xref: /linux/net/wireless/util.c (revision 33619f0d3ff715a2a5499520967d526ad931d70d)
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  */
6 #include <linux/bitops.h>
7 #include <linux/etherdevice.h>
8 #include <linux/slab.h>
9 #include <net/cfg80211.h>
10 #include <net/ip.h>
11 #include "core.h"
12 
13 struct ieee80211_rate *
14 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
15 			    u32 basic_rates, int bitrate)
16 {
17 	struct ieee80211_rate *result = &sband->bitrates[0];
18 	int i;
19 
20 	for (i = 0; i < sband->n_bitrates; i++) {
21 		if (!(basic_rates & BIT(i)))
22 			continue;
23 		if (sband->bitrates[i].bitrate > bitrate)
24 			continue;
25 		result = &sband->bitrates[i];
26 	}
27 
28 	return result;
29 }
30 EXPORT_SYMBOL(ieee80211_get_response_rate);
31 
32 int ieee80211_channel_to_frequency(int chan)
33 {
34 	if (chan < 14)
35 		return 2407 + chan * 5;
36 
37 	if (chan == 14)
38 		return 2484;
39 
40 	/* FIXME: 802.11j 17.3.8.3.2 */
41 	return (chan + 1000) * 5;
42 }
43 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
44 
45 int ieee80211_frequency_to_channel(int freq)
46 {
47 	if (freq == 2484)
48 		return 14;
49 
50 	if (freq < 2484)
51 		return (freq - 2407) / 5;
52 
53 	/* FIXME: 802.11j 17.3.8.3.2 */
54 	return freq/5 - 1000;
55 }
56 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
57 
58 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
59 						  int freq)
60 {
61 	enum ieee80211_band band;
62 	struct ieee80211_supported_band *sband;
63 	int i;
64 
65 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
66 		sband = wiphy->bands[band];
67 
68 		if (!sband)
69 			continue;
70 
71 		for (i = 0; i < sband->n_channels; i++) {
72 			if (sband->channels[i].center_freq == freq)
73 				return &sband->channels[i];
74 		}
75 	}
76 
77 	return NULL;
78 }
79 EXPORT_SYMBOL(__ieee80211_get_channel);
80 
81 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
82 				     enum ieee80211_band band)
83 {
84 	int i, want;
85 
86 	switch (band) {
87 	case IEEE80211_BAND_5GHZ:
88 		want = 3;
89 		for (i = 0; i < sband->n_bitrates; i++) {
90 			if (sband->bitrates[i].bitrate == 60 ||
91 			    sband->bitrates[i].bitrate == 120 ||
92 			    sband->bitrates[i].bitrate == 240) {
93 				sband->bitrates[i].flags |=
94 					IEEE80211_RATE_MANDATORY_A;
95 				want--;
96 			}
97 		}
98 		WARN_ON(want);
99 		break;
100 	case IEEE80211_BAND_2GHZ:
101 		want = 7;
102 		for (i = 0; i < sband->n_bitrates; i++) {
103 			if (sband->bitrates[i].bitrate == 10) {
104 				sband->bitrates[i].flags |=
105 					IEEE80211_RATE_MANDATORY_B |
106 					IEEE80211_RATE_MANDATORY_G;
107 				want--;
108 			}
109 
110 			if (sband->bitrates[i].bitrate == 20 ||
111 			    sband->bitrates[i].bitrate == 55 ||
112 			    sband->bitrates[i].bitrate == 110 ||
113 			    sband->bitrates[i].bitrate == 60 ||
114 			    sband->bitrates[i].bitrate == 120 ||
115 			    sband->bitrates[i].bitrate == 240) {
116 				sband->bitrates[i].flags |=
117 					IEEE80211_RATE_MANDATORY_G;
118 				want--;
119 			}
120 
121 			if (sband->bitrates[i].bitrate != 10 &&
122 			    sband->bitrates[i].bitrate != 20 &&
123 			    sband->bitrates[i].bitrate != 55 &&
124 			    sband->bitrates[i].bitrate != 110)
125 				sband->bitrates[i].flags |=
126 					IEEE80211_RATE_ERP_G;
127 		}
128 		WARN_ON(want != 0 && want != 3 && want != 6);
129 		break;
130 	case IEEE80211_NUM_BANDS:
131 		WARN_ON(1);
132 		break;
133 	}
134 }
135 
136 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
137 {
138 	enum ieee80211_band band;
139 
140 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
141 		if (wiphy->bands[band])
142 			set_mandatory_flags_band(wiphy->bands[band], band);
143 }
144 
145 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
146 				   struct key_params *params, int key_idx,
