xref: /linux/sound/soc/fsl/fsl_dma.c (revision d2912cb15bdda8ba4a5dd73396ad62641af2f520)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Freescale DMA ALSA SoC PCM driver
4 //
5 // Author: Timur Tabi <timur@freescale.com>
6 //
7 // Copyright 2007-2010 Freescale Semiconductor, Inc.
8 //
9 // This driver implements ASoC support for the Elo DMA controller, which is
10 // the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
11 // the PCM driver is what handles the DMA buffer.
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/platform_device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <linux/gfp.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/list.h>
24 #include <linux/slab.h>
25 
26 #include <sound/core.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
30 
31 #include <asm/io.h>
32 
33 #include "fsl_dma.h"
34 #include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
35 
36 #define DRV_NAME "fsl_dma"
37 
38 /*
39  * The formats that the DMA controller supports, which is anything
40  * that is 8, 16, or 32 bits.
41  */
42 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
43 			    SNDRV_PCM_FMTBIT_U8 	| \
44 			    SNDRV_PCM_FMTBIT_S16_LE     | \
45 			    SNDRV_PCM_FMTBIT_S16_BE     | \
46 			    SNDRV_PCM_FMTBIT_U16_LE     | \
47 			    SNDRV_PCM_FMTBIT_U16_BE     | \
48 			    SNDRV_PCM_FMTBIT_S24_LE     | \
49 			    SNDRV_PCM_FMTBIT_S24_BE     | \
50 			    SNDRV_PCM_FMTBIT_U24_LE     | \
51 			    SNDRV_PCM_FMTBIT_U24_BE     | \
52 			    SNDRV_PCM_FMTBIT_S32_LE     | \
53 			    SNDRV_PCM_FMTBIT_S32_BE     | \
54 			    SNDRV_PCM_FMTBIT_U32_LE     | \
55 			    SNDRV_PCM_FMTBIT_U32_BE)
56 struct dma_object {
57 	struct snd_soc_component_driver dai;
58 	dma_addr_t ssi_stx_phys;
59 	dma_addr_t ssi_srx_phys;
60 	unsigned int ssi_fifo_depth;
61 	struct ccsr_dma_channel __iomem *channel;
62 	unsigned int irq;
63 	bool assigned;
64 };
65 
66 /*
67  * The number of DMA links to use.  Two is the bare minimum, but if you
68  * have really small links you might need more.
69  */
70 #define NUM_DMA_LINKS   2
71 
72 /** fsl_dma_private: p-substream DMA data
73  *
74  * Each substream has a 1-to-1 association with a DMA channel.
75  *
76  * The link[] array is first because it needs to be aligned on a 32-byte
77  * boundary, so putting it first will ensure alignment without padding the
78  * structure.
79  *
80  * @link[]: array of link descriptors
81  * @dma_channel: pointer to the DMA channel's registers
82  * @irq: IRQ for this DMA channel
83  * @substream: pointer to the substream object, needed by the ISR
84  * @ssi_sxx_phys: bus address of the STX or SRX register to use
85  * @ld_buf_phys: physical address of the LD buffer
86  * @current_link: index into link[] of the link currently being processed
87  * @dma_buf_phys: physical address of the DMA buffer
88  * @dma_buf_next: physical address of the next period to process
89  * @dma_buf_end: physical address of the byte after the end of the DMA
90  * @buffer period_size: the size of a single period
91  * @num_periods: the number of periods in the DMA buffer
92  */
93 struct fsl_dma_private {
94 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
95 	struct ccsr_dma_channel __iomem *dma_channel;
96 	unsigned int irq;
97 	struct snd_pcm_substream *substream;
98 	dma_addr_t ssi_sxx_phys;
99 	unsigned int ssi_fifo_depth;
100 	dma_addr_t ld_buf_phys;
101 	unsigned int current_link;
102 	dma_addr_t dma_buf_phys;
103 	dma_addr_t dma_buf_next;
104 	dma_addr_t dma_buf_end;
105 	size_t period_size;
106 	unsigned int num_periods;
107 };
108 
109 /**
110  * fsl_dma_hardare: define characteristics of the PCM hardware.
