xref: /linux/net/openvswitch/actions.c (revision 8dd765a5d769c521d73931850d1c8708fbc490cb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
18 
19 #include <net/dst.h>
20 #include <net/gso.h>
21 #include <net/ip.h>
22 #include <net/ipv6.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
26 #include <net/mpls.h>
27 #include <net/sctp/checksum.h>
28 
29 #include "datapath.h"
30 #include "drop.h"
31 #include "flow.h"
32 #include "conntrack.h"
33 #include "vport.h"
34 #include "flow_netlink.h"
35 #include "openvswitch_trace.h"
36 
37 struct deferred_action {
38 	struct sk_buff *skb;
39 	const struct nlattr *actions;
40 	int actions_len;
41 
42 	/* Store pkt_key clone when creating deferred action. */
43 	struct sw_flow_key pkt_key;
44 };
45 
46 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
47 struct ovs_frag_data {
48 	unsigned long dst;
49 	struct vport *vport;
50 	struct ovs_skb_cb cb;
51 	__be16 inner_protocol;
52 	u16 network_offset;	/* valid only for MPLS */
53 	u16 vlan_tci;
54 	__be16 vlan_proto;
55 	unsigned int l2_len;
56 	u8 mac_proto;
57 	u8 l2_data[MAX_L2_LEN];
58 };
59 
60 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
61 
62 #define DEFERRED_ACTION_FIFO_SIZE 10
63 #define OVS_RECURSION_LIMIT 5
64 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
65 struct action_fifo {
66 	int head;
67 	int tail;
68 	/* Deferred action fifo queue storage. */
69 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
70 };
71 
72 struct action_flow_keys {
73 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
74 };
75 
76 static struct action_fifo __percpu *action_fifos;
77 static struct action_flow_keys __percpu *flow_keys;
78 static DEFINE_PER_CPU(int, exec_actions_level);
79 
80 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
81  * space. Return NULL if out of key spaces.
82  */
83 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
84 {
85 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
86 	int level = this_cpu_read(exec_actions_level);
87 	struct sw_flow_key *key = NULL;
88 
89 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
90 		key = &keys->key[level - 1];
91 		*key = *key_;
92 	}
93 
94 	return key;
95 }
96 
97 static void action_fifo_init(struct action_fifo *fifo)
98 {
99 	fifo->head = 0;
100 	fifo->tail = 0;
101 }
102 
103 static bool action_fifo_is_empty(const struct action_fifo *fifo)
104 {
105 	return (fifo->head == fifo->tail);
106 }
107 
108 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
109 {
110 	if (action_fifo_is_empty(fifo))
111 		return NULL;
112 
113 	return &fifo->fifo[fifo->tail++];
114 }
115 
116 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
117 {
118 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
119 		return NULL;
120 
121 	return &fifo->fifo[fifo->head++];
122 }
123 
124 /* Return true if fifo is not full */
125 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
126 				    const struct sw_flow_key *key,
127 				    const struct nlattr *actions,
128 				    const int actions_len)
129 {
130 	struct action_fifo *fifo;
131 	struct deferred_action *da;
132 
133 	fifo = this_cpu_ptr(action_fifos);
134 	da = action_fifo_put(fifo);
135 	if (da) {
136 		da->skb = skb;
137 		da->actions = actions;
138 		da->actions_len = actions_len;
139 		da->pkt_key = *key;
140 	}
141 
142 	return da;
143 }
144 
145 static void invalidate_flow_key(struct sw_flow_key *key)
146 {
147 	key->mac_proto |= SW_FLOW_KEY_INVALID;
148 }
149 
150 static bool is_flow_key_valid(const struct sw_flow_key *key)
151 {
152 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
153 }
154 
155 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
156 			 struct sw_flow_key *key,
157 			 u32 recirc_id,
158 			 const struct nlattr *actions, int len,
159 			 bool last, bool clone_flow_key);
160 
161 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
162 			      struct sw_flow_key *key,
163 			      const struct nlattr *attr, int len);
164 
165 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
166 		     __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
167 {
168 	int err;
169 
170 	err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
171 	if (err)
172 		return err;
173 
174 	if (!mac_len)
175 		key->mac_proto = MAC_PROTO_NONE;
176 
177 	invalidate_flow_key(key);
178 	return 0;
179 }
180 
181 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
182 		    const __be16 ethertype)
183 {
184 	int err;
185 
186 	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
187 			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
188 	if (err)
189 		return err;
190 
191 	if (ethertype == htons(ETH_P_TEB))
192 		key->mac_proto = MAC_PROTO_ETHERNET;
193 
194 	invalidate_flow_key(key);
195 	return 0;
196 }
197 
198 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
199 		    const __be32 *mpls_lse, const __be32 *mask)
200 {
201 	struct mpls_shim_hdr *stack;
202 	__be32 lse;
203 	int err;
204 
205 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
206 		return -ENOMEM;
207 
208 	stack = mpls_hdr(skb);
209 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
210 	err = skb_mpls_update_lse(skb, lse);
211 	if (err)
212 		return err;
213 
214 	flow_key->mpls.lse[0] = lse;
215 	return 0;
216 }
217 
218 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
219 {
220 	int err;
221 
222 	err = skb_vlan_pop(skb);
223 	if (skb_vlan_tag_present(skb)) {
224 		invalidate_flow_key(key);
225 	} else {
226 		key->eth.vlan.tci = 0;
227 		key->eth.vlan.tpid = 0;
228 	}
229 	return err;
230 }
231 
232 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
233 		     const struct ovs_action_push_vlan *vlan)
234 {
235 	if (skb_vlan_tag_present(skb)) {
236 		invalidate_flow_key(key);
237 	} else {
238 		key->eth.vlan.tci = vlan->vlan_tci;
239 		key->eth.vlan.tpid = vlan->vlan_tpid;
240 	}
241 	return skb_vlan_push(skb, vlan->vlan_tpid,
242 			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
243 }
244 
245 /* 'src' is already properly masked. */
246 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
247 {
248 	u16 *dst = (u16 *)dst_;
249 	const u16 *src = (const u16 *)src_;
250 	const u16 *mask = (const u16 *)mask_;
251 
252 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
253 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
254 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
255 }
256 
257 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
258 			const struct ovs_key_ethernet *key,
259 			const struct ovs_key_ethernet *mask)
260 {
261 	int err;
262 
263 	err = skb_ensure_writable(skb, ETH_HLEN);
264 	if (unlikely(err))
265 		return err;
266 
267 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
268 
269 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
270 			       mask->eth_src);
271 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
272 			       mask->eth_dst);
273 
274 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
275 
276 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
277 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
278 	return 0;
279 }
280 
281 /* pop_eth does not support VLAN packets as this action is never called
282  * for them.
