xref: /linux/tools/include/uapi/linux/perf_event.h (revision 164666fa66669d437bdcc8d5f1744a2aee73be41)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3  * Performance events:
4  *
5  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
7  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8  *
9  * Data type definitions, declarations, prototypes.
10  *
11  *    Started by: Thomas Gleixner and Ingo Molnar
12  *
13  * For licencing details see kernel-base/COPYING
14  */
15 #ifndef _UAPI_LINUX_PERF_EVENT_H
16 #define _UAPI_LINUX_PERF_EVENT_H
17 
18 #include <linux/types.h>
19 #include <linux/ioctl.h>
20 #include <asm/byteorder.h>
21 
22 /*
23  * User-space ABI bits:
24  */
25 
26 /*
27  * attr.type
28  */
29 enum perf_type_id {
30 	PERF_TYPE_HARDWARE			= 0,
31 	PERF_TYPE_SOFTWARE			= 1,
32 	PERF_TYPE_TRACEPOINT			= 2,
33 	PERF_TYPE_HW_CACHE			= 3,
34 	PERF_TYPE_RAW				= 4,
35 	PERF_TYPE_BREAKPOINT			= 5,
36 
37 	PERF_TYPE_MAX,				/* non-ABI */
38 };
39 
40 /*
41  * attr.config layout for type PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
42  * PERF_TYPE_HARDWARE:			0xEEEEEEEE000000AA
43  *					AA: hardware event ID
44  *					EEEEEEEE: PMU type ID
45  * PERF_TYPE_HW_CACHE:			0xEEEEEEEE00DDCCBB
46  *					BB: hardware cache ID
47  *					CC: hardware cache op ID
48  *					DD: hardware cache op result ID
49  *					EEEEEEEE: PMU type ID
50  * If the PMU type ID is 0, the PERF_TYPE_RAW will be applied.
51  */
52 #define PERF_PMU_TYPE_SHIFT		32
53 #define PERF_HW_EVENT_MASK		0xffffffff
54 
55 /*
56  * Generalized performance event event_id types, used by the
57  * attr.event_id parameter of the sys_perf_event_open()
58  * syscall:
59  */
60 enum perf_hw_id {
61 	/*
62 	 * Common hardware events, generalized by the kernel:
63 	 */
64 	PERF_COUNT_HW_CPU_CYCLES		= 0,
65 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
66 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
67 	PERF_COUNT_HW_CACHE_MISSES		= 3,
68 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
69 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
70 	PERF_COUNT_HW_BUS_CYCLES		= 6,
71 	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
72 	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
73 	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
74 
75 	PERF_COUNT_HW_MAX,			/* non-ABI */
76 };
77 
78 /*
79  * Generalized hardware cache events:
80  *
81  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
82  *       { read, write, prefetch } x
83  *       { accesses, misses }
84  */
85 enum perf_hw_cache_id {
86 	PERF_COUNT_HW_CACHE_L1D			= 0,
87 	PERF_COUNT_HW_CACHE_L1I			= 1,
88 	PERF_COUNT_HW_CACHE_LL			= 2,
89 	PERF_COUNT_HW_CACHE_DTLB		= 3,
90 	PERF_COUNT_HW_CACHE_ITLB		= 4,
91 	PERF_COUNT_HW_CACHE_BPU			= 5,
92 	PERF_COUNT_HW_CACHE_NODE		= 6,
93 
94 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
95 };
96 
97 enum perf_hw_cache_op_id {
98 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
99 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
100 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
101 
102 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
103 };
104 
105 enum perf_hw_cache_op_result_id {
106 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
107 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
108 
109 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
110 };
111 
112 /*
113  * Special "software" events provided by the kernel, even if the hardware
114  * does not support performance events. These events measure various
115  * physical and sw events of the kernel (and allow the profiling of them as
116  * well):
117  */
118 enum perf_sw_ids {
119 	PERF_COUNT_SW_CPU_CLOCK			= 0,
120 	PERF_COUNT_SW_TASK_CLOCK		= 1,
121 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
122 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
123 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
124 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
125 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
126 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
127 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
128 	PERF_COUNT_SW_DUMMY			= 9,
129 	PERF_COUNT_SW_BPF_OUTPUT		= 10,
130 	PERF_COUNT_SW_CGROUP_SWITCHES		= 11,
131 
132 	PERF_COUNT_SW_MAX,			/* non-ABI */
133 };
134 
135 /*
136  * Bits that can be set in attr.sample_type to request information
137  * in the overflow packets.
138  */
139 enum perf_event_sample_format {
140 	PERF_SAMPLE_IP				= 1U << 0,
141 	PERF_SAMPLE_TID				= 1U << 1,
142 	PERF_SAMPLE_TIME			= 1U << 2,
143 	PERF_SAMPLE_ADDR			= 1U << 3,
144 	PERF_SAMPLE_READ			= 1U << 4,
145 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
146 	PERF_SAMPLE_ID				= 1U << 6,
147 	PERF_SAMPLE_CPU				= 1U << 7,
148 	PERF_SAMPLE_PERIOD			= 1U << 8,
149 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
150 	PERF_SAMPLE_RAW				= 1U << 10,
151 	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
152 	PERF_SAMPLE_REGS_USER			= 1U << 12,
153 	PERF_SAMPLE_STACK_USER			= 1U << 13,
154 	PERF_SAMPLE_WEIGHT			= 1U << 14,
155 	PERF_SAMPLE_DATA_SRC			= 1U << 15,
156 	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
157 	PERF_SAMPLE_TRANSACTION			= 1U << 17,
158 	PERF_SAMPLE_REGS_INTR			= 1U << 18,
159 	PERF_SAMPLE_PHYS_ADDR			= 1U << 19,
160 	PERF_SAMPLE_AUX				= 1U << 20,
161 	PERF_SAMPLE_CGROUP			= 1U << 21,
162 	PERF_SAMPLE_DATA_PAGE_SIZE		= 1U << 22,
163 	PERF_SAMPLE_CODE_PAGE_SIZE		= 1U << 23,
164 	PERF_SAMPLE_WEIGHT_STRUCT		= 1U << 24,
165 
166 	PERF_SAMPLE_MAX = 1U << 25,		/* non-ABI */
167 
168 	__PERF_SAMPLE_CALLCHAIN_EARLY		= 1ULL << 63, /* non-ABI; internal use */
169 };
170 
171 #define PERF_SAMPLE_WEIGHT_TYPE	(PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT)
172 /*
173  * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
174  *
175  * If the user does not pass priv level information via branch_sample_type,
176  * the kernel uses the event's priv level. Branch and event priv levels do
177  * not have to match. Branch priv level is checked for permissions.
178  *
179  * The branch types can be combined, however BRANCH_ANY covers all types
180  * of branches and therefore it supersedes all the other types.
