xref: /linux/sound/usb/midi.c (revision 6ed7ffddcf61f668114edb676417e5fb33773b59)
1 /*
2  * usbmidi.c - ALSA USB MIDI driver
3  *
4  * Copyright (c) 2002-2009 Clemens Ladisch
5  * All rights reserved.
6  *
7  * Based on the OSS usb-midi driver by NAGANO Daisuke,
8  *          NetBSD's umidi driver by Takuya SHIOZAKI,
9  *          the "USB Device Class Definition for MIDI Devices" by Roland
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions, and the following disclaimer,
16  *    without modification.
17  * 2. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * Alternatively, this software may be distributed and/or modified under the
21  * terms of the GNU General Public License as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any later
23  * version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
29  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #include <linux/kernel.h>
39 #include <linux/types.h>
40 #include <linux/bitops.h>
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/string.h>
44 #include <linux/init.h>
45 #include <linux/slab.h>
46 #include <linux/timer.h>
47 #include <linux/usb.h>
48 #include <linux/wait.h>
49 #include <linux/usb/audio.h>
50 #include <linux/module.h>
51 
52 #include <sound/core.h>
53 #include <sound/control.h>
54 #include <sound/rawmidi.h>
55 #include <sound/asequencer.h>
56 #include "usbaudio.h"
57 #include "midi.h"
58 #include "power.h"
59 #include "helper.h"
60 
61 /*
62  * define this to log all USB packets
63  */
64 /* #define DUMP_PACKETS */
65 
66 /*
67  * how long to wait after some USB errors, so that khubd can disconnect() us
68  * without too many spurious errors
69  */
70 #define ERROR_DELAY_JIFFIES (HZ / 10)
71 
72 #define OUTPUT_URBS 7
73 #define INPUT_URBS 7
74 
75 
76 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
77 MODULE_DESCRIPTION("USB Audio/MIDI helper module");
78 MODULE_LICENSE("Dual BSD/GPL");
79 
80 
81 struct usb_ms_header_descriptor {
82 	__u8  bLength;
83 	__u8  bDescriptorType;
84 	__u8  bDescriptorSubtype;
85 	__u8  bcdMSC[2];
86 	__le16 wTotalLength;
87 } __attribute__ ((packed));
88 
89 struct usb_ms_endpoint_descriptor {
90 	__u8  bLength;
91 	__u8  bDescriptorType;
92 	__u8  bDescriptorSubtype;
93 	__u8  bNumEmbMIDIJack;
94 	__u8  baAssocJackID[0];
95 } __attribute__ ((packed));
96 
97 struct snd_usb_midi_in_endpoint;
98 struct snd_usb_midi_out_endpoint;
99 struct snd_usb_midi_endpoint;
100 
101 struct usb_protocol_ops {
102 	void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
103 	void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb);
104 	void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
105 	void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*);
106 	void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*);
107 };
108 
109 struct snd_usb_midi {
110 	struct usb_device *dev;
111 	struct snd_card *card;
112 	struct usb_interface *iface;
113 	const struct snd_usb_audio_quirk *quirk;
114 	struct snd_rawmidi *rmidi;
115 	struct usb_protocol_ops* usb_protocol_ops;
116 	struct list_head list;
117 	struct timer_list error_timer;
118 	spinlock_t disc_lock;
119 	struct rw_semaphore disc_rwsem;
120 	struct mutex mutex;
121 	u32 usb_id;
122 	int next_midi_device;
123 
124 	struct snd_usb_midi_endpoint {
125 		struct snd_usb_midi_out_endpoint *out;
126 		struct snd_usb_midi_in_endpoint *in;
127 	} endpoints[MIDI_MAX_ENDPOINTS];
128 	unsigned long input_triggered;
129 	bool autopm_reference;
130 	unsigned int opened[2];
131 	unsigned char disconnected;
132 	unsigned char input_running;
133 
134 	struct snd_kcontrol *roland_load_ctl;
135 };
136 
137 struct snd_usb_midi_out_endpoint {
138 	struct snd_usb_midi* umidi;
139 	struct out_urb_context {
140 		struct urb *urb;
141 		struct snd_usb_midi_out_endpoint *ep;
142 	} urbs[OUTPUT_URBS];
143 	unsigned int active_urbs;
144 	unsigned int drain_urbs;
145 	int max_transfer;		/* size of urb buffer */
146 	struct tasklet_struct tasklet;
147 	unsigned int next_urb;
148 	spinlock_t buffer_lock;
149 
150 	struct usbmidi_out_port {
151 		struct snd_usb_midi_out_endpoint* ep;
152 		struct snd_rawmidi_substream *substream;
153 		int active;
154 		uint8_t cable;		/* cable number << 4 */
155 		uint8_t state;
156 #define STATE_UNKNOWN	0
157 #define STATE_1PARAM	1
158 #define STATE_2PARAM_1	2
159 #define STATE_2PARAM_2	3
160 #define STATE_SYSEX_0	4
161 #define STATE_SYSEX_1	5
162 #define STATE_SYSEX_2	6
163 		uint8_t data[2];
164 	} ports[0x10];
165 	int current_port;
166 
167 	wait_queue_head_t drain_wait;
168 };
169 
170 struct snd_usb_midi_in_endpoint {
171 	struct snd_usb_midi* umidi;
172 	struct urb* urbs[INPUT_URBS];
173 	struct usbmidi_in_port {
174 		struct snd_rawmidi_substream *substream;
175 		u8 running_status_length;
176 	} ports[0x10];
177 	u8 seen_f5;
178 	u8 error_resubmit;
179 	int current_port;
180 };
181 
182 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep);
183 
184 static const uint8_t snd_usbmidi_cin_length[] = {
185 	0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
186 };
187 
188 /*
189  * Submits the URB, with error handling.
190  */
191 static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags)
192 {
193 	int err = usb_submit_urb(urb, flags);
194 	if (err < 0 && err != -ENODEV)
195 		snd_printk(KERN_ERR "usb_submit_urb: %d\n", err);
196 	return err;
197 }
198 
199 /*
200  * Error handling for URB completion functions.
201  */
202 static int snd_usbmidi_urb_error(int status)
203 {
204 	switch (status) {
205 	/* manually unlinked, or device gone */
206 	case -ENOENT:
207 	case -ECONNRESET:
208 	case -ESHUTDOWN:
209 	case -ENODEV:
210 		return -ENODEV;
211 	/* errors that might occur during unplugging */
212 	case -EPROTO:
213 	case -ETIME:
214 	case -EILSEQ:
215 		return -EIO;
216 	default:
217 		snd_printk(KERN_ERR "urb status %d\n", status);
218 		return 0; /* continue */
219 	}
220 }
221 
222 /*
223  * Receives a chunk of MIDI data.
224  */
225 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx,
226 				   uint8_t* data, int length)
227 {
228 	struct usbmidi_in_port* port = &ep->ports[portidx];
229 
230 	if (!port->substream) {
231 		snd_printd("unexpected port %d!\n", portidx);
232 		return;
233 	}
234 	if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
235 		return;
236 	snd_rawmidi_receive(port->substream, data, length);
237 }
238 
239 #ifdef DUMP_PACKETS
240 static void dump_urb(const char *type, const u8 *data, int length)
241 {
242 	snd_printk(KERN_DEBUG "%s packet: [", type);
243 	for (; length > 0; ++data, --length)
244 		printk(" %02x", *data);
245 	printk(" ]\n");
246 }
247 #else
248 #define dump_urb(type, data, length) /* nothing */
249 #endif
250 
251 /*
252  * Processes the data read from the device.
253  */
254 static void snd_usbmidi_in_urb_complete(struct urb* urb)
255 {
256 	struct snd_usb_midi_in_endpoint* ep = urb->context;
257 
258 	if (urb->status == 0) {
259 		dump_urb("received", urb->transfer_buffer, urb->actual_length);
260 		ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
261 						   urb->actual_length);
262 	} else {
263 		int err = snd_usbmidi_urb_error(urb->status);
264 		if (err < 0) {
265 			if (err != -ENODEV) {
266 				ep->error_resubmit = 1;
267 				mod_timer(&ep->umidi->error_timer,
268 					  jiffies + ERROR_DELAY_JIFFIES);
269 			}
270 			return;
271 		}
272 	}
273 
274 	urb->dev = ep->umidi->dev;
275 	snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
276 }
277 
278 static void snd_usbmidi_out_urb_complete(struct urb* urb)
279 {
280 	struct out_urb_context *context = urb->context;
281 	struct snd_usb_midi_out_endpoint* ep = context->ep;
282 	unsigned int urb_index;
283 
284 	spin_lock(&ep->buffer_lock);
285 	urb_index = context - ep->urbs;
286 	ep->active_urbs &= ~(1 << urb_index);
287 	if (unlikely(ep->drain_urbs)) {
288 		ep->drain_urbs &= ~(1 << urb_index);
289 		wake_up(&ep->drain_wait);
290 	}
291 	spin_unlock(&ep->buffer_lock);
292 	if (urb->status < 0) {
293 		int err = snd_usbmidi_urb_error(urb->status);
294 		if (err < 0) {
295 			if (err != -ENODEV)
296 				mod_timer(&ep->umidi->error_timer,
297 					  jiffies + ERROR_DELAY_JIFFIES);
298 			return;
299 		}
300 	}
301 	snd_usbmidi_do_output(ep);
302 }
303 
304 /*
305  * This is called when some data should be transferred to the device
306  * (from one or more substreams).