283  */
284 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
285 {
286 	int err;
287 
288 	err = skb_eth_pop(skb);
289 	if (err)
290 		return err;
291 
292 	/* safe right before invalidate_flow_key */
293 	key->mac_proto = MAC_PROTO_NONE;
294 	invalidate_flow_key(key);
295 	return 0;
296 }
297 
298 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
299 		    const struct ovs_action_push_eth *ethh)
300 {
301 	int err;
302 
303 	err = skb_eth_push(skb, ethh->addresses.eth_dst,
304 			   ethh->addresses.eth_src);
305 	if (err)
306 		return err;
307 
308 	/* safe right before invalidate_flow_key */
309 	key->mac_proto = MAC_PROTO_ETHERNET;
310 	invalidate_flow_key(key);
311 	return 0;
312 }
313 
314 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
315 		    const struct nshhdr *nh)
316 {
317 	int err;
318 
319 	err = nsh_push(skb, nh);
320 	if (err)
321 		return err;
322 
323 	/* safe right before invalidate_flow_key */
324 	key->mac_proto = MAC_PROTO_NONE;
325 	invalidate_flow_key(key);
326 	return 0;
327 }
328 
329 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
330 {
331 	int err;
332 
333 	err = nsh_pop(skb);
334 	if (err)
335 		return err;
336 
337 	/* safe right before invalidate_flow_key */
338 	if (skb->protocol == htons(ETH_P_TEB))
339 		key->mac_proto = MAC_PROTO_ETHERNET;
340 	else
341 		key->mac_proto = MAC_PROTO_NONE;
342 	invalidate_flow_key(key);
343 	return 0;
344 }
345 
346 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
347 				  __be32 addr, __be32 new_addr)
348 {
349 	int transport_len = skb->len - skb_transport_offset(skb);
350 
351 	if (nh->frag_off & htons(IP_OFFSET))
352 		return;
353 
354 	if (nh->protocol == IPPROTO_TCP) {
355 		if (likely(transport_len >= sizeof(struct tcphdr)))
356 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
357 						 addr, new_addr, true);
358 	} else if (nh->protocol == IPPROTO_UDP) {
359 		if (likely(transport_len >= sizeof(struct udphdr))) {
360 			struct udphdr *uh = udp_hdr(skb);
361 
362 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
363 				inet_proto_csum_replace4(&uh->check, skb,
364 							 addr, new_addr, true);
365 				if (!uh->check)
366 					uh->check = CSUM_MANGLED_0;
367 			}
368 		}
369 	}
370 }
371 
372 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
373 			__be32 *addr, __be32 new_addr)
374 {
375 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
376 	csum_replace4(&nh->check, *addr, new_addr);
377 	skb_clear_hash(skb);
378 	ovs_ct_clear(skb, NULL);
379 	*addr = new_addr;
380 }
381 
382 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
383 				 __be32 addr[4], const __be32 new_addr[4])
384 {
385 	int transport_len = skb->len - skb_transport_offset(skb);
386 
387 	if (l4_proto == NEXTHDR_TCP) {
388 		if (likely(transport_len >= sizeof(struct tcphdr)))
389 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
390 						  addr, new_addr, true);
391 	} else if (l4_proto == NEXTHDR_UDP) {
392 		if (likely(transport_len >= sizeof(struct udphdr))) {
393 			struct udphdr *uh = udp_hdr(skb);
394 
395 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
396 				inet_proto_csum_replace16(&uh->check, skb,
397 							  addr, new_addr, true);
398 				if (!uh->check)
399 					uh->check = CSUM_MANGLED_0;
400 			}
401 		}
402 	} else if (l4_proto == NEXTHDR_ICMP) {
403 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
404 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
405 						  skb, addr, new_addr, true);
406 	}
407 }
408 
409 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
410 			   const __be32 mask[4], __be32 masked[4])
411 {
412 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
413 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
414 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
415 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
416 }
417 
418 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
419 			  __be32 addr[4], const __be32 new_addr[4],
420 			  bool recalculate_csum)
421 {
422 	if (recalculate_csum)
423 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
424 
425 	skb_clear_hash(skb);
426 	ovs_ct_clear(skb, NULL);
427 	memcpy(addr, new_addr, sizeof(__be32[4]));
428 }
429 
430 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
431 {
432 	u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
433 
434 	ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
435 
436 	if (skb->ip_summed == CHECKSUM_COMPLETE)
437 		csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
438 			     (__force __wsum)(ipv6_tclass << 12));
439 
440 	ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
441 }
442 
443 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
444 {
445 	u32 ofl;
446 
447 	ofl = nh->flow_lbl[0] << 16 |  nh->flow_lbl[1] << 8 |  nh->flow_lbl[2];
448 	fl = OVS_MASKED(ofl, fl, mask);
449 
450 	/* Bits 21-24 are always unmasked, so this retains their values. */
451 	nh->flow_lbl[0] = (u8)(fl >> 16);
452 	nh->flow_lbl[1] = (u8)(fl >> 8);
453 	nh->flow_lbl[2] = (u8)fl;
454 
455 	if (skb->ip_summed == CHECKSUM_COMPLETE)
456 		csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
457 }
458 
459 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
460 {
461 	new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
462 
463 	if (skb->ip_summed == CHECKSUM_COMPLETE)
464 		csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
465 			     (__force __wsum)(new_ttl << 8));
466 	nh->hop_limit = new_ttl;
467 }
468 
469 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
470 		       u8 mask)
471 {
472 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
473 
474 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
475 	nh->ttl = new_ttl;
476 }
477 
478 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
479 		    const struct ovs_key_ipv4 *key,
480 		    const struct ovs_key_ipv4 *mask)
481 {
482 	struct iphdr *nh;
483 	__be32 new_addr;
484 	int err;
485 
486 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
487 				  sizeof(struct iphdr));
488 	if (unlikely(err))
489 		return err;
490 
491 	nh = ip_hdr(skb);
492 
493 	/* Setting an IP addresses is typically only a side effect of
494 	 * matching on them in the current userspace implementation, so it
495 	 * makes sense to check if the value actually changed.
