: */
1561 	events = calloc(nre + 1, sizeof(*events));
1562 	if (!events)
1563 		goto error;
1564 
1565 	msz = sizeof(evsel->attr);
1566 	if (sz < msz)
1567 		msz = sz;
1568 
1569 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1570 		evsel->idx = i;
1571 
1572 		/*
1573 		 * must read entire on-file attr struct to
1574 		 * sync up with layout.
1575 		 */
1576 		if (__do_read(ff, buf, sz))
1577 			goto error;
1578 
1579 		if (ff->ph->needs_swap)
1580 			perf_event__attr_swap(buf);
1581 
1582 		memcpy(&evsel->attr, buf, msz);
1583 
1584 		if (do_read_u32(ff, &nr))
1585 			goto error;
1586 
1587 		if (ff->ph->needs_swap)
1588 			evsel->needs_swap = true;
1589 
1590 		evsel->name = do_read_string(ff);
1591 		if (!evsel->name)
1592 			goto error;
1593 
1594 		if (!nr)
1595 			continue;
1596 
1597 		id = calloc(nr, sizeof(*id));
1598 		if (!id)
1599 			goto error;
1600 		evsel->ids = nr;
1601 		evsel->id = id;
1602 
1603 		for (j = 0 ; j < nr; j++) {
1604 			if (do_read_u64(ff, id))
1605 				goto error;
1606 			id++;
1607 		}
1608 	}
1609 out:
1610 	free(buf);
1611 	return events;
1612 error:
1613 	free_event_desc(events);
1614 	events = NULL;
1615 	goto out;
1616 }
1617 
1618 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1619 				void *priv __maybe_unused)
1620 {
1621 	return fprintf(fp, ", %s = %s", name, val);
1622 }
1623 
1624 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1625 {
1626 	struct perf_evsel *evsel, *events;
1627 	u32 j;
1628 	u64 *id;
1629 
1630 	if (ff->events)
1631 		events = ff->events;
1632 	else
1633 		events = read_event_desc(ff);
1634 
1635 	if (!events) {
1636 		fprintf(fp, "# event desc: not available or unable to read\n");
1637 		return;
1638 	}
1639 
1640 	for (evsel = events; evsel->attr.size; evsel++) {
1641 		fprintf(fp, "# event : name = %s, ", evsel->name);
1642 
1643 		if (evsel->ids) {
1644 			fprintf(fp, ", id = {");
1645 			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1646 				if (j)
1647 					fputc(',', fp);
1648 				fprintf(fp, " %"PRIu64, *id);
1649 			}
1650 			fprintf(fp, " }");
1651 		}
1652 
1653 		perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1654 
1655 		fputc('\n', fp);
1656 	}
1657 
1658 	free_event_desc(events);
1659 	ff->events = NULL;
1660 }
1661 
1662 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1663 {
1664 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1665 }
1666 
1667 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1668 {
1669 	int i;
1670 	struct numa_node *n;
1671 
1672 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1673 		n = &ff->ph->env.numa_nodes[i];
1674 
1675 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1676 			    " free = %"PRIu64" kB\n",
1677 			n->node, n->mem_total, n->mem_free);
1678 
1679 		fprintf(fp, "# node%u cpu list : ", n->node);
1680 		cpu_map__fprintf(n->map, fp);
1681 	}
1682 }
1683 
1684 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1685 {
1686 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1687 }
1688 
1689 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1690 {
1691 	fprintf(fp, "# contains samples with branch stack\n");
1692 }
1693 
1694 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1695 {
1696 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1697 }
1698 
1699 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1700 {
1701 	fprintf(fp, "# contains stat data\n");
1702 }
1703 
1704 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1705 {
1706 	int i;
1707 
1708 	fprintf(fp, "# CPU cache info:\n");
1709 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1710 		fprintf(fp, "#  ");
1711 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1712 	}
1713 }
1714 
1715 static void print_compressed(struct feat_fd *ff, FILE *fp)
1716 {
1717 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1718 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1719 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1720 }
1721 
1722 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1723 {
1724 	const char *delimiter = "# pmu mappings: ";
1725 	char *str, *tmp;
1726 	u32 pmu_num;
1727 	u32 type;
1728 
1729 	pmu_num = ff->ph->env.nr_pmu_mappings;
1730 	if (!pmu_num) {
1731 		fprintf(fp, "# pmu mappings: not available\n");
1732 		return;
1733 	}
1734 
1735 	str = ff->ph->env.pmu_mappings;
1736 
1737 	while (pmu_num) {
1738 		type = strtoul(str, &tmp, 0);
1739 		if (*tmp != ':')
1740 			goto error;
1741 
1742 		str = tmp + 1;
1743 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1744 
1745 		delimiter = ", ";
1746 		str += strlen(str) + 1;
1747 		pmu_num--;
1748 	}
1749 
1750 	fprintf(fp, "\n");
1751 
1752 	if (!pmu_num)
1753 		return;
1754 error:
1755 	fprintf(fp, "# pmu mappings: unable to read\n");
1756 }
1757 
1758 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1759 {
1760 	struct perf_session *session;
1761 	struct perf_evsel *evsel;
1762 	u32 nr = 0;
1763 
1764 	session = container_of(ff->ph, struct perf_session, header);
1765 
1766 	evlist__for_each_entry(session->evlist, evsel) {
1767 		if (perf_evsel__is_group_leader(evsel) &&
1768 		    evsel->nr_members > 1) {
1769 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1770 				perf_evsel__name(evsel));
1771 
1772 			nr = evsel->nr_members - 1;
1773 		} else if (nr) {
1774 			fprintf(fp, ",%s", perf_evsel__name(evsel));
1775 
1776 			if (--nr == 0)
1777 				fprintf(fp, "}\n");
1778 		}
1779 	}
1780 }
1781 
1782 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1783 {
1784 	struct perf_session *session;
1785 	char time_buf[32];
1786 	double d;
1787 
1788 	session = container_of(ff->ph, struct perf_session, header);
1789 
1790 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1791 				  time_buf, sizeof(time_buf));
1792 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1793 
1794 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1795 				  time_buf, sizeof(time_buf));
1796 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1797 
1798 	d = (double)(session->evlist->last_sample_time -
1799 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1800 
1801 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1802 }
1803 
1804 static void memory_node__fprintf(struct memory_node *n,
1805 				 unsigned long long bsize, FILE *fp)
1806 {
1807 	char buf_map[100], buf_size[50];
1808 	unsigned long long size;
1809 
1810 	size = bsize * bitmap_weight(n->set, n->size);
1811 	unit_number__scnprintf(buf_size, 50, size);
1812 
1813 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1814 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1815 }
1816 
1817 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1818 {
1819 	struct memory_node *nodes;
1820 	int i, nr;
1821 
1822 	nodes = ff->ph->env.memory_nodes;
1823 	nr    = ff->ph->env.nr_memory_nodes;
1824 
1825 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1826 		nr, ff->ph->env.memory_bsize);
1827 
1828 	for (i = 0; i < nr; i++) {
1829 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1830 	}
1831 }
1832 
1833 static int __event_process_build_id(struct build_id_event *bev,
1834 				    char *filename,
1835 				    struct perf_session *session)
1836 {
1837 	int err = -1;
1838 	struct machine *machine;
1839 	u16 cpumode;
1840 	struct dso *dso;
1841 	enum dso_kernel_type dso_type;
1842 
1843 	machine = perf_session__findnew_machine(session, bev->pid);
1844 	if (!machine)
1845 		goto out;
1846 
1847 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1848 
1849 	switch (cpumode) {
1850 	case PERF_RECORD_MISC_KERNEL:
1851 		dso_type = DSO_TYPE_KERNEL;
1852 		break;
1853 	case PERF_RECORD_MISC_GUEST_KERNEL:
1854 		dso_type = DSO_TYPE_GUEST_KERNEL;
1855 		break;
1856 	case PERF_RECORD_MISC_USER:
1857 	case PERF_RECORD_MISC_GUEST_USER:
1858 		dso_type = DSO_TYPE_USER;
1859 		break;
1860 	default:
1861 		goto out;
1862 	}
1863 
1864 	dso = machine__findnew_dso(machine, filename);
1865 	if (dso != NULL) {
1866 		char sbuild_id[SBUILD_ID_SIZE];
1867 
1868 		dso__set_build_id(dso, &bev->build_id);
1869 
1870 		if (dso_type != DSO_TYPE_USER) {
1871 			struct kmod_path m = { .name = NULL, };
1872 
1873 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1874 				dso__set_module_info(dso, &m, machine);
1875 			else
1876 				dso->kernel = dso_type;
1877 
1878 			free(m.name);
1879 		}
1880 
1881 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1882 				  sbuild_id);
1883 		pr_debug("build id event received for %s: %s\n",
1884 			 dso->long_name, sbuild_id);
1885 		dso__put(dso);
1886 	}
1887 
1888 	err = 0;
1889 out:
1890 	return err;
1891 }
1892 
1893 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1894 						 int input, u64 offset, u64 size)
1895 {
1896 	struct perf_session *session = container_of(header, struct perf_session, header);
1897 	struct {
1898 		struct perf_event_header   header;
1899 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1900 		char			   filename[0];
1901 	} old_bev;
1902 	struct build_id_event bev;
1903 	char filename[PATH_MAX];
1904 	u64 limit = offset + size;
1905 
1906 	while (offset < limit) {
1907 		ssize_t len;
1908 
1909 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1910 			return -1;
1911 
1912 		if (header->needs_swap)
1913 			perf_event_header__bswap(&old_bev.header);
1914 
1915 		len = old_bev.header.size - sizeof(old_bev);
1916 		if (readn(input, filename, len) != len)
1917 			return -1;
1918 
1919 		bev.header = old_bev.header;
1920 
1921 		/*
1922 		 * As the pid is the missing value, we need to fill
1923 		 * it properly. The header.misc value give us nice hint.