307  */
308 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep)
309 {
310 	unsigned int urb_index;
311 	struct urb* urb;
312 	unsigned long flags;
313 
314 	spin_lock_irqsave(&ep->buffer_lock, flags);
315 	if (ep->umidi->disconnected) {
316 		spin_unlock_irqrestore(&ep->buffer_lock, flags);
317 		return;
318 	}
319 
320 	urb_index = ep->next_urb;
321 	for (;;) {
322 		if (!(ep->active_urbs & (1 << urb_index))) {
323 			urb = ep->urbs[urb_index].urb;
324 			urb->transfer_buffer_length = 0;
325 			ep->umidi->usb_protocol_ops->output(ep, urb);
326 			if (urb->transfer_buffer_length == 0)
327 				break;
328 
329 			dump_urb("sending", urb->transfer_buffer,
330 				 urb->transfer_buffer_length);
331 			urb->dev = ep->umidi->dev;
332 			if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0)
333 				break;
334 			ep->active_urbs |= 1 << urb_index;
335 		}
336 		if (++urb_index >= OUTPUT_URBS)
337 			urb_index = 0;
338 		if (urb_index == ep->next_urb)
339 			break;
340 	}
341 	ep->next_urb = urb_index;
342 	spin_unlock_irqrestore(&ep->buffer_lock, flags);
343 }
344 
345 static void snd_usbmidi_out_tasklet(unsigned long data)
346 {
347 	struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data;
348 
349 	snd_usbmidi_do_output(ep);
350 }
351 
352 /* called after transfers had been interrupted due to some USB error */
353 static void snd_usbmidi_error_timer(unsigned long data)
354 {
355 	struct snd_usb_midi *umidi = (struct snd_usb_midi *)data;
356 	unsigned int i, j;
357 
358 	spin_lock(&umidi->disc_lock);
359 	if (umidi->disconnected) {
360 		spin_unlock(&umidi->disc_lock);
361 		return;
362 	}
363 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
364 		struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
365 		if (in && in->error_resubmit) {
366 			in->error_resubmit = 0;
367 			for (j = 0; j < INPUT_URBS; ++j) {
368 				in->urbs[j]->dev = umidi->dev;
369 				snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC);
370 			}
371 		}
372 		if (umidi->endpoints[i].out)
373 			snd_usbmidi_do_output(umidi->endpoints[i].out);
374 	}
375 	spin_unlock(&umidi->disc_lock);
376 }
377 
378 /* helper function to send static data that may not DMA-able */
379 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep,
380 				 const void *data, int len)
381 {
382 	int err = 0;
383 	void *buf = kmemdup(data, len, GFP_KERNEL);
384 	if (!buf)
385 		return -ENOMEM;
386 	dump_urb("sending", buf, len);
387 	if (ep->urbs[0].urb)
388 		err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe,
389 				   buf, len, NULL, 250);
390 	kfree(buf);
391 	return err;
392 }
393 
394 /*
395  * Standard USB MIDI protocol: see the spec.
396  * Midiman protocol: like the standard protocol, but the control byte is the
397  * fourth byte in each packet, and uses length instead of CIN.
398  */
399 
400 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep,
401 				       uint8_t* buffer, int buffer_length)
402 {
403 	int i;
404 
405 	for (i = 0; i + 3 < buffer_length; i += 4)
406 		if (buffer[i] != 0) {
407 			int cable = buffer[i] >> 4;
408 			int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
409 			snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
410 		}
411 }
412 
413 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep,
414 				      uint8_t* buffer, int buffer_length)
415 {
416 	int i;
417 
418 	for (i = 0; i + 3 < buffer_length; i += 4)
419 		if (buffer[i + 3] != 0) {
420 			int port = buffer[i + 3] >> 4;
421 			int length = buffer[i + 3] & 3;
422 			snd_usbmidi_input_data(ep, port, &buffer[i], length);
423 		}
424 }
425 
426 /*
427  * Buggy M-Audio device: running status on input results in a packet that has
428  * the data bytes but not the status byte and that is marked with CIN 4.
429  */
430 static void snd_usbmidi_maudio_broken_running_status_input(
431 					struct snd_usb_midi_in_endpoint* ep,
432 					uint8_t* buffer, int buffer_length)
433 {
434 	int i;
435 
436 	for (i = 0; i + 3 < buffer_length; i += 4)
437 		if (buffer[i] != 0) {
438 			int cable = buffer[i] >> 4;
439 			u8 cin = buffer[i] & 0x0f;
440 			struct usbmidi_in_port *port = &ep->ports[cable];
441 			int length;
442 
443 			length = snd_usbmidi_cin_length[cin];
444 			if (cin == 0xf && buffer[i + 1] >= 0xf8)
445 				; /* realtime msg: no running status change */
446 			else if (cin >= 0x8 && cin <= 0xe)
447 				/* channel msg */
448 				port->running_status_length = length - 1;
449 			else if (cin == 0x4 &&
450 				 port->running_status_length != 0 &&
451 				 buffer[i + 1] < 0x80)
452 				/* CIN 4 that is not a SysEx */
453 				length = port->running_status_length;
454 			else
455 				/*
456 				 * All other msgs cannot begin running status.
457 				 * (A channel msg sent as two or three CIN 0xF
458 				 * packets could in theory, but this device
459 				 * doesn't use this format.)
460 				 */
461 				port->running_status_length = 0;
462 			snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
463 		}
464 }
465 
466 /*
467  * CME protocol: like the standard protocol, but SysEx commands are sent as a
468  * single USB packet preceded by a 0x0F byte.
469  */
470 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep,
471 				  uint8_t *buffer, int buffer_length)
472 {
473 	if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f)
474 		snd_usbmidi_standard_input(ep, buffer, buffer_length);
475 	else
476 		snd_usbmidi_input_data(ep, buffer[0] >> 4,
477 				       &buffer[1], buffer_length - 1);
478 }
479 
480 /*
481  * Adds one USB MIDI packet to the output buffer.
482  */
483 static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0,
484 					       uint8_t p1, uint8_t p2, uint8_t p3)
485 {
486 
487 	uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
488 	buf[0] = p0;
489 	buf[1] = p1;
490 	buf[2] = p2;
491 	buf[3] = p3;
492 	urb->transfer_buffer_length += 4;
493 }
494 
495 /*
496  * Adds one Midiman packet to the output buffer.
497  */
498 static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0,
499 					      uint8_t p1, uint8_t p2, uint8_t p3)
500 {
501 
502 	uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
503 	buf[0] = p1;
504 	buf[1] = p2;
505 	buf[2] = p3;
506 	buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
507 	urb->transfer_buffer_length += 4;
508 }
509 
510 /*
511  * Converts MIDI commands to USB MIDI packets.
512  */
513 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port,
514 				      uint8_t b, struct urb* urb)
515 {
516 	uint8_t p0 = port->cable;
517 	void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
518 		port->ep->umidi->usb_protocol_ops->output_packet;
519 
520 	if (b >= 0xf8) {
521 		output_packet(urb, p0 | 0x0f, b, 0, 0);
522 	} else if (b >= 0xf0) {
523 		switch (b) {
524 		case 0xf0:
525 			port->data[0] = b;
526 			port->state = STATE_SYSEX_1;
527 			break;
528 		case 0xf1:
529 		case 0xf3:
530 			port->data[0] = b;
531 			port->state = STATE_1PARAM;
532 			break;
533 		case 0xf2:
534 			port->data[0] = b;
535 			port->state = STATE_2PARAM_1;
536 			break;
537 		case 0xf4:
538 		case 0xf5:
539 			port->state = STATE_UNKNOWN;
540 			break;
541 		case 0xf6:
542 			output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
543 			port->state = STATE_UNKNOWN;
544 			break;
545 		case 0xf7:
546 			switch (port->state) {
547 			case STATE_SYSEX_0:
548 				output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
549 				break;
550 			case STATE_SYSEX_1:
551 				output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0);
552 				break;
553 			case STATE_SYSEX_2:
554 				output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7);
555 				break;
556 			}
557 			port->state = STATE_UNKNOWN;
558 			break;
559 		}
560 	} else if (b >= 0x80) {
561 		port->data[0] = b;
562 		if (b >= 0xc0 && b <= 0xdf)
563 			port->state = STATE_1PARAM;
564 		else
565 			port->state = STATE_2PARAM_1;
566 	} else { /* b < 0x80 */
567 		switch (port->state) {
568 		case STATE_1PARAM:
569 			if (port->data[0] < 0xf0) {
570 				p0 |= port->data[0] >> 4;
571 			} else {
572 				p0 |= 0x02;
573 				port->state = STATE_UNKNOWN;
574 			}
575 			output_packet(urb, p0, port->data[0], b, 0);
576 			break;
577 		case STATE_2PARAM_1:
578 			port->data[1] = b;
579 			port->state = STATE_2PARAM_2;
580 			break;
581 		case STATE_2PARAM_2:
582 			if (port->data[0] < 0xf0) {
583 				p0 |= port->data[0] >> 4;
584 				port->state = STATE_2PARAM_1;
585 			} else {
586 				p0 |= 0x03;
587 				port->state = STATE_UNKNOWN;
588 			}
589 			output_packet(urb, p0, port->data[0], port->data[1], b);
590 			break;
591 		case STATE_SYSEX_0:
592 			port->data[0] = b;
593 			port->state = STATE_SYSEX_1;
594 			break;
595 		case STATE_SYSEX_1:
596 			port->data[1] = b;
597 			port->state = STATE_SYSEX_2;
598 			break;
599 		case STATE_SYSEX_2:
600 			output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b);
601 			port->state = STATE_SYSEX_0;
602 			break;
603 		}
604 	}
605 }
606 
607 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep,
608 					struct urb *urb)
609 {
610 	int p;
611 
612 	/* FIXME: lower-numbered ports can starve higher-numbered ports */
613 	for (p = 0; p < 0x10; ++p) {
614 		struct usbmidi_out_port* port = &ep->ports[p];
615 		if (!port->active)
616 			continue;
617 		while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
618 			uint8_t b;
619 			if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
620 				port->active = 0;
621 				break;
622 			}
623 			snd_usbmidi_transmit_byte(port, b, urb);
624 		}
625 	}
626 }
627 
628 static struct usb_protocol_ops snd_usbmidi_standard_ops = {
629 	.input = snd_usbmidi_standard_input,
630 	.output = snd_usbmidi_standard_output,
631 	.output_packet = snd_usbmidi_output_standard_packet,
632 };
633 
634 static struct usb_protocol_ops snd_usbmidi_midiman_ops = {
635 	.input = snd_usbmidi_midiman_input,
636 	.output = snd_usbmidi_standard_output,
637 	.output_packet = snd_usbmidi_output_midiman_packet,
638 };
639 
640 static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = {
641 	.input = snd_usbmidi_maudio_broken_running_status_input,
642 	.output = snd_usbmidi_standard_output,
643 	.output_packet = snd_usbmidi_output_standard_packet,
644 };
645 
646 static struct usb_protocol_ops snd_usbmidi_cme_ops = {
647 	.input = snd_usbmidi_cme_input,
648 	.output = snd_usbmidi_standard_output,
649 	.output_packet = snd_usbmidi_output_standard_packet,
650 };
651 
652 /*
653  * AKAI MPD16 protocol:
654  *
655  * For control port (endpoint 1):
656  * ==============================
657  * One or more chunks consisting of first byte of (0x10 | msg_len) and then a
658  * SysEx message (msg_len=9 bytes long).