111  *
112  * The PCM hardware is the Freescale DMA controller.  This structure defines
113  * the capabilities of that hardware.
114  *
115  * Since the sampling rate and data format are not controlled by the DMA
116  * controller, we specify no limits for those values.  The only exception is
117  * period_bytes_min, which is set to a reasonably low value to prevent the
118  * DMA controller from generating too many interrupts per second.
119  *
120  * Since each link descriptor has a 32-bit byte count field, we set
121  * period_bytes_max to the largest 32-bit number.  We also have no maximum
122  * number of periods.
123  *
124  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
125  * limitation in the SSI driver requires the sample rates for playback and
126  * capture to be the same.
127  */
128 static const struct snd_pcm_hardware fsl_dma_hardware = {
129 
130 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
131 				  SNDRV_PCM_INFO_MMAP |
132 				  SNDRV_PCM_INFO_MMAP_VALID |
133 				  SNDRV_PCM_INFO_JOINT_DUPLEX |
134 				  SNDRV_PCM_INFO_PAUSE,
135 	.formats		= FSLDMA_PCM_FORMATS,
136 	.period_bytes_min       = 512,  	/* A reasonable limit */
137 	.period_bytes_max       = (u32) -1,
138 	.periods_min    	= NUM_DMA_LINKS,
139 	.periods_max    	= (unsigned int) -1,
140 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
141 };
142 
143 /**
144  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
145  *
146  * This function should be called by the ISR whenever the DMA controller
147  * halts data transfer.
148  */
149 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
150 {
151 	snd_pcm_stop_xrun(substream);
152 }
153 
154 /**
155  * fsl_dma_update_pointers - update LD pointers to point to the next period
156  *
157  * As each period is completed, this function changes the the link
158  * descriptor pointers for that period to point to the next period.
159  */
160 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
161 {
162 	struct fsl_dma_link_descriptor *link =
163 		&dma_private->link[dma_private->current_link];
164 
165 	/* Update our link descriptors to point to the next period. On a 36-bit
166 	 * system, we also need to update the ESAD bits.  We also set (keep) the
167 	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
168 	 */
169 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
170 		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
171 #ifdef CONFIG_PHYS_64BIT
172 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
173 			upper_32_bits(dma_private->dma_buf_next));
174 #endif
175 	} else {
176 		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
177 #ifdef CONFIG_PHYS_64BIT
178 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
179 			upper_32_bits(dma_private->dma_buf_next));
180 #endif
181 	}
182 
183 	/* Update our variables for next time */
184 	dma_private->dma_buf_next += dma_private->period_size;
185 
186 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
187 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
188 
189 	if (++dma_private->current_link >= NUM_DMA_LINKS)
190 		dma_private->current_link = 0;
191 }
192 
193 /**
194  * fsl_dma_isr: interrupt handler for the DMA controller
195  *
196  * @irq: IRQ of the DMA channel
197  * @dev_id: pointer to the dma_private structure for this DMA channel
198  */
199 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
200 {
201 	struct fsl_dma_private *dma_private = dev_id;
202 	struct snd_pcm_substream *substream = dma_private->substream;
203 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
204 	struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
205 	struct device *dev = component->dev;
206 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
207 	irqreturn_t ret = IRQ_NONE;
208 	u32 sr, sr2 = 0;
209 
210 	/* We got an interrupt, so read the status register to see what we
211 	   were interrupted for.
212 	 */
213 	sr = in_be32(&dma_channel->sr);
214 
215 	if (sr & CCSR_DMA_SR_TE) {
216 		dev_err(dev, "dma transmit error\n");
217 		fsl_dma_abort_stream(substream);
218 		sr2 |= CCSR_DMA_SR_TE;
219 		ret = IRQ_HANDLED;
220 	}
221 
222 	if (sr & CCSR_DMA_SR_CH)
223 		ret = IRQ_HANDLED;
224 
225 	if (sr & CCSR_DMA_SR_PE) {
226 		dev_err(dev, "dma programming error\n");
227 		fsl_dma_abort_stream(substream);
228 		sr2 |= CCSR_DMA_SR_PE;
229 		ret = IRQ_HANDLED;
230 	}
231 
232 	if (sr & CCSR_DMA_SR_EOLNI) {
233 		sr2 |= CCSR_DMA_SR_EOLNI;
234 		ret = IRQ_HANDLED;
235 	}
236 
237 	if (sr & CCSR_DMA_SR_CB)
238 		ret = IRQ_HANDLED;
239 
240 	if (sr & CCSR_DMA_SR_EOSI) {
241 		/* Tell ALSA we completed a period. */
242 		snd_pcm_period_elapsed(substream);
243 
244 		/*
245 		 * Update our link descriptors to point to the next period. We
246 		 * only need to do this if the number of periods is not equal to
247 		 * the number of links.