1924 		 */
1925 		bev.pid	= HOST_KERNEL_ID;
1926 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1927 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1928 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1929 
1930 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1931 		__event_process_build_id(&bev, filename, session);
1932 
1933 		offset += bev.header.size;
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 static int perf_header__read_build_ids(struct perf_header *header,
1940 				       int input, u64 offset, u64 size)
1941 {
1942 	struct perf_session *session = container_of(header, struct perf_session, header);
1943 	struct build_id_event bev;
1944 	char filename[PATH_MAX];
1945 	u64 limit = offset + size, orig_offset = offset;
1946 	int err = -1;
1947 
1948 	while (offset < limit) {
1949 		ssize_t len;
1950 
1951 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1952 			goto out;
1953 
1954 		if (header->needs_swap)
1955 			perf_event_header__bswap(&bev.header);
1956 
1957 		len = bev.header.size - sizeof(bev);
1958 		if (readn(input, filename, len) != len)
1959 			goto out;
1960 		/*
1961 		 * The a1645ce1 changeset:
1962 		 *
1963 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
1964 		 *
1965 		 * Added a field to struct build_id_event that broke the file
1966 		 * format.
1967 		 *
1968 		 * Since the kernel build-id is the first entry, process the
1969 		 * table using the old format if the well known
1970 		 * '[kernel.kallsyms]' string for the kernel build-id has the
1971 		 * first 4 characters chopped off (where the pid_t sits).
1972 		 */
1973 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1974 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1975 				return -1;
1976 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1977 		}
1978 
1979 		__event_process_build_id(&bev, filename, session);
1980 
1981 		offset += bev.header.size;
1982 	}
1983 	err = 0;
1984 out:
1985 	return err;
1986 }
1987 
1988 /* Macro for features that simply need to read and store a string. */
1989 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1990 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1991 {\
1992 	ff->ph->env.__feat_env = do_read_string(ff); \
1993 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1994 }
1995 
1996 FEAT_PROCESS_STR_FUN(hostname, hostname);
1997 FEAT_PROCESS_STR_FUN(osrelease, os_release);
1998 FEAT_PROCESS_STR_FUN(version, version);
1999 FEAT_PROCESS_STR_FUN(arch, arch);
2000 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2001 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2002 
2003 static int process_tracing_data(struct feat_fd *ff, void *data)
2004 {
2005 	ssize_t ret = trace_report(ff->fd, data, false);
2006 
2007 	return ret < 0 ? -1 : 0;
2008 }
2009 
2010 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2011 {
2012 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2013 		pr_debug("Failed to read buildids, continuing...\n");
2014 	return 0;
2015 }
2016 
2017 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2018 {
2019 	int ret;
2020 	u32 nr_cpus_avail, nr_cpus_online;
2021 
2022 	ret = do_read_u32(ff, &nr_cpus_avail);
2023 	if (ret)
2024 		return ret;
2025 
2026 	ret = do_read_u32(ff, &nr_cpus_online);
2027 	if (ret)
2028 		return ret;
2029 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2030 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2031 	return 0;
2032 }
2033 
2034 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2035 {
2036 	u64 total_mem;
2037 	int ret;
2038 
2039 	ret = do_read_u64(ff, &total_mem);
2040 	if (ret)
2041 		return -1;
2042 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2043 	return 0;
2044 }
2045 
2046 static struct perf_evsel *
2047 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2048 {
2049 	struct perf_evsel *evsel;
2050 
2051 	evlist__for_each_entry(evlist, evsel) {
2052 		if (evsel->idx == idx)
2053 			return evsel;
2054 	}
2055 
2056 	return NULL;
2057 }
2058 
2059 static void
2060 perf_evlist__set_event_name(struct perf_evlist *evlist,
2061 			    struct perf_evsel *event)
2062 {
2063 	struct perf_evsel *evsel;
2064 
2065 	if (!event->name)
2066 		return;
2067 
2068 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2069 	if (!evsel)
2070 		return;
2071 
2072 	if (evsel->name)
2073 		return;
2074 
2075 	evsel->name = strdup(event->name);
2076 }
2077 
2078 static int
2079 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2080 {
2081 	struct perf_session *session;
2082 	struct perf_evsel *evsel, *events = read_event_desc(ff);
2083 
2084 	if (!events)
2085 		return 0;
2086 
2087 	session = container_of(ff->ph, struct perf_session, header);
2088 
2089 	if (session->data->is_pipe) {
2090 		/* Save events for reading later by print_event_desc,
2091 		 * since they can't be read again in pipe mode. */
2092 		ff->events = events;
2093 	}
2094 
2095 	for (evsel = events; evsel->attr.size; evsel++)
2096 		perf_evlist__set_event_name(session->evlist, evsel);
2097 
2098 	if (!session->data->is_pipe)
2099 		free_event_desc(events);
2100 
2101 	return 0;
2102 }
2103 
2104 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2105 {
2106 	char *str, *cmdline = NULL, **argv = NULL;
2107 	u32 nr, i, len = 0;
2108 
2109 	if (do_read_u32(ff, &nr))
2110 		return -1;
2111 
2112 	ff->ph->env.nr_cmdline = nr;
2113 
2114 	cmdline = zalloc(ff->size + nr + 1);
2115 	if (!cmdline)
2116 		return -1;
2117 
2118 	argv = zalloc(sizeof(char *) * (nr + 1));
2119 	if (!argv)
2120 		goto error;
2121 
2122 	for (i = 0; i < nr; i++) {
2123 		str = do_read_string(ff);
2124 		if (!str)
2125 			goto error;
2126 
2127 		argv[i] = cmdline + len;
2128 		memcpy(argv[i], str, strlen(str) + 1);
2129 		len += strlen(str) + 1;
2130 		free(str);
2131 	}
2132 	ff->ph->env.cmdline = cmdline;
2133 	ff->ph->env.cmdline_argv = (const char **) argv;
2134 	return 0;
2135 
2136 error:
2137 	free(argv);
2138 	free(cmdline);
2139 	return -1;
2140 }
2141 
2142 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2143 {
2144 	u32 nr, i;
2145 	char *str;
2146 	struct strbuf sb;
2147 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2148 	u64 size = 0;
2149 	struct perf_header *ph = ff->ph;
2150 	bool do_core_id_test = true;
2151 
2152 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2153 	if (!ph->env.cpu)
2154 		return -1;
2155 
2156 	if (do_read_u32(ff, &nr))
2157 		goto free_cpu;
2158 
2159 	ph->env.nr_sibling_cores = nr;
2160 	size += sizeof(u32);
2161 	if (strbuf_init(&sb, 128) < 0)
2162 		goto free_cpu;
2163 
2164 	for (i = 0; i < nr; i++) {
2165 		str = do_read_string(ff);
2166 		if (!str)
2167 			goto error;
2168 
2169 		/* include a NULL character at the end */
2170 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2171 			goto error;
2172 		size += string_size(str);
2173 		free(str);
2174 	}
2175 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2176 
2177 	if (do_read_u32(ff, &nr))
2178 		return -1;
2179 
2180 	ph->env.nr_sibling_threads = nr;
2181 	size += sizeof(u32);
2182 
2183 	for (i = 0; i < nr; i++) {
2184 		str = do_read_string(ff);
2185 		if (!str)
2186 			goto error;
2187 
2188 		/* include a NULL character at the end */
2189 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2190 			goto error;
2191 		size += string_size(str);
2192 		free(str);
2193 	}
2194 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2195 
2196 	/*
2197 	 * The header may be from old perf,
2198 	 * which doesn't include core id and socket id information.
2199 	 */
2200 	if (ff->size <= size) {
2201 		zfree(&ph->env.cpu);
2202 		return 0;
2203 	}
2204 
2205 	/* On s390 the socket_id number is not related to the numbers of cpus.
2206 	 * The socket_id number might be higher than the numbers of cpus.
2207 	 * This depends on the configuration.
2208 	 */
2209 	if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2210 		do_core_id_test = false;
2211 
2212 	for (i = 0; i < (u32)cpu_nr; i++) {
2213 		if (do_read_u32(ff, &nr))
2214 			goto free_cpu;
2215 
2216 		ph->env.cpu[i].core_id = nr;
2217 
2218 		if (do_read_u32(ff, &nr))
2219 			goto free_cpu;
2220 
2221 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2222 			pr_debug("socket_id number is too big."