181  */
182 enum perf_branch_sample_type_shift {
183 	PERF_SAMPLE_BRANCH_USER_SHIFT		= 0, /* user branches */
184 	PERF_SAMPLE_BRANCH_KERNEL_SHIFT		= 1, /* kernel branches */
185 	PERF_SAMPLE_BRANCH_HV_SHIFT		= 2, /* hypervisor branches */
186 
187 	PERF_SAMPLE_BRANCH_ANY_SHIFT		= 3, /* any branch types */
188 	PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	= 4, /* any call branch */
189 	PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	= 5, /* any return branch */
190 	PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	= 6, /* indirect calls */
191 	PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	= 7, /* transaction aborts */
192 	PERF_SAMPLE_BRANCH_IN_TX_SHIFT		= 8, /* in transaction */
193 	PERF_SAMPLE_BRANCH_NO_TX_SHIFT		= 9, /* not in transaction */
194 	PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */
195 
196 	PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* call/ret stack */
197 	PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
198 	PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */
199 
200 	PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT	= 14, /* no flags */
201 	PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT	= 15, /* no cycles */
202 
203 	PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT	= 16, /* save branch type */
204 
205 	PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT	= 17, /* save low level index of raw branch records */
206 
207 	PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
208 };
209 
210 enum perf_branch_sample_type {
211 	PERF_SAMPLE_BRANCH_USER		= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
212 	PERF_SAMPLE_BRANCH_KERNEL	= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
213 	PERF_SAMPLE_BRANCH_HV		= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
214 
215 	PERF_SAMPLE_BRANCH_ANY		= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
216 	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
217 	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
218 	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
219 	PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
220 	PERF_SAMPLE_BRANCH_IN_TX	= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
221 	PERF_SAMPLE_BRANCH_NO_TX	= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
222 	PERF_SAMPLE_BRANCH_COND		= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
223 
224 	PERF_SAMPLE_BRANCH_CALL_STACK	= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
225 	PERF_SAMPLE_BRANCH_IND_JUMP	= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
226 	PERF_SAMPLE_BRANCH_CALL		= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
227 
228 	PERF_SAMPLE_BRANCH_NO_FLAGS	= 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
229 	PERF_SAMPLE_BRANCH_NO_CYCLES	= 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
230 
231 	PERF_SAMPLE_BRANCH_TYPE_SAVE	=
232 		1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
233 
234 	PERF_SAMPLE_BRANCH_HW_INDEX	= 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
235 
236 	PERF_SAMPLE_BRANCH_MAX		= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
237 };
238 
239 /*
240  * Common flow change classification
241  */
242 enum {
243 	PERF_BR_UNKNOWN		= 0,	/* unknown */
244 	PERF_BR_COND		= 1,	/* conditional */
245 	PERF_BR_UNCOND		= 2,	/* unconditional  */
246 	PERF_BR_IND		= 3,	/* indirect */
247 	PERF_BR_CALL		= 4,	/* function call */
248 	PERF_BR_IND_CALL	= 5,	/* indirect function call */
249 	PERF_BR_RET		= 6,	/* function return */
250 	PERF_BR_SYSCALL		= 7,	/* syscall */
251 	PERF_BR_SYSRET		= 8,	/* syscall return */
252 	PERF_BR_COND_CALL	= 9,	/* conditional function call */
253 	PERF_BR_COND_RET	= 10,	/* conditional function return */
254 	PERF_BR_MAX,
255 };
256 
257 #define PERF_SAMPLE_BRANCH_PLM_ALL \
258 	(PERF_SAMPLE_BRANCH_USER|\
259 	 PERF_SAMPLE_BRANCH_KERNEL|\
260 	 PERF_SAMPLE_BRANCH_HV)
261 
262 /*
263  * Values to determine ABI of the registers dump.
264  */
265 enum perf_sample_regs_abi {
266 	PERF_SAMPLE_REGS_ABI_NONE	= 0,
267 	PERF_SAMPLE_REGS_ABI_32		= 1,
268 	PERF_SAMPLE_REGS_ABI_64		= 2,
269 };
270 
271 /*
272  * Values for the memory transaction event qualifier, mostly for
273  * abort events. Multiple bits can be set.
274  */
275 enum {
276 	PERF_TXN_ELISION        = (1 << 0), /* From elision */
277 	PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
278 	PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
279 	PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
280 	PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
281 	PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
282 	PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
283 	PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
284 
285 	PERF_TXN_MAX	        = (1 << 8), /* non-ABI */
286 
287 	/* bits 32..63 are reserved for the abort code */
288 
289 	PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
290 	PERF_TXN_ABORT_SHIFT = 32,
291 };
292 
293 /*
294  * The format of the data returned by read() on a perf event fd,
295  * as specified by attr.read_format:
296  *
297  * struct read_format {
298  *	{ u64		value;
299  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
300  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
301  *	  { u64		id;           } && PERF_FORMAT_ID
302  *	} && !PERF_FORMAT_GROUP
303  *
304  *	{ u64		nr;
305  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
306  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
307  *	  { u64		value;
308  *	    { u64	id;           } && PERF_FORMAT_ID
309  *	  }		cntr[nr];
310  *	} && PERF_FORMAT_GROUP
311  * };
312  */
313 enum perf_event_read_format {
314 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
315 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
316 	PERF_FORMAT_ID				= 1U << 2,
317 	PERF_FORMAT_GROUP			= 1U << 3,
318 
319 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
320 };
321 
322 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
323 #define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
324 #define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
325 #define PERF_ATTR_SIZE_VER3	96	/* add: sample_regs_user */
326 					/* add: sample_stack_user */
327 #define PERF_ATTR_SIZE_VER4	104	/* add: sample_regs_intr */
328 #define PERF_ATTR_SIZE_VER5	112	/* add: aux_watermark */
329 #define PERF_ATTR_SIZE_VER6	120	/* add: aux_sample_size */
330 #define PERF_ATTR_SIZE_VER7	128	/* add: sig_data */
331 
332 /*
333  * Hardware event_id to monitor via a performance monitoring event:
334  *
335  * @sample_max_stack: Max number of frame pointers in a callchain,
336  *		      should be < /proc/sys/kernel/perf_event_max_stack
337  */
338 struct perf_event_attr {
339 
340 	/*
341 	 * Major type: hardware/software/tracepoint/etc.
342 	 */
343 	__u32			type;
344 
345 	/*
346 	 * Size of the attr structure, for fwd/bwd compat.
347 	 */
348 	__u32			size;
349 
350 	/*
351 	 * Type specific configuration information.