147 				   bool pairwise, const u8 *mac_addr)
148 {
149 	int i;
150 
151 	if (key_idx > 5)
152 		return -EINVAL;
153 
154 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
155 		return -EINVAL;
156 
157 	if (pairwise && !mac_addr)
158 		return -EINVAL;
159 
160 	/*
161 	 * Disallow pairwise keys with non-zero index unless it's WEP
162 	 * (because current deployments use pairwise WEP keys with
163 	 * non-zero indizes but 802.11i clearly specifies to use zero)
164 	 */
165 	if (pairwise && key_idx &&
166 	    params->cipher != WLAN_CIPHER_SUITE_WEP40 &&
167 	    params->cipher != WLAN_CIPHER_SUITE_WEP104)
168 		return -EINVAL;
169 
170 	switch (params->cipher) {
171 	case WLAN_CIPHER_SUITE_WEP40:
172 		if (params->key_len != WLAN_KEY_LEN_WEP40)
173 			return -EINVAL;
174 		break;
175 	case WLAN_CIPHER_SUITE_TKIP:
176 		if (params->key_len != WLAN_KEY_LEN_TKIP)
177 			return -EINVAL;
178 		break;
179 	case WLAN_CIPHER_SUITE_CCMP:
180 		if (params->key_len != WLAN_KEY_LEN_CCMP)
181 			return -EINVAL;
182 		break;
183 	case WLAN_CIPHER_SUITE_WEP104:
184 		if (params->key_len != WLAN_KEY_LEN_WEP104)
185 			return -EINVAL;
186 		break;
187 	case WLAN_CIPHER_SUITE_AES_CMAC:
188 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
189 			return -EINVAL;
190 		break;
191 	default:
192 		/*
193 		 * We don't know anything about this algorithm,
194 		 * allow using it -- but the driver must check
195 		 * all parameters! We still check below whether
196 		 * or not the driver supports this algorithm,
197 		 * of course.
198 		 */
199 		break;
200 	}
201 
202 	if (params->seq) {
203 		switch (params->cipher) {
204 		case WLAN_CIPHER_SUITE_WEP40:
205 		case WLAN_CIPHER_SUITE_WEP104:
206 			/* These ciphers do not use key sequence */
207 			return -EINVAL;
208 		case WLAN_CIPHER_SUITE_TKIP:
209 		case WLAN_CIPHER_SUITE_CCMP:
210 		case WLAN_CIPHER_SUITE_AES_CMAC:
211 			if (params->seq_len != 6)
212 				return -EINVAL;
213 			break;
214 		}
215 	}
216 
217 	for (i = 0; i < rdev->wiphy.n_cipher_suites; i++)
218 		if (params->cipher == rdev->wiphy.cipher_suites[i])
219 			break;
220 	if (i == rdev->wiphy.n_cipher_suites)
221 		return -EINVAL;
222 
223 	return 0;
224 }
225 
226 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
227 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
228 const unsigned char rfc1042_header[] __aligned(2) =
229 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
230 EXPORT_SYMBOL(rfc1042_header);
231 
232 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
233 const unsigned char bridge_tunnel_header[] __aligned(2) =
234 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
235 EXPORT_SYMBOL(bridge_tunnel_header);
236 
237 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
238 {
239 	unsigned int hdrlen = 24;
240 
241 	if (ieee80211_is_data(fc)) {
242 		if (ieee80211_has_a4(fc))
243 			hdrlen = 30;
244 		if (ieee80211_is_data_qos(fc)) {
245 			hdrlen += IEEE80211_QOS_CTL_LEN;
246 			if (ieee80211_has_order(fc))
247 				hdrlen += IEEE80211_HT_CTL_LEN;
248 		}
249 		goto out;
250 	}
251 
252 	if (ieee80211_is_ctl(fc)) {
253 		/*
254 		 * ACK and CTS are 10 bytes, all others 16. To see how
255 		 * to get this condition consider
256 		 *   subtype mask:   0b0000000011110000 (0x00F0)
257 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
258 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
259 		 *   bits that matter:         ^^^      (0x00E0)
260 		 *   value of those: 0b0000000011000000 (0x00C0)
261 		 */
262 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
263 			hdrlen = 10;
264 		else
265 			hdrlen = 16;
266 	}
267 out:
268 	return hdrlen;
269 }
270 EXPORT_SYMBOL(ieee80211_hdrlen);
271 
272 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
273 {
274 	const struct ieee80211_hdr *hdr =
275 			(const struct ieee80211_hdr *)skb->data;