659  *
660  * For data port (endpoint 2):
661  * ===========================
662  * One or more chunks consisting of first byte of (0x20 | msg_len) and then a
663  * MIDI message (msg_len bytes long)
664  *
665  * Messages sent: Active Sense, Note On, Poly Pressure, Control Change.
666  */
667 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep,
668 				   uint8_t *buffer, int buffer_length)
669 {
670 	unsigned int pos = 0;
671 	unsigned int len = (unsigned int)buffer_length;
672 	while (pos < len) {
673 		unsigned int port = (buffer[pos] >> 4) - 1;
674 		unsigned int msg_len = buffer[pos] & 0x0f;
675 		pos++;
676 		if (pos + msg_len <= len && port < 2)
677 			snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len);
678 		pos += msg_len;
679 	}
680 }
681 
682 #define MAX_AKAI_SYSEX_LEN 9
683 
684 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep,
685 				    struct urb *urb)
686 {
687 	uint8_t *msg;
688 	int pos, end, count, buf_end;
689 	uint8_t tmp[MAX_AKAI_SYSEX_LEN];
690 	struct snd_rawmidi_substream *substream = ep->ports[0].substream;
691 
692 	if (!ep->ports[0].active)
693 		return;
694 
695 	msg = urb->transfer_buffer + urb->transfer_buffer_length;
696 	buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1;
697 
698 	/* only try adding more data when there's space for at least 1 SysEx */
699 	while (urb->transfer_buffer_length < buf_end) {
700 		count = snd_rawmidi_transmit_peek(substream,
701 						  tmp, MAX_AKAI_SYSEX_LEN);
702 		if (!count) {
703 			ep->ports[0].active = 0;
704 			return;
705 		}
706 		/* try to skip non-SysEx data */
707 		for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++)
708 			;
709 
710 		if (pos > 0) {
711 			snd_rawmidi_transmit_ack(substream, pos);
712 			continue;
713 		}
714 
715 		/* look for the start or end marker */
716 		for (end = 1; end < count && tmp[end] < 0xF0; end++)
717 			;
718 
719 		/* next SysEx started before the end of current one */
720 		if (end < count && tmp[end] == 0xF0) {
721 			/* it's incomplete - drop it */
722 			snd_rawmidi_transmit_ack(substream, end);
723 			continue;
724 		}
725 		/* SysEx complete */
726 		if (end < count && tmp[end] == 0xF7) {
727 			/* queue it, ack it, and get the next one */
728 			count = end + 1;
729 			msg[0] = 0x10 | count;
730 			memcpy(&msg[1], tmp, count);
731 			snd_rawmidi_transmit_ack(substream, count);
732 			urb->transfer_buffer_length += count + 1;
733 			msg += count + 1;
734 			continue;
735 		}
736 		/* less than 9 bytes and no end byte - wait for more */
737 		if (count < MAX_AKAI_SYSEX_LEN) {
738 			ep->ports[0].active = 0;
739 			return;
740 		}
741 		/* 9 bytes and no end marker in sight - malformed, skip it */
742 		snd_rawmidi_transmit_ack(substream, count);
743 	}
744 }
745 
746 static struct usb_protocol_ops snd_usbmidi_akai_ops = {
747 	.input = snd_usbmidi_akai_input,
748 	.output = snd_usbmidi_akai_output,
749 };
750 
751 /*
752  * Novation USB MIDI protocol: number of data bytes is in the first byte
753  * (when receiving) (+1!) or in the second byte (when sending); data begins
754  * at the third byte.
755  */
756 
757 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep,
758 				       uint8_t* buffer, int buffer_length)
759 {
760 	if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
761 		return;
762 	snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
763 }
764 
765 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep,
766 					struct urb *urb)
767 {
768 	uint8_t* transfer_buffer;
769 	int count;
770 
771 	if (!ep->ports[0].active)
772 		return;
773 	transfer_buffer = urb->transfer_buffer;
774 	count = snd_rawmidi_transmit(ep->ports[0].substream,
775 				     &transfer_buffer[2],
776 				     ep->max_transfer - 2);
777 	if (count < 1) {
778 		ep->ports[0].active = 0;
779 		return;
780 	}
781 	transfer_buffer[0] = 0;
782 	transfer_buffer[1] = count;
783 	urb->transfer_buffer_length = 2 + count;
784 }
785 
786 static struct usb_protocol_ops snd_usbmidi_novation_ops = {
787 	.input = snd_usbmidi_novation_input,
788 	.output = snd_usbmidi_novation_output,
789 };
790 
791 /*
792  * "raw" protocol: just move raw MIDI bytes from/to the endpoint
793  */
794 
795 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep,
796 				  uint8_t* buffer, int buffer_length)
797 {
798 	snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
799 }
800 
801 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep,
802 				   struct urb *urb)
803 {
804 	int count;
805 
806 	if (!ep->ports[0].active)
807 		return;
808 	count = snd_rawmidi_transmit(ep->ports[0].substream,
809 				     urb->transfer_buffer,
810 				     ep->max_transfer);
811 	if (count < 1) {
812 		ep->ports[0].active = 0;
813 		return;
814 	}
815 	urb->transfer_buffer_length = count;
816 }
817 
818 static struct usb_protocol_ops snd_usbmidi_raw_ops = {
819 	.input = snd_usbmidi_raw_input,
820 	.output = snd_usbmidi_raw_output,
821 };
822 
823 /*
824  * FTDI protocol: raw MIDI bytes, but input packets have two modem status bytes.