2223 				 "You may need to upgrade the perf tool.\n");
2224 			goto free_cpu;
2225 		}
2226 
2227 		ph->env.cpu[i].socket_id = nr;
2228 	}
2229 
2230 	return 0;
2231 
2232 error:
2233 	strbuf_release(&sb);
2234 free_cpu:
2235 	zfree(&ph->env.cpu);
2236 	return -1;
2237 }
2238 
2239 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2240 {
2241 	struct numa_node *nodes, *n;
2242 	u32 nr, i;
2243 	char *str;
2244 
2245 	/* nr nodes */
2246 	if (do_read_u32(ff, &nr))
2247 		return -1;
2248 
2249 	nodes = zalloc(sizeof(*nodes) * nr);
2250 	if (!nodes)
2251 		return -ENOMEM;
2252 
2253 	for (i = 0; i < nr; i++) {
2254 		n = &nodes[i];
2255 
2256 		/* node number */
2257 		if (do_read_u32(ff, &n->node))
2258 			goto error;
2259 
2260 		if (do_read_u64(ff, &n->mem_total))
2261 			goto error;
2262 
2263 		if (do_read_u64(ff, &n->mem_free))
2264 			goto error;
2265 
2266 		str = do_read_string(ff);
2267 		if (!str)
2268 			goto error;
2269 
2270 		n->map = cpu_map__new(str);
2271 		if (!n->map)
2272 			goto error;
2273 
2274 		free(str);
2275 	}
2276 	ff->ph->env.nr_numa_nodes = nr;
2277 	ff->ph->env.numa_nodes = nodes;
2278 	return 0;
2279 
2280 error:
2281 	free(nodes);
2282 	return -1;
2283 }
2284 
2285 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2286 {
2287 	char *name;
2288 	u32 pmu_num;
2289 	u32 type;
2290 	struct strbuf sb;
2291 
2292 	if (do_read_u32(ff, &pmu_num))
2293 		return -1;
2294 
2295 	if (!pmu_num) {
2296 		pr_debug("pmu mappings not available\n");
2297 		return 0;
2298 	}
2299 
2300 	ff->ph->env.nr_pmu_mappings = pmu_num;
2301 	if (strbuf_init(&sb, 128) < 0)
2302 		return -1;
2303 
2304 	while (pmu_num) {
2305 		if (do_read_u32(ff, &type))
2306 			goto error;
2307 
2308 		name = do_read_string(ff);
2309 		if (!name)
2310 			goto error;
2311 
2312 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2313 			goto error;
2314 		/* include a NULL character at the end */
2315 		if (strbuf_add(&sb, "", 1) < 0)
2316 			goto error;
2317 
2318 		if (!strcmp(name, "msr"))
2319 			ff->ph->env.msr_pmu_type = type;
2320 
2321 		free(name);
2322 		pmu_num--;
2323 	}
2324 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2325 	return 0;
2326 
2327 error:
2328 	strbuf_release(&sb);
2329 	return -1;
2330 }
2331 
2332 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2333 {
2334 	size_t ret = -1;
2335 	u32 i, nr, nr_groups;
2336 	struct perf_session *session;
2337 	struct perf_evsel *evsel, *leader = NULL;
2338 	struct group_desc {
2339 		char *name;
2340 		u32 leader_idx;
2341 		u32 nr_members;
2342 	} *desc;
2343 
2344 	if (do_read_u32(ff, &nr_groups))
2345 		return -1;
2346 
2347 	ff->ph->env.nr_groups = nr_groups;
2348 	if (!nr_groups) {
2349 		pr_debug("group desc not available\n");
2350 		return 0;
2351 	}
2352 
2353 	desc = calloc(nr_groups, sizeof(*desc));
2354 	if (!desc)
2355 		return -1;
2356 
2357 	for (i = 0; i < nr_groups; i++) {
2358 		desc[i].name = do_read_string(ff);
2359 		if (!desc[i].name)
2360 			goto out_free;
2361 
2362 		if (do_read_u32(ff, &desc[i].leader_idx))
2363 			goto out_free;
2364 
2365 		if (do_read_u32(ff, &desc[i].nr_members))
2366 			goto out_free;
2367 	}
2368 
2369 	/*
2370 	 * Rebuild group relationship based on the group_desc
2371 	 */
2372 	session = container_of(ff->ph, struct perf_session, header);
2373 	session->evlist->nr_groups = nr_groups;
2374 
2375 	i = nr = 0;
2376 	evlist__for_each_entry(session->evlist, evsel) {
2377 		if (evsel->idx == (int) desc[i].leader_idx) {
2378 			evsel->leader = evsel;
2379 			/* {anon_group} is a dummy name */
2380 			if (strcmp(desc[i].name, "{anon_group}")) {
2381 				evsel->group_name = desc[i].name;
2382 				desc[i].name = NULL;
2383 			}
2384 			evsel->nr_members = desc[i].nr_members;
2385 
2386 			if (i >= nr_groups || nr > 0) {
2387 				pr_debug("invalid group desc\n");
2388 				goto out_free;
2389 			}
2390 
2391 			leader = evsel;
2392 			nr = evsel->nr_members - 1;
2393 			i++;
2394 		} else if (nr) {
2395 			/* This is a group member */
2396 			evsel->leader = leader;
2397 
2398 			nr--;
2399 		}
2400 	}
2401 
2402 	if (i != nr_groups || nr != 0) {
2403 		pr_debug("invalid group desc\n");
2404 		goto out_free;
2405 	}
2406 
2407 	ret = 0;
2408 out_free:
2409 	for (i = 0; i < nr_groups; i++)
2410 		zfree(&desc[i].name);
2411 	free(desc);
2412 
2413 	return ret;
2414 }
2415 
2416 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2417 {
2418 	struct perf_session *session;
2419 	int err;
2420 
2421 	session = container_of(ff->ph, struct perf_session, header);
2422 
2423 	err = auxtrace_index__process(ff->fd, ff->size, session,
2424 				      ff->ph->needs_swap);
2425 	if (err < 0)
2426 		pr_err("Failed to process auxtrace index\n");
2427 	return err;
2428 }
2429 
2430 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2431 {
2432 	struct cpu_cache_level *caches;
2433 	u32 cnt, i, version;
2434 
2435 	if (do_read_u32(ff, &version))
2436 		return -1;
2437 
2438 	if (version != 1)
2439 		return -1;
2440 
2441 	if (do_read_u32(ff, &cnt))
2442 		return -1;
2443 
2444 	caches = zalloc(sizeof(*caches) * cnt);
2445 	if (!caches)
2446 		return -1;
2447 
2448 	for (i = 0; i < cnt; i++) {
2449 		struct cpu_cache_level c;
2450 
2451 		#define _R(v)						\
2452 			if (do_read_u32(ff, &c.v))\
2453 				goto out_free_caches;			\
2454 
2455 		_R(level)
2456 		_R(line_size)
2457 		_R(sets)
2458 		_R(ways)
2459 		#undef _R
2460 
2461 		#define _R(v)					\
2462 			c.v = do_read_string(ff);		\
2463 			if (!c.v)				\
2464 				goto out_free_caches;
2465 
2466 		_R(type)
2467 		_R(size)
2468 		_R(map)
2469 		#undef _R
2470 
2471 		caches[i] = c;
2472 	}
2473 
2474 	ff->ph->env.caches = caches;
2475 	ff->ph->env.caches_cnt = cnt;
2476 	return 0;
2477 out_free_caches:
2478 	free(caches);
2479 	return -1;
2480 }
2481 
2482 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2483 {
2484 	struct perf_session *session;
2485 	u64 first_sample_time, last_sample_time;
2486 	int ret;
2487 
2488 	session = container_of(ff->ph, struct perf_session, header);
2489 
2490 	ret = do_read_u64(ff, &first_sample_time);
2491 	if (ret)
2492 		return -1;
2493 
2494 	ret = do_read_u64(ff, &last_sample_time);
2495 	if (ret)
2496 		return -1;
2497 
2498 	session->evlist->first_sample_time = first_sample_time;
2499 	session->evlist->last_sample_time = last_sample_time;
2500 	return 0;
2501 }
2502 
2503 static int process_mem_topology(struct feat_fd *ff,
2504 				void *data __maybe_unused)
2505 {
2506 	struct memory_node *nodes;
2507 	u64 version, i, nr, bsize;
2508 	int ret = -1;
2509 
2510 	if (do_read_u64(ff, &version))
2511 		return -1;
2512 
2513 	if (version != 1)
2514 		return -1;
2515 
2516 	if (do_read_u64(ff, &bsize))
2517 		return -1;
2518 
2519 	if (do_read_u64(ff, &nr))
2520 		return -1;
2521 
2522 	nodes = zalloc(sizeof(*nodes) * nr);
2523 	if (!nodes)
2524 		return -1;
2525 
2526 	for (i = 0; i < nr; i++) {
2527 		struct memory_node n;
2528 
2529 		#define _R(v)				\
2530 			if (do_read_u64(ff, &n.v))	\
2531 				goto out;		\
2532 
2533 		_R(node)
2534 		_R(size)
2535 
2536 		#undef _R
2537 
2538 		if (do_read_bitmap(ff, &n.set, &n.size))
2539 			goto out;
2540 
2541 		nodes[i] = n;
2542 	}
2543 
2544 	ff->ph->env.memory_bsize    = bsize;
2545 	ff->ph->env.memory_nodes    = nodes;
2546 	ff->ph->env.nr_memory_nodes = nr;
2547 	ret = 0;
2548 
2549 out:
2550 	if (ret)
2551 		free(nodes);
2552 	return ret;
2553 }
2554 
2555 static int process_clockid(struct feat_fd *ff,
2556 			   void *data __maybe_unused)
2557 {
2558 	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2559 		return -1;
2560 
2561 	return 0;
2562 }
2563 
2564 static int process_dir_format(struct feat_fd *ff,
2565 			      void *_data __maybe_unused)
2566 {
2567 	struct perf_session *session;
2568 	struct perf_data *data;
2569 
2570 	session = container_of(ff->ph, struct perf_session, header);
2571 	data = session->data;
2572 
2573 	if (WARN_ON(!perf_data__is_dir(data)))
2574 		return -1;
2575 
2576 	return do_read_u64(ff, &data->dir.version);
2577 }
2578 
2579 #ifdef HAVE_LIBBPF_SUPPORT
2580 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2581 {
2582 	struct bpf_prog_info_linear *info_linear;
2583 	struct bpf_prog_info_node *info_node;
2584 	struct perf_env *env = &ff->ph->env;
2585 	u32 count, i;
2586 	int err = -1;
2587 
2588 	if (ff->ph->needs_swap) {
2589 		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2590 		return 0;
2591 	}
2592 
2593 	if (do_read_u32(ff, &count))
2594 		return -1;
2595 
2596 	down_write(&env->bpf_progs.lock);
2597 
2598 	for (i = 0; i < count; ++i) {
2599 		u32 info_len, data_len;
2600 
2601 		info_linear = NULL;
2602 		info_node = NULL;
2603 		if (do_read_u32(ff, &info_len))
2604 			goto out;
2605 		if (do_read_u32(ff, &data_len))
2606 			goto out;
2607 
2608 		if (info_len > sizeof(struct bpf_prog_info)) {
2609 			pr_warning("detected invalid bpf_prog_info\n");
2610 			goto out;
2611 		}
2612 
2613 		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2614 				     data_len);
2615 		if (!info_linear)