248 		 */
249 		if (dma_private->num_periods != NUM_DMA_LINKS)
250 			fsl_dma_update_pointers(dma_private);
251 
252 		sr2 |= CCSR_DMA_SR_EOSI;
253 		ret = IRQ_HANDLED;
254 	}
255 
256 	if (sr & CCSR_DMA_SR_EOLSI) {
257 		sr2 |= CCSR_DMA_SR_EOLSI;
258 		ret = IRQ_HANDLED;
259 	}
260 
261 	/* Clear the bits that we set */
262 	if (sr2)
263 		out_be32(&dma_channel->sr, sr2);
264 
265 	return ret;
266 }
267 
268 /**
269  * fsl_dma_new: initialize this PCM driver.
270  *
271  * This function is called when the codec driver calls snd_soc_new_pcms(),
272  * once for each .dai_link in the machine driver's snd_soc_card
273  * structure.
274  *
275  * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
276  * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
277  * is specified. Therefore, any DMA buffers we allocate will always be in low
278  * memory, but we support for 36-bit physical addresses anyway.
279  *
280  * Regardless of where the memory is actually allocated, since the device can
281  * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
282  */
283 static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
284 {
285 	struct snd_card *card = rtd->card->snd_card;
286 	struct snd_pcm *pcm = rtd->pcm;
287 	int ret;
288 
289 	ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
290 	if (ret)
291 		return ret;
292 
293 	/* Some codecs have separate DAIs for playback and capture, so we
294 	 * should allocate a DMA buffer only for the streams that are valid.
295 	 */
296 
297 	if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
298 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
299 			fsl_dma_hardware.buffer_bytes_max,
300 			&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
301 		if (ret) {
302 			dev_err(card->dev, "can't alloc playback dma buffer\n");
303 			return ret;
304 		}
305 	}
306 
307 	if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
308 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
309 			fsl_dma_hardware.buffer_bytes_max,
310 			&pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
311 		if (ret) {
312 			dev_err(card->dev, "can't alloc capture dma buffer\n");
313 			snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
314 			return ret;
315 		}
316 	}
317 
318 	return 0;
319 }
320 
321 /**
322  * fsl_dma_open: open a new substream.
323  *
324  * Each substream has its own DMA buffer.
325  *
326  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
327  * descriptors that ping-pong from one period to the next.  For example, if
328  * there are six periods and two link descriptors, this is how they look
329  * before playback starts:
330  *
331  *      	   The last link descriptor
332  *   ____________  points back to the first
333  *  |   	 |
334  *  V   	 |
335  *  ___    ___   |
336  * |   |->|   |->|
337  * |___|  |___|
338  *   |      |
339  *   |      |
340  *   V      V
341  *  _________________________________________
342  * |      |      |      |      |      |      |  The DMA buffer is
343  * |      |      |      |      |      |      |    divided into 6 parts
344  * |______|______|______|______|______|______|
345  *
346  * and here's how they look after the first period is finished playing:
347  *
348  *   ____________
349  *  |   	 |
350  *  V   	 |
351  *  ___    ___   |
352  * |   |->|   |->|
353  * |___|  |___|
354  *   |      |
355  *   |______________
356  *          |       |
357  *          V       V
358  *  _________________________________________
359  * |      |      |      |      |      |      |
360  * |      |      |      |      |      |      |
361  * |______|______|______|______|______|______|
362  *
363  * The first link descriptor now points to the third period.  The DMA
364  * controller is currently playing the second period.  When it finishes, it
365  * will jump back to the first descriptor and play the third period.