825  */
826 
827 static void snd_usbmidi_ftdi_input(struct snd_usb_midi_in_endpoint* ep,
828 				   uint8_t* buffer, int buffer_length)
829 {
830 	if (buffer_length > 2)
831 		snd_usbmidi_input_data(ep, 0, buffer + 2, buffer_length - 2);
832 }
833 
834 static struct usb_protocol_ops snd_usbmidi_ftdi_ops = {
835 	.input = snd_usbmidi_ftdi_input,
836 	.output = snd_usbmidi_raw_output,
837 };
838 
839 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep,
840 				     uint8_t *buffer, int buffer_length)
841 {
842 	if (buffer_length != 9)
843 		return;
844 	buffer_length = 8;
845 	while (buffer_length && buffer[buffer_length - 1] == 0xFD)
846 		buffer_length--;
847 	if (buffer_length)
848 		snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
849 }
850 
851 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep,
852 				      struct urb *urb)
853 {
854 	int count;
855 
856 	if (!ep->ports[0].active)
857 		return;
858 	switch (snd_usb_get_speed(ep->umidi->dev)) {
859 	case USB_SPEED_HIGH:
860 	case USB_SPEED_SUPER:
861 		count = 1;
862 		break;
863 	default:
864 		count = 2;
865 	}
866 	count = snd_rawmidi_transmit(ep->ports[0].substream,
867 				     urb->transfer_buffer,
868 				     count);
869 	if (count < 1) {
870 		ep->ports[0].active = 0;
871 		return;
872 	}
873 
874 	memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count);
875 	urb->transfer_buffer_length = ep->max_transfer;
876 }
877 
878 static struct usb_protocol_ops snd_usbmidi_122l_ops = {
879 	.input = snd_usbmidi_us122l_input,
880 	.output = snd_usbmidi_us122l_output,
881 };
882 
883 /*
884  * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
885  */
886 
887 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep)
888 {
889 	static const u8 init_data[] = {
890 		/* initialization magic: "get version" */
891 		0xf0,
892 		0x00, 0x20, 0x31,	/* Emagic */
893 		0x64,			/* Unitor8 */
894 		0x0b,			/* version number request */
895 		0x00,			/* command version */
896 		0x00,			/* EEPROM, box 0 */
897 		0xf7
898 	};
899 	send_bulk_static_data(ep, init_data, sizeof(init_data));
900 	/* while we're at it, pour on more magic */
901 	send_bulk_static_data(ep, init_data, sizeof(init_data));
902 }
903 
904 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep)
905 {
906 	static const u8 finish_data[] = {
907 		/* switch to patch mode with last preset */
908 		0xf0,
909 		0x00, 0x20, 0x31,	/* Emagic */
910 		0x64,			/* Unitor8 */
911 		0x10,			/* patch switch command */
912 		0x00,			/* command version */
913 		0x7f,			/* to all boxes */
914 		0x40,			/* last preset in EEPROM */
915 		0xf7
916 	};
917 	send_bulk_static_data(ep, finish_data, sizeof(finish_data));
918 }
919 
920 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep,
921 				     uint8_t* buffer, int buffer_length)
922 {
923 	int i;
924 
925 	/* FF indicates end of valid data */
926 	for (i = 0; i < buffer_length; ++i)
927 		if (buffer[i] == 0xff) {
928 			buffer_length = i;
929 			break;
930 		}
931 
932 	/* handle F5 at end of last buffer */
933 	if (ep->seen_f5)
934 		goto switch_port;
935 
936 	while (buffer_length > 0) {
937 		/* determine size of data until next F5 */
938 		for (i = 0; i < buffer_length; ++i)
939 			if (buffer[i] == 0xf5)
940 				break;
941 		snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
942 		buffer += i;
943 		buffer_length -= i;
944 
945 		if (buffer_length <= 0)
946 			break;
947 		/* assert(buffer[0] == 0xf5); */
948 		ep->seen_f5 = 1;
949 		++buffer;
950 		--buffer_length;
951 
952 	switch_port:
953 		if (buffer_length <= 0)
954 			break;
955 		if (buffer[0] < 0x80) {
956 			ep->current_port = (buffer[0] - 1) & 15;
957 			++buffer;
958 			--buffer_length;
959 		}
960 		ep->seen_f5 = 0;
961 	}
962 }
963 
964 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep,
965 				      struct urb *urb)
966 {
967 	int port0 = ep->current_port;
968 	uint8_t* buf = urb->transfer_buffer;
969 	int buf_free = ep->max_transfer;
970 	int length, i;
971 
972 	for (i = 0; i < 0x10; ++i) {
973 		/* round-robin, starting at the last current port */
974 		int portnum = (port0 + i) & 15;
975 		struct usbmidi_out_port* port = &ep->ports[portnum];
976 
977 		if (!port->active)
978 			continue;
979 		if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
980 			port->active = 0;
981 			continue;
982 		}
983 
984 		if (portnum != ep->current_port) {
985 			if (buf_free < 2)
986 				break;
987 			ep->current_port = portnum;
988 			buf[0] = 0xf5;
989 			buf[1] = (portnum + 1) & 15;
990 			buf += 2;
991 			buf_free -= 2;
992 		}
993 
994 		if (buf_free < 1)
995 			break;
996 		length = snd_rawmidi_transmit(port->substream, buf, buf_free);
997 		if (length > 0) {
998 			buf += length;
999 			buf_free -= length;
1000 			if (buf_free < 1)
1001 				break;
1002 		}
1003 	}
1004 	if (buf_free < ep->max_transfer && buf_free > 0) {
1005 		*buf = 0xff;
1006 		--buf_free;
1007 	}
1008 	urb->transfer_buffer_length = ep->max_transfer - buf_free;
1009 }
1010 
1011 static struct usb_protocol_ops snd_usbmidi_emagic_ops = {
1012 	.input = snd_usbmidi_emagic_input,
1013 	.output = snd_usbmidi_emagic_output,
1014 	.init_out_endpoint = snd_usbmidi_emagic_init_out,
1015 	.finish_out_endpoint = snd_usbmidi_emagic_finish_out,
1016 };
1017 
1018 
1019 static void update_roland_altsetting(struct snd_usb_midi* umidi)
1020 {
1021 	struct usb_interface *intf;
1022 	struct usb_host_interface *hostif;
1023 	struct usb_interface_descriptor *intfd;
1024 	int is_light_load;
1025 
1026 	intf = umidi->iface;
1027 	is_light_load = intf->cur_altsetting != intf->altsetting;
1028 	if (umidi->roland_load_ctl->private_value == is_light_load)
1029 		return;
1030 	hostif = &intf->altsetting[umidi->roland_load_ctl->private_value];
1031 	intfd = get_iface_desc(hostif);
1032 	snd_usbmidi_input_stop(&umidi->list);
1033 	usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1034 			  intfd->bAlternateSetting);
1035 	snd_usbmidi_input_start(&umidi->list);
1036 }
1037 
1038 static int substream_open(struct snd_rawmidi_substream *substream, int dir,
1039 			  int open)
1040 {
1041 	struct snd_usb_midi* umidi = substream->rmidi->private_data;
1042 	struct snd_kcontrol *ctl;
1043 	int err;
1044 
1045 	down_read(&umidi->disc_rwsem);
1046 	if (umidi->disconnected) {
1047 		up_read(&umidi->disc_rwsem);
1048 		return open ? -ENODEV : 0;
1049 	}
1050 
1051 	mutex_lock(&umidi->mutex);
1052 	if (open) {
1053 		if (!umidi->opened[0] && !umidi->opened[1]) {
1054 			err = usb_autopm_get_interface(umidi->iface);
1055 			umidi->autopm_reference = err >= 0;
1056 			if (err < 0 && err != -EACCES) {
1057 				mutex_unlock(&umidi->mutex);
1058 				up_read(&umidi->disc_rwsem);
1059 				return -EIO;
1060 			}
1061 			if (umidi->roland_load_ctl) {
1062 				ctl = umidi->roland_load_ctl;
1063 				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1064 				snd_ctl_notify(umidi->card,
1065 				       SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1066 				update_roland_altsetting(umidi);
1067 			}
1068 		}
1069 		umidi->opened[dir]++;
1070 		if (umidi->opened[1])
1071 			snd_usbmidi_input_start(&umidi->list);
1072 	} else {
1073 		umidi->opened[dir]--;
1074 		if (!umidi->opened[1])
1075 			snd_usbmidi_input_stop(&umidi->list);
1076 		if (!umidi->opened[0] && !umidi->opened[1]) {
1077 			if (umidi->roland_load_ctl) {
1078 				ctl = umidi->roland_load_ctl;
1079 				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1080 				snd_ctl_notify(umidi->card,
1081 				       SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1082 			}
1083 			if (umidi->autopm_reference)
1084 				usb_autopm_put_interface(umidi->iface);
1085 		}
1086 	}
1087 	mutex_unlock(&umidi->mutex);
1088 	up_read(&umidi->disc_rwsem);
1089 	return 0;
1090 }
1091 
1092 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
1093 {
1094 	struct snd_usb_midi* umidi = substream->rmidi->private_data;
1095 	struct usbmidi_out_port* port = NULL;
1096 	int i, j;
1097 
1098 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
1099 		if (umidi->endpoints[i].out)
1100 			for (j = 0; j < 0x10; ++j)
1101 				if (umidi->endpoints[i].out->ports[j].substream == substream) {
1102 					port = &umidi->endpoints[i].out->ports[j];
1103 					break;
1104 				}
1105 	if (!port) {
1106 		snd_BUG();
1107 		return -ENXIO;
1108 	}
1109 
1110 	substream->runtime->private_data = port;
1111 	port->state = STATE_UNKNOWN;
1112 	return substream_open(substream, 0, 1);
1113 }
1114 
1115 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
1116 {
1117 	return substream_open(substream, 0, 0);
1118 }
1119 
1120 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1121 {
1122 	struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data;
1123 
1124 	port->active = up;
1125 	if (up) {
1126 		if (port->ep->umidi->disconnected) {
1127 			/* gobble up remaining bytes to prevent wait in
1128 			 * snd_rawmidi_drain_output */
1129 			while (!snd_rawmidi_transmit_empty(substream))
1130 				snd_rawmidi_transmit_ack(substream, 1);
1131 			return;
1132 		}
1133 		tasklet_schedule(&port->ep->tasklet);
1134 	}
1135 }
1136 
1137 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream)
1138 {
1139 	struct usbmidi_out_port* port = substream->runtime->private_data;
1140 	struct snd_usb_midi_out_endpoint *ep = port->ep;
1141 	unsigned int drain_urbs;
1142 	DEFINE_WAIT(wait);
1143 	long timeout = msecs_to_jiffies(50);
1144 
1145 	if (ep->umidi->disconnected)
1146 		return;
1147 	/*
1148 	 * The substream buffer is empty, but some data might still be in the
1149 	 * currently active URBs, so we have to wait for those to complete.
1150 	 */
1151 	spin_lock_irq(&ep->buffer_lock);
1152 	drain_urbs = ep->active_urbs;
1153 	if (drain_urbs) {
1154 		ep->drain_urbs |= drain_urbs;
1155 		do {
1156 			prepare_to_wait(&ep->drain_wait, &wait,
1157 					TASK_UNINTERRUPTIBLE);
1158 			spin_unlock_irq(&ep->buffer_lock);
1159 			timeout = schedule_timeout(timeout);
1160 			spin_lock_irq(&ep->buffer_lock);
1161 			drain_urbs &= ep->drain_urbs;
1162 		} while (drain_urbs && timeout);
1163 		finish_wait(&ep->drain_wait, &wait);
1164 	}
1165 	spin_unlock_irq(&ep->buffer_lock);
1166 }
1167 
1168 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
1169 {
1170 	return substream_open(substream, 1, 1);
1171 }
1172 
1173 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
1174 {
1175 	return substream_open(substream, 1, 0);
1176 }
1177 
1178 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1179 {
1180 	struct snd_usb_midi* umidi = substream->rmidi->private_data;
1181 
1182 	if (up)
1183 		set_bit(substream->number, &umidi->input_triggered);
1184 	else
1185 		clear_bit(substream->number, &umidi->input_triggered);
1186 }
1187 
1188 static struct snd_rawmidi_ops snd_usbmidi_output_ops = {
1189 	.open = snd_usbmidi_output_open,
1190 	.close = snd_usbmidi_output_close,
1191 	.trigger = snd_usbmidi_output_trigger,
1192 	.drain = snd_usbmidi_output_drain,
1193 };
1194 
1195 static struct snd_rawmidi_ops snd_usbmidi_input_ops = {
1196 	.open = snd_usbmidi_input_open,
1197 	.close = snd_usbmidi_input_close,
1198 	.trigger = snd_usbmidi_input_trigger
1199 };
1200 
1201 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb,
1202 				unsigned int buffer_length)
1203 {
1204 	usb_free_coherent(umidi->dev, buffer_length,
1205 			  urb->transfer_buffer, urb->transfer_dma);
1206 	usb_free_urb(urb);
1207 }
1208 
1209 /*
1210  * Frees an input endpoint.