496 	 */
497 	if (mask->ipv4_src) {
498 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
499 
500 		if (unlikely(new_addr != nh->saddr)) {
501 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
502 			flow_key->ipv4.addr.src = new_addr;
503 		}
504 	}
505 	if (mask->ipv4_dst) {
506 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
507 
508 		if (unlikely(new_addr != nh->daddr)) {
509 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
510 			flow_key->ipv4.addr.dst = new_addr;
511 		}
512 	}
513 	if (mask->ipv4_tos) {
514 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
515 		flow_key->ip.tos = nh->tos;
516 	}
517 	if (mask->ipv4_ttl) {
518 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
519 		flow_key->ip.ttl = nh->ttl;
520 	}
521 
522 	return 0;
523 }
524 
525 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
526 {
527 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
528 }
529 
530 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
531 		    const struct ovs_key_ipv6 *key,
532 		    const struct ovs_key_ipv6 *mask)
533 {
534 	struct ipv6hdr *nh;
535 	int err;
536 
537 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
538 				  sizeof(struct ipv6hdr));
539 	if (unlikely(err))
540 		return err;
541 
542 	nh = ipv6_hdr(skb);
543 
544 	/* Setting an IP addresses is typically only a side effect of
545 	 * matching on them in the current userspace implementation, so it
546 	 * makes sense to check if the value actually changed.
547 	 */
548 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
549 		__be32 *saddr = (__be32 *)&nh->saddr;
550 		__be32 masked[4];
551 
552 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
553 
554 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
555 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
556 				      true);
557 			memcpy(&flow_key->ipv6.addr.src, masked,
558 			       sizeof(flow_key->ipv6.addr.src));
559 		}
560 	}
561 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
562 		unsigned int offset = 0;
563 		int flags = IP6_FH_F_SKIP_RH;
564 		bool recalc_csum = true;
565 		__be32 *daddr = (__be32 *)&nh->daddr;
566 		__be32 masked[4];
567 
568 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
569 
570 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
571 			if (ipv6_ext_hdr(nh->nexthdr))
572 				recalc_csum = (ipv6_find_hdr(skb, &offset,
573 							     NEXTHDR_ROUTING,
574 							     NULL, &flags)
575 					       != NEXTHDR_ROUTING);
576 
577 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
578 				      recalc_csum);
579 			memcpy(&flow_key->ipv6.addr.dst, masked,
580 			       sizeof(flow_key->ipv6.addr.dst));
581 		}
582 	}
583 	if (mask->ipv6_tclass) {
584 		set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
585 		flow_key->ip.tos = ipv6_get_dsfield(nh);
586 	}
587 	if (mask->ipv6_label) {
588 		set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
589 			    ntohl(mask->ipv6_label));
590 		flow_key->ipv6.label =
591 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
592 	}
593 	if (mask->ipv6_hlimit) {
594 		set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
595 		flow_key->ip.ttl = nh->hop_limit;
596 	}
597 	return 0;
598 }
599 
600 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
601 		   const struct nlattr *a)
602 {
603 	struct nshhdr *nh;
604 	size_t length;
605 	int err;
606 	u8 flags;
607 	u8 ttl;
608 	int i;
609 
610 	struct ovs_key_nsh key;
611 	struct ovs_key_nsh mask;
612 
613 	err = nsh_key_from_nlattr(a, &key, &mask);
614 	if (err)
615 		return err;
616 
617 	/* Make sure the NSH base header is there */
618 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
619 		return -ENOMEM;
620 
621 	nh = nsh_hdr(skb);
622 	length = nsh_hdr_len(nh);
623 
624 	/* Make sure the whole NSH header is there */
625 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
626 				       length);
627 	if (unlikely(err))
628 		return err;
629 
630 	nh = nsh_hdr(skb);
631 	skb_postpull_rcsum(skb, nh, length);
632 	flags = nsh_get_flags(nh);
633 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
634 	flow_key->nsh.base.flags = flags;
635 	ttl = nsh_get_ttl(nh);
636 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
637 	flow_key->nsh.base.ttl = ttl;
638 	nsh_set_flags_and_ttl(nh, flags, ttl);
639 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
640 				  mask.base.path_hdr);
641 	flow_key->nsh.base.path_hdr = nh->path_hdr;
642 	switch (nh->mdtype) {
643 	case NSH_M_TYPE1:
644 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
645 			nh->md1.context[i] =
646 			    OVS_MASKED(nh->md1.context[i], key.context[i],
647 				       mask.context[i]);
648 		}
649 		memcpy(flow_key->nsh.context, nh->md1.context,
650 		       sizeof(nh->md1.context));
651 		break;
652 	case NSH_M_TYPE2:
653 		memset(flow_key->nsh.context, 0,
654 		       sizeof(flow_key->nsh.context));
655 		break;
656 	default:
657 		return -EINVAL;
658 	}
659 	skb_postpush_rcsum(skb, nh, length);
660 	return 0;
661 }
662 
663 /* Must follow skb_ensure_writable() since that can move the skb data. */
664 static void set_tp_port(struct sk_buff *skb, __be16 *port,
665 			__be16 new_port, __sum16 *check)
666 {
667 	ovs_ct_clear(skb, NULL);
668 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
669 	*port = new_port;
670 }
671 
672 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
673 		   const struct ovs_key_udp *key,
674 		   const struct ovs_key_udp *mask)
675 {
676 	struct udphdr *uh;
677 	__be16 src, dst;
678 	int err;
679 
680 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
681 				  sizeof(struct udphdr));
682 	if (unlikely(err))
683 		return err;
684 
685 	uh = udp_hdr(skb);
686 	/* Either of the masks is non-zero, so do not bother checking them. */
687 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
688 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
689 
690 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
691 		if (likely(src != uh->source)) {