2616 			goto out;
2617 		info_linear->info_len = sizeof(struct bpf_prog_info);
2618 		info_linear->data_len = data_len;
2619 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2620 			goto out;
2621 		if (__do_read(ff, &info_linear->info, info_len))
2622 			goto out;
2623 		if (info_len < sizeof(struct bpf_prog_info))
2624 			memset(((void *)(&info_linear->info)) + info_len, 0,
2625 			       sizeof(struct bpf_prog_info) - info_len);
2626 
2627 		if (__do_read(ff, info_linear->data, data_len))
2628 			goto out;
2629 
2630 		info_node = malloc(sizeof(struct bpf_prog_info_node));
2631 		if (!info_node)
2632 			goto out;
2633 
2634 		/* after reading from file, translate offset to address */
2635 		bpf_program__bpil_offs_to_addr(info_linear);
2636 		info_node->info_linear = info_linear;
2637 		perf_env__insert_bpf_prog_info(env, info_node);
2638 	}
2639 
2640 	up_write(&env->bpf_progs.lock);
2641 	return 0;
2642 out:
2643 	free(info_linear);
2644 	free(info_node);
2645 	up_write(&env->bpf_progs.lock);
2646 	return err;
2647 }
2648 #else // HAVE_LIBBPF_SUPPORT
2649 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2650 {
2651 	return 0;
2652 }
2653 #endif // HAVE_LIBBPF_SUPPORT
2654 
2655 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2656 {
2657 	struct perf_env *env = &ff->ph->env;
2658 	struct btf_node *node = NULL;
2659 	u32 count, i;
2660 	int err = -1;
2661 
2662 	if (ff->ph->needs_swap) {
2663 		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2664 		return 0;
2665 	}
2666 
2667 	if (do_read_u32(ff, &count))
2668 		return -1;
2669 
2670 	down_write(&env->bpf_progs.lock);
2671 
2672 	for (i = 0; i < count; ++i) {
2673 		u32 id, data_size;
2674 
2675 		if (do_read_u32(ff, &id))
2676 			goto out;
2677 		if (do_read_u32(ff, &data_size))
2678 			goto out;
2679 
2680 		node = malloc(sizeof(struct btf_node) + data_size);
2681 		if (!node)
2682 			goto out;
2683 
2684 		node->id = id;
2685 		node->data_size = data_size;
2686 
2687 		if (__do_read(ff, node->data, data_size))
2688 			goto out;
2689 
2690 		perf_env__insert_btf(env, node);
2691 		node = NULL;
2692 	}
2693 
2694 	err = 0;
2695 out:
2696 	up_write(&env->bpf_progs.lock);
2697 	free(node);
2698 	return err;
2699 }
2700 
2701 static int process_compressed(struct feat_fd *ff,
2702 			      void *data __maybe_unused)
2703 {
2704 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2705 		return -1;
2706 
2707 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2708 		return -1;
2709 
2710 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2711 		return -1;
2712 
2713 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2714 		return -1;
2715 
2716 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2717 		return -1;
2718 
2719 	return 0;
2720 }
2721 
2722 struct feature_ops {
2723 	int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2724 	void (*print)(struct feat_fd *ff, FILE *fp);
2725 	int (*process)(struct feat_fd *ff, void *data);
2726 	const char *name;
2727 	bool full_only;
2728 	bool synthesize;
2729 };
2730 
2731 #define FEAT_OPR(n, func, __full_only) \
2732 	[HEADER_##n] = {					\
2733 		.name	    = __stringify(n),			\
2734 		.write	    = write_##func,			\
2735 		.print	    = print_##func,			\
2736 		.full_only  = __full_only,			\
2737 		.process    = process_##func,			\
2738 		.synthesize = true				\
2739 	}
2740 
2741 #define FEAT_OPN(n, func, __full_only) \
2742 	[HEADER_##n] = {					\
2743 		.name	    = __stringify(n),			\
2744 		.write	    = write_##func,			\
2745 		.print	    = print_##func,			\
2746 		.full_only  = __full_only,			\
2747 		.process    = process_##func			\
2748 	}
2749 
2750 /* feature_ops not implemented: */
2751 #define print_tracing_data	NULL
2752 #define print_build_id		NULL
2753 
2754 #define process_branch_stack	NULL
2755 #define process_stat		NULL
2756 
2757 
2758 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2759 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2760 	FEAT_OPN(BUILD_ID,	build_id,	false),
2761 	FEAT_OPR(HOSTNAME,	hostname,	false),
2762 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2763 	FEAT_OPR(VERSION,	version,	false),
2764 	FEAT_OPR(ARCH,		arch,		false),
2765 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2766 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2767 	FEAT_OPR(CPUID,		cpuid,		false),
2768 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2769 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2770 	FEAT_OPR(CMDLINE,	cmdline,	false),
2771 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2772 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2773 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2774 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2775 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2776 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2777 	FEAT_OPN(STAT,		stat,		false),
2778 	FEAT_OPN(CACHE,		cache,		true),
2779 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2780 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2781 	FEAT_OPR(CLOCKID,	clockid,	false),
2782 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2783 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2784 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2785 	FEAT_OPR(COMPRESSED,	compressed,	false),
2786 };
2787 
2788 struct header_print_data {
2789 	FILE *fp;
2790 	bool full; /* extended list of headers */
2791 };
2792 
2793 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2794 					   struct perf_header *ph,
2795 					   int feat, int fd, void *data)
2796 {
2797 	struct header_print_data *hd = data;
2798 	struct feat_fd ff;
2799 
2800 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2801 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2802 				"%d, continuing...\n", section->offset, feat);
2803 		return 0;
2804 	}
2805 	if (feat >= HEADER_LAST_FEATURE) {
2806 		pr_warning("unknown feature %d\n", feat);
2807 		return 0;
2808 	}
2809 	if (!feat_ops[feat].print)
2810 		return 0;
2811 
2812 	ff = (struct  feat_fd) {
2813 		.fd = fd,
2814 		.ph = ph,
2815 	};
2816 
2817 	if (!feat_ops[feat].full_only || hd->full)
2818 		feat_ops[feat].print(&ff, hd->fp);
2819 	else
2820 		fprintf(hd->fp, "# %s info available, use -I to display\n",
2821 			feat_ops[feat].name);
2822 
2823 	return 0;
2824 }
2825 
2826 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2827 {
2828 	struct header_print_data hd;
2829 	struct perf_header *header = &session->header;
2830 	int fd = perf_data__fd(session->data);
2831 	struct stat st;
2832 	time_t stctime;
2833 	int ret, bit;
2834 
2835 	hd.fp = fp;
2836 	hd.full = full;
2837 
2838 	ret = fstat(fd, &st);
2839 	if (ret == -1)
2840 		return -1;
2841 
2842 	stctime = st.st_ctime;
2843 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2844 
2845 	fprintf(fp, "# header version : %u\n", header->version);
2846 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2847 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2848 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2849 
2850 	perf_header__process_sections(header, fd, &hd,
2851 				      perf_file_section__fprintf_info);
2852 
2853 	if (session->data->is_pipe)
2854 		return 0;
2855 
2856 	fprintf(fp, "# missing features: ");
2857 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2858 		if (bit)
2859 			fprintf(fp, "%s ", feat_ops[bit].name);
2860 	}
2861 
2862 	fprintf(fp, "\n");
2863 	return 0;
2864 }
2865 
2866 static int do_write_feat(struct feat_fd *ff, int type,
2867 			 struct perf_file_section **p,
2868 			 struct perf_evlist *evlist)
2869 {
2870 	int err;
2871 	int ret = 0;
2872 
2873 	if (perf_header__has_feat(ff->ph, type)) {
2874 		if (!feat_ops[type].write)
2875 			return -1;
2876 
2877 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2878 			return -1;
2879 
2880 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2881 
2882 		err = feat_ops[type].write(ff, evlist);
2883 		if (err < 0) {
2884 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2885 
2886 			/* undo anything written */
2887 			lseek(ff->fd, (*p)->offset, SEEK_SET);
2888 
2889 			return -1;
2890 		}
2891 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2892 		(*p)++;
2893 	}
2894 	return ret;
2895 }
2896 
2897 static int perf_header__adds_write(struct perf_header *header,
2898 				   struct perf_evlist *evlist, int fd)
2899 {
2900 	int nr_sections;
2901 	struct feat_fd ff;
2902 	struct perf_file_section *feat_sec, *p;
2903 	int sec_size;
2904 	u64 sec_start;
2905 	int feat;
2906 	int err;
2907 
2908 	ff = (struct feat_fd){
2909 		.fd  = fd,
2910 		.ph = header,
2911 	};
2912 
2913 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2914 	if (!nr_sections)
2915 		return 0;
2916 
2917 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2918 	if (feat_sec == NULL)
2919 		return -ENOMEM;
2920 
2921 	sec_size = sizeof(*feat_sec) * nr_sections;
2922 
2923 	sec_start = header->feat_offset;
2924 	lseek(fd, sec_start + sec_size, SEEK_SET);
2925 
2926 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2927 		if (do_write_feat(&ff, feat, &p, evlist))