1211  * May be called when ep hasn't been initialized completely.
1212  */
1213 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep)
1214 {
1215 	unsigned int i;
1216 
1217 	for (i = 0; i < INPUT_URBS; ++i)
1218 		if (ep->urbs[i])
1219 			free_urb_and_buffer(ep->umidi, ep->urbs[i],
1220 					    ep->urbs[i]->transfer_buffer_length);
1221 	kfree(ep);
1222 }
1223 
1224 /*
1225  * Creates an input endpoint.
1226  */
1227 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi,
1228 					  struct snd_usb_midi_endpoint_info* ep_info,
1229 					  struct snd_usb_midi_endpoint* rep)
1230 {
1231 	struct snd_usb_midi_in_endpoint* ep;
1232 	void* buffer;
1233 	unsigned int pipe;
1234 	int length;
1235 	unsigned int i;
1236 
1237 	rep->in = NULL;
1238 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1239 	if (!ep)
1240 		return -ENOMEM;
1241 	ep->umidi = umidi;
1242 
1243 	for (i = 0; i < INPUT_URBS; ++i) {
1244 		ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
1245 		if (!ep->urbs[i]) {
1246 			snd_usbmidi_in_endpoint_delete(ep);
1247 			return -ENOMEM;
1248 		}
1249 	}
1250 	if (ep_info->in_interval)
1251 		pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep);
1252 	else
1253 		pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep);
1254 	length = usb_maxpacket(umidi->dev, pipe, 0);
1255 	for (i = 0; i < INPUT_URBS; ++i) {
1256 		buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL,
1257 					    &ep->urbs[i]->transfer_dma);
1258 		if (!buffer) {
1259 			snd_usbmidi_in_endpoint_delete(ep);
1260 			return -ENOMEM;
1261 		}
1262 		if (ep_info->in_interval)
1263 			usb_fill_int_urb(ep->urbs[i], umidi->dev,
1264 					 pipe, buffer, length,
1265 					 snd_usbmidi_in_urb_complete,
1266 					 ep, ep_info->in_interval);
1267 		else
1268 			usb_fill_bulk_urb(ep->urbs[i], umidi->dev,
1269 					  pipe, buffer, length,
1270 					  snd_usbmidi_in_urb_complete, ep);
1271 		ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1272 	}
1273 
1274 	rep->in = ep;
1275 	return 0;
1276 }
1277 
1278 /*
1279  * Frees an output endpoint.
1280  * May be called when ep hasn't been initialized completely.
1281  */
1282 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep)
1283 {
1284 	unsigned int i;
1285 
1286 	for (i = 0; i < OUTPUT_URBS; ++i)
1287 		if (ep->urbs[i].urb) {
1288 			free_urb_and_buffer(ep->umidi, ep->urbs[i].urb,
1289 					    ep->max_transfer);
1290 			ep->urbs[i].urb = NULL;
1291 		}
1292 }
1293 
1294 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep)
1295 {
1296 	snd_usbmidi_out_endpoint_clear(ep);
1297 	kfree(ep);
1298 }
1299 
1300 /*
1301  * Creates an output endpoint, and initializes output ports.
1302  */
1303 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi,
1304 					   struct snd_usb_midi_endpoint_info* ep_info,
1305 					   struct snd_usb_midi_endpoint* rep)
1306 {
1307 	struct snd_usb_midi_out_endpoint* ep;
1308 	unsigned int i;
1309 	unsigned int pipe;
1310 	void* buffer;
1311 
1312 	rep->out = NULL;
1313 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1314 	if (!ep)
1315 		return -ENOMEM;
1316 	ep->umidi = umidi;
1317 
1318 	for (i = 0; i < OUTPUT_URBS; ++i) {
1319 		ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL);
1320 		if (!ep->urbs[i].urb) {
1321 			snd_usbmidi_out_endpoint_delete(ep);
1322 			return -ENOMEM;
1323 		}
1324 		ep->urbs[i].ep = ep;
1325 	}
1326 	if (ep_info->out_interval)
1327 		pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep);
1328 	else
1329 		pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep);
1330 	switch (umidi->usb_id) {
1331 	default:
1332 		ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1);
1333 		break;
1334 		/*
1335 		 * Various chips declare a packet size larger than 4 bytes, but
1336 		 * do not actually work with larger packets:
1337 		 */
1338 	case USB_ID(0x0a92, 0x1020): /* ESI M4U */
1339 	case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */
1340 	case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */
1341 	case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */
1342 	case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */
1343 	case USB_ID(0xfc08, 0x0101): /* Unknown vendor Cable */
1344 		ep->max_transfer = 4;
1345 		break;
1346 		/*
1347 		 * Some devices only work with 9 bytes packet size:
1348 		 */
1349 	case USB_ID(0x0644, 0x800E): /* Tascam US-122L */
1350 	case USB_ID(0x0644, 0x800F): /* Tascam US-144 */
1351 		ep->max_transfer = 9;
1352 		break;
1353 	}
1354 	for (i = 0; i < OUTPUT_URBS; ++i) {
1355 		buffer = usb_alloc_coherent(umidi->dev,
1356 					    ep->max_transfer, GFP_KERNEL,
1357 					    &ep->urbs[i].urb->transfer_dma);
1358 		if (!buffer) {
1359 			snd_usbmidi_out_endpoint_delete(ep);
1360 			return -ENOMEM;
1361 		}
1362 		if (ep_info->out_interval)
1363 			usb_fill_int_urb(ep->urbs[i].urb, umidi->dev,
1364 					 pipe, buffer, ep->max_transfer,
1365 					 snd_usbmidi_out_urb_complete,
1366 					 &ep->urbs[i], ep_info->out_interval);
1367 		else
1368 			usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev,
1369 					  pipe, buffer, ep->max_transfer,
1370 					  snd_usbmidi_out_urb_complete,
1371 					  &ep->urbs[i]);
1372 		ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1373 	}
1374 
1375 	spin_lock_init(&ep->buffer_lock);
1376 	tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
1377 	init_waitqueue_head(&ep->drain_wait);
1378 
1379 	for (i = 0; i < 0x10; ++i)
1380 		if (ep_info->out_cables & (1 << i)) {
1381 			ep->ports[i].ep = ep;
1382 			ep->ports[i].cable = i << 4;
1383 		}
1384 
1385 	if (umidi->usb_protocol_ops->init_out_endpoint)
1386 		umidi->usb_protocol_ops->init_out_endpoint(ep);
1387 
1388 	rep->out = ep;
1389 	return 0;
1390 }
1391 
1392 /*
1393  * Frees everything.
1394  */
1395 static void snd_usbmidi_free(struct snd_usb_midi* umidi)
1396 {
1397 	int i;
1398 
1399 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1400 		struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1401 		if (ep->out)
1402 			snd_usbmidi_out_endpoint_delete(ep->out);
1403 		if (ep->in)
1404 			snd_usbmidi_in_endpoint_delete(ep->in);
1405 	}
1406 	mutex_destroy(&umidi->mutex);
1407 	kfree(umidi);
1408 }
1409 
1410 /*
1411  * Unlinks all URBs (must be done before the usb_device is deleted).
1412  */
1413 void snd_usbmidi_disconnect(struct list_head* p)
1414 {
1415 	struct snd_usb_midi* umidi;
1416 	unsigned int i, j;
1417 
1418 	umidi = list_entry(p, struct snd_usb_midi, list);
1419 	/*
1420 	 * an URB's completion handler may start the timer and
1421 	 * a timer may submit an URB. To reliably break the cycle
1422 	 * a flag under lock must be used
1423 	 */
1424 	down_write(&umidi->disc_rwsem);
1425 	spin_lock_irq(&umidi->disc_lock);
1426 	umidi->disconnected = 1;
1427 	spin_unlock_irq(&umidi->disc_lock);
1428 	up_write(&umidi->disc_rwsem);
1429 
1430 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1431 		struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1432 		if (ep->out)
1433 			tasklet_kill(&ep->out->tasklet);
1434 		if (ep->out) {
1435 			for (j = 0; j < OUTPUT_URBS; ++j)
1436 				usb_kill_urb(ep->out->urbs[j].urb);
1437 			if (umidi->usb_protocol_ops->finish_out_endpoint)
1438 				umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
1439 			ep->out->active_urbs = 0;
1440 			if (ep->out->drain_urbs) {
1441 				ep->out->drain_urbs = 0;
1442 				wake_up(&ep->out->drain_wait);
1443 			}
1444 		}
1445 		if (ep->in)
1446 			for (j = 0; j < INPUT_URBS; ++j)
1447 				usb_kill_urb(ep->in->urbs[j]);
1448 		/* free endpoints here; later call can result in Oops */
1449 		if (ep->out)
1450 			snd_usbmidi_out_endpoint_clear(ep->out);
1451 		if (ep->in) {
1452 			snd_usbmidi_in_endpoint_delete(ep->in);
1453 			ep->in = NULL;
1454 		}
1455 	}
1456 	del_timer_sync(&umidi->error_timer);
1457 }
1458 
1459 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
1460 {
1461 	struct snd_usb_midi* umidi = rmidi->private_data;
1462 	snd_usbmidi_free(umidi);
1463 }
1464 
1465 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi,
1466 								int stream, int number)
1467 {
1468 	struct list_head* list;
1469 
1470 	list_for_each(list, &umidi->rmidi->streams[stream].substreams) {
1471 		struct snd_rawmidi_substream *substream = list_entry(list, struct snd_rawmidi_substream, list);
1472 		if (substream->number == number)
1473 			return substream;
1474 	}
1475 	return NULL;
1476 }
1477 
1478 /*
1479  * This list specifies names for ports that do not fit into the standard
1480  * "(product) MIDI (n)" schema because they aren't external MIDI ports,
1481  * such as internal control or synthesizer ports.