352 	 */
353 	__u64			config;
354 
355 	union {
356 		__u64		sample_period;
357 		__u64		sample_freq;
358 	};
359 
360 	__u64			sample_type;
361 	__u64			read_format;
362 
363 	__u64			disabled       :  1, /* off by default        */
364 				inherit	       :  1, /* children inherit it   */
365 				pinned	       :  1, /* must always be on PMU */
366 				exclusive      :  1, /* only group on PMU     */
367 				exclude_user   :  1, /* don't count user      */
368 				exclude_kernel :  1, /* ditto kernel          */
369 				exclude_hv     :  1, /* ditto hypervisor      */
370 				exclude_idle   :  1, /* don't count when idle */
371 				mmap           :  1, /* include mmap data     */
372 				comm	       :  1, /* include comm data     */
373 				freq           :  1, /* use freq, not period  */
374 				inherit_stat   :  1, /* per task counts       */
375 				enable_on_exec :  1, /* next exec enables     */
376 				task           :  1, /* trace fork/exit       */
377 				watermark      :  1, /* wakeup_watermark      */
378 				/*
379 				 * precise_ip:
380 				 *
381 				 *  0 - SAMPLE_IP can have arbitrary skid
382 				 *  1 - SAMPLE_IP must have constant skid
383 				 *  2 - SAMPLE_IP requested to have 0 skid
384 				 *  3 - SAMPLE_IP must have 0 skid
385 				 *
386 				 *  See also PERF_RECORD_MISC_EXACT_IP
387 				 */
388 				precise_ip     :  2, /* skid constraint       */
389 				mmap_data      :  1, /* non-exec mmap data    */
390 				sample_id_all  :  1, /* sample_type all events */
391 
392 				exclude_host   :  1, /* don't count in host   */
393 				exclude_guest  :  1, /* don't count in guest  */
394 
395 				exclude_callchain_kernel : 1, /* exclude kernel callchains */
396 				exclude_callchain_user   : 1, /* exclude user callchains */
397 				mmap2          :  1, /* include mmap with inode data     */
398 				comm_exec      :  1, /* flag comm events that are due to an exec */
399 				use_clockid    :  1, /* use @clockid for time fields */
400 				context_switch :  1, /* context switch data */
401 				write_backward :  1, /* Write ring buffer from end to beginning */
402 				namespaces     :  1, /* include namespaces data */
403 				ksymbol        :  1, /* include ksymbol events */
404 				bpf_event      :  1, /* include bpf events */
405 				aux_output     :  1, /* generate AUX records instead of events */
406 				cgroup         :  1, /* include cgroup events */
407 				text_poke      :  1, /* include text poke events */
408 				build_id       :  1, /* use build id in mmap2 events */
409 				inherit_thread :  1, /* children only inherit if cloned with CLONE_THREAD */
410 				remove_on_exec :  1, /* event is removed from task on exec */
411 				sigtrap        :  1, /* send synchronous SIGTRAP on event */
412 				__reserved_1   : 26;
413 
414 	union {
415 		__u32		wakeup_events;	  /* wakeup every n events */
416 		__u32		wakeup_watermark; /* bytes before wakeup   */
417 	};
418 
419 	__u32			bp_type;
420 	union {
421 		__u64		bp_addr;
422 		__u64		kprobe_func; /* for perf_kprobe */
423 		__u64		uprobe_path; /* for perf_uprobe */
424 		__u64		config1; /* extension of config */
425 	};
426 	union {
427 		__u64		bp_len;
428 		__u64		kprobe_addr; /* when kprobe_func == NULL */
429 		__u64		probe_offset; /* for perf_[k,u]probe */
430 		__u64		config2; /* extension of config1 */
431 	};
432 	__u64	branch_sample_type; /* enum perf_branch_sample_type */
433 
434 	/*
435 	 * Defines set of user regs to dump on samples.
436 	 * See asm/perf_regs.h for details.
437 	 */
438 	__u64	sample_regs_user;
439 
440 	/*
441 	 * Defines size of the user stack to dump on samples.
442 	 */
443 	__u32	sample_stack_user;
444 
445 	__s32	clockid;
446 	/*
447 	 * Defines set of regs to dump for each sample
448 	 * state captured on:
449 	 *  - precise = 0: PMU interrupt
450 	 *  - precise > 0: sampled instruction
451 	 *
452 	 * See asm/perf_regs.h for details.
453 	 */
454 	__u64	sample_regs_intr;
455 
456 	/*
457 	 * Wakeup watermark for AUX area
458 	 */
459 	__u32	aux_watermark;
460 	__u16	sample_max_stack;
461 	__u16	__reserved_2;
462 	__u32	aux_sample_size;
463 	__u32	__reserved_3;
464 
465 	/*
466 	 * User provided data if sigtrap=1, passed back to user via
467 	 * siginfo_t::si_perf_data, e.g. to permit user to identify the event.
468 	 */
469 	__u64	sig_data;
470 };
471 
472 /*
473  * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
474  * to query bpf programs attached to the same perf tracepoint
475  * as the given perf event.
476  */
477 struct perf_event_query_bpf {
478 	/*
479 	 * The below ids array length
480 	 */
481 	__u32	ids_len;
482 	/*
483 	 * Set by the kernel to indicate the number of
484 	 * available programs
485 	 */
486 	__u32	prog_cnt;
487 	/*
488 	 * User provided buffer to store program ids
489 	 */
490 	__u32	ids[0];
491 };
492 
493 /*
494  * Ioctls that can be done on a perf event fd:
495  */
496 #define PERF_EVENT_IOC_ENABLE			_IO ('$', 0)
497 #define PERF_EVENT_IOC_DISABLE			_IO ('$', 1)
498 #define PERF_EVENT_IOC_REFRESH			_IO ('$', 2)
499 #define PERF_EVENT_IOC_RESET			_IO ('$', 3)
500 #define PERF_EVENT_IOC_PERIOD			_IOW('$', 4, __u64)
501 #define PERF_EVENT_IOC_SET_OUTPUT		_IO ('$', 5)
502 #define PERF_EVENT_IOC_SET_FILTER		_IOW('$', 6, char *)
503 #define PERF_EVENT_IOC_ID			_IOR('$', 7, __u64 *)
504 #define PERF_EVENT_IOC_SET_BPF			_IOW('$', 8, __u32)
505 #define PERF_EVENT_IOC_PAUSE_OUTPUT		_IOW('$', 9, __u32)
506 #define PERF_EVENT_IOC_QUERY_BPF		_IOWR('$', 10, struct perf_event_query_bpf *)
507 #define PERF_EVENT_IOC_MODIFY_ATTRIBUTES	_IOW('$', 11, struct perf_event_attr *)
508 
509 enum perf_event_ioc_flags {
510 	PERF_IOC_FLAG_GROUP		= 1U << 0,
511 };
512 
513 /*
514  * Structure of the page that can be mapped via mmap
515  */
516 struct perf_event_mmap_page {
517 	__u32	version;		/* version number of this structure */
518 	__u32	compat_version;		/* lowest version this is compat with */
519 
520 	/*
521 	 * Bits needed to read the hw events in user-space.