366  *
367  * There are four reasons we do this:
368  *
369  * 1. The only way to get the DMA controller to automatically restart the
370  *    transfer when it gets to the end of the buffer is to use chaining
371  *    mode.  Basic direct mode doesn't offer that feature.
372  * 2. We need to receive an interrupt at the end of every period.  The DMA
373  *    controller can generate an interrupt at the end of every link transfer
374  *    (aka segment).  Making each period into a DMA segment will give us the
375  *    interrupts we need.
376  * 3. By creating only two link descriptors, regardless of the number of
377  *    periods, we do not need to reallocate the link descriptors if the
378  *    number of periods changes.
379  * 4. All of the audio data is still stored in a single, contiguous DMA
380  *    buffer, which is what ALSA expects.  We're just dividing it into
381  *    contiguous parts, and creating a link descriptor for each one.
382  */
383 static int fsl_dma_open(struct snd_pcm_substream *substream)
384 {
385 	struct snd_pcm_runtime *runtime = substream->runtime;
386 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
387 	struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
388 	struct device *dev = component->dev;
389 	struct dma_object *dma =
390 		container_of(component->driver, struct dma_object, dai);
391 	struct fsl_dma_private *dma_private;
392 	struct ccsr_dma_channel __iomem *dma_channel;
393 	dma_addr_t ld_buf_phys;
394 	u64 temp_link;  	/* Pointer to next link descriptor */
395 	u32 mr;
396 	unsigned int channel;
397 	int ret = 0;
398 	unsigned int i;
399 
400 	/*
401 	 * Reject any DMA buffer whose size is not a multiple of the period
402 	 * size.  We need to make sure that the DMA buffer can be evenly divided
403 	 * into periods.
404 	 */
405 	ret = snd_pcm_hw_constraint_integer(runtime,
406 		SNDRV_PCM_HW_PARAM_PERIODS);
407 	if (ret < 0) {
408 		dev_err(dev, "invalid buffer size\n");
409 		return ret;
410 	}
411 
412 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
413 
414 	if (dma->assigned) {
415 		dev_err(dev, "dma channel already assigned\n");
416 		return -EBUSY;
417 	}
418 
419 	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
420 					 &ld_buf_phys, GFP_KERNEL);
421 	if (!dma_private) {
422 		dev_err(dev, "can't allocate dma private data\n");
423 		return -ENOMEM;
424 	}
425 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
426 		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
427 	else
428 		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
429 
430 	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
431 	dma_private->dma_channel = dma->channel;
432 	dma_private->irq = dma->irq;
433 	dma_private->substream = substream;
434 	dma_private->ld_buf_phys = ld_buf_phys;
435 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
436 
437 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
438 			  dma_private);
439 	if (ret) {
440 		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
441 			dma_private->irq, ret);
442 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
443 			dma_private, dma_private->ld_buf_phys);
444 		return ret;
445 	}
446 
447 	dma->assigned = true;
448 
449 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
450 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
451 	runtime->private_data = dma_private;
452 
453 	/* Program the fixed DMA controller parameters */
454 
455 	dma_channel = dma_private->dma_channel;
456 
457 	temp_link = dma_private->ld_buf_phys +
458 		sizeof(struct fsl_dma_link_descriptor);
459 
460 	for (i = 0; i < NUM_DMA_LINKS; i++) {
461 		dma_private->link[i].next = cpu_to_be64(temp_link);
462 
463 		temp_link += sizeof(struct fsl_dma_link_descriptor);
464 	}
465 	/* The last link descriptor points to the first */
466 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
467 
468 	/* Tell the DMA controller where the first link descriptor is */
469 	out_be32(&dma_channel->clndar,
470 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
471 	out_be32(&dma_channel->eclndar,
472 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
473 
474 	/* The manual says the BCR must be clear before enabling EMP */
475 	out_be32(&dma_channel->bcr, 0);
476 
477 	/*
478 	 * Program the mode register for interrupts, external master control,
479 	 * and source/destination hold.  Also clear the Channel Abort bit.
480 	 */
481 	mr = in_be32(&dma_channel->mr) &
482 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
483 
484 	/*
485 	 * We want External Master Start and External Master Pause enabled,
486 	 * because the SSI is controlling the DMA controller.  We want the DMA
487 	 * controller to be set up in advance, and then we signal only the SSI
488 	 * to start transferring.