2928 			perf_header__clear_feat(header, feat);
2929 	}
2930 
2931 	lseek(fd, sec_start, SEEK_SET);
2932 	/*
2933 	 * may write more than needed due to dropped feature, but
2934 	 * this is okay, reader will skip the missing entries
2935 	 */
2936 	err = do_write(&ff, feat_sec, sec_size);
2937 	if (err < 0)
2938 		pr_debug("failed to write feature section\n");
2939 	free(feat_sec);
2940 	return err;
2941 }
2942 
2943 int perf_header__write_pipe(int fd)
2944 {
2945 	struct perf_pipe_file_header f_header;
2946 	struct feat_fd ff;
2947 	int err;
2948 
2949 	ff = (struct feat_fd){ .fd = fd };
2950 
2951 	f_header = (struct perf_pipe_file_header){
2952 		.magic	   = PERF_MAGIC,
2953 		.size	   = sizeof(f_header),
2954 	};
2955 
2956 	err = do_write(&ff, &f_header, sizeof(f_header));
2957 	if (err < 0) {
2958 		pr_debug("failed to write perf pipe header\n");
2959 		return err;
2960 	}
2961 
2962 	return 0;
2963 }
2964 
2965 int perf_session__write_header(struct perf_session *session,
2966 			       struct perf_evlist *evlist,
2967 			       int fd, bool at_exit)
2968 {
2969 	struct perf_file_header f_header;
2970 	struct perf_file_attr   f_attr;
2971 	struct perf_header *header = &session->header;
2972 	struct perf_evsel *evsel;
2973 	struct feat_fd ff;
2974 	u64 attr_offset;
2975 	int err;
2976 
2977 	ff = (struct feat_fd){ .fd = fd};
2978 	lseek(fd, sizeof(f_header), SEEK_SET);
2979 
2980 	evlist__for_each_entry(session->evlist, evsel) {
2981 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2982 		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2983 		if (err < 0) {
2984 			pr_debug("failed to write perf header\n");
2985 			return err;
2986 		}
2987 	}
2988 
2989 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2990 
2991 	evlist__for_each_entry(evlist, evsel) {
2992 		f_attr = (struct perf_file_attr){
2993 			.attr = evsel->attr,
2994 			.ids  = {
2995 				.offset = evsel->id_offset,
2996 				.size   = evsel->ids * sizeof(u64),
2997 			}
2998 		};
2999 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3000 		if (err < 0) {
3001 			pr_debug("failed to write perf header attribute\n");
3002 			return err;
3003 		}
3004 	}
3005 
3006 	if (!header->data_offset)
3007 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3008 	header->feat_offset = header->data_offset + header->data_size;
3009 
3010 	if (at_exit) {
3011 		err = perf_header__adds_write(header, evlist, fd);
3012 		if (err < 0)
3013 			return err;
3014 	}
3015 
3016 	f_header = (struct perf_file_header){
3017 		.magic	   = PERF_MAGIC,
3018 		.size	   = sizeof(f_header),
3019 		.attr_size = sizeof(f_attr),
3020 		.attrs = {
3021 			.offset = attr_offset,
3022 			.size   = evlist->nr_entries * sizeof(f_attr),
3023 		},
3024 		.data = {
3025 			.offset = header->data_offset,
3026 			.size	= header->data_size,
3027 		},
3028 		/* event_types is ignored, store zeros */
3029 	};
3030 
3031 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3032 
3033 	lseek(fd, 0, SEEK_SET);
3034 	err = do_write(&ff, &f_header, sizeof(f_header));
3035 	if (err < 0) {
3036 		pr_debug("failed to write perf header\n");
3037 		return err;
3038 	}
3039 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3040 
3041 	return 0;
3042 }
3043 
3044 static int perf_header__getbuffer64(struct perf_header *header,
3045 				    int fd, void *buf, size_t size)
3046 {
3047 	if (readn(fd, buf, size) <= 0)
3048 		return -1;
3049 
3050 	if (header->needs_swap)
3051 		mem_bswap_64(buf, size);
3052 
3053 	return 0;
3054 }
3055 
3056 int perf_header__process_sections(struct perf_header *header, int fd,
3057 				  void *data,
3058 				  int (*process)(struct perf_file_section *section,
3059 						 struct perf_header *ph,
3060 						 int feat, int fd, void *data))
3061 {
3062 	struct perf_file_section *feat_sec, *sec;
3063 	int nr_sections;
3064 	int sec_size;
3065 	int feat;
3066 	int err;
3067 
3068 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3069 	if (!nr_sections)
3070 		return 0;
3071 
3072 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3073 	if (!feat_sec)
3074 		return -1;
3075 
3076 	sec_size = sizeof(*feat_sec) * nr_sections;
3077 
3078 	lseek(fd, header->feat_offset, SEEK_SET);
3079 
3080 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3081 	if (err < 0)
3082 		goto out_free;
3083 
3084 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3085 		err = process(sec++, header, feat, fd, data);
3086 		if (err < 0)
3087 			goto out_free;
3088 	}
3089 	err = 0;
3090 out_free:
3091 	free(feat_sec);
3092 	return err;
3093 }
3094 
3095 static const int attr_file_abi_sizes[] = {
3096 	[0] = PERF_ATTR_SIZE_VER0,
3097 	[1] = PERF_ATTR_SIZE_VER1,
3098 	[2] = PERF_ATTR_SIZE_VER2,
3099 	[3] = PERF_ATTR_SIZE_VER3,
3100 	[4] = PERF_ATTR_SIZE_VER4,
3101 	0,
3102 };
3103 
3104 /*
3105  * In the legacy file format, the magic number is not used to encode endianness.
3106  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3107  * on ABI revisions, we need to try all combinations for all endianness to
3108  * detect the endianness.
3109  */
3110 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3111 {
3112 	uint64_t ref_size, attr_size;
3113 	int i;
3114 
3115 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3116 		ref_size = attr_file_abi_sizes[i]
3117 			 + sizeof(struct perf_file_section);
3118 		if (hdr_sz != ref_size) {
3119 			attr_size = bswap_64(hdr_sz);
3120 			if (attr_size != ref_size)
3121 				continue;
3122 
3123 			ph->needs_swap = true;
3124 		}
3125 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3126 			 i,
3127 			 ph->needs_swap);
3128 		return 0;
3129 	}
3130 	/* could not determine endianness */
3131 	return -1;
3132 }
3133 
3134 #define PERF_PIPE_HDR_VER0	16
3135 
3136 static const size_t attr_pipe_abi_sizes[] = {
3137 	[0] = PERF_PIPE_HDR_VER0,
3138 	0,
3139 };
3140 
3141 /*
3142  * In the legacy pipe format, there is an implicit assumption that endiannesss
3143  * between host recording the samples, and host parsing the samples is the
3144  * same. This is not always the case given that the pipe output may always be
3145  * redirected into a file and analyzed on a different machine with possibly a
3146  * different endianness and perf_event ABI revsions in the perf tool itself.
3147  */
3148 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3149 {
3150 	u64 attr_size;
3151 	int i;
3152 
3153 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3154 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3155 			attr_size = bswap_64(hdr_sz);
3156 			if (attr_size != hdr_sz)
3157 				continue;
3158 
3159 			ph->needs_swap = true;
3160 		}
3161 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3162 		return 0;
3163 	}
3164 	return -1;
3165 }
3166 
3167 bool is_perf_magic(u64 magic)
3168 {
3169 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3170 		|| magic == __perf_magic2
3171 		|| magic == __perf_magic2_sw)
3172 		return true;
3173 
3174 	return false;
3175 }
3176 
3177 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3178 			      bool is_pipe, struct perf_header *ph)
3179 {
3180 	int ret;
3181 
3182 	/* check for legacy format */
3183 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3184 	if (ret == 0) {
3185 		ph->version = PERF_HEADER_VERSION_1;
3186 		pr_debug("legacy perf.data format\n");
3187 		if (is_pipe)
3188 			return try_all_pipe_abis(hdr_sz, ph);
3189 
3190 		return try_all_file_abis(hdr_sz, ph);
3191 	}
3192 	/*
3193 	 * the new magic number serves two purposes:
3194 	 * - unique number to identify actual perf.data files
3195 	 * - encode endianness of file
3196 	 */
3197 	ph->version = PERF_HEADER_VERSION_2;
3198 
3199 	/* check magic number with one endianness */
3200 	if (magic == __perf_magic2)
3201 		return 0;
3202 
3203 	/* check magic number with opposite endianness */
3204 	if (magic != __perf_magic2_sw)
3205 		return -1;
3206 
3207 	ph->needs_swap = true;
3208 
3209 	return 0;
3210 }
3211 
3212 int perf_file_header__read(struct perf_file_header *header,
3213 			   struct perf_header *ph, int fd)
3214 {
3215 	ssize_t ret;
3216 
3217 	lseek(fd, 0, SEEK_SET);
3218 
3219 	ret = readn(fd, header, sizeof(*header));
3220 	if (ret <= 0)
3221 		return -1;
3222 
3223 	if (check_magic_endian(header->magic,
3224 			       header->attr_size, false, ph) < 0) {
3225 		pr_debug("magic/endian check failed\n");
3226 		return -1;
3227 	}
3228 
3229 	if (ph->needs_swap) {
3230 		mem_bswap_64(header, offsetof(struct perf_file_header,
3231 			     adds_features));
3232 	}
3233 
3234 	if (header->size != sizeof(*header)) {
3235 		/* Support the previous format */
3236 		if (header->size == offsetof(typeof(*header), adds_features))
3237 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3238 		else
3239 			return -1;
3240 	} else if (ph->needs_swap) {
3241 		/*
3242 		 * feature bitmap is declared as an array of unsigned longs --
3243 		 * not good since its size can differ between the host that
3244 		 * generated the data file and the host analyzing the file.