522 	 *
523 	 *   u32 seq, time_mult, time_shift, index, width;
524 	 *   u64 count, enabled, running;
525 	 *   u64 cyc, time_offset;
526 	 *   s64 pmc = 0;
527 	 *
528 	 *   do {
529 	 *     seq = pc->lock;
530 	 *     barrier()
531 	 *
532 	 *     enabled = pc->time_enabled;
533 	 *     running = pc->time_running;
534 	 *
535 	 *     if (pc->cap_usr_time && enabled != running) {
536 	 *       cyc = rdtsc();
537 	 *       time_offset = pc->time_offset;
538 	 *       time_mult   = pc->time_mult;
539 	 *       time_shift  = pc->time_shift;
540 	 *     }
541 	 *
542 	 *     index = pc->index;
543 	 *     count = pc->offset;
544 	 *     if (pc->cap_user_rdpmc && index) {
545 	 *       width = pc->pmc_width;
546 	 *       pmc = rdpmc(index - 1);
547 	 *     }
548 	 *
549 	 *     barrier();
550 	 *   } while (pc->lock != seq);
551 	 *
552 	 * NOTE: for obvious reason this only works on self-monitoring
553 	 *       processes.
554 	 */
555 	__u32	lock;			/* seqlock for synchronization */
556 	__u32	index;			/* hardware event identifier */
557 	__s64	offset;			/* add to hardware event value */
558 	__u64	time_enabled;		/* time event active */
559 	__u64	time_running;		/* time event on cpu */
560 	union {
561 		__u64	capabilities;
562 		struct {
563 			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
564 				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
565 
566 				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
567 				cap_user_time		: 1, /* The time_{shift,mult,offset} fields are used */
568 				cap_user_time_zero	: 1, /* The time_zero field is used */
569 				cap_user_time_short	: 1, /* the time_{cycle,mask} fields are used */
570 				cap_____res		: 58;
571 		};
572 	};
573 
574 	/*
575 	 * If cap_user_rdpmc this field provides the bit-width of the value
576 	 * read using the rdpmc() or equivalent instruction. This can be used
577 	 * to sign extend the result like:
578 	 *
579 	 *   pmc <<= 64 - width;
580 	 *   pmc >>= 64 - width; // signed shift right
581 	 *   count += pmc;
582 	 */
583 	__u16	pmc_width;
584 
585 	/*
586 	 * If cap_usr_time the below fields can be used to compute the time
587 	 * delta since time_enabled (in ns) using rdtsc or similar.
588 	 *
589 	 *   u64 quot, rem;
590 	 *   u64 delta;
591 	 *
592 	 *   quot = (cyc >> time_shift);
593 	 *   rem = cyc & (((u64)1 << time_shift) - 1);
594 	 *   delta = time_offset + quot * time_mult +
595 	 *              ((rem * time_mult) >> time_shift);
596 	 *
597 	 * Where time_offset,time_mult,time_shift and cyc are read in the
598 	 * seqcount loop described above. This delta can then be added to
599 	 * enabled and possible running (if index), improving the scaling:
600 	 *
601 	 *   enabled += delta;
602 	 *   if (index)
603 	 *     running += delta;
604 	 *
605 	 *   quot = count / running;
606 	 *   rem  = count % running;
607 	 *   count = quot * enabled + (rem * enabled) / running;
608 	 */
609 	__u16	time_shift;
610 	__u32	time_mult;
611 	__u64	time_offset;
612 	/*
613 	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
614 	 * from sample timestamps.
615 	 *
616 	 *   time = timestamp - time_zero;
617 	 *   quot = time / time_mult;
618 	 *   rem  = time % time_mult;
619 	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
620 	 *
621 	 * And vice versa:
622 	 *
623 	 *   quot = cyc >> time_shift;
624 	 *   rem  = cyc & (((u64)1 << time_shift) - 1);
625 	 *   timestamp = time_zero + quot * time_mult +
626 	 *               ((rem * time_mult) >> time_shift);
627 	 */
628 	__u64	time_zero;
629 
630 	__u32	size;			/* Header size up to __reserved[] fields. */
631 	__u32	__reserved_1;
632 
633 	/*
634 	 * If cap_usr_time_short, the hardware clock is less than 64bit wide
635 	 * and we must compute the 'cyc' value, as used by cap_usr_time, as:
636 	 *
637 	 *   cyc = time_cycles + ((cyc - time_cycles) & time_mask)
638 	 *
639 	 * NOTE: this form is explicitly chosen such that cap_usr_time_short
640 	 *       is a correction on top of cap_usr_time, and code that doesn't
641 	 *       know about cap_usr_time_short still works under the assumption
642 	 *       the counter doesn't wrap.
643 	 */
644 	__u64	time_cycles;
645 	__u64	time_mask;
646 
647 		/*
648 		 * Hole for extension of the self monitor capabilities
649 		 */
650 
651 	__u8	__reserved[116*8];	/* align to 1k. */
652 
653 	/*
654 	 * Control data for the mmap() data buffer.
655 	 *
656 	 * User-space reading the @data_head value should issue an smp_rmb(),
657 	 * after reading this value.
658 	 *
659 	 * When the mapping is PROT_WRITE the @data_tail value should be
660 	 * written by userspace to reflect the last read data, after issueing
661 	 * an smp_mb() to separate the data read from the ->data_tail store.
662 	 * In this case the kernel will not over-write unread data.
663 	 *
664 	 * See perf_output_put_handle() for the data ordering.
665 	 *
666 	 * data_{offset,size} indicate the location and size of the perf record
667 	 * buffer within the mmapped area.
668 	 */
669 	__u64   data_head;		/* head in the data section */
670 	__u64	data_tail;		/* user-space written tail */
671 	__u64	data_offset;		/* where the buffer starts */
672 	__u64	data_size;		/* data buffer size */
673 
674 	/*
675 	 * AUX area is defined by aux_{offset,size} fields that should be set
676 	 * by the userspace, so that
677 	 *
678 	 *   aux_offset >= data_offset + data_size
679 	 *
680 	 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
681 	 *
682 	 * Ring buffer pointers aux_{head,tail} have the same semantics as
683 	 * data_{head,tail} and same ordering rules apply.
684 	 */
685 	__u64	aux_head;
686 	__u64	aux_tail;
687 	__u64	aux_offset;
688 	__u64	aux_size;
689 };
690 
691 /*
692  * The current state of perf_event_header::misc bits usage:
693  * ('|' used bit, '-' unused bit)
694  *
695  *  012         CDEF
696  *  |||---------||||
697  *
698  *  Where:
699  *    0-2     CPUMODE_MASK
700  *
701  *    C       PROC_MAP_PARSE_TIMEOUT
702  *    D       MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT
703  *    E       MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT
704  *    F       (reserved)
705  */
706 
707 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
708 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
709 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
710 #define PERF_RECORD_MISC_USER			(2 << 0)
711 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
712 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
713 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
714 
715 /*
716  * Indicates that /proc/PID/maps parsing are truncated by time out.