1482  */
1483 static struct port_info {
1484 	u32 id;
1485 	short int port;
1486 	short int voices;
1487 	const char *name;
1488 	unsigned int seq_flags;
1489 } snd_usbmidi_port_info[] = {
1490 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \
1491 	{ .id = USB_ID(vendor, product), \
1492 	  .port = num, .voices = voices_, \
1493 	  .name = name_, .seq_flags = flags }
1494 #define EXTERNAL_PORT(vendor, product, num, name) \
1495 	PORT_INFO(vendor, product, num, name, 0, \
1496 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1497 		  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1498 		  SNDRV_SEQ_PORT_TYPE_PORT)
1499 #define CONTROL_PORT(vendor, product, num, name) \
1500 	PORT_INFO(vendor, product, num, name, 0, \
1501 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1502 		  SNDRV_SEQ_PORT_TYPE_HARDWARE)
1503 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
1504 	PORT_INFO(vendor, product, num, name, voices, \
1505 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1506 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1507 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1508 		  SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1509 		  SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1510 		  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1511 		  SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1512 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
1513 	PORT_INFO(vendor, product, num, name, voices, \
1514 		  SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1515 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1516 		  SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1517 		  SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1518 		  SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1519 		  SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
1520 		  SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1521 		  SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1522 	/* Roland UA-100 */
1523 	CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
1524 	/* Roland SC-8850 */
1525 	SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
1526 	SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
1527 	SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
1528 	SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
1529 	EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
1530 	EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
1531 	/* Roland U-8 */
1532 	EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
1533 	CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
1534 	/* Roland SC-8820 */
1535 	SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
1536 	SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
1537 	EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
1538 	/* Roland SK-500 */
1539 	SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
1540 	SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
1541 	EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
1542 	/* Roland SC-D70 */
1543 	SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
1544 	SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
1545 	EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
1546 	/* Edirol UM-880 */
1547 	CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
1548 	/* Edirol SD-90 */
1549 	ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
1550 	ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
1551 	EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
1552 	EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
1553 	/* Edirol UM-550 */
1554 	CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
1555 	/* Edirol SD-20 */
1556 	ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
1557 	ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
1558 	EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
1559 	/* Edirol SD-80 */
1560 	ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
1561 	ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
1562 	EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
1563 	EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
1564 	/* Edirol UA-700 */
1565 	EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
1566 	CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
1567 	/* Roland VariOS */
1568 	EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
1569 	EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
1570 	EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
1571 	/* Edirol PCR */
1572 	EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
1573 	EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
1574 	EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
1575 	/* BOSS GS-10 */
1576 	EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
1577 	CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
1578 	/* Edirol UA-1000 */
1579 	EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
1580 	CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
1581 	/* Edirol UR-80 */
1582 	EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
1583 	EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
1584 	EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
1585 	/* Edirol PCR-A */
1586 	EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
1587 	EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
1588 	EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
1589 	/* Edirol UM-3EX */
1590 	CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
1591 	/* M-Audio MidiSport 8x8 */
1592 	CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
1593 	CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
1594 	/* MOTU Fastlane */
1595 	EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
1596 	EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
1597 	/* Emagic Unitor8/AMT8/MT4 */
1598 	EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
1599 	EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
1600 	EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
1601 	/* Akai MPD16 */
1602 	CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"),
1603 	PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0,
1604 		SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1605 		SNDRV_SEQ_PORT_TYPE_HARDWARE),
1606 	/* Access Music Virus TI */
1607 	EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"),
1608 	PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0,
1609 		SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1610 		SNDRV_SEQ_PORT_TYPE_HARDWARE |
1611 		SNDRV_SEQ_PORT_TYPE_SYNTHESIZER),
1612 };
1613 
1614 static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number)
1615 {
1616 	int i;
1617 
1618 	for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
1619 		if (snd_usbmidi_port_info[i].id == umidi->usb_id &&
1620 		    snd_usbmidi_port_info[i].port == number)
1621 			return &snd_usbmidi_port_info[i];
1622 	}
1623 	return NULL;
1624 }
1625 
1626 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
1627 				      struct snd_seq_port_info *seq_port_info)
1628 {
1629 	struct snd_usb_midi *umidi = rmidi->private_data;
1630 	struct port_info *port_info;
1631 
1632 	/* TODO: read port flags from descriptors */
1633 	port_info = find_port_info(umidi, number);
1634 	if (port_info) {
1635 		seq_port_info->type = port_info->seq_flags;
1636 		seq_port_info->midi_voices = port_info->voices;
1637 	}
1638 }
1639 
1640 static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi,
1641 				       int stream, int number,
1642 				       struct snd_rawmidi_substream ** rsubstream)
1643 {
1644 	struct port_info *port_info;
1645 	const char *name_format;
1646 
1647 	struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number);
1648 	if (!substream) {
1649 		snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number);
1650 		return;
1651 	}
1652 
1653 	/* TODO: read port name from jack descriptor */
1654 	port_info = find_port_info(umidi, number);
1655 	name_format = port_info ? port_info->name : "%s MIDI %d";
1656 	snprintf(substream->name, sizeof(substream->name),
1657 		 name_format, umidi->card->shortname, number + 1);
1658 
1659 	*rsubstream = substream;
1660 }
1661 
1662 /*
1663  * Creates the endpoints and their ports.
1664  */
1665 static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi,
1666 					struct snd_usb_midi_endpoint_info* endpoints)
1667 {
1668 	int i, j, err;
1669 	int out_ports = 0, in_ports = 0;
1670 
1671 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1672 		if (endpoints[i].out_cables) {
1673 			err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i],
1674 							      &umidi->endpoints[i]);
1675 			if (err < 0)
1676 				return err;
1677 		}
1678 		if (endpoints[i].in_cables) {
1679 			err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i],
1680 							     &umidi->endpoints[i]);
1681 			if (err < 0)
1682 				return err;
1683 		}
1684 
1685 		for (j = 0; j < 0x10; ++j) {
1686 			if (endpoints[i].out_cables & (1 << j)) {
1687 				snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports,
1688 							   &umidi->endpoints[i].out->ports[j].substream);
1689 				++out_ports;
1690 			}
1691 			if (endpoints[i].in_cables & (1 << j)) {
1692 				snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports,
1693 							   &umidi->endpoints[i].in->ports[j].substream);
1694 				++in_ports;
1695 			}
1696 		}
1697 	}
1698 	snd_printdd(KERN_INFO "created %d output and %d input ports\n",
1699 		    out_ports, in_ports);
1700 	return 0;
1701 }
1702 
1703 /*
1704  * Returns MIDIStreaming device capabilities.
1705  */
1706 static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi,
1707 			   	   struct snd_usb_midi_endpoint_info* endpoints)
1708 {
1709 	struct usb_interface* intf;
1710 	struct usb_host_interface *hostif;
1711 	struct usb_interface_descriptor* intfd;
1712 	struct usb_ms_header_descriptor* ms_header;
1713 	struct usb_host_endpoint *hostep;
1714 	struct usb_endpoint_descriptor* ep;
1715 	struct usb_ms_endpoint_descriptor* ms_ep;
1716 	int i, epidx;
1717 
1718 	intf = umidi->iface;
1719 	if (!intf)
1720 		return -ENXIO;
1721 	hostif = &intf->altsetting[0];
1722 	intfd = get_iface_desc(hostif);
1723 	ms_header = (struct usb_ms_header_descriptor*)hostif->extra;
1724 	if (hostif->extralen >= 7 &&
1725 	    ms_header->bLength >= 7 &&
1726 	    ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
1727 	    ms_header->bDescriptorSubtype == UAC_HEADER)
1728 		snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n",
1729 			    ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
1730 	else
1731 		snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n");
1732 
1733 	epidx = 0;
1734 	for (i = 0; i < intfd->bNumEndpoints; ++i) {
1735 		hostep = &hostif->endpoint[i];
1736 		ep = get_ep_desc(hostep);
1737 		if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep))
1738 			continue;
1739 		ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra;
1740 		if (hostep->extralen < 4 ||
1741 		    ms_ep->bLength < 4 ||
1742 		    ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
1743 		    ms_ep->bDescriptorSubtype != UAC_MS_GENERAL)
1744 			continue;
1745 		if (usb_endpoint_dir_out(ep)) {
1746 			if (endpoints[epidx].out_ep) {
1747 				if (++epidx >= MIDI_MAX_ENDPOINTS) {
1748 					snd_printk(KERN_WARNING "too many endpoints\n");
1749 					break;
1750 				}
1751 			}
1752 			endpoints[epidx].out_ep = usb_endpoint_num(ep);
1753 			if (usb_endpoint_xfer_int(ep))
1754 				endpoints[epidx].out_interval = ep->bInterval;
1755 			else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1756 				/*
1757 				 * Low speed bulk transfers don't exist, so
1758 				 * force interrupt transfers for devices like
1759 				 * ESI MIDI Mate that try to use them anyway.