3245 		 *
3246 		 * We need to handle endianness, but we don't know the size of
3247 		 * the unsigned long where the file was generated. Take a best
3248 		 * guess at determining it: try 64-bit swap first (ie., file
3249 		 * created on a 64-bit host), and check if the hostname feature
3250 		 * bit is set (this feature bit is forced on as of fbe96f2).
3251 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3252 		 * swap. If the hostname bit is still not set (e.g., older data
3253 		 * file), punt and fallback to the original behavior --
3254 		 * clearing all feature bits and setting buildid.
3255 		 */
3256 		mem_bswap_64(&header->adds_features,
3257 			    BITS_TO_U64(HEADER_FEAT_BITS));
3258 
3259 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3260 			/* unswap as u64 */
3261 			mem_bswap_64(&header->adds_features,
3262 				    BITS_TO_U64(HEADER_FEAT_BITS));
3263 
3264 			/* unswap as u32 */
3265 			mem_bswap_32(&header->adds_features,
3266 				    BITS_TO_U32(HEADER_FEAT_BITS));
3267 		}
3268 
3269 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3270 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3271 			set_bit(HEADER_BUILD_ID, header->adds_features);
3272 		}
3273 	}
3274 
3275 	memcpy(&ph->adds_features, &header->adds_features,
3276 	       sizeof(ph->adds_features));
3277 
3278 	ph->data_offset  = header->data.offset;
3279 	ph->data_size	 = header->data.size;
3280 	ph->feat_offset  = header->data.offset + header->data.size;
3281 	return 0;
3282 }
3283 
3284 static int perf_file_section__process(struct perf_file_section *section,
3285 				      struct perf_header *ph,
3286 				      int feat, int fd, void *data)
3287 {
3288 	struct feat_fd fdd = {
3289 		.fd	= fd,
3290 		.ph	= ph,
3291 		.size	= section->size,
3292 		.offset	= section->offset,
3293 	};
3294 
3295 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3296 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3297 			  "%d, continuing...\n", section->offset, feat);
3298 		return 0;
3299 	}
3300 
3301 	if (feat >= HEADER_LAST_FEATURE) {
3302 		pr_debug("unknown feature %d, continuing...\n", feat);
3303 		return 0;
3304 	}
3305 
3306 	if (!feat_ops[feat].process)
3307 		return 0;
3308 
3309 	return feat_ops[feat].process(&fdd, data);
3310 }
3311 
3312 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3313 				       struct perf_header *ph, int fd,
3314 				       bool repipe)
3315 {
3316 	struct feat_fd ff = {
3317 		.fd = STDOUT_FILENO,
3318 		.ph = ph,
3319 	};
3320 	ssize_t ret;
3321 
3322 	ret = readn(fd, header, sizeof(*header));
3323 	if (ret <= 0)
3324 		return -1;
3325 
3326 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3327 		pr_debug("endian/magic failed\n");
3328 		return -1;
3329 	}
3330 
3331 	if (ph->needs_swap)
3332 		header->size = bswap_64(header->size);
3333 
3334 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3335 		return -1;
3336 
3337 	return 0;
3338 }
3339 
3340 static int perf_header__read_pipe(struct perf_session *session)
3341 {
3342 	struct perf_header *header = &session->header;
3343 	struct perf_pipe_file_header f_header;
3344 
3345 	if (perf_file_header__read_pipe(&f_header, header,
3346 					perf_data__fd(session->data),
3347 					session->repipe) < 0) {
3348 		pr_debug("incompatible file format\n");
3349 		return -EINVAL;
3350 	}
3351 
3352 	return 0;
3353 }
3354 
3355 static int read_attr(int fd, struct perf_header *ph,
3356 		     struct perf_file_attr *f_attr)
3357 {
3358 	struct perf_event_attr *attr = &f_attr->attr;
3359 	size_t sz, left;
3360 	size_t our_sz = sizeof(f_attr->attr);
3361 	ssize_t ret;
3362 
3363 	memset(f_attr, 0, sizeof(*f_attr));
3364 
3365 	/* read minimal guaranteed structure */
3366 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3367 	if (ret <= 0) {
3368 		pr_debug("cannot read %d bytes of header attr\n",
3369 			 PERF_ATTR_SIZE_VER0);
3370 		return -1;
3371 	}
3372 
3373 	/* on file perf_event_attr size */
3374 	sz = attr->size;
3375 
3376 	if (ph->needs_swap)
3377 		sz = bswap_32(sz);
3378 
3379 	if (sz == 0) {
3380 		/* assume ABI0 */
3381 		sz =  PERF_ATTR_SIZE_VER0;
3382 	} else if (sz > our_sz) {
3383 		pr_debug("file uses a more recent and unsupported ABI"
3384 			 " (%zu bytes extra)\n", sz - our_sz);
3385 		return -1;
3386 	}
3387 	/* what we have not yet read and that we know about */
3388 	left = sz - PERF_ATTR_SIZE_VER0;
3389 	if (left) {
3390 		void *ptr = attr;
3391 		ptr += PERF_ATTR_SIZE_VER0;
3392 
3393 		ret = readn(fd, ptr, left);
3394 	}
3395 	/* read perf_file_section, ids are read in caller */
3396 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3397 
3398 	return ret <= 0 ? -1 : 0;
3399 }
3400 
3401 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3402 						struct tep_handle *pevent)
3403 {
3404 	struct tep_event *event;
3405 	char bf[128];
3406 
3407 	/* already prepared */
3408 	if (evsel->tp_format)
3409 		return 0;
3410 
3411 	if (pevent == NULL) {
3412 		pr_debug("broken or missing trace data\n");
3413 		return -1;
3414 	}
3415 
3416 	event = tep_find_event(pevent, evsel->attr.config);
3417 	if (event == NULL) {
3418 		pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3419 		return -1;
3420 	}
3421 
3422 	if (!evsel->name) {
3423 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3424 		evsel->name = strdup(bf);
3425 		if (evsel->name == NULL)
3426 			return -1;
3427 	}
3428 
3429 	evsel->tp_format = event;
3430 	return 0;
3431 }
3432 
3433 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3434 						  struct tep_handle *pevent)
3435 {
3436 	struct perf_evsel *pos;
3437 
3438 	evlist__for_each_entry(evlist, pos) {
3439 		if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3440 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3441 			return -1;
3442 	}
3443 
3444 	return 0;
3445 }
3446 
3447 int perf_session__read_header(struct perf_session *session)
3448 {
3449 	struct perf_data *data = session->data;
3450 	struct perf_header *header = &session->header;
3451 	struct perf_file_header	f_header;
3452 	struct perf_file_attr	f_attr;
3453 	u64			f_id;
3454 	int nr_attrs, nr_ids, i, j;
3455 	int fd = perf_data__fd(data);
3456 
3457 	session->evlist = perf_evlist__new();
3458 	if (session->evlist == NULL)
3459 		return -ENOMEM;
3460 
3461 	session->evlist->env = &header->env;
3462 	session->machines.host.env = &header->env;
3463 	if (perf_data__is_pipe(data))
3464 		return perf_header__read_pipe(session);
3465 
3466 	if (perf_file_header__read(&f_header, header, fd) < 0)
3467 		return -EINVAL;
3468 
3469 	/*
3470 	 * Sanity check that perf.data was written cleanly; data size is
3471 	 * initialized to 0 and updated only if the on_exit function is run.
3472 	 * If data size is still 0 then the file contains only partial
3473 	 * information.  Just warn user and process it as much as it can.
3474 	 */
3475 	if (f_header.data.size == 0) {
3476 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3477 			   "Was the 'perf record' command properly terminated?\n",
3478 			   data->file.path);
3479 	}
3480 
3481 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3482 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3483 
3484 	for (i = 0; i < nr_attrs; i++) {
3485 		struct perf_evsel *evsel;
3486 		off_t tmp;
3487 
3488 		if (read_attr(fd, header, &f_attr) < 0)
3489 			goto out_errno;
3490 
3491 		if (header->needs_swap) {
3492 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3493 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3494 			perf_event__attr_swap(&f_attr.attr);
3495 		}
3496 
3497 		tmp = lseek(fd, 0, SEEK_CUR);
3498 		evsel = perf_evsel__new(&f_attr.attr);
3499 
3500 		if (evsel == NULL)
3501 			goto out_delete_evlist;
3502 
3503 		evsel->needs_swap = header->needs_swap;
3504 		/*
3505 		 * Do it before so that if perf_evsel__alloc_id fails, this
3506 		 * entry gets purged too at perf_evlist__delete().
3507 		 */
3508 		perf_evlist__add(session->evlist, evsel);
3509 
3510 		nr_ids = f_attr.ids.size / sizeof(u64);
3511 		/*
3512 		 * We don't have the cpu and thread maps on the header, so
3513 		 * for allocating the perf_sample_id table we fake 1 cpu and
3514 		 * hattr->ids threads.