489 	 *
490 	 * We want End-Of-Segment Interrupts enabled, because this will generate
491 	 * an interrupt at the end of each segment (each link descriptor
492 	 * represents one segment).  Each DMA segment is the same thing as an
493 	 * ALSA period, so this is how we get an interrupt at the end of every
494 	 * period.
495 	 *
496 	 * We want Error Interrupt enabled, so that we can get an error if
497 	 * the DMA controller is mis-programmed somehow.
498 	 */
499 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
500 		CCSR_DMA_MR_EMS_EN;
501 
502 	/* For playback, we want the destination address to be held.  For
503 	   capture, set the source address to be held. */
504 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
505 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
506 
507 	out_be32(&dma_channel->mr, mr);
508 
509 	return 0;
510 }
511 
512 /**
513  * fsl_dma_hw_params: continue initializing the DMA links
514  *
515  * This function obtains hardware parameters about the opened stream and
516  * programs the DMA controller accordingly.
517  *
518  * One drawback of big-endian is that when copying integers of different
519  * sizes to a fixed-sized register, the address to which the integer must be
520  * copied is dependent on the size of the integer.
521  *
522  * For example, if P is the address of a 32-bit register, and X is a 32-bit
523  * integer, then X should be copied to address P.  However, if X is a 16-bit
524  * integer, then it should be copied to P+2.  If X is an 8-bit register,
525  * then it should be copied to P+3.
526  *
527  * So for playback of 8-bit samples, the DMA controller must transfer single
528  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
529  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
530  *
531  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
532  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
533  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
534  * 24-bit data must be padded to 32 bits.
535  */
536 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
537 	struct snd_pcm_hw_params *hw_params)
538 {
539 	struct snd_pcm_runtime *runtime = substream->runtime;
540 	struct fsl_dma_private *dma_private = runtime->private_data;
541 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
542 	struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
543 	struct device *dev = component->dev;
544 
545 	/* Number of bits per sample */
546 	unsigned int sample_bits =
547 		snd_pcm_format_physical_width(params_format(hw_params));
548 
549 	/* Number of bytes per frame */
550 	unsigned int sample_bytes = sample_bits / 8;
551 
552 	/* Bus address of SSI STX register */
553 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
554 
555 	/* Size of the DMA buffer, in bytes */
556 	size_t buffer_size = params_buffer_bytes(hw_params);
557 
558 	/* Number of bytes per period */
559 	size_t period_size = params_period_bytes(hw_params);
560 
561 	/* Pointer to next period */
562 	dma_addr_t temp_addr = substream->dma_buffer.addr;
563 
564 	/* Pointer to DMA controller */
565 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
566 
567 	u32 mr; /* DMA Mode Register */
568 
569 	unsigned int i;
570 
571 	/* Initialize our DMA tracking variables */
572 	dma_private->period_size = period_size;
573 	dma_private->num_periods = params_periods(hw_params);
574 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
575 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
576 		(NUM_DMA_LINKS * period_size);
577 
578 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
579 		/* This happens if the number of periods == NUM_DMA_LINKS */
580 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
581 
582 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
583 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
584 
585 	/* Due to a quirk of the SSI's STX register, the target address
586 	 * for the DMA operations depends on the sample size.  So we calculate
587 	 * that offset here.  While we're at it, also tell the DMA controller
588 	 * how much data to transfer per sample.
589 	 */
590 	switch (sample_bits) {
591 	case 8:
592 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
593 		ssi_sxx_phys += 3;
594 		break;
595 	case 16:
596 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
597 		ssi_sxx_phys += 2;
598 		break;
599 	case 32:
600 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
601 		break;
602 	default:
603 		/* We should never get here */
604 		dev_err(dev, "unsupported sample size %u\n", sample_bits);
605 		return -EINVAL;
606 	}
607 
608 	/*
609 	 * BWC determines how many bytes are sent/received before the DMA
610 	 * controller checks the SSI to see if it needs to stop. BWC should
611 	 * always be a multiple of the frame size, so that we always transmit
612 	 * whole frames.  Each frame occupies two slots in the FIFO.  The
613 	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
614 	 * (MR[BWC] can only represent even powers of two).