1760 				 */
1761 				endpoints[epidx].out_interval = 1;
1762 			endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1763 			snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1764 				    ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1765 		} else {
1766 			if (endpoints[epidx].in_ep) {
1767 				if (++epidx >= MIDI_MAX_ENDPOINTS) {
1768 					snd_printk(KERN_WARNING "too many endpoints\n");
1769 					break;
1770 				}
1771 			}
1772 			endpoints[epidx].in_ep = usb_endpoint_num(ep);
1773 			if (usb_endpoint_xfer_int(ep))
1774 				endpoints[epidx].in_interval = ep->bInterval;
1775 			else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1776 				endpoints[epidx].in_interval = 1;
1777 			endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1778 			snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1779 				    ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1780 		}
1781 	}
1782 	return 0;
1783 }
1784 
1785 static int roland_load_info(struct snd_kcontrol *kcontrol,
1786 			    struct snd_ctl_elem_info *info)
1787 {
1788 	static const char *const names[] = { "High Load", "Light Load" };
1789 
1790 	return snd_ctl_enum_info(info, 1, 2, names);
1791 }
1792 
1793 static int roland_load_get(struct snd_kcontrol *kcontrol,
1794 			   struct snd_ctl_elem_value *value)
1795 {
1796 	value->value.enumerated.item[0] = kcontrol->private_value;
1797 	return 0;
1798 }
1799 
1800 static int roland_load_put(struct snd_kcontrol *kcontrol,
1801 			   struct snd_ctl_elem_value *value)
1802 {
1803 	struct snd_usb_midi* umidi = kcontrol->private_data;
1804 	int changed;
1805 
1806 	if (value->value.enumerated.item[0] > 1)
1807 		return -EINVAL;
1808 	mutex_lock(&umidi->mutex);
1809 	changed = value->value.enumerated.item[0] != kcontrol->private_value;
1810 	if (changed)
1811 		kcontrol->private_value = value->value.enumerated.item[0];
1812 	mutex_unlock(&umidi->mutex);
1813 	return changed;
1814 }
1815 
1816 static struct snd_kcontrol_new roland_load_ctl = {
1817 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1818 	.name = "MIDI Input Mode",
1819 	.info = roland_load_info,
1820 	.get = roland_load_get,
1821 	.put = roland_load_put,
1822 	.private_value = 1,
1823 };
1824 
1825 /*
1826  * On Roland devices, use the second alternate setting to be able to use
1827  * the interrupt input endpoint.
1828  */
1829 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi)
1830 {
1831 	struct usb_interface* intf;
1832 	struct usb_host_interface *hostif;
1833 	struct usb_interface_descriptor* intfd;
1834 
1835 	intf = umidi->iface;
1836 	if (!intf || intf->num_altsetting != 2)
1837 		return;
1838 
1839 	hostif = &intf->altsetting[1];
1840 	intfd = get_iface_desc(hostif);
1841 	if (intfd->bNumEndpoints != 2 ||
1842 	    (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
1843 	    (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
1844 		return;
1845 
1846 	snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n",
1847 		    intfd->bAlternateSetting);
1848 	usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1849 			  intfd->bAlternateSetting);
1850 
1851 	umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi);
1852 	if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0)
1853 		umidi->roland_load_ctl = NULL;
1854 }
1855 
1856 /*
1857  * Try to find any usable endpoints in the interface.
1858  */
1859 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi,
1860 					struct snd_usb_midi_endpoint_info* endpoint,
1861 					int max_endpoints)
1862 {
1863 	struct usb_interface* intf;
1864 	struct usb_host_interface *hostif;
1865 	struct usb_interface_descriptor* intfd;
1866 	struct usb_endpoint_descriptor* epd;
1867 	int i, out_eps = 0, in_eps = 0;
1868 
1869 	if (USB_ID_VENDOR(umidi->usb_id) == 0x0582)
1870 		snd_usbmidi_switch_roland_altsetting(umidi);
1871 
1872 	if (endpoint[0].out_ep || endpoint[0].in_ep)
1873 		return 0;
1874 
1875 	intf = umidi->iface;
1876 	if (!intf || intf->num_altsetting < 1)
1877 		return -ENOENT;
1878 	hostif = intf->cur_altsetting;
1879 	intfd = get_iface_desc(hostif);
1880 
1881 	for (i = 0; i < intfd->bNumEndpoints; ++i) {
1882 		epd = get_endpoint(hostif, i);
1883 		if (!usb_endpoint_xfer_bulk(epd) &&
1884 		    !usb_endpoint_xfer_int(epd))
1885 			continue;
1886 		if (out_eps < max_endpoints &&
1887 		    usb_endpoint_dir_out(epd)) {
1888 			endpoint[out_eps].out_ep = usb_endpoint_num(epd);
1889 			if (usb_endpoint_xfer_int(epd))
1890 				endpoint[out_eps].out_interval = epd->bInterval;
1891 			++out_eps;
1892 		}
1893 		if (in_eps < max_endpoints &&
1894 		    usb_endpoint_dir_in(epd)) {
1895 			endpoint[in_eps].in_ep = usb_endpoint_num(epd);
1896 			if (usb_endpoint_xfer_int(epd))
1897 				endpoint[in_eps].in_interval = epd->bInterval;
1898 			++in_eps;
1899 		}
1900 	}
1901 	return (out_eps || in_eps) ? 0 : -ENOENT;
1902 }
1903 
1904 /*
1905  * Detects the endpoints for one-port-per-endpoint protocols.
1906  */
1907 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi,
1908 						 struct snd_usb_midi_endpoint_info* endpoints)
1909 {
1910 	int err, i;
1911 
1912 	err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
1913 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1914 		if (endpoints[i].out_ep)
1915 			endpoints[i].out_cables = 0x0001;
1916 		if (endpoints[i].in_ep)
1917 			endpoints[i].in_cables = 0x0001;
1918 	}
1919 	return err;
1920 }
1921 
1922 /*
1923  * Detects the endpoints and ports of Yamaha devices.
1924  */
1925 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi,
1926 				     struct snd_usb_midi_endpoint_info* endpoint)
1927 {
1928 	struct usb_interface* intf;
1929 	struct usb_host_interface *hostif;
1930 	struct usb_interface_descriptor* intfd;
1931 	uint8_t* cs_desc;
1932 
1933 	intf = umidi->iface;
1934 	if (!intf)
1935 		return -ENOENT;
1936 	hostif = intf->altsetting;
1937 	intfd = get_iface_desc(hostif);
1938 	if (intfd->bNumEndpoints < 1)
1939 		return -ENOENT;
1940 
1941 	/*
1942 	 * For each port there is one MIDI_IN/OUT_JACK descriptor, not
1943 	 * necessarily with any useful contents.  So simply count 'em.
1944 	 */
1945 	for (cs_desc = hostif->extra;
1946 	     cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
1947 	     cs_desc += cs_desc[0]) {
1948 		if (cs_desc[1] == USB_DT_CS_INTERFACE) {
1949 			if (cs_desc[2] == UAC_MIDI_IN_JACK)
1950 				endpoint->in_cables = (endpoint->in_cables << 1) | 1;
1951 			else if (cs_desc[2] == UAC_MIDI_OUT_JACK)
1952 				endpoint->out_cables = (endpoint->out_cables << 1) | 1;
1953 		}
1954 	}
1955 	if (!endpoint->in_cables && !endpoint->out_cables)
1956 		return -ENOENT;
1957 
1958 	return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
1959 }
1960 
1961 /*
1962  * Creates the endpoints and their ports for Midiman devices.
1963  */
1964 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi,
1965 						struct snd_usb_midi_endpoint_info* endpoint)
1966 {
1967 	struct snd_usb_midi_endpoint_info ep_info;
1968 	struct usb_interface* intf;
1969 	struct usb_host_interface *hostif;
1970 	struct usb_interface_descriptor* intfd;
1971 	struct usb_endpoint_descriptor* epd;
1972 	int cable, err;
1973 
1974 	intf = umidi->iface;
1975 	if (!intf)
1976 		return -ENOENT;
1977 	hostif = intf->altsetting;
1978 	intfd = get_iface_desc(hostif);
1979 	/*
1980 	 * The various MidiSport devices have more or less random endpoint
1981 	 * numbers, so we have to identify the endpoints by their index in
1982 	 * the descriptor array, like the driver for that other OS does.
1983 	 *
1984 	 * There is one interrupt input endpoint for all input ports, one
1985 	 * bulk output endpoint for even-numbered ports, and one for odd-
1986 	 * numbered ports.  Both bulk output endpoints have corresponding
1987 	 * input bulk endpoints (at indices 1 and 3) which aren't used.