717  */
718 #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
719 /*
720  * Following PERF_RECORD_MISC_* are used on different
721  * events, so can reuse the same bit position:
722  *
723  *   PERF_RECORD_MISC_MMAP_DATA  - PERF_RECORD_MMAP* events
724  *   PERF_RECORD_MISC_COMM_EXEC  - PERF_RECORD_COMM event
725  *   PERF_RECORD_MISC_FORK_EXEC  - PERF_RECORD_FORK event (perf internal)
726  *   PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
727  */
728 #define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
729 #define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)
730 #define PERF_RECORD_MISC_FORK_EXEC		(1 << 13)
731 #define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
732 /*
733  * These PERF_RECORD_MISC_* flags below are safely reused
734  * for the following events:
735  *
736  *   PERF_RECORD_MISC_EXACT_IP           - PERF_RECORD_SAMPLE of precise events
737  *   PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
738  *   PERF_RECORD_MISC_MMAP_BUILD_ID      - PERF_RECORD_MMAP2 event
739  *
740  *
741  * PERF_RECORD_MISC_EXACT_IP:
742  *   Indicates that the content of PERF_SAMPLE_IP points to
743  *   the actual instruction that triggered the event. See also
744  *   perf_event_attr::precise_ip.
745  *
746  * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
747  *   Indicates that thread was preempted in TASK_RUNNING state.
748  *
749  * PERF_RECORD_MISC_MMAP_BUILD_ID:
750  *   Indicates that mmap2 event carries build id data.
751  */
752 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
753 #define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT	(1 << 14)
754 #define PERF_RECORD_MISC_MMAP_BUILD_ID		(1 << 14)
755 /*
756  * Reserve the last bit to indicate some extended misc field
757  */
758 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
759 
760 struct perf_event_header {
761 	__u32	type;
762 	__u16	misc;
763 	__u16	size;
764 };
765 
766 struct perf_ns_link_info {
767 	__u64	dev;
768 	__u64	ino;
769 };
770 
771 enum {
772 	NET_NS_INDEX		= 0,
773 	UTS_NS_INDEX		= 1,
774 	IPC_NS_INDEX		= 2,
775 	PID_NS_INDEX		= 3,
776 	USER_NS_INDEX		= 4,
777 	MNT_NS_INDEX		= 5,
778 	CGROUP_NS_INDEX		= 6,
779 
780 	NR_NAMESPACES,		/* number of available namespaces */
781 };
782 
783 enum perf_event_type {
784 
785 	/*
786 	 * If perf_event_attr.sample_id_all is set then all event types will
787 	 * have the sample_type selected fields related to where/when
788 	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
789 	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
790 	 * just after the perf_event_header and the fields already present for
791 	 * the existing fields, i.e. at the end of the payload. That way a newer
792 	 * perf.data file will be supported by older perf tools, with these new
793 	 * optional fields being ignored.
794 	 *
795 	 * struct sample_id {
796 	 * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
797 	 * 	{ u64			time;     } && PERF_SAMPLE_TIME
798 	 * 	{ u64			id;       } && PERF_SAMPLE_ID
799 	 * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
800 	 * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
801 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
802 	 * } && perf_event_attr::sample_id_all
803 	 *
804 	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
805 	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
806 	 * relative to header.size.
807 	 */
808 
809 	/*
810 	 * The MMAP events record the PROT_EXEC mappings so that we can
811 	 * correlate userspace IPs to code. They have the following structure:
812 	 *
813 	 * struct {
814 	 *	struct perf_event_header	header;
815 	 *
816 	 *	u32				pid, tid;
817 	 *	u64				addr;
818 	 *	u64				len;
819 	 *	u64				pgoff;
820 	 *	char				filename[];
821 	 * 	struct sample_id		sample_id;
822 	 * };
823 	 */
824 	PERF_RECORD_MMAP			= 1,
825 
826 	/*
827 	 * struct {
828 	 *	struct perf_event_header	header;
829 	 *	u64				id;
830 	 *	u64				lost;
831 	 * 	struct sample_id		sample_id;
832 	 * };
833 	 */
834 	PERF_RECORD_LOST			= 2,
835 
836 	/*
837 	 * struct {
838 	 *	struct perf_event_header	header;
839 	 *
840 	 *	u32				pid, tid;
841 	 *	char				comm[];
842 	 * 	struct sample_id		sample_id;
843 	 * };
844 	 */
845 	PERF_RECORD_COMM			= 3,
846 
847 	/*
848 	 * struct {
849 	 *	struct perf_event_header	header;
850 	 *	u32				pid, ppid;
851 	 *	u32				tid, ptid;
852 	 *	u64				time;
853 	 * 	struct sample_id		sample_id;
854 	 * };
855 	 */
856 	PERF_RECORD_EXIT			= 4,
857 
858 	/*
859 	 * struct {
860 	 *	struct perf_event_header	header;
861 	 *	u64				time;
862 	 *	u64				id;
863 	 *	u64				stream_id;
864 	 * 	struct sample_id		sample_id;
865 	 * };
866 	 */
867 	PERF_RECORD_THROTTLE			= 5,
868 	PERF_RECORD_UNTHROTTLE			= 6,
869 
870 	/*
871 	 * struct {
872 	 *	struct perf_event_header	header;
873 	 *	u32				pid, ppid;
874 	 *	u32				tid, ptid;
875 	 *	u64				time;
876 	 * 	struct sample_id		sample_id;
877 	 * };
878 	 */
879 	PERF_RECORD_FORK			= 7,
880 
881 	/*
882 	 * struct {
883 	 *	struct perf_event_header	header;
884 	 *	u32				pid, tid;
885 	 *
886 	 *	struct read_format		values;
887 	 * 	struct sample_id		sample_id;
888 	 * };
889 	 */
890 	PERF_RECORD_READ			= 8,
891 
892 	/*
893 	 * struct {
894 	 *	struct perf_event_header	header;
895 	 *
896 	 *	#
897 	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
898 	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
899 	 *	# is fixed relative to header.
900 	 *	#
901 	 *
902 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
903 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
904 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
905 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
906 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
907 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
908 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
909 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
910 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
911 	 *
912 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
913 	 *
914 	 *	{ u64			nr,
915 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
916 	 *
917 	 *	#
918 	 *	# The RAW record below is opaque data wrt the ABI
919 	 *	#
920 	 *	# That is, the ABI doesn't make any promises wrt to
921 	 *	# the stability of its content, it may vary depending
922 	 *	# on event, hardware, kernel version and phase of
923 	 *	# the moon.