615 	 *
616 	 * To simplify the process, we set BWC to the largest value that is
617 	 * less than or equal to the FIFO watermark.  For playback, this ensures
618 	 * that we transfer the maximum amount without overrunning the FIFO.
619 	 * For capture, this ensures that we transfer the maximum amount without
620 	 * underrunning the FIFO.
621 	 *
622 	 * f = SSI FIFO depth
623 	 * w = SSI watermark value (which equals f - 2)
624 	 * b = DMA bandwidth count (in bytes)
625 	 * s = sample size (in bytes, which equals frame_size * 2)
626 	 *
627 	 * For playback, we never transmit more than the transmit FIFO
628 	 * watermark, otherwise we might write more data than the FIFO can hold.
629 	 * The watermark is equal to the FIFO depth minus two.
630 	 *
631 	 * For capture, two equations must hold:
632 	 *	w > f - (b / s)
633 	 *	w >= b / s
634 	 *
635 	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
636 	 * b = s * w, which is equal to
637 	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
638 	 */
639 	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
640 
641 	out_be32(&dma_channel->mr, mr);
642 
643 	for (i = 0; i < NUM_DMA_LINKS; i++) {
644 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
645 
646 		link->count = cpu_to_be32(period_size);
647 
648 		/* The snoop bit tells the DMA controller whether it should tell
649 		 * the ECM to snoop during a read or write to an address. For
650 		 * audio, we use DMA to transfer data between memory and an I/O
651 		 * device (the SSI's STX0 or SRX0 register). Snooping is only
652 		 * needed if there is a cache, so we need to snoop memory
653 		 * addresses only.  For playback, that means we snoop the source
654 		 * but not the destination.  For capture, we snoop the
655 		 * destination but not the source.
656 		 *
657 		 * Note that failing to snoop properly is unlikely to cause
658 		 * cache incoherency if the period size is larger than the
659 		 * size of L1 cache.  This is because filling in one period will
660 		 * flush out the data for the previous period.  So if you
661 		 * increased period_bytes_min to a large enough size, you might
662 		 * get more performance by not snooping, and you'll still be
663 		 * okay.  You'll need to update fsl_dma_update_pointers() also.
664 		 */
665 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
666 			link->source_addr = cpu_to_be32(temp_addr);
667 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
668 				upper_32_bits(temp_addr));
669 
670 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
671 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
672 				upper_32_bits(ssi_sxx_phys));
673 		} else {
674 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
675 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
676 				upper_32_bits(ssi_sxx_phys));
677 
678 			link->dest_addr = cpu_to_be32(temp_addr);
679 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
680 				upper_32_bits(temp_addr));
681 		}
682 
683 		temp_addr += period_size;
684 	}
685 
686 	return 0;
687 }
688 
689 /**
690  * fsl_dma_pointer: determine the current position of the DMA transfer
691  *
692  * This function is called by ALSA when ALSA wants to know where in the
693  * stream buffer the hardware currently is.
694  *
695  * For playback, the SAR register contains the physical address of the most
696  * recent DMA transfer.  For capture, the value is in the DAR register.
697  *
698  * The base address of the buffer is stored in the source_addr field of the
699  * first link descriptor.
700  */
701 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
702 {
703 	struct snd_pcm_runtime *runtime = substream->runtime;
704 	struct fsl_dma_private *dma_private = runtime->private_data;
705 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
706 	struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
707 	struct device *dev = component->dev;
708 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
709 	dma_addr_t position;
710 	snd_pcm_uframes_t frames;
711 
712 	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
713 	 * only have 32-bit DMA addresses.  This function is typically called
714 	 * in interrupt context, so we need to optimize it.
715 	 */
716 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
717 		position = in_be32(&dma_channel->sar);
718 #ifdef CONFIG_PHYS_64BIT
719 		position |= (u64)(in_be32(&dma_channel->satr) &
720 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
721 #endif
722 	} else {
723 		position = in_be32(&dma_channel->dar);
724 #ifdef CONFIG_PHYS_64BIT
725 		position |= (u64)(in_be32(&dma_channel->datr) &
726 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
727 #endif
728 	}
729 
730 	/*
731 	 * When capture is started, the SSI immediately starts to fill its FIFO.