276 	unsigned int hdrlen;
277 
278 	if (unlikely(skb->len < 10))
279 		return 0;
280 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
281 	if (unlikely(hdrlen > skb->len))
282 		return 0;
283 	return hdrlen;
284 }
285 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
286 
287 static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
288 {
289 	int ae = meshhdr->flags & MESH_FLAGS_AE;
290 	/* 7.1.3.5a.2 */
291 	switch (ae) {
292 	case 0:
293 		return 6;
294 	case MESH_FLAGS_AE_A4:
295 		return 12;
296 	case MESH_FLAGS_AE_A5_A6:
297 		return 18;
298 	case (MESH_FLAGS_AE_A4 | MESH_FLAGS_AE_A5_A6):
299 		return 24;
300 	default:
301 		return 6;
302 	}
303 }
304 
305 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
306 			   enum nl80211_iftype iftype)
307 {
308 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
309 	u16 hdrlen, ethertype;
310 	u8 *payload;
311 	u8 dst[ETH_ALEN];
312 	u8 src[ETH_ALEN] __aligned(2);
313 
314 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
315 		return -1;
316 
317 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
318 
319 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
320 	 * header
321 	 * IEEE 802.11 address fields:
322 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
323 	 *   0     0   DA    SA    BSSID n/a
324 	 *   0     1   DA    BSSID SA    n/a
325 	 *   1     0   BSSID SA    DA    n/a
326 	 *   1     1   RA    TA    DA    SA
327 	 */
328 	memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
329 	memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
330 
331 	switch (hdr->frame_control &
332 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
333 	case cpu_to_le16(IEEE80211_FCTL_TODS):
334 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
335 			     iftype != NL80211_IFTYPE_AP_VLAN &&
336 			     iftype != NL80211_IFTYPE_P2P_GO))
337 			return -1;
338 		break;
339 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
340 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
341 			     iftype != NL80211_IFTYPE_MESH_POINT &&
342 			     iftype != NL80211_IFTYPE_AP_VLAN &&
343 			     iftype != NL80211_IFTYPE_STATION))
344 			return -1;
345 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
346 			struct ieee80211s_hdr *meshdr =
347 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
348 			/* make sure meshdr->flags is on the linear part */
349 			if (!pskb_may_pull(skb, hdrlen + 1))
350 				return -1;
351 			if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
352 				skb_copy_bits(skb, hdrlen +
353 					offsetof(struct ieee80211s_hdr, eaddr1),
354 				       	dst, ETH_ALEN);
355 				skb_copy_bits(skb, hdrlen +
356 					offsetof(struct ieee80211s_hdr, eaddr2),
357 				        src, ETH_ALEN);
358 			}
359 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
360 		}
361 		break;
362 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
363 		if ((iftype != NL80211_IFTYPE_STATION &&
364 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
365 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
366 		    (is_multicast_ether_addr(dst) &&
367 		     !compare_ether_addr(src, addr)))
368 			return -1;
369 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
370 			struct ieee80211s_hdr *meshdr =
371 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
372 			/* make sure meshdr->flags is on the linear part */
373 			if (!pskb_may_pull(skb, hdrlen + 1))
374 				return -1;
375 			if (meshdr->flags & MESH_FLAGS_AE_A4)
376 				skb_copy_bits(skb, hdrlen +
377 					offsetof(struct ieee80211s_hdr, eaddr1),
378 					src, ETH_ALEN);
379 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
380 		}
381 		break;
382 	case cpu_to_le16(0):
383 		if (iftype != NL80211_IFTYPE_ADHOC)
384 			return -1;
385 		break;
386 	}
387 
388 	if (!pskb_may_pull(skb, hdrlen + 8))