692 			set_tp_port(skb, &uh->source, src, &uh->check);
693 			flow_key->tp.src = src;
694 		}
695 		if (likely(dst != uh->dest)) {
696 			set_tp_port(skb, &uh->dest, dst, &uh->check);
697 			flow_key->tp.dst = dst;
698 		}
699 
700 		if (unlikely(!uh->check))
701 			uh->check = CSUM_MANGLED_0;
702 	} else {
703 		uh->source = src;
704 		uh->dest = dst;
705 		flow_key->tp.src = src;
706 		flow_key->tp.dst = dst;
707 		ovs_ct_clear(skb, NULL);
708 	}
709 
710 	skb_clear_hash(skb);
711 
712 	return 0;
713 }
714 
715 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
716 		   const struct ovs_key_tcp *key,
717 		   const struct ovs_key_tcp *mask)
718 {
719 	struct tcphdr *th;
720 	__be16 src, dst;
721 	int err;
722 
723 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
724 				  sizeof(struct tcphdr));
725 	if (unlikely(err))
726 		return err;
727 
728 	th = tcp_hdr(skb);
729 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
730 	if (likely(src != th->source)) {
731 		set_tp_port(skb, &th->source, src, &th->check);
732 		flow_key->tp.src = src;
733 	}
734 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
735 	if (likely(dst != th->dest)) {
736 		set_tp_port(skb, &th->dest, dst, &th->check);
737 		flow_key->tp.dst = dst;
738 	}
739 	skb_clear_hash(skb);
740 
741 	return 0;
742 }
743 
744 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
745 		    const struct ovs_key_sctp *key,
746 		    const struct ovs_key_sctp *mask)
747 {
748 	unsigned int sctphoff = skb_transport_offset(skb);
749 	struct sctphdr *sh;
750 	__le32 old_correct_csum, new_csum, old_csum;
751 	int err;
752 
753 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
754 	if (unlikely(err))
755 		return err;
756 
757 	sh = sctp_hdr(skb);
758 	old_csum = sh->checksum;
759 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
760 
761 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
762 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
763 
764 	new_csum = sctp_compute_cksum(skb, sctphoff);
765 
766 	/* Carry any checksum errors through. */
767 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
768 
769 	skb_clear_hash(skb);
770 	ovs_ct_clear(skb, NULL);
771 
772 	flow_key->tp.src = sh->source;
773 	flow_key->tp.dst = sh->dest;
774 
775 	return 0;
776 }
777 
778 static int ovs_vport_output(struct net *net, struct sock *sk,
779 			    struct sk_buff *skb)
780 {
781 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
782 	struct vport *vport = data->vport;
783 
784 	if (skb_cow_head(skb, data->l2_len) < 0) {
785 		kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
786 		return -ENOMEM;
787 	}
788 
789 	__skb_dst_copy(skb, data->dst);
790 	*OVS_CB(skb) = data->cb;
791 	skb->inner_protocol = data->inner_protocol;
792 	if (data->vlan_tci & VLAN_CFI_MASK)
793 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
794 	else
795 		__vlan_hwaccel_clear_tag(skb);
796 
797 	/* Reconstruct the MAC header.  */
798 	skb_push(skb, data->l2_len);
799 	memcpy(skb->data, &data->l2_data, data->l2_len);
800 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
801 	skb_reset_mac_header(skb);
802 
803 	if (eth_p_mpls(skb->protocol)) {
804 		skb->inner_network_header = skb->network_header;
805 		skb_set_network_header(skb, data->network_offset);
806 		skb_reset_mac_len(skb);
807 	}
808 
809 	ovs_vport_send(vport, skb, data->mac_proto);
810 	return 0;
811 }
812 
813 static unsigned int
814 ovs_dst_get_mtu(const struct dst_entry *dst)
815 {
816 	return dst->dev->mtu;
817 }
818 
819 static struct dst_ops ovs_dst_ops = {
820 	.family = AF_UNSPEC,
821 	.mtu = ovs_dst_get_mtu,
822 };
823 
824 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
825  * ovs_vport_output(), which is called once per fragmented packet.
826  */
827 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
828 			 u16 orig_network_offset, u8 mac_proto)
829 {
830 	unsigned int hlen = skb_network_offset(skb);
831 	struct ovs_frag_data *data;
832 
833 	data = this_cpu_ptr(&ovs_frag_data_storage);
834 	data->dst = skb->_skb_refdst;
835 	data->vport = vport;
836 	data->cb = *OVS_CB(skb);
837 	data->inner_protocol = skb->inner_protocol;
838 	data->network_offset = orig_network_offset;
839 	if (skb_vlan_tag_present(skb))
840 		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
841 	else
842 		data->vlan_tci = 0;
843 	data->vlan_proto = skb->vlan_proto;
844 	data->mac_proto = mac_proto;
845 	data->l2_len = hlen;
846 	memcpy(&data->l2_data, skb->data, hlen);
847 
848 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
849 	skb_pull(skb, hlen);
850 }
851 
852 static void ovs_fragment(struct net *net, struct vport *vport,
853 			 struct sk_buff *skb, u16 mru,
854 			 struct sw_flow_key *key)
855 {
856 	enum ovs_drop_reason reason;
857 	u16 orig_network_offset = 0;
858 
859 	if (eth_p_mpls(skb->protocol)) {
860 		orig_network_offset = skb_network_offset(skb);
861 		skb->network_header = skb->inner_network_header;
862 	}
863 
864 	if (skb_network_offset(skb) > MAX_L2_LEN) {
865 		OVS_NLERR(1, "L2 header too long to fragment");
866 		reason = OVS_DROP_FRAG_L2_TOO_LONG;
867 		goto err;
868 	}
869 
870 	if (key->eth.type == htons(ETH_P_IP)) {
871 		struct rtable ovs_rt = { 0 };
872 		unsigned long orig_dst;
873 
874 		prepare_frag(vport, skb, orig_network_offset,
875 			     ovs_key_mac_proto(key));
876 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
877 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
878 		ovs_rt.dst.dev = vport->dev;
879 
880 		orig_dst = skb->_skb_refdst;
881 		skb_dst_set_noref(skb, &ovs_rt.dst);
882 		IPCB(skb)->frag_max_size = mru;
883 
884 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
885 		refdst_drop(orig_dst);
886 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
887 		unsigned long orig_dst;
888 		struct rt6_info ovs_rt;
889 
890 		prepare_frag(vport, skb, orig_network_offset,
891 			     ovs_key_mac_proto(key));
892 		memset(&ovs_rt, 0, sizeof(ovs_rt));
893 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