3515 		 */
3516 		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3517 			goto out_delete_evlist;
3518 
3519 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3520 
3521 		for (j = 0; j < nr_ids; j++) {
3522 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3523 				goto out_errno;
3524 
3525 			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3526 		}
3527 
3528 		lseek(fd, tmp, SEEK_SET);
3529 	}
3530 
3531 	perf_header__process_sections(header, fd, &session->tevent,
3532 				      perf_file_section__process);
3533 
3534 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3535 						   session->tevent.pevent))
3536 		goto out_delete_evlist;
3537 
3538 	return 0;
3539 out_errno:
3540 	return -errno;
3541 
3542 out_delete_evlist:
3543 	perf_evlist__delete(session->evlist);
3544 	session->evlist = NULL;
3545 	return -ENOMEM;
3546 }
3547 
3548 int perf_event__synthesize_attr(struct perf_tool *tool,
3549 				struct perf_event_attr *attr, u32 ids, u64 *id,
3550 				perf_event__handler_t process)
3551 {
3552 	union perf_event *ev;
3553 	size_t size;
3554 	int err;
3555 
3556 	size = sizeof(struct perf_event_attr);
3557 	size = PERF_ALIGN(size, sizeof(u64));
3558 	size += sizeof(struct perf_event_header);
3559 	size += ids * sizeof(u64);
3560 
3561 	ev = malloc(size);
3562 
3563 	if (ev == NULL)
3564 		return -ENOMEM;
3565 
3566 	ev->attr.attr = *attr;
3567 	memcpy(ev->attr.id, id, ids * sizeof(u64));
3568 
3569 	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3570 	ev->attr.header.size = (u16)size;
3571 
3572 	if (ev->attr.header.size == size)
3573 		err = process(tool, ev, NULL, NULL);
3574 	else
3575 		err = -E2BIG;
3576 
3577 	free(ev);
3578 
3579 	return err;
3580 }
3581 
3582 int perf_event__synthesize_features(struct perf_tool *tool,
3583 				    struct perf_session *session,
3584 				    struct perf_evlist *evlist,
3585 				    perf_event__handler_t process)
3586 {
3587 	struct perf_header *header = &session->header;
3588 	struct feat_fd ff;
3589 	struct feature_event *fe;
3590 	size_t sz, sz_hdr;
3591 	int feat, ret;
3592 
3593 	sz_hdr = sizeof(fe->header);
3594 	sz = sizeof(union perf_event);
3595 	/* get a nice alignment */
3596 	sz = PERF_ALIGN(sz, page_size);
3597 
3598 	memset(&ff, 0, sizeof(ff));
3599 
3600 	ff.buf = malloc(sz);
3601 	if (!ff.buf)
3602 		return -ENOMEM;
3603 
3604 	ff.size = sz - sz_hdr;
3605 
3606 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3607 		if (!feat_ops[feat].synthesize) {
3608 			pr_debug("No record header feature for header :%d\n", feat);
3609 			continue;
3610 		}
3611 
3612 		ff.offset = sizeof(*fe);
3613 
3614 		ret = feat_ops[feat].write(&ff, evlist);
3615 		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3616 			pr_debug("Error writing feature\n");
3617 			continue;
3618 		}
3619 		/* ff.buf may have changed due to realloc in do_write() */
3620 		fe = ff.buf;
3621 		memset(fe, 0, sizeof(*fe));
3622 
3623 		fe->feat_id = feat;
3624 		fe->header.type = PERF_RECORD_HEADER_FEATURE;
3625 		fe->header.size = ff.offset;
3626 
3627 		ret = process(tool, ff.buf, NULL, NULL);
3628 		if (ret) {
3629 			free(ff.buf);
3630 			return ret;
3631 		}
3632 	}
3633 
3634 	/* Send HEADER_LAST_FEATURE mark. */
3635 	fe = ff.buf;
3636 	fe->feat_id     = HEADER_LAST_FEATURE;
3637 	fe->header.type = PERF_RECORD_HEADER_FEATURE;
3638 	fe->header.size = sizeof(*fe);
3639 
3640 	ret = process(tool, ff.buf, NULL, NULL);
3641 
3642 	free(ff.buf);
3643 	return ret;
3644 }
3645 
3646 int perf_event__process_feature(struct perf_session *session,
3647 				union perf_event *event)
3648 {
3649 	struct perf_tool *tool = session->tool;
3650 	struct feat_fd ff = { .fd = 0 };
3651 	struct feature_event *fe = (struct feature_event *)event;
3652 	int type = fe->header.type;
3653 	u64 feat = fe->feat_id;
3654 
3655 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3656 		pr_warning("invalid record type %d in pipe-mode\n", type);
3657 		return 0;
3658 	}
3659 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3660 		pr_warning("invalid record type %d in pipe-mode\n", type);
3661 		return -1;
3662 	}
3663 
3664 	if (!feat_ops[feat].process)
3665 		return 0;
3666 
3667 	ff.buf  = (void *)fe->data;
3668 	ff.size = event->header.size - sizeof(event->header);
3669 	ff.ph = &session->header;
3670 
3671 	if (feat_ops[feat].process(&ff, NULL))
3672 		return -1;
3673 
3674 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3675 		return 0;
3676 
3677 	if (!feat_ops[feat].full_only ||
3678 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3679 		feat_ops[feat].print(&ff, stdout);
3680 	} else {
3681 		fprintf(stdout, "# %s info available, use -I to display\n",
3682 			feat_ops[feat].name);
3683 	}
3684 
3685 	return 0;
3686 }
3687 
3688 static struct event_update_event *
3689 event_update_event__new(size_t size, u64 type, u64 id)
3690 {
3691 	struct event_update_event *ev;
3692 
3693 	size += sizeof(*ev);
3694 	size  = PERF_ALIGN(size, sizeof(u64));
3695 
3696 	ev = zalloc(size);
3697 	if (ev) {
3698 		ev->header.type = PERF_RECORD_EVENT_UPDATE;
3699 		ev->header.size = (u16)size;
3700 		ev->type = type;
3701 		ev->id = id;
3702 	}
3703 	return ev;
3704 }
3705 
3706 int
3707 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3708 					 struct perf_evsel *evsel,
3709 					 perf_event__handler_t process)
3710 {
3711 	struct event_update_event *ev;
3712 	size_t size = strlen(evsel->unit);
3713 	int err;
3714 
3715 	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3716 	if (ev == NULL)
3717 		return -ENOMEM;
3718 
3719 	strlcpy(ev->data, evsel->unit, size + 1);
3720 	err = process(tool, (union perf_event *)ev, NULL, NULL);
3721 	free(ev);
3722 	return err;
3723 }
3724 
3725 int
3726 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3727 					  struct perf_evsel *evsel,
3728 					  perf_event__handler_t process)
3729 {
3730 	struct event_update_event *ev;
3731 	struct event_update_event_scale *ev_data;
3732 	int err;
3733 
3734 	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3735 	if (ev == NULL)
3736 		return -ENOMEM;
3737 
3738 	ev_data = (struct event_update_event_scale *) ev->data;
3739 	ev_data->scale = evsel->scale;
3740 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3741 	free(ev);
3742 	return err;
3743 }
3744 
3745 int
3746 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3747 					 struct perf_evsel *evsel,
3748 					 perf_event__handler_t process)
3749 {
3750 	struct event_update_event *ev;
3751 	size_t len = strlen(evsel->name);
3752 	int err;
3753 
3754 	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3755 	if (ev == NULL)
3756 		return -ENOMEM;
3757 
3758 	strlcpy(ev->data, evsel->name, len + 1);
3759 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3760 	free(ev);
3761 	return err;
3762 }
3763 
3764 int
3765 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3766 					struct perf_evsel *evsel,
3767 					perf_event__handler_t process)
3768 {
3769 	size_t size = sizeof(struct event_update_event);
3770 	struct event_update_event *ev;
3771 	int max, err;
3772 	u16 type;
3773 
3774 	if (!evsel->own_cpus)
3775 		return 0;
3776 
3777 	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3778 	if (!ev)
3779 		return -ENOMEM;
3780 
3781 	ev->header.type = PERF_RECORD_EVENT_UPDATE;
3782 	ev->header.size = (u16)size;
3783 	ev->type = PERF_EVENT_UPDATE__CPUS;
3784 	ev->id   = evsel->id[0];
3785 
3786 	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3787 				 evsel->own_cpus,
3788 				 type, max);
3789 
3790 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3791 	free(ev);
3792 	return err;
3793 }
3794 
3795 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3796 {
3797 	struct event_update_event *ev = &event->event_update;
3798 	struct event_update_event_scale *ev_scale;
3799 	struct event_update_event_cpus *ev_cpus;
3800 	struct cpu_map *map;
3801 	size_t ret;
3802 
3803 	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3804 
3805 	switch (ev->type) {
3806 	case PERF_EVENT_UPDATE__SCALE:
3807 		ev_scale = (struct event_update_event_scale *) ev->data;
3808 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3809 		break;
3810 	case PERF_EVENT_UPDATE__UNIT:
3811 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3812 		break;
3813 	case PERF_EVENT_UPDATE__NAME:
3814 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3815 		break;
3816 	case PERF_EVENT_UPDATE__CPUS:
3817 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3818 		ret += fprintf(fp, "... ");
3819 
3820 		map = cpu_map__new_data(&ev_cpus->cpus);
3821 		if (map)
3822 			ret += cpu_map__fprintf(map, fp);
3823 		else
3824 			ret += fprintf(fp, "failed to get cpus\n");
3825 		break;
3826 	default:
3827 		ret += fprintf(fp, "... unknown type\n");
3828 		break;
3829 	}
3830 
3831 	return ret;
3832 }
3833 
3834 int perf_event__synthesize_attrs(struct perf_tool *tool,
3835 				 struct perf_evlist *evlist,
3836 				 perf_event__handler_t process)
3837 {
3838 	struct perf_evsel *evsel;
3839 	int err = 0;
3840 
3841 	evlist__for_each_entry(evlist, evsel) {
3842 		err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3843 						  evsel->id, process);
3844 		if (err) {
3845 			pr_debug("failed to create perf header attribute\n");
3846 			return err;
3847 		}
3848 	}
3849 
3850 	return err;
3851 }
3852 
3853 static bool has_unit(struct perf_evsel *counter)
3854 {
3855 	return counter->unit && *counter->unit;
3856 }
3857 
3858 static bool has_scale(struct perf_evsel *counter)
3859 {
3860 	return counter->scale != 1;
3861 }
3862 
3863 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3864 				      struct perf_evlist *evsel_list,
3865 				      perf_event__handler_t process,
3866 				      bool is_pipe)
3867 {
3868 	struct perf_evsel *counter;
3869 	int err;
3870 
3871 	/*
3872 	 * Synthesize other events stuff not carried within
3873 	 * attr event - unit, scale, name
3874 	 */
3875 	evlist__for_each_entry(evsel_list, counter) {
3876 		if (!counter->supported)
3877 			continue;
3878 
3879 		/*
3880 		 * Synthesize unit and scale only if it's defined.