732 	 * This means that the DMA controller is not started until the FIFO is
733 	 * full.  However, ALSA calls this function before that happens, when
734 	 * MR.DAR is still zero.  In this case, just return zero to indicate
735 	 * that nothing has been received yet.
736 	 */
737 	if (!position)
738 		return 0;
739 
740 	if ((position < dma_private->dma_buf_phys) ||
741 	    (position > dma_private->dma_buf_end)) {
742 		dev_err(dev, "dma pointer is out of range, halting stream\n");
743 		return SNDRV_PCM_POS_XRUN;
744 	}
745 
746 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
747 
748 	/*
749 	 * If the current address is just past the end of the buffer, wrap it
750 	 * around.
751 	 */
752 	if (frames == runtime->buffer_size)
753 		frames = 0;
754 
755 	return frames;
756 }
757 
758 /**
759  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
760  *
761  * Release the resources allocated in fsl_dma_hw_params() and de-program the
762  * registers.
763  *
764  * This function can be called multiple times.
765  */
766 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
767 {
768 	struct snd_pcm_runtime *runtime = substream->runtime;
769 	struct fsl_dma_private *dma_private = runtime->private_data;
770 
771 	if (dma_private) {
772 		struct ccsr_dma_channel __iomem *dma_channel;
773 
774 		dma_channel = dma_private->dma_channel;
775 
776 		/* Stop the DMA */
777 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
778 		out_be32(&dma_channel->mr, 0);
779 
780 		/* Reset all the other registers */
781 		out_be32(&dma_channel->sr, -1);
782 		out_be32(&dma_channel->clndar, 0);
783 		out_be32(&dma_channel->eclndar, 0);
784 		out_be32(&dma_channel->satr, 0);
785 		out_be32(&dma_channel->sar, 0);
786 		out_be32(&dma_channel->datr, 0);
787 		out_be32(&dma_channel->dar, 0);
788 		out_be32(&dma_channel->bcr, 0);
789 		out_be32(&dma_channel->nlndar, 0);
790 		out_be32(&dma_channel->enlndar, 0);
791 	}
792 
793 	return 0;
794 }
795 
796 /**
797  * fsl_dma_close: close the stream.
798  */
799 static int fsl_dma_close(struct snd_pcm_substream *substream)
800 {
801 	struct snd_pcm_runtime *runtime = substream->runtime;
802 	struct fsl_dma_private *dma_private = runtime->private_data;
803 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
804 	struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
805 	struct device *dev = component->dev;
806 	struct dma_object *dma =
807 		container_of(component->driver, struct dma_object, dai);
808 
809 	if (dma_private) {
810 		if (dma_private->irq)
811 			free_irq(dma_private->irq, dma_private);
812 
813 		/* Deallocate the fsl_dma_private structure */
814 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
815 				  dma_private, dma_private->ld_buf_phys);
816 		substream->runtime->private_data = NULL;
817 	}
818 
819 	dma->assigned = false;
820 
821 	return 0;
822 }
823 
824 /*
825  * Remove this PCM driver.
826  */
827 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
828 {
829 	struct snd_pcm_substream *substream;
830 	unsigned int i;
831 
832 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
833 		substream = pcm->streams[i].substream;
834 		if (substream) {
835 			snd_dma_free_pages(&substream->dma_buffer);
836 			substream->dma_buffer.area = NULL;
837 			substream->dma_buffer.addr = 0;
838 		}
839 	}
840 }
841 
842 /**
843  * find_ssi_node -- returns the SSI node that points to its DMA channel node
844  *
845  * Although this DMA driver attempts to operate independently of the other
846  * devices, it still needs to determine some information about the SSI device
847  * that it's working with.  Unfortunately, the device tree does not contain
848  * a pointer from the DMA channel node to the SSI node -- the pointer goes the
849  * other way.  So we need to scan the device tree for SSI nodes until we find
850  * the one that points to the given DMA channel node.  It's ugly, but at least
851  * it's contained in this one function.