894 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
895 		ovs_rt.dst.dev = vport->dev;
896 
897 		orig_dst = skb->_skb_refdst;
898 		skb_dst_set_noref(skb, &ovs_rt.dst);
899 		IP6CB(skb)->frag_max_size = mru;
900 
901 		ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
902 		refdst_drop(orig_dst);
903 	} else {
904 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
905 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
906 			  vport->dev->mtu);
907 		reason = OVS_DROP_FRAG_INVALID_PROTO;
908 		goto err;
909 	}
910 
911 	return;
912 err:
913 	ovs_kfree_skb_reason(skb, reason);
914 }
915 
916 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
917 		      struct sw_flow_key *key)
918 {
919 	struct vport *vport = ovs_vport_rcu(dp, out_port);
920 
921 	if (likely(vport && netif_carrier_ok(vport->dev))) {
922 		u16 mru = OVS_CB(skb)->mru;
923 		u32 cutlen = OVS_CB(skb)->cutlen;
924 
925 		if (unlikely(cutlen > 0)) {
926 			if (skb->len - cutlen > ovs_mac_header_len(key))
927 				pskb_trim(skb, skb->len - cutlen);
928 			else
929 				pskb_trim(skb, ovs_mac_header_len(key));
930 		}
931 
932 		if (likely(!mru ||
933 		           (skb->len <= mru + vport->dev->hard_header_len))) {
934 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
935 		} else if (mru <= vport->dev->mtu) {
936 			struct net *net = read_pnet(&dp->net);
937 
938 			ovs_fragment(net, vport, skb, mru, key);
939 		} else {
940 			kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
941 		}
942 	} else {
943 		kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
944 	}
945 }
946 
947 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
948 			    struct sw_flow_key *key, const struct nlattr *attr,
949 			    const struct nlattr *actions, int actions_len,
950 			    uint32_t cutlen)
951 {
952 	struct dp_upcall_info upcall;
953 	const struct nlattr *a;
954 	int rem;
955 
956 	memset(&upcall, 0, sizeof(upcall));
957 	upcall.cmd = OVS_PACKET_CMD_ACTION;
958 	upcall.mru = OVS_CB(skb)->mru;
959 
960 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
961 	     a = nla_next(a, &rem)) {
962 		switch (nla_type(a)) {
963 		case OVS_USERSPACE_ATTR_USERDATA:
964 			upcall.userdata = a;
965 			break;
966 
967 		case OVS_USERSPACE_ATTR_PID:
968 			if (dp->user_features &
969 			    OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
970 				upcall.portid =
971 				  ovs_dp_get_upcall_portid(dp,
972 							   smp_processor_id());
973 			else
974 				upcall.portid = nla_get_u32(a);
975 			break;
976 
977 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
978 			/* Get out tunnel info. */
979 			struct vport *vport;
980 
981 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
982 			if (vport) {
983 				int err;
984 
985 				err = dev_fill_metadata_dst(vport->dev, skb);
986 				if (!err)
987 					upcall.egress_tun_info = skb_tunnel_info(skb);
988 			}
989 
990 			break;
991 		}
992 
993 		case OVS_USERSPACE_ATTR_ACTIONS: {
994 			/* Include actions. */
995 			upcall.actions = actions;
996 			upcall.actions_len = actions_len;
997 			break;
998 		}
999 
1000 		} /* End of switch. */
1001 	}
1002 
1003 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1004 }
1005 
1006 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1007 				     struct sw_flow_key *key,
1008 				     const struct nlattr *attr)
1009 {
1010 	/* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1011 	struct nlattr *actions = nla_data(attr);
1012 
1013 	if (nla_len(actions))
1014 		return clone_execute(dp, skb, key, 0, nla_data(actions),
1015 				     nla_len(actions), true, false);
1016 
1017 	ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
1018 	return 0;
1019 }
1020 
1021 /* When 'last' is true, sample() should always consume the 'skb'.
1022  * Otherwise, sample() should keep 'skb' intact regardless what
1023  * actions are executed within sample().
1024  */
1025 static int sample(struct datapath *dp, struct sk_buff *skb,
1026 		  struct sw_flow_key *key, const struct nlattr *attr,
1027 		  bool last)
1028 {
1029 	struct nlattr *actions;
1030 	struct nlattr *sample_arg;
1031 	int rem = nla_len(attr);
1032 	const struct sample_arg *arg;
1033 	bool clone_flow_key;
1034 
1035 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1036 	sample_arg = nla_data(attr);
1037 	arg = nla_data(sample_arg);
1038 	actions = nla_next(sample_arg, &rem);
1039 
1040 	if ((arg->probability != U32_MAX) &&
1041 	    (!arg->probability || get_random_u32() > arg->probability)) {
1042 		if (last)
1043 			ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1044 		return 0;
1045 	}
1046 
1047 	clone_flow_key = !arg->exec;
1048 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1049 			     clone_flow_key);
1050 }
1051 
1052 /* When 'last' is true, clone() should always consume the 'skb'.
1053  * Otherwise, clone() should keep 'skb' intact regardless what
1054  * actions are executed within clone().
1055  */
1056 static int clone(struct datapath *dp, struct sk_buff *skb,
1057 		 struct sw_flow_key *key, const struct nlattr *attr,
1058 		 bool last)
1059 {
1060 	struct nlattr *actions;
1061 	struct nlattr *clone_arg;
1062 	int rem = nla_len(attr);
1063 	bool dont_clone_flow_key;
1064 
1065 	/* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1066 	clone_arg = nla_data(attr);
1067 	dont_clone_flow_key = nla_get_u32(clone_arg);
1068 	actions = nla_next(clone_arg, &rem);
1069 
1070 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1071 			     !dont_clone_flow_key);
1072 }
1073 
1074 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1075 			 const struct nlattr *attr)
1076 {
1077 	struct ovs_action_hash *hash_act = nla_data(attr);
1078 	u32 hash = 0;
1079 
1080 	if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
1081 		/* OVS_HASH_ALG_L4 hasing type. */
1082 		hash = skb_get_hash(skb);
1083 	} else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
1084 		/* OVS_HASH_ALG_SYM_L4 hashing type.  NOTE: this doesn't
1085 		 * extend past an encapsulated header.