389 		return -1;
390 
391 	payload = skb->data + hdrlen;
392 	ethertype = (payload[6] << 8) | payload[7];
393 
394 	if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
395 		    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
396 		   compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
397 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
398 		 * replace EtherType */
399 		skb_pull(skb, hdrlen + 6);
400 		memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
401 		memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
402 	} else {
403 		struct ethhdr *ehdr;
404 		__be16 len;
405 
406 		skb_pull(skb, hdrlen);
407 		len = htons(skb->len);
408 		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
409 		memcpy(ehdr->h_dest, dst, ETH_ALEN);
410 		memcpy(ehdr->h_source, src, ETH_ALEN);
411 		ehdr->h_proto = len;
412 	}
413 	return 0;
414 }
415 EXPORT_SYMBOL(ieee80211_data_to_8023);
416 
417 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
418 			     enum nl80211_iftype iftype, u8 *bssid, bool qos)
419 {
420 	struct ieee80211_hdr hdr;
421 	u16 hdrlen, ethertype;
422 	__le16 fc;
423 	const u8 *encaps_data;
424 	int encaps_len, skip_header_bytes;
425 	int nh_pos, h_pos;
426 	int head_need;
427 
428 	if (unlikely(skb->len < ETH_HLEN))
429 		return -EINVAL;
430 
431 	nh_pos = skb_network_header(skb) - skb->data;
432 	h_pos = skb_transport_header(skb) - skb->data;
433 
434 	/* convert Ethernet header to proper 802.11 header (based on
435 	 * operation mode) */
436 	ethertype = (skb->data[12] << 8) | skb->data[13];
437 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
438 
439 	switch (iftype) {
440 	case NL80211_IFTYPE_AP:
441 	case NL80211_IFTYPE_AP_VLAN:
442 	case NL80211_IFTYPE_P2P_GO:
443 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
444 		/* DA BSSID SA */
445 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
446 		memcpy(hdr.addr2, addr, ETH_ALEN);
447 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
448 		hdrlen = 24;
449 		break;
450 	case NL80211_IFTYPE_STATION:
451 	case NL80211_IFTYPE_P2P_CLIENT:
452 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
453 		/* BSSID SA DA */
454 		memcpy(hdr.addr1, bssid, ETH_ALEN);
455 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
456 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
457 		hdrlen = 24;
458 		break;
459 	case NL80211_IFTYPE_ADHOC:
460 		/* DA SA BSSID */
461 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
462 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
463 		memcpy(hdr.addr3, bssid, ETH_ALEN);
464 		hdrlen = 24;
465 		break;
466 	default:
467 		return -EOPNOTSUPP;
468 	}
469 
470 	if (qos) {
471 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
472 		hdrlen += 2;
473 	}
474 
475 	hdr.frame_control = fc;
476 	hdr.duration_id = 0;
477 	hdr.seq_ctrl = 0;
478 
479 	skip_header_bytes = ETH_HLEN;
480 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
481 		encaps_data = bridge_tunnel_header;
482 		encaps_len = sizeof(bridge_tunnel_header);
483 		skip_header_bytes -= 2;
484 	} else if (ethertype > 0x600) {
485 		encaps_data = rfc1042_header;
486 		encaps_len = sizeof(rfc1042_header);
487 		skip_header_bytes -= 2;
488 	} else {
489 		encaps_data = NULL;
490 		encaps_len = 0;
491 	}
492 
493 	skb_pull(skb, skip_header_bytes);
494 	nh_pos -= skip_header_bytes;
495 	h_pos -= skip_header_bytes;
496 
497 	head_need = hdrlen + encaps_len - skb_headroom(skb);
498 
499 	if (head_need > 0 || skb_cloned(skb)) {
500 		head_need = max(head_need, 0);
501 		if (head_need)
502 			skb_orphan(skb);
503 
504 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) {
505 			pr_err("failed to reallocate Tx buffer\n");
506 			return -ENOMEM;
507 		}
508 		skb->truesize += head_need;
509 	}
510 
511 	if (encaps_data) {