3881 		 */
3882 		if (has_unit(counter)) {
3883 			err = perf_event__synthesize_event_update_unit(tool, counter, process);
3884 			if (err < 0) {
3885 				pr_err("Couldn't synthesize evsel unit.\n");
3886 				return err;
3887 			}
3888 		}
3889 
3890 		if (has_scale(counter)) {
3891 			err = perf_event__synthesize_event_update_scale(tool, counter, process);
3892 			if (err < 0) {
3893 				pr_err("Couldn't synthesize evsel counter.\n");
3894 				return err;
3895 			}
3896 		}
3897 
3898 		if (counter->own_cpus) {
3899 			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3900 			if (err < 0) {
3901 				pr_err("Couldn't synthesize evsel cpus.\n");
3902 				return err;
3903 			}
3904 		}
3905 
3906 		/*
3907 		 * Name is needed only for pipe output,
3908 		 * perf.data carries event names.
3909 		 */
3910 		if (is_pipe) {
3911 			err = perf_event__synthesize_event_update_name(tool, counter, process);
3912 			if (err < 0) {
3913 				pr_err("Couldn't synthesize evsel name.\n");
3914 				return err;
3915 			}
3916 		}
3917 	}
3918 	return 0;
3919 }
3920 
3921 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3922 			     union perf_event *event,
3923 			     struct perf_evlist **pevlist)
3924 {
3925 	u32 i, ids, n_ids;
3926 	struct perf_evsel *evsel;
3927 	struct perf_evlist *evlist = *pevlist;
3928 
3929 	if (evlist == NULL) {
3930 		*pevlist = evlist = perf_evlist__new();
3931 		if (evlist == NULL)
3932 			return -ENOMEM;
3933 	}
3934 
3935 	evsel = perf_evsel__new(&event->attr.attr);
3936 	if (evsel == NULL)
3937 		return -ENOMEM;
3938 
3939 	perf_evlist__add(evlist, evsel);
3940 
3941 	ids = event->header.size;
3942 	ids -= (void *)&event->attr.id - (void *)event;
3943 	n_ids = ids / sizeof(u64);
3944 	/*
3945 	 * We don't have the cpu and thread maps on the header, so
3946 	 * for allocating the perf_sample_id table we fake 1 cpu and
3947 	 * hattr->ids threads.
3948 	 */
3949 	if (perf_evsel__alloc_id(evsel, 1, n_ids))
3950 		return -ENOMEM;
3951 
3952 	for (i = 0; i < n_ids; i++) {
3953 		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3954 	}
3955 
3956 	return 0;
3957 }
3958 
3959 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3960 				     union perf_event *event,
3961 				     struct perf_evlist **pevlist)
3962 {
3963 	struct event_update_event *ev = &event->event_update;
3964 	struct event_update_event_scale *ev_scale;
3965 	struct event_update_event_cpus *ev_cpus;
3966 	struct perf_evlist *evlist;
3967 	struct perf_evsel *evsel;
3968 	struct cpu_map *map;
3969 
3970 	if (!pevlist || *pevlist == NULL)
3971 		return -EINVAL;
3972 
3973 	evlist = *pevlist;
3974 
3975 	evsel = perf_evlist__id2evsel(evlist, ev->id);
3976 	if (evsel == NULL)
3977 		return -EINVAL;
3978 
3979 	switch (ev->type) {
3980 	case PERF_EVENT_UPDATE__UNIT:
3981 		evsel->unit = strdup(ev->data);
3982 		break;
3983 	case PERF_EVENT_UPDATE__NAME:
3984 		evsel->name = strdup(ev->data);
3985 		break;
3986 	case PERF_EVENT_UPDATE__SCALE:
3987 		ev_scale = (struct event_update_event_scale *) ev->data;
3988 		evsel->scale = ev_scale->scale;
3989 		break;
3990 	case PERF_EVENT_UPDATE__CPUS:
3991 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3992 
3993 		map = cpu_map__new_data(&ev_cpus->cpus);
3994 		if (map)
3995 			evsel->own_cpus = map;
3996 		else
3997 			pr_err("failed to get event_update cpus\n");
3998 	default:
3999 		break;
4000 	}
4001 
4002 	return 0;
4003 }
4004 
4005 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
4006 					struct perf_evlist *evlist,
4007 					perf_event__handler_t process)
4008 {
4009 	union perf_event ev;
4010 	struct tracing_data *tdata;
4011 	ssize_t size = 0, aligned_size = 0, padding;
4012 	struct feat_fd ff;
4013 	int err __maybe_unused = 0;
4014 
4015 	/*
4016 	 * We are going to store the size of the data followed
4017 	 * by the data contents. Since the fd descriptor is a pipe,
4018 	 * we cannot seek back to store the size of the data once
4019 	 * we know it. Instead we:
4020 	 *
4021 	 * - write the tracing data to the temp file
4022 	 * - get/write the data size to pipe
4023 	 * - write the tracing data from the temp file
4024 	 *   to the pipe
4025 	 */
4026 	tdata = tracing_data_get(&evlist->entries, fd, true);
4027 	if (!tdata)
4028 		return -1;
4029 
4030 	memset(&ev, 0, sizeof(ev));
4031 
4032 	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
4033 	size = tdata->size;
4034 	aligned_size = PERF_ALIGN(size, sizeof(u64));
4035 	padding = aligned_size - size;
4036 	ev.tracing_data.header.size = sizeof(ev.tracing_data);
4037 	ev.tracing_data.size = aligned_size;
4038 
4039 	process(tool, &ev, NULL, NULL);
4040 
4041 	/*
4042 	 * The put function will copy all the tracing data
4043 	 * stored in temp file to the pipe.
4044 	 */
4045 	tracing_data_put(tdata);
4046 
4047 	ff = (struct feat_fd){ .fd = fd };
4048 	if (write_padded(&ff, NULL, 0, padding))
4049 		return -1;
4050 
4051 	return aligned_size;
4052 }
4053 
4054 int perf_event__process_tracing_data(struct perf_session *session,
4055 				     union perf_event *event)
4056 {
4057 	ssize_t size_read, padding, size = event->tracing_data.size;
4058 	int fd = perf_data__fd(session->data);
4059 	off_t offset = lseek(fd, 0, SEEK_CUR);
4060 	char buf[BUFSIZ];
4061 
4062 	/* setup for reading amidst mmap */
4063 	lseek(fd, offset + sizeof(struct tracing_data_event),
4064 	      SEEK_SET);
4065 
4066 	size_read = trace_report(fd, &session->tevent,
4067 				 session->repipe);
4068 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4069 
4070 	if (readn(fd, buf, padding) < 0) {
4071 		pr_err("%s: reading input file", __func__);
4072 		return -1;
4073 	}
4074 	if (session->repipe) {
4075 		int retw = write(STDOUT_FILENO, buf, padding);
4076 		if (retw <= 0 || retw != padding) {
4077 			pr_err("%s: repiping tracing data padding", __func__);
4078 			return -1;
4079 		}
4080 	}
4081 
4082 	if (size_read + padding != size) {
4083 		pr_err("%s: tracing data size mismatch", __func__);
4084 		return -1;
4085 	}
4086 
4087 	perf_evlist__prepare_tracepoint_events(session->evlist,
4088 					       session->tevent.pevent);
4089 
4090 	return size_read + padding;
4091 }
4092 
4093 int perf_event__synthesize_build_id(struct perf_tool *tool,
4094 				    struct dso *pos, u16 misc,
4095 				    perf_event__handler_t process,
4096 				    struct machine *machine)
4097 {
4098 	union perf_event ev;
4099 	size_t len;
4100 	int err = 0;
4101 
4102 	if (!pos->hit)
4103 		return err;
4104 
4105 	memset(&ev, 0, sizeof(ev));
4106 
4107 	len = pos->long_name_len + 1;
4108 	len = PERF_ALIGN(len, NAME_ALIGN);
4109 	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
4110 	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
4111 	ev.build_id.header.misc = misc;
4112 	ev.build_id.pid = machine->pid;
4113 	ev.build_id.header.size = sizeof(ev.build_id) + len;
4114 	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
4115 
4116 	err = process(tool, &ev, NULL, machine);
4117 
4118 	return err;
4119 }
4120 
4121 int perf_event__process_build_id(struct perf_session *session,
4122 				 union perf_event *event)
4123 {
4124 	__event_process_build_id(&event->build_id,
4125 				 event->build_id.filename,
4126 				 session);
4127 	return 0;
4128 }
4129