1086 		 */
1087 		hash = __skb_get_hash_symmetric(skb);
1088 	}
1089 
1090 	hash = jhash_1word(hash, hash_act->hash_basis);
1091 	if (!hash)
1092 		hash = 0x1;
1093 
1094 	key->ovs_flow_hash = hash;
1095 }
1096 
1097 static int execute_set_action(struct sk_buff *skb,
1098 			      struct sw_flow_key *flow_key,
1099 			      const struct nlattr *a)
1100 {
1101 	/* Only tunnel set execution is supported without a mask. */
1102 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1103 		struct ovs_tunnel_info *tun = nla_data(a);
1104 
1105 		skb_dst_drop(skb);
1106 		dst_hold((struct dst_entry *)tun->tun_dst);
1107 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1108 		return 0;
1109 	}
1110 
1111 	return -EINVAL;
1112 }
1113 
1114 /* Mask is at the midpoint of the data. */
1115 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1116 
1117 static int execute_masked_set_action(struct sk_buff *skb,
1118 				     struct sw_flow_key *flow_key,
1119 				     const struct nlattr *a)
1120 {
1121 	int err = 0;
1122 
1123 	switch (nla_type(a)) {
1124 	case OVS_KEY_ATTR_PRIORITY:
1125 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1126 			       *get_mask(a, u32 *));
1127 		flow_key->phy.priority = skb->priority;
1128 		break;
1129 
1130 	case OVS_KEY_ATTR_SKB_MARK:
1131 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1132 		flow_key->phy.skb_mark = skb->mark;
1133 		break;
1134 
1135 	case OVS_KEY_ATTR_TUNNEL_INFO:
1136 		/* Masked data not supported for tunnel. */
1137 		err = -EINVAL;
1138 		break;
1139 
1140 	case OVS_KEY_ATTR_ETHERNET:
1141 		err = set_eth_addr(skb, flow_key, nla_data(a),
1142 				   get_mask(a, struct ovs_key_ethernet *));
1143 		break;
1144 
1145 	case OVS_KEY_ATTR_NSH:
1146 		err = set_nsh(skb, flow_key, a);
1147 		break;
1148 
1149 	case OVS_KEY_ATTR_IPV4:
1150 		err = set_ipv4(skb, flow_key, nla_data(a),
1151 			       get_mask(a, struct ovs_key_ipv4 *));
1152 		break;
1153 
1154 	case OVS_KEY_ATTR_IPV6:
1155 		err = set_ipv6(skb, flow_key, nla_data(a),
1156 			       get_mask(a, struct ovs_key_ipv6 *));
1157 		break;
1158 
1159 	case OVS_KEY_ATTR_TCP:
1160 		err = set_tcp(skb, flow_key, nla_data(a),
1161 			      get_mask(a, struct ovs_key_tcp *));
1162 		break;
1163 
1164 	case OVS_KEY_ATTR_UDP:
1165 		err = set_udp(skb, flow_key, nla_data(a),
1166 			      get_mask(a, struct ovs_key_udp *));
1167 		break;
1168 
1169 	case OVS_KEY_ATTR_SCTP:
1170 		err = set_sctp(skb, flow_key, nla_data(a),
1171 			       get_mask(a, struct ovs_key_sctp *));
1172 		break;
1173 
1174 	case OVS_KEY_ATTR_MPLS:
1175 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1176 								    __be32 *));
1177 		break;
1178 
1179 	case OVS_KEY_ATTR_CT_STATE:
1180 	case OVS_KEY_ATTR_CT_ZONE:
1181 	case OVS_KEY_ATTR_CT_MARK:
1182 	case OVS_KEY_ATTR_CT_LABELS:
1183 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1184 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1185 		err = -EINVAL;
1186 		break;
1187 	}
1188 
1189 	return err;
1190 }
1191 
1192 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1193 			  struct sw_flow_key *key,
1194 			  const struct nlattr *a, bool last)
1195 {
1196 	u32 recirc_id;
1197 
1198 	if (!is_flow_key_valid(key)) {
1199 		int err;
1200 
1201 		err = ovs_flow_key_update(skb, key);
1202 		if (err)
1203 			return err;
1204 	}
1205 	BUG_ON(!is_flow_key_valid(key));
1206 
1207 	recirc_id = nla_get_u32(a);
1208 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1209 }
1210 
1211 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1212 				 struct sw_flow_key *key,
1213 				 const struct nlattr *attr, bool last)
1214 {
1215 	struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1216 	const struct nlattr *actions, *cpl_arg;
1217 	int len, max_len, rem = nla_len(attr);
1218 	const struct check_pkt_len_arg *arg;
1219 	bool clone_flow_key;
1220 
1221 	/* The first netlink attribute in 'attr' is always
1222 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1223 	 */
1224 	cpl_arg = nla_data(attr);
1225 	arg = nla_data(cpl_arg);
1226 
1227 	len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1228 	max_len = arg->pkt_len;
1229 
1230 	if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1231 	    len <= max_len) {
1232 		/* Second netlink attribute in 'attr' is always
1233 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1234 		 */
1235 		actions = nla_next(cpl_arg, &rem);
1236 		clone_flow_key = !arg->exec_for_lesser_equal;
1237 	} else {
1238 		/* Third netlink attribute in 'attr' is always
1239 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1240 		 */
1241 		actions = nla_next(cpl_arg, &rem);
1242 		actions = nla_next(actions, &rem);
1243 		clone_flow_key = !arg->exec_for_greater;
1244 	}
1245 
1246 	return clone_execute(dp, skb, key, 0, nla_data(actions),
1247 			     nla_len(actions), last, clone_flow_key);
1248 }
1249 
1250 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1251 {
1252 	int err;
1253 
1254 	if (skb->protocol == htons(ETH_P_IPV6)) {
1255 		struct ipv6hdr *nh;
1256 
1257 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1258 					  sizeof(*nh));
1259 		if (unlikely(err))
1260 			return err;
1261 
1262 		nh = ipv6_hdr(skb);
1263 
1264 		if (nh->hop_limit <= 1)
1265 			return -EHOSTUNREACH;
1266 
1267 		key->ip.ttl = --nh->hop_limit;
1268 	} else if (skb->protocol == htons(ETH_P_IP)) {
1269 		struct iphdr *nh;
1270 		u8 old_ttl;
1271 
1272 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1273 					  sizeof(*nh));
1274 		if (unlikely(err))
1275 			return err;
1276 
1277 		nh = ip_hdr(skb);
1278 		if (nh->ttl <= 1)
1279 			return -EHOSTUNREACH;
1280 
1281 		old_ttl = nh->ttl--;
1282 		csum_replace2(&nh->check, htons(old_ttl << 8),
1283 			      htons(nh->ttl << 8));
1284 		key->ip.ttl = nh->ttl;
1285 	}
1286 	return 0;
1287 }
1288 
1289 /* Execute a list of actions against 'skb'. */
1290 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1291 			      struct sw_flow_key *key,
1292 			      const struct nlattr *attr, int len)
1293 {
1294 	const struct nlattr *a;
1295 	int rem;
1296 
1297 	for (a = attr, rem = len; rem > 0;
1298 	     a = nla_next(a, &rem)) {
1299 		int err = 0;
1300 
1301 		if (trace_ovs_do_execute_action_enabled())
1302 			trace_ovs_do_execute_action(dp, skb, key, a, rem);
1303 
1304 		/* Actions that rightfully have to consume the skb should do it
1305 		 * and return directly.