512 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
513 		nh_pos += encaps_len;
514 		h_pos += encaps_len;
515 	}
516 
517 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
518 
519 	nh_pos += hdrlen;
520 	h_pos += hdrlen;
521 
522 	/* Update skb pointers to various headers since this modified frame
523 	 * is going to go through Linux networking code that may potentially
524 	 * need things like pointer to IP header. */
525 	skb_set_mac_header(skb, 0);
526 	skb_set_network_header(skb, nh_pos);
527 	skb_set_transport_header(skb, h_pos);
528 
529 	return 0;
530 }
531 EXPORT_SYMBOL(ieee80211_data_from_8023);
532 
533 
534 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
535 			      const u8 *addr, enum nl80211_iftype iftype,
536 			      const unsigned int extra_headroom)
537 {
538 	struct sk_buff *frame = NULL;
539 	u16 ethertype;
540 	u8 *payload;
541 	const struct ethhdr *eth;
542 	int remaining, err;
543 	u8 dst[ETH_ALEN], src[ETH_ALEN];
544 
545 	err = ieee80211_data_to_8023(skb, addr, iftype);
546 	if (err)
547 		goto out;
548 
549 	/* skip the wrapping header */
550 	eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
551 	if (!eth)
552 		goto out;
553 
554 	while (skb != frame) {
555 		u8 padding;
556 		__be16 len = eth->h_proto;
557 		unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
558 
559 		remaining = skb->len;
560 		memcpy(dst, eth->h_dest, ETH_ALEN);
561 		memcpy(src, eth->h_source, ETH_ALEN);
562 
563 		padding = (4 - subframe_len) & 0x3;
564 		/* the last MSDU has no padding */
565 		if (subframe_len > remaining)
566 			goto purge;
567 
568 		skb_pull(skb, sizeof(struct ethhdr));
569 		/* reuse skb for the last subframe */
570 		if (remaining <= subframe_len + padding)
571 			frame = skb;
572 		else {
573 			unsigned int hlen = ALIGN(extra_headroom, 4);
574 			/*
575 			 * Allocate and reserve two bytes more for payload
576 			 * alignment since sizeof(struct ethhdr) is 14.
577 			 */
578 			frame = dev_alloc_skb(hlen + subframe_len + 2);
579 			if (!frame)
580 				goto purge;
581 
582 			skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
583 			memcpy(skb_put(frame, ntohs(len)), skb->data,
584 				ntohs(len));
585 
586 			eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
587 							padding);
588 			if (!eth) {
589 				dev_kfree_skb(frame);
590 				goto purge;
591 			}
592 		}
593 
594 		skb_reset_network_header(frame);
595 		frame->dev = skb->dev;
596 		frame->priority = skb->priority;
597 
598 		payload = frame->data;
599 		ethertype = (payload[6] << 8) | payload[7];
600 
601 		if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
602 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
603 			   compare_ether_addr(payload,
604 					      bridge_tunnel_header) == 0)) {
605 			/* remove RFC1042 or Bridge-Tunnel
606 			 * encapsulation and replace EtherType */
607 			skb_pull(frame, 6);
608 			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
609 			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
610 		} else {
611 			memcpy(skb_push(frame, sizeof(__be16)), &len,
612 				sizeof(__be16));
613 			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
614 			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
615 		}
616 		__skb_queue_tail(list, frame);
617 	}
618 
619 	return;
620 
621  purge:
622 	__skb_queue_purge(list);
623  out:
624 	dev_kfree_skb(skb);
625 }
626 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
627 
628 /* Given a data frame determine the 802.1p/1d tag to use. */
629 unsigned int cfg80211_classify8021d(struct sk_buff *skb)
630 {
631 	unsigned int dscp;
632 
633 	/* skb->priority values from 256->263 are magic values to
634 	 * directly indicate a specific 802.1d priority.  This is used
635 	 * to allow 802.1d priority to be passed directly in from VLAN
636 	 * tags, etc.