1988 	 */
1989 	if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
1990 		snd_printdd(KERN_ERR "not enough endpoints\n");
1991 		return -ENOENT;
1992 	}
1993 
1994 	epd = get_endpoint(hostif, 0);
1995 	if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) {
1996 		snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n");
1997 		return -ENXIO;
1998 	}
1999 	epd = get_endpoint(hostif, 2);
2000 	if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) {
2001 		snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n");
2002 		return -ENXIO;
2003 	}
2004 	if (endpoint->out_cables > 0x0001) {
2005 		epd = get_endpoint(hostif, 4);
2006 		if (!usb_endpoint_dir_out(epd) ||
2007 		    !usb_endpoint_xfer_bulk(epd)) {
2008 			snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n");
2009 			return -ENXIO;
2010 		}
2011 	}
2012 
2013 	ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
2014 	ep_info.out_interval = 0;
2015 	ep_info.out_cables = endpoint->out_cables & 0x5555;
2016 	err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
2017 	if (err < 0)
2018 		return err;
2019 
2020 	ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
2021 	ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
2022 	ep_info.in_cables = endpoint->in_cables;
2023 	err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
2024 	if (err < 0)
2025 		return err;
2026 
2027 	if (endpoint->out_cables > 0x0001) {
2028 		ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
2029 		ep_info.out_cables = endpoint->out_cables & 0xaaaa;
2030 		err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]);
2031 		if (err < 0)
2032 			return err;
2033 	}
2034 
2035 	for (cable = 0; cable < 0x10; ++cable) {
2036 		if (endpoint->out_cables & (1 << cable))
2037 			snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable,
2038 						   &umidi->endpoints[cable & 1].out->ports[cable].substream);
2039 		if (endpoint->in_cables & (1 << cable))
2040 			snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable,
2041 						   &umidi->endpoints[0].in->ports[cable].substream);
2042 	}
2043 	return 0;
2044 }
2045 
2046 static struct snd_rawmidi_global_ops snd_usbmidi_ops = {
2047 	.get_port_info = snd_usbmidi_get_port_info,
2048 };
2049 
2050 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi,
2051 				      int out_ports, int in_ports)
2052 {
2053 	struct snd_rawmidi *rmidi;
2054 	int err;
2055 
2056 	err = snd_rawmidi_new(umidi->card, "USB MIDI",
2057 			      umidi->next_midi_device++,
2058 			      out_ports, in_ports, &rmidi);
2059 	if (err < 0)
2060 		return err;
2061 	strcpy(rmidi->name, umidi->card->shortname);
2062 	rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
2063 			    SNDRV_RAWMIDI_INFO_INPUT |
2064 			    SNDRV_RAWMIDI_INFO_DUPLEX;
2065 	rmidi->ops = &snd_usbmidi_ops;
2066 	rmidi->private_data = umidi;
2067 	rmidi->private_free = snd_usbmidi_rawmidi_free;
2068 	snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops);
2069 	snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops);
2070 
2071 	umidi->rmidi = rmidi;
2072 	return 0;
2073 }
2074 
2075 /*
2076  * Temporarily stop input.
2077  */
2078 void snd_usbmidi_input_stop(struct list_head* p)
2079 {
2080 	struct snd_usb_midi* umidi;
2081 	unsigned int i, j;
2082 
2083 	umidi = list_entry(p, struct snd_usb_midi, list);
2084 	if (!umidi->input_running)
2085 		return;
2086 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2087 		struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
2088 		if (ep->in)
2089 			for (j = 0; j < INPUT_URBS; ++j)
2090 				usb_kill_urb(ep->in->urbs[j]);
2091 	}
2092 	umidi->input_running = 0;
2093 }
2094 
2095 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep)
2096 {
2097 	unsigned int i;
2098 
2099 	if (!ep)
2100 		return;
2101 	for (i = 0; i < INPUT_URBS; ++i) {
2102 		struct urb* urb = ep->urbs[i];
2103 		urb->dev = ep->umidi->dev;
2104 		snd_usbmidi_submit_urb(urb, GFP_KERNEL);
2105 	}
2106 }
2107 
2108 /*
2109  * Resume input after a call to snd_usbmidi_input_stop().
2110  */
2111 void snd_usbmidi_input_start(struct list_head* p)
2112 {
2113 	struct snd_usb_midi* umidi;
2114 	int i;
2115 
2116 	umidi = list_entry(p, struct snd_usb_midi, list);
2117 	if (umidi->input_running || !umidi->opened[1])
2118 		return;
2119 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2120 		snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2121 	umidi->input_running = 1;
2122 }
2123 
2124 /*
2125  * Creates and registers everything needed for a MIDI streaming interface.
2126  */
2127 int snd_usbmidi_create(struct snd_card *card,
2128 		       struct usb_interface* iface,
2129 		       struct list_head *midi_list,
2130 		       const struct snd_usb_audio_quirk* quirk)
2131 {
2132 	struct snd_usb_midi* umidi;
2133 	struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
2134 	int out_ports, in_ports;
2135 	int i, err;
2136 
2137 	umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
2138 	if (!umidi)
2139 		return -ENOMEM;
2140 	umidi->dev = interface_to_usbdev(iface);
2141 	umidi->card = card;
2142 	umidi->iface = iface;
2143 	umidi->quirk = quirk;
2144 	umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
2145 	init_timer(&umidi->error_timer);
2146 	spin_lock_init(&umidi->disc_lock);
2147 	init_rwsem(&umidi->disc_rwsem);
2148 	mutex_init(&umidi->mutex);
2149 	umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor),
2150 			       le16_to_cpu(umidi->dev->descriptor.idProduct));
2151 	umidi->error_timer.function = snd_usbmidi_error_timer;
2152 	umidi->error_timer.data = (unsigned long)umidi;
2153 
2154 	/* detect the endpoint(s) to use */
2155 	memset(endpoints, 0, sizeof(endpoints));
2156 	switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
2157 	case QUIRK_MIDI_STANDARD_INTERFACE:
2158 		err = snd_usbmidi_get_ms_info(umidi, endpoints);
2159 		if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */
2160 			umidi->usb_protocol_ops =
2161 				&snd_usbmidi_maudio_broken_running_status_ops;
2162 		break;
2163 	case QUIRK_MIDI_US122L:
2164 		umidi->usb_protocol_ops = &snd_usbmidi_122l_ops;
2165 		/* fall through */
2166 	case QUIRK_MIDI_FIXED_ENDPOINT:
2167 		memcpy(&endpoints[0], quirk->data,
2168 		       sizeof(struct snd_usb_midi_endpoint_info));
2169 		err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2170 		break;
2171 	case QUIRK_MIDI_YAMAHA:
2172 		err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
2173 		break;
2174 	case QUIRK_MIDI_MIDIMAN:
2175 		umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
2176 		memcpy(&endpoints[0], quirk->data,
2177 		       sizeof(struct snd_usb_midi_endpoint_info));
2178 		err = 0;
2179 		break;
2180 	case QUIRK_MIDI_NOVATION:
2181 		umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
2182 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2183 		break;
2184 	case QUIRK_MIDI_RAW_BYTES:
2185 		umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
2186 		/*
2187 		 * Interface 1 contains isochronous endpoints, but with the same
2188 		 * numbers as in interface 0.  Since it is interface 1 that the
2189 		 * USB core has most recently seen, these descriptors are now
2190 		 * associated with the endpoint numbers.  This will foul up our
2191 		 * attempts to submit bulk/interrupt URBs to the endpoints in
2192 		 * interface 0, so we have to make sure that the USB core looks
2193 		 * again at interface 0 by calling usb_set_interface() on it.
2194 		 */
2195 		if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */
2196 			usb_set_interface(umidi->dev, 0, 0);
2197 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2198 		break;
2199 	case QUIRK_MIDI_EMAGIC:
2200 		umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
2201 		memcpy(&endpoints[0], quirk->data,
2202 		       sizeof(struct snd_usb_midi_endpoint_info));
2203 		err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2204 		break;
2205 	case QUIRK_MIDI_CME:
2206 		umidi->usb_protocol_ops = &snd_usbmidi_cme_ops;
2207 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2208 		break;
2209 	case QUIRK_MIDI_AKAI:
2210 		umidi->usb_protocol_ops = &snd_usbmidi_akai_ops;
2211 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2212 		/* endpoint 1 is input-only */
2213 		endpoints[1].out_cables = 0;
2214 		break;
2215 	case QUIRK_MIDI_FTDI:
2216 		umidi->usb_protocol_ops = &snd_usbmidi_ftdi_ops;
2217 
2218 		/* set baud rate to 31250 (48 MHz / 16 / 96) */
2219 		err = usb_control_msg(umidi->dev, usb_sndctrlpipe(umidi->dev, 0),
2220 				      3, 0x40, 0x60, 0, NULL, 0, 1000);
2221 		if (err < 0)
2222 			break;
2223 
2224 		err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2225 		break;
2226 	default:
2227 		snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
2228 		err = -ENXIO;
2229 		break;
2230 	}
2231 	if (err < 0) {
2232 		kfree(umidi);
2233 		return err;
2234 	}
2235 
2236 	/* create rawmidi device */
2237 	out_ports = 0;
2238 	in_ports = 0;
2239 	for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2240 		out_ports += hweight16(endpoints[i].out_cables);
2241 		in_ports += hweight16(endpoints[i].in_cables);
2242 	}
2243 	err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
2244 	if (err < 0) {
2245 		kfree(umidi);
2246 		return err;
2247 	}
2248 
2249 	/* create endpoint/port structures */
2250 	if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
2251 		err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
2252 	else
2253 		err = snd_usbmidi_create_endpoints(umidi, endpoints);
2254 	if (err < 0) {
2255 		snd_usbmidi_free(umidi);
2256 		return err;
2257 	}
2258 
2259 	list_add_tail(&umidi->list, midi_list);
2260 	return 0;
2261 }
2262 
2263 EXPORT_SYMBOL(snd_usbmidi_create);
2264 EXPORT_SYMBOL(snd_usbmidi_input_stop);
2265 EXPORT_SYMBOL(snd_usbmidi_input_start);
2266 EXPORT_SYMBOL(snd_usbmidi_disconnect);
2267