1306 		 */
1307 		switch (nla_type(a)) {
1308 		case OVS_ACTION_ATTR_OUTPUT: {
1309 			int port = nla_get_u32(a);
1310 			struct sk_buff *clone;
1311 
1312 			/* Every output action needs a separate clone
1313 			 * of 'skb', In case the output action is the
1314 			 * last action, cloning can be avoided.
1315 			 */
1316 			if (nla_is_last(a, rem)) {
1317 				do_output(dp, skb, port, key);
1318 				/* 'skb' has been used for output.
1319 				 */
1320 				return 0;
1321 			}
1322 
1323 			clone = skb_clone(skb, GFP_ATOMIC);
1324 			if (clone)
1325 				do_output(dp, clone, port, key);
1326 			OVS_CB(skb)->cutlen = 0;
1327 			break;
1328 		}
1329 
1330 		case OVS_ACTION_ATTR_TRUNC: {
1331 			struct ovs_action_trunc *trunc = nla_data(a);
1332 
1333 			if (skb->len > trunc->max_len)
1334 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1335 			break;
1336 		}
1337 
1338 		case OVS_ACTION_ATTR_USERSPACE:
1339 			output_userspace(dp, skb, key, a, attr,
1340 						     len, OVS_CB(skb)->cutlen);
1341 			OVS_CB(skb)->cutlen = 0;
1342 			if (nla_is_last(a, rem)) {
1343 				consume_skb(skb);
1344 				return 0;
1345 			}
1346 			break;
1347 
1348 		case OVS_ACTION_ATTR_HASH:
1349 			execute_hash(skb, key, a);
1350 			break;
1351 
1352 		case OVS_ACTION_ATTR_PUSH_MPLS: {
1353 			struct ovs_action_push_mpls *mpls = nla_data(a);
1354 
1355 			err = push_mpls(skb, key, mpls->mpls_lse,
1356 					mpls->mpls_ethertype, skb->mac_len);
1357 			break;
1358 		}
1359 		case OVS_ACTION_ATTR_ADD_MPLS: {
1360 			struct ovs_action_add_mpls *mpls = nla_data(a);
1361 			__u16 mac_len = 0;
1362 
1363 			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1364 				mac_len = skb->mac_len;
1365 
1366 			err = push_mpls(skb, key, mpls->mpls_lse,
1367 					mpls->mpls_ethertype, mac_len);
1368 			break;
1369 		}
1370 		case OVS_ACTION_ATTR_POP_MPLS:
1371 			err = pop_mpls(skb, key, nla_get_be16(a));
1372 			break;
1373 
1374 		case OVS_ACTION_ATTR_PUSH_VLAN:
1375 			err = push_vlan(skb, key, nla_data(a));
1376 			break;
1377 
1378 		case OVS_ACTION_ATTR_POP_VLAN:
1379 			err = pop_vlan(skb, key);
1380 			break;
1381 
1382 		case OVS_ACTION_ATTR_RECIRC: {
1383 			bool last = nla_is_last(a, rem);
1384 
1385 			err = execute_recirc(dp, skb, key, a, last);
1386 			if (last) {
1387 				/* If this is the last action, the skb has
1388 				 * been consumed or freed.
1389 				 * Return immediately.
1390 				 */
1391 				return err;
1392 			}
1393 			break;
1394 		}
1395 
1396 		case OVS_ACTION_ATTR_SET:
1397 			err = execute_set_action(skb, key, nla_data(a));
1398 			break;
1399 
1400 		case OVS_ACTION_ATTR_SET_MASKED:
1401 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1402 			err = execute_masked_set_action(skb, key, nla_data(a));
1403 			break;
1404 
1405 		case OVS_ACTION_ATTR_SAMPLE: {
1406 			bool last = nla_is_last(a, rem);
1407 
1408 			err = sample(dp, skb, key, a, last);
1409 			if (last)
1410 				return err;
1411 
1412 			break;
1413 		}
1414 
1415 		case OVS_ACTION_ATTR_CT:
1416 			if (!is_flow_key_valid(key)) {
1417 				err = ovs_flow_key_update(skb, key);
1418 				if (err)
1419 					return err;
1420 			}
1421 
1422 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1423 					     nla_data(a));
1424 
1425 			/* Hide stolen IP fragments from user space. */
1426 			if (err)
1427 				return err == -EINPROGRESS ? 0 : err;
1428 			break;
1429 
1430 		case OVS_ACTION_ATTR_CT_CLEAR:
1431 			err = ovs_ct_clear(skb, key);
1432 			break;
1433 
1434 		case OVS_ACTION_ATTR_PUSH_ETH:
1435 			err = push_eth(skb, key, nla_data(a));
1436 			break;
1437 
1438 		case OVS_ACTION_ATTR_POP_ETH:
1439 			err = pop_eth(skb, key);
1440 			break;
1441 
1442 		case OVS_ACTION_ATTR_PUSH_NSH: {
1443 			u8 buffer[NSH_HDR_MAX_LEN];
1444 			struct nshhdr *nh = (struct nshhdr *)buffer;
1445 
1446 			err = nsh_hdr_from_nlattr(nla_data(a), nh,
1447 						  NSH_HDR_MAX_LEN);
1448 			if (unlikely(err))
1449 				break;
1450 			err = push_nsh(skb, key, nh);
1451 			break;
1452 		}
1453 
1454 		case OVS_ACTION_ATTR_POP_NSH:
1455 			err = pop_nsh(skb, key);
1456 			break;
1457 
1458 		case OVS_ACTION_ATTR_METER:
1459 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1460 				ovs_kfree_skb_reason(skb, OVS_DROP_METER);
1461 				return 0;
1462 			}
1463 			break;
1464 
1465 		case OVS_ACTION_ATTR_CLONE: {
1466 			bool last = nla_is_last(a, rem);
1467 
1468 			err = clone(dp, skb, key, a, last);
1469 			if (last)
1470 				return err;
1471 
1472 			break;
1473 		}
1474 
1475 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1476 			bool last = nla_is_last(a, rem);
1477 
1478 			err = execute_check_pkt_len(dp, skb, key, a, last);
1479 			if (last)
1480 				return err;
1481 
1482 			break;
1483 		}
1484 
1485 		case OVS_ACTION_ATTR_DEC_TTL:
1486 			err = execute_dec_ttl(skb, key);
1487 			if (err == -EHOSTUNREACH)
1488 				return dec_ttl_exception_handler(dp, skb,
1489 								 key, a);
1490 			break;
1491 
1492 		case OVS_ACTION_ATTR_DROP: {
1493 			enum ovs_drop_reason reason = nla_get_u32(a)
1494 				? OVS_DROP_EXPLICIT_WITH_ERROR
1495 				: OVS_DROP_EXPLICIT;
1496 
1497 			ovs_kfree_skb_reason(skb, reason);
1498 			return 0;
1499 		}
1500 		}
1501 
1502 		if (unlikely(err)) {
1503 			ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
1504 			return err;
1505 		}
1506 	}
1507 
1508 	ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1509 	return 0;
1510 }
1511 
1512 /* Execute the actions on the clone of the packet. The effect of the
1513  * execution does not affect the original 'skb' nor the original 'key'.