852  */
853 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
854 {
855 	struct device_node *ssi_np, *np;
856 
857 	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
858 		/* Check each DMA phandle to see if it points to us.  We
859 		 * assume that device_node pointers are a valid comparison.
860 		 */
861 		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
862 		of_node_put(np);
863 		if (np == dma_channel_np)
864 			return ssi_np;
865 
866 		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
867 		of_node_put(np);
868 		if (np == dma_channel_np)
869 			return ssi_np;
870 	}
871 
872 	return NULL;
873 }
874 
875 static const struct snd_pcm_ops fsl_dma_ops = {
876 	.open   	= fsl_dma_open,
877 	.close  	= fsl_dma_close,
878 	.ioctl  	= snd_pcm_lib_ioctl,
879 	.hw_params      = fsl_dma_hw_params,
880 	.hw_free	= fsl_dma_hw_free,
881 	.pointer	= fsl_dma_pointer,
882 };
883 
884 static int fsl_soc_dma_probe(struct platform_device *pdev)
885 {
886 	struct dma_object *dma;
887 	struct device_node *np = pdev->dev.of_node;
888 	struct device_node *ssi_np;
889 	struct resource res;
890 	const uint32_t *iprop;
891 	int ret;
892 
893 	/* Find the SSI node that points to us. */
894 	ssi_np = find_ssi_node(np);
895 	if (!ssi_np) {
896 		dev_err(&pdev->dev, "cannot find parent SSI node\n");
897 		return -ENODEV;
898 	}
899 
900 	ret = of_address_to_resource(ssi_np, 0, &res);
901 	if (ret) {
902 		dev_err(&pdev->dev, "could not determine resources for %pOF\n",
903 			ssi_np);
904 		of_node_put(ssi_np);
905 		return ret;
906 	}
907 
908 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
909 	if (!dma) {
910 		of_node_put(ssi_np);
911 		return -ENOMEM;
912 	}
913 
914 	dma->dai.name = DRV_NAME;
915 	dma->dai.ops = &fsl_dma_ops;
916 	dma->dai.pcm_new = fsl_dma_new;
917 	dma->dai.pcm_free = fsl_dma_free_dma_buffers;
918 
919 	/* Store the SSI-specific information that we need */
920 	dma->ssi_stx_phys = res.start + REG_SSI_STX0;
921 	dma->ssi_srx_phys = res.start + REG_SSI_SRX0;
922 
923 	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
924 	if (iprop)
925 		dma->ssi_fifo_depth = be32_to_cpup(iprop);
926 	else
927                 /* Older 8610 DTs didn't have the fifo-depth property */
928 		dma->ssi_fifo_depth = 8;
929 
930 	of_node_put(ssi_np);
931 
932 	ret = devm_snd_soc_register_component(&pdev->dev, &dma->dai, NULL, 0);
933 	if (ret) {
934 		dev_err(&pdev->dev, "could not register platform\n");
935 		kfree(dma);
936 		return ret;
937 	}
938 
939 	dma->channel = of_iomap(np, 0);
940 	dma->irq = irq_of_parse_and_map(np, 0);
941 
942 	dev_set_drvdata(&pdev->dev, dma);
943 
944 	return 0;
945 }
946 
947 static int fsl_soc_dma_remove(struct platform_device *pdev)
948 {
949 	struct dma_object *dma = dev_get_drvdata(&pdev->dev);
950 
951 	iounmap(dma->channel);
952 	irq_dispose_mapping(dma->irq);
953 	kfree(dma);
954 
955 	return 0;
956 }
957 
958 static const struct of_device_id fsl_soc_dma_ids[] = {
959 	{ .compatible = "fsl,ssi-dma-channel", },
960 	{}
961 };
962 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
963 
964 static struct platform_driver fsl_soc_dma_driver = {
965 	.driver = {
966 		.name = "fsl-pcm-audio",
967 		.of_match_table = fsl_soc_dma_ids,
968 	},
969 	.probe = fsl_soc_dma_probe,
970 	.remove = fsl_soc_dma_remove,
971 };
972 
973 module_platform_driver(fsl_soc_dma_driver);
974 
975 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
976 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
977 MODULE_LICENSE("GPL v2");
978