637 	 */
638 	if (skb->priority >= 256 && skb->priority <= 263)
639 		return skb->priority - 256;
640 
641 	switch (skb->protocol) {
642 	case htons(ETH_P_IP):
643 		dscp = ip_hdr(skb)->tos & 0xfc;
644 		break;
645 	default:
646 		return 0;
647 	}
648 
649 	return dscp >> 5;
650 }
651 EXPORT_SYMBOL(cfg80211_classify8021d);
652 
653 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
654 {
655 	u8 *end, *pos;
656 
657 	pos = bss->information_elements;
658 	if (pos == NULL)
659 		return NULL;
660 	end = pos + bss->len_information_elements;
661 
662 	while (pos + 1 < end) {
663 		if (pos + 2 + pos[1] > end)
664 			break;
665 		if (pos[0] == ie)
666 			return pos;
667 		pos += 2 + pos[1];
668 	}
669 
670 	return NULL;
671 }
672 EXPORT_SYMBOL(ieee80211_bss_get_ie);
673 
674 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
675 {
676 	struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
677 	struct net_device *dev = wdev->netdev;
678 	int i;
679 
680 	if (!wdev->connect_keys)
681 		return;
682 
683 	for (i = 0; i < 6; i++) {
684 		if (!wdev->connect_keys->params[i].cipher)
685 			continue;
686 		if (rdev->ops->add_key(wdev->wiphy, dev, i, false, NULL,
687 					&wdev->connect_keys->params[i])) {
688 			netdev_err(dev, "failed to set key %d\n", i);
689 			continue;
690 		}
691 		if (wdev->connect_keys->def == i)
692 			if (rdev->ops->set_default_key(wdev->wiphy, dev,
693 						       i, true, true)) {
694 				netdev_err(dev, "failed to set defkey %d\n", i);
695 				continue;
696 			}
697 		if (wdev->connect_keys->defmgmt == i)
698 			if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i))
699 				netdev_err(dev, "failed to set mgtdef %d\n", i);
700 	}
701 
702 	kfree(wdev->connect_keys);
703 	wdev->connect_keys = NULL;
704 }
705 
706 static void cfg80211_process_wdev_events(struct wireless_dev *wdev)
707 {
708 	struct cfg80211_event *ev;
709 	unsigned long flags;
710 	const u8 *bssid = NULL;
711 
712 	spin_lock_irqsave(&wdev->event_lock, flags);
713 	while (!list_empty(&wdev->event_list)) {
714 		ev = list_first_entry(&wdev->event_list,
715 				      struct cfg80211_event, list);
716 		list_del(&ev->list);
717 		spin_unlock_irqrestore(&wdev->event_lock, flags);
718 
719 		wdev_lock(wdev);
720 		switch (ev->type) {
721 		case EVENT_CONNECT_RESULT:
722 			if (!is_zero_ether_addr(ev->cr.bssid))
723 				bssid = ev->cr.bssid;
724 			__cfg80211_connect_result(
725 				wdev->netdev, bssid,
726 				ev->cr.req_ie, ev->cr.req_ie_len,
727 				ev->cr.resp_ie, ev->cr.resp_ie_len,
728 				ev->cr.status,
729 				ev->cr.status == WLAN_STATUS_SUCCESS,
730 				NULL);
731 			break;
732 		case EVENT_ROAMED:
733 			__cfg80211_roamed(wdev, ev->rm.bssid,
734 					  ev->rm.req_ie, ev->rm.req_ie_len,
735 					  ev->rm.resp_ie, ev->rm.resp_ie_len);
736 			break;
737 		case EVENT_DISCONNECTED:
738 			__cfg80211_disconnected(wdev->netdev,
739 						ev->dc.ie, ev->dc.ie_len,
740 						ev->dc.reason, true);
741 			break;
742 		case EVENT_IBSS_JOINED:
743 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
744 			break;
745 		}
746 		wdev_unlock(wdev);
747 
748 		kfree(ev);
749 
750 		spin_lock_irqsave(&wdev->event_lock, flags);
751 	}
752 	spin_unlock_irqrestore(&wdev->event_lock, flags);
753 }
754 
755 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
756 {
757 	struct wireless_dev *wdev;
758 
759 	ASSERT_RTNL();
760 	ASSERT_RDEV_LOCK(rdev);
761 
762 	mutex_lock(&rdev->devlist_mtx);
763 
764 	list_for_each_entry(wdev, &rdev->netdev_list, list)