1514  *
1515  * The execution may be deferred in case the actions can not be executed
1516  * immediately.
1517  */
1518 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1519 			 struct sw_flow_key *key, u32 recirc_id,
1520 			 const struct nlattr *actions, int len,
1521 			 bool last, bool clone_flow_key)
1522 {
1523 	struct deferred_action *da;
1524 	struct sw_flow_key *clone;
1525 
1526 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1527 	if (!skb) {
1528 		/* Out of memory, skip this action.
1529 		 */
1530 		return 0;
1531 	}
1532 
1533 	/* When clone_flow_key is false, the 'key' will not be change
1534 	 * by the actions, then the 'key' can be used directly.
1535 	 * Otherwise, try to clone key from the next recursion level of
1536 	 * 'flow_keys'. If clone is successful, execute the actions
1537 	 * without deferring.
1538 	 */
1539 	clone = clone_flow_key ? clone_key(key) : key;
1540 	if (clone) {
1541 		int err = 0;
1542 
1543 		if (actions) { /* Sample action */
1544 			if (clone_flow_key)
1545 				__this_cpu_inc(exec_actions_level);
1546 
1547 			err = do_execute_actions(dp, skb, clone,
1548 						 actions, len);
1549 
1550 			if (clone_flow_key)
1551 				__this_cpu_dec(exec_actions_level);
1552 		} else { /* Recirc action */
1553 			clone->recirc_id = recirc_id;
1554 			ovs_dp_process_packet(skb, clone);
1555 		}
1556 		return err;
1557 	}
1558 
1559 	/* Out of 'flow_keys' space. Defer actions */
1560 	da = add_deferred_actions(skb, key, actions, len);
1561 	if (da) {
1562 		if (!actions) { /* Recirc action */
1563 			key = &da->pkt_key;
1564 			key->recirc_id = recirc_id;
1565 		}
1566 	} else {
1567 		/* Out of per CPU action FIFO space. Drop the 'skb' and
1568 		 * log an error.
1569 		 */
1570 		ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
1571 
1572 		if (net_ratelimit()) {
1573 			if (actions) { /* Sample action */
1574 				pr_warn("%s: deferred action limit reached, drop sample action\n",
1575 					ovs_dp_name(dp));
1576 			} else {  /* Recirc action */
1577 				pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1578 					ovs_dp_name(dp), recirc_id);
1579 			}
1580 		}
1581 	}
1582 	return 0;
1583 }
1584 
1585 static void process_deferred_actions(struct datapath *dp)
1586 {
1587 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1588 
1589 	/* Do not touch the FIFO in case there is no deferred actions. */
1590 	if (action_fifo_is_empty(fifo))
1591 		return;
1592 
1593 	/* Finishing executing all deferred actions. */
1594 	do {
1595 		struct deferred_action *da = action_fifo_get(fifo);
1596 		struct sk_buff *skb = da->skb;
1597 		struct sw_flow_key *key = &da->pkt_key;
1598 		const struct nlattr *actions = da->actions;
1599 		int actions_len = da->actions_len;
1600 
1601 		if (actions)
1602 			do_execute_actions(dp, skb, key, actions, actions_len);
1603 		else
1604 			ovs_dp_process_packet(skb, key);
1605 	} while (!action_fifo_is_empty(fifo));
1606 
1607 	/* Reset FIFO for the next packet.  */
1608 	action_fifo_init(fifo);
1609 }
1610 
1611 /* Execute a list of actions against 'skb'. */
1612 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1613 			const struct sw_flow_actions *acts,
1614 			struct sw_flow_key *key)
1615 {
1616 	int err, level;
1617 
1618 	level = __this_cpu_inc_return(exec_actions_level);
1619 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1620 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1621 				     ovs_dp_name(dp));
1622 		ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
1623 		err = -ENETDOWN;
1624 		goto out;
1625 	}
1626 
1627 	OVS_CB(skb)->acts_origlen = acts->orig_len;
1628 	err = do_execute_actions(dp, skb, key,
1629 				 acts->actions, acts->actions_len);
1630 
1631 	if (level == 1)
1632 		process_deferred_actions(dp);
1633 
1634 out:
1635 	__this_cpu_dec(exec_actions_level);
1636 	return err;
1637 }
1638 
1639 int action_fifos_init(void)
1640 {
1641 	action_fifos = alloc_percpu(struct action_fifo);
1642 	if (!action_fifos)
1643 		return -ENOMEM;
1644 
1645 	flow_keys = alloc_percpu(struct action_flow_keys);
1646 	if (!flow_keys) {
1647 		free_percpu(action_fifos);
1648 		return -ENOMEM;
1649 	}
1650 
1651 	return 0;
1652 }
1653 
1654 void action_fifos_exit(void)
1655 {
1656 	free_percpu(action_fifos);
1657 	free_percpu(flow_keys);
1658 }
1659