924 	 *	#
925 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
926 	 *	#
927 	 *
928 	 *	{ u32			size;
929 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
930 	 *
931 	 *	{ u64                   nr;
932 	 *	  { u64	hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
933 	 *        { u64 from, to, flags } lbr[nr];
934 	 *      } && PERF_SAMPLE_BRANCH_STACK
935 	 *
936 	 * 	{ u64			abi; # enum perf_sample_regs_abi
937 	 * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
938 	 *
939 	 * 	{ u64			size;
940 	 * 	  char			data[size];
941 	 * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
942 	 *
943 	 *	{ union perf_sample_weight
944 	 *	 {
945 	 *		u64		full; && PERF_SAMPLE_WEIGHT
946 	 *	#if defined(__LITTLE_ENDIAN_BITFIELD)
947 	 *		struct {
948 	 *			u32	var1_dw;
949 	 *			u16	var2_w;
950 	 *			u16	var3_w;
951 	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
952 	 *	#elif defined(__BIG_ENDIAN_BITFIELD)
953 	 *		struct {
954 	 *			u16	var3_w;
955 	 *			u16	var2_w;
956 	 *			u32	var1_dw;
957 	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
958 	 *	#endif
959 	 *	 }
960 	 *	}
961 	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
962 	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
963 	 *	{ u64			abi; # enum perf_sample_regs_abi
964 	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
965 	 *	{ u64			phys_addr;} && PERF_SAMPLE_PHYS_ADDR
966 	 *	{ u64			size;
967 	 *	  char			data[size]; } && PERF_SAMPLE_AUX
968 	 *	{ u64			data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
969 	 *	{ u64			code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
970 	 * };
971 	 */
972 	PERF_RECORD_SAMPLE			= 9,
973 
974 	/*
975 	 * The MMAP2 records are an augmented version of MMAP, they add
976 	 * maj, min, ino numbers to be used to uniquely identify each mapping
977 	 *
978 	 * struct {
979 	 *	struct perf_event_header	header;
980 	 *
981 	 *	u32				pid, tid;
982 	 *	u64				addr;
983 	 *	u64				len;
984 	 *	u64				pgoff;
985 	 *	union {
986 	 *		struct {
987 	 *			u32		maj;
988 	 *			u32		min;
989 	 *			u64		ino;
990 	 *			u64		ino_generation;
991 	 *		};
992 	 *		struct {
993 	 *			u8		build_id_size;
994 	 *			u8		__reserved_1;
995 	 *			u16		__reserved_2;
996 	 *			u8		build_id[20];
997 	 *		};
998 	 *	};
999 	 *	u32				prot, flags;
1000 	 *	char				filename[];
1001 	 * 	struct sample_id		sample_id;
1002 	 * };
1003 	 */
1004 	PERF_RECORD_MMAP2			= 10,
1005 
1006 	/*
1007 	 * Records that new data landed in the AUX buffer part.
1008 	 *
1009 	 * struct {
1010 	 * 	struct perf_event_header	header;
1011 	 *
1012 	 * 	u64				aux_offset;
1013 	 * 	u64				aux_size;
1014 	 *	u64				flags;
1015 	 * 	struct sample_id		sample_id;
1016 	 * };
1017 	 */
1018 	PERF_RECORD_AUX				= 11,
1019 
1020 	/*
1021 	 * Indicates that instruction trace has started
1022 	 *
1023 	 * struct {
1024 	 *	struct perf_event_header	header;
1025 	 *	u32				pid;
1026 	 *	u32				tid;
1027 	 *	struct sample_id		sample_id;
1028 	 * };
1029 	 */
1030 	PERF_RECORD_ITRACE_START		= 12,
1031 
1032 	/*
1033 	 * Records the dropped/lost sample number.
1034 	 *
1035 	 * struct {
1036 	 *	struct perf_event_header	header;
1037 	 *
1038 	 *	u64				lost;
1039 	 *	struct sample_id		sample_id;
1040 	 * };
1041 	 */
1042 	PERF_RECORD_LOST_SAMPLES		= 13,
1043 
1044 	/*
1045 	 * Records a context switch in or out (flagged by
1046 	 * PERF_RECORD_MISC_SWITCH_OUT). See also
1047 	 * PERF_RECORD_SWITCH_CPU_WIDE.
1048 	 *
1049 	 * struct {
1050 	 *	struct perf_event_header	header;
1051 	 *	struct sample_id		sample_id;
1052 	 * };
1053 	 */
1054 	PERF_RECORD_SWITCH			= 14,
1055 
1056 	/*
1057 	 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
1058 	 * next_prev_tid that are the next (switching out) or previous
1059 	 * (switching in) pid/tid.
1060 	 *
1061 	 * struct {
1062 	 *	struct perf_event_header	header;
1063 	 *	u32				next_prev_pid;
1064 	 *	u32				next_prev_tid;
1065 	 *	struct sample_id		sample_id;
1066 	 * };
1067 	 */
1068 	PERF_RECORD_SWITCH_CPU_WIDE		= 15,
1069 
1070 	/*
1071 	 * struct {
1072 	 *	struct perf_event_header	header;
1073 	 *	u32				pid;
1074 	 *	u32				tid;
1075 	 *	u64				nr_namespaces;
1076 	 *	{ u64				dev, inode; } [nr_namespaces];
1077 	 *	struct sample_id		sample_id;
1078 	 * };
1079 	 */
1080 	PERF_RECORD_NAMESPACES			= 16,
1081 
1082 	/*
1083 	 * Record ksymbol register/unregister events:
1084 	 *
1085 	 * struct {
1086 	 *	struct perf_event_header	header;
1087 	 *	u64				addr;
1088 	 *	u32				len;
1089 	 *	u16				ksym_type;
1090 	 *	u16				flags;
1091 	 *	char				name[];
1092 	 *	struct sample_id		sample_id;
1093 	 * };
1094 	 */
1095 	PERF_RECORD_KSYMBOL			= 17,
1096 
1097 	/*
1098 	 * Record bpf events:
1099 	 *  enum perf_bpf_event_type {
1100 	 *	PERF_BPF_EVENT_UNKNOWN		= 0,
1101 	 *	PERF_BPF_EVENT_PROG_LOAD	= 1,
1102 	 *	PERF_BPF_EVENT_PROG_UNLOAD	= 2,
1103 	 *  };
1104 	 *
1105 	 * struct {
1106 	 *	struct perf_event_header	header;
1107 	 *	u16				type;
1108 	 *	u16				flags;
1109 	 *	u32				id;
1110 	 *	u8				tag[BPF_TAG_SIZE];
1111 	 *	struct sample_id		sample_id;
1112 	 * };
1113 	 */
1114 	PERF_RECORD_BPF_EVENT			= 18,
1115 
1116 	/*
1117 	 * struct {
1118 	 *	struct perf_event_header	header;
1119 	 *	u64				id;
1120 	 *	char				path[];
1121 	 *	struct sample_id		sample_id;
1122 	 * };
1123 	 */
1124 	PERF_RECORD_CGROUP			= 19,
1125 
1126 	/*
1127 	 * Records changes to kernel text i.e. self-modified code. 'old_len' is
1128 	 * the number of old bytes, 'new_len' is the number of new bytes. Either
1129 	 * 'old_len' or 'new_len' may be zero to indicate, for example, the
1130 	 * addition or removal of a trampoline. 'bytes' contains the old bytes
1131 	 * followed immediately by the new bytes.