765 		cfg80211_process_wdev_events(wdev);
766 
767 	mutex_unlock(&rdev->devlist_mtx);
768 }
769 
770 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
771 			  struct net_device *dev, enum nl80211_iftype ntype,
772 			  u32 *flags, struct vif_params *params)
773 {
774 	int err;
775 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
776 
777 	ASSERT_RDEV_LOCK(rdev);
778 
779 	/* don't support changing VLANs, you just re-create them */
780 	if (otype == NL80211_IFTYPE_AP_VLAN)
781 		return -EOPNOTSUPP;
782 
783 	if (!rdev->ops->change_virtual_intf ||
784 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
785 		return -EOPNOTSUPP;
786 
787 	/* if it's part of a bridge, reject changing type to station/ibss */
788 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
789 	    (ntype == NL80211_IFTYPE_ADHOC ||
790 	     ntype == NL80211_IFTYPE_STATION ||
791 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
792 		return -EBUSY;
793 
794 	if (ntype != otype) {
795 		dev->ieee80211_ptr->use_4addr = false;
796 		dev->ieee80211_ptr->mesh_id_up_len = 0;
797 
798 		switch (otype) {
799 		case NL80211_IFTYPE_ADHOC:
800 			cfg80211_leave_ibss(rdev, dev, false);
801 			break;
802 		case NL80211_IFTYPE_STATION:
803 		case NL80211_IFTYPE_P2P_CLIENT:
804 			cfg80211_disconnect(rdev, dev,
805 					    WLAN_REASON_DEAUTH_LEAVING, true);
806 			break;
807 		case NL80211_IFTYPE_MESH_POINT:
808 			/* mesh should be handled? */
809 			break;
810 		default:
811 			break;
812 		}
813 
814 		cfg80211_process_rdev_events(rdev);
815 	}
816 
817 	err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev,
818 					     ntype, flags, params);
819 
820 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
821 
822 	if (!err && params && params->use_4addr != -1)
823 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
824 
825 	if (!err) {
826 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
827 		switch (ntype) {
828 		case NL80211_IFTYPE_STATION:
829 			if (dev->ieee80211_ptr->use_4addr)
830 				break;
831 			/* fall through */
832 		case NL80211_IFTYPE_P2P_CLIENT:
833 		case NL80211_IFTYPE_ADHOC:
834 			dev->priv_flags |= IFF_DONT_BRIDGE;
835 			break;
836 		case NL80211_IFTYPE_P2P_GO:
837 		case NL80211_IFTYPE_AP:
838 		case NL80211_IFTYPE_AP_VLAN:
839 		case NL80211_IFTYPE_WDS:
840 		case NL80211_IFTYPE_MESH_POINT:
841 			/* bridging OK */
842 			break;
843 		case NL80211_IFTYPE_MONITOR:
844 			/* monitor can't bridge anyway */
845 			break;
846 		case NL80211_IFTYPE_UNSPECIFIED:
847 		case NUM_NL80211_IFTYPES:
848 			/* not happening */
849 			break;
850 		}
851 	}
852 
853 	return err;
854 }
855 
856 u16 cfg80211_calculate_bitrate(struct rate_info *rate)
857 {
858 	int modulation, streams, bitrate;
859 
860 	if (!(rate->flags & RATE_INFO_FLAGS_MCS))
861 		return rate->legacy;
862 
863 	/* the formula below does only work for MCS values smaller than 32 */
864 	if (rate->mcs >= 32)
865 		return 0;
866 
867 	modulation = rate->mcs & 7;
868 	streams = (rate->mcs >> 3) + 1;
869 
870 	bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
871 			13500000 : 6500000;
872 
873 	if (modulation < 4)
874 		bitrate *= (modulation + 1);
875 	else if (modulation == 4)
876 		bitrate *= (modulation + 2);
877 	else
878 		bitrate *= (modulation + 3);
879 
880 	bitrate *= streams;
881 
882 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
883 		bitrate = (bitrate / 9) * 10;
884 
885 	/* do NOT round down here */
886 	return (bitrate + 50000) / 100000;
887 }
888