1132 	 *
1133 	 * struct {
1134 	 *	struct perf_event_header	header;
1135 	 *	u64				addr;
1136 	 *	u16				old_len;
1137 	 *	u16				new_len;
1138 	 *	u8				bytes[];
1139 	 *	struct sample_id		sample_id;
1140 	 * };
1141 	 */
1142 	PERF_RECORD_TEXT_POKE			= 20,
1143 
1144 	/*
1145 	 * Data written to the AUX area by hardware due to aux_output, may need
1146 	 * to be matched to the event by an architecture-specific hardware ID.
1147 	 * This records the hardware ID, but requires sample_id to provide the
1148 	 * event ID. e.g. Intel PT uses this record to disambiguate PEBS-via-PT
1149 	 * records from multiple events.
1150 	 *
1151 	 * struct {
1152 	 *	struct perf_event_header	header;
1153 	 *	u64				hw_id;
1154 	 *	struct sample_id		sample_id;
1155 	 * };
1156 	 */
1157 	PERF_RECORD_AUX_OUTPUT_HW_ID		= 21,
1158 
1159 	PERF_RECORD_MAX,			/* non-ABI */
1160 };
1161 
1162 enum perf_record_ksymbol_type {
1163 	PERF_RECORD_KSYMBOL_TYPE_UNKNOWN	= 0,
1164 	PERF_RECORD_KSYMBOL_TYPE_BPF		= 1,
1165 	/*
1166 	 * Out of line code such as kprobe-replaced instructions or optimized
1167 	 * kprobes or ftrace trampolines.
1168 	 */
1169 	PERF_RECORD_KSYMBOL_TYPE_OOL		= 2,
1170 	PERF_RECORD_KSYMBOL_TYPE_MAX		/* non-ABI */
1171 };
1172 
1173 #define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER	(1 << 0)
1174 
1175 enum perf_bpf_event_type {
1176 	PERF_BPF_EVENT_UNKNOWN		= 0,
1177 	PERF_BPF_EVENT_PROG_LOAD	= 1,
1178 	PERF_BPF_EVENT_PROG_UNLOAD	= 2,
1179 	PERF_BPF_EVENT_MAX,		/* non-ABI */
1180 };
1181 
1182 #define PERF_MAX_STACK_DEPTH		127
1183 #define PERF_MAX_CONTEXTS_PER_STACK	  8
1184 
1185 enum perf_callchain_context {
1186 	PERF_CONTEXT_HV			= (__u64)-32,
1187 	PERF_CONTEXT_KERNEL		= (__u64)-128,
1188 	PERF_CONTEXT_USER		= (__u64)-512,
1189 
1190 	PERF_CONTEXT_GUEST		= (__u64)-2048,
1191 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
1192 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
1193 
1194 	PERF_CONTEXT_MAX		= (__u64)-4095,
1195 };
1196 
1197 /**
1198  * PERF_RECORD_AUX::flags bits
1199  */
1200 #define PERF_AUX_FLAG_TRUNCATED			0x01	/* record was truncated to fit */
1201 #define PERF_AUX_FLAG_OVERWRITE			0x02	/* snapshot from overwrite mode */
1202 #define PERF_AUX_FLAG_PARTIAL			0x04	/* record contains gaps */
1203 #define PERF_AUX_FLAG_COLLISION			0x08	/* sample collided with another */
1204 #define PERF_AUX_FLAG_PMU_FORMAT_TYPE_MASK	0xff00	/* PMU specific trace format type */
1205 
1206 /* CoreSight PMU AUX buffer formats */
1207 #define PERF_AUX_FLAG_CORESIGHT_FORMAT_CORESIGHT	0x0000 /* Default for backward compatibility */
1208 #define PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW		0x0100 /* Raw format of the source */
1209 
1210 #define PERF_FLAG_FD_NO_GROUP		(1UL << 0)
1211 #define PERF_FLAG_FD_OUTPUT		(1UL << 1)
1212 #define PERF_FLAG_PID_CGROUP		(1UL << 2) /* pid=cgroup id, per-cpu mode only */
1213 #define PERF_FLAG_FD_CLOEXEC		(1UL << 3) /* O_CLOEXEC */
1214 
1215 #if defined(__LITTLE_ENDIAN_BITFIELD)
1216 union perf_mem_data_src {
1217 	__u64 val;
1218 	struct {
1219 		__u64   mem_op:5,	/* type of opcode */
1220 			mem_lvl:14,	/* memory hierarchy level */
1221 			mem_snoop:5,	/* snoop mode */
1222 			mem_lock:2,	/* lock instr */
1223 			mem_dtlb:7,	/* tlb access */
1224 			mem_lvl_num:4,	/* memory hierarchy level number */
1225 			mem_remote:1,   /* remote */
1226 			mem_snoopx:2,	/* snoop mode, ext */
1227 			mem_blk:3,	/* access blocked */
1228 			mem_hops:3,	/* hop level */
1229 			mem_rsvd:18;
1230 	};
1231 };
1232 #elif defined(__BIG_ENDIAN_BITFIELD)
1233 union perf_mem_data_src {
1234 	__u64 val;
1235 	struct {
1236 		__u64	mem_rsvd:18,
1237 			mem_hops:3,	/* hop level */
1238 			mem_blk:3,	/* access blocked */
1239 			mem_snoopx:2,	/* snoop mode, ext */
1240 			mem_remote:1,   /* remote */
1241 			mem_lvl_num:4,	/* memory hierarchy level number */
1242 			mem_dtlb:7,	/* tlb access */
1243 			mem_lock:2,	/* lock instr */
1244 			mem_snoop:5,	/* snoop mode */
1245 			mem_lvl:14,	/* memory hierarchy level */
1246 			mem_op:5;	/* type of opcode */
1247 	};
1248 };
1249 #else
1250 #error "Unknown endianness"
1251 #endif
1252 
1253 /* type of opcode (load/store/prefetch,code) */
1254 #define PERF_MEM_OP_NA		0x01 /* not available */
1255 #define PERF_MEM_OP_LOAD	0x02 /* load instruction */
1256 #define PERF_MEM_OP_STORE	0x04 /* store instruction */
1257 #define PERF_MEM_OP_PFETCH	0x08 /* prefetch */
1258 #define PERF_MEM_OP_EXEC	0x10 /* code (execution) */
1259 #define PERF_MEM_OP_SHIFT	0
1260 
1261 /*
1262  * PERF_MEM_LVL_* namespace being depricated to some extent in the
1263  * favour of newer composite PERF_MEM_{LVLNUM_,REMOTE_,SNOOPX_} fields.
1264  * Supporting this namespace inorder to not break defined ABIs.
1265  *
1266  * memory hierarchy (memory level, hit or miss)
1267  */
1268 #define PERF_MEM_LVL_NA		0x01  /* not available */
1269 #define PERF_MEM_LVL_HIT	0x02  /* hit level */
1270 #define PERF_MEM_LVL_MISS	0x04  /* miss level  */
1271 #define PERF_MEM_LVL_L1		0x08  /* L1 */
1272 #define PERF_MEM_LVL_LFB	0x10  /* Line Fill Buffer */
1273 #define PERF_MEM_LVL_L2		0x20  /* L2 */
1274 #define PERF_MEM_LVL_L3		0x40  /* L3 */
1275 #define PERF_MEM_LVL_LOC_RAM	0x80  /* Local DRAM */
1276 #define PERF_MEM_LVL_REM_RAM1	0x100 /* Remote DRAM (1 hop) */
1277 #define PERF_MEM_LVL_REM_RAM2	0x200 /* Remote DRAM (2 hops) */
1278 #define PERF_MEM_LVL_REM_CCE1	0x400 /* Remote Cache (1 hop) */
1279 #define PERF_MEM_LVL_REM_CCE2	0x800 /* Remote Cache (2 hops) */
1280 #define PERF_MEM_LVL_IO		0x1000 /* I/O memory */
1281 #define PERF_MEM_LVL_UNC	0x2000 /* Uncached memory */
1282 #define PERF_MEM_LVL_SHIFT	5
1283 
1284 #define PERF_MEM_REMOTE_REMOTE	0x01  /* Remote */
1285 #define PERF_MEM_REMOTE_SHIFT	37
1286 
1287 #define PERF_MEM_LVLNUM_L1	0x01 /* L1 */
1288 #define PERF_MEM_LVLNUM_L2	0x02 /* L2 */
1289 #define PERF_MEM_LVLNUM_L3	0x03 /* L3 */
1290 #define PERF_MEM_LVLNUM_L4	0x04 /* L4 */
1291 /* 5-0xa available */
1292 #define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1293 #define PERF_MEM_LVLNUM_LFB	0x0c /* LFB */
1294 #define PERF_MEM_LVLNUM_RAM	0x0d /* RAM */
1295 #define PERF_MEM_LVLNUM_PMEM	0x0e /* PMEM */
1296 #define PERF_MEM_LVLNUM_NA	0x0f /* N/A */
1297 
1298 #define PERF_MEM_LVLNUM_SHIFT	33
1299 
1300 /* snoop mode */
1301 #define PERF_MEM_SNOOP_NA	0x01 /* not available */
1302 #define PERF_MEM_SNOOP_NONE	0x02 /* no snoop */
1303 #define PERF_MEM_SNOOP_HIT	0x04 /* snoop hit */
1304 #define PERF_MEM_SNOOP_MISS	0x08 /* snoop miss */
1305 #define PERF_MEM_SNOOP_HITM	0x10 /* snoop hit modified */
1306 #define PERF_MEM_SNOOP_SHIFT	19
1307 
1308 #define PERF_MEM_SNOOPX_FWD	0x01 /* forward */
1309 /* 1 free */
1310 #define PERF_MEM_SNOOPX_SHIFT  38
1311 
1312 /* locked instruction */
1313 #define PERF_MEM_LOCK_NA	0x01 /* not available */
1314 #define PERF_MEM_LOCK_LOCKED	0x02 /* locked transaction */
1315 #define PERF_MEM_LOCK_SHIFT	24
1316 
1317 /* TLB access */
1318 #define PERF_MEM_TLB_NA		0x01 /* not available */
1319 #define PERF_MEM_TLB_HIT	0x02 /* hit level */
1320 #define PERF_MEM_TLB_MISS	0x04 /* miss level */
1321 #define PERF_MEM_TLB_L1		0x08 /* L1 */
1322 #define PERF_MEM_TLB_L2		0x10 /* L2 */
1323 #define PERF_MEM_TLB_WK		0x20 /* Hardware Walker*/
1324 #define PERF_MEM_TLB_OS		0x40 /* OS fault handler */
1325 #define PERF_MEM_TLB_SHIFT	26
1326 
1327 /* Access blocked */
1328 #define PERF_MEM_BLK_NA		0x01 /* not available */
1329 #define PERF_MEM_BLK_DATA	0x02 /* data could not be forwarded */
1330 #define PERF_MEM_BLK_ADDR	0x04 /* address conflict */
1331 #define PERF_MEM_BLK_SHIFT	40
1332 
1333 /* hop level */
1334 #define PERF_MEM_HOPS_0		0x01 /* remote core, same node */
1335 #define PERF_MEM_HOPS_1         0x02 /* remote node, same socket */
1336 #define PERF_MEM_HOPS_2         0x03 /* remote socket, same board */
1337 #define PERF_MEM_HOPS_3         0x04 /* remote board */
1338 /* 5-7 available */
1339 #define PERF_MEM_HOPS_SHIFT	43
1340 
1341 #define PERF_MEM_S(a, s) \
1342 	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1343 
1344 /*
1345  * single taken branch record layout:
1346  *
1347  *      from: source instruction (may not always be a branch insn)
1348  *        to: branch target
1349  *   mispred: branch target was mispredicted
1350  * predicted: branch target was predicted
1351  *
1352  * support for mispred, predicted is optional. In case it
1353  * is not supported mispred = predicted = 0.
1354  *
1355  *     in_tx: running in a hardware transaction
1356  *     abort: aborting a hardware transaction
1357  *    cycles: cycles from last branch (or 0 if not supported)
1358  *      type: branch type
1359  */
1360 struct perf_branch_entry {
1361 	__u64	from;
1362 	__u64	to;
1363 	__u64	mispred:1,  /* target mispredicted */
1364 		predicted:1,/* target predicted */
1365 		in_tx:1,    /* in transaction */
1366 		abort:1,    /* transaction abort */
1367 		cycles:16,  /* cycle count to last branch */
1368 		type:4,     /* branch type */
1369 		reserved:40;
1370 };
1371 
1372 union perf_sample_weight {
1373 	__u64		full;
1374 #if defined(__LITTLE_ENDIAN_BITFIELD)
1375 	struct {
1376 		__u32	var1_dw;
1377 		__u16	var2_w;
1378 		__u16	var3_w;
1379 	};
1380 #elif defined(__BIG_ENDIAN_BITFIELD)
1381 	struct {
1382 		__u16	var3_w;
1383 		__u16	var2_w;
1384 		__u32	var1_dw;
1385 	};
1386 #else
1387 #error "Unknown endianness"
1388 #endif
1389 };
1390 
1391 #endif /* _UAPI_LINUX_PERF_EVENT_H */
1392