xref: /linux/net/netfilter/nf_conntrack_core.c (revision ab520be8cd5d56867fc95cfbc34b90880faf1f9d)
1 /* Connection state tracking for netfilter.  This is separated from,
2    but required by, the NAT layer; it can also be used by an iptables
3    extension. */
4 
5 /* (C) 1999-2001 Paul `Rusty' Russell
6  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/types.h>
18 #include <linux/netfilter.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/skbuff.h>
22 #include <linux/proc_fs.h>
23 #include <linux/vmalloc.h>
24 #include <linux/stddef.h>
25 #include <linux/slab.h>
26 #include <linux/random.h>
27 #include <linux/jhash.h>
28 #include <linux/err.h>
29 #include <linux/percpu.h>
30 #include <linux/moduleparam.h>
31 #include <linux/notifier.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/socket.h>
35 #include <linux/mm.h>
36 #include <linux/nsproxy.h>
37 #include <linux/rculist_nulls.h>
38 
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/netfilter/nf_conntrack_l3proto.h>
41 #include <net/netfilter/nf_conntrack_l4proto.h>
42 #include <net/netfilter/nf_conntrack_expect.h>
43 #include <net/netfilter/nf_conntrack_helper.h>
44 #include <net/netfilter/nf_conntrack_seqadj.h>
45 #include <net/netfilter/nf_conntrack_core.h>
46 #include <net/netfilter/nf_conntrack_extend.h>
47 #include <net/netfilter/nf_conntrack_acct.h>
48 #include <net/netfilter/nf_conntrack_ecache.h>
49 #include <net/netfilter/nf_conntrack_zones.h>
50 #include <net/netfilter/nf_conntrack_timestamp.h>
51 #include <net/netfilter/nf_conntrack_timeout.h>
52 #include <net/netfilter/nf_conntrack_labels.h>
53 #include <net/netfilter/nf_conntrack_synproxy.h>
54 #include <net/netfilter/nf_nat.h>
55 #include <net/netfilter/nf_nat_core.h>
56 #include <net/netfilter/nf_nat_helper.h>
57 #include <net/netns/hash.h>
58 
59 #define NF_CONNTRACK_VERSION	"0.5.0"
60 
61 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
62 				      enum nf_nat_manip_type manip,
63 				      const struct nlattr *attr) __read_mostly;
64 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
65 
66 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
67 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
68 
69 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
70 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
71 
72 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
73 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
74 
75 struct conntrack_gc_work {
76 	struct delayed_work	dwork;
77 	u32			last_bucket;
78 	bool			exiting;
79 	long			next_gc_run;
80 };
81 
82 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
83 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
84 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
85 static __read_mostly bool nf_conntrack_locks_all;
86 
87 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
88 #define GC_MAX_BUCKETS_DIV	128u
89 /* upper bound of full table scan */
90 #define GC_MAX_SCAN_JIFFIES	(16u * HZ)
91 /* desired ratio of entries found to be expired */
92 #define GC_EVICT_RATIO	50u
93 
94 static struct conntrack_gc_work conntrack_gc_work;
95 
96 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
97 {
98 	spin_lock(lock);
99 	while (unlikely(nf_conntrack_locks_all)) {
100 		spin_unlock(lock);
101 
102 		/*
103 		 * Order the 'nf_conntrack_locks_all' load vs. the
104 		 * spin_unlock_wait() loads below, to ensure
105 		 * that 'nf_conntrack_locks_all_lock' is indeed held:
106 		 */
107 		smp_rmb(); /* spin_lock(&nf_conntrack_locks_all_lock) */
108 		spin_unlock_wait(&nf_conntrack_locks_all_lock);
109 		spin_lock(lock);
110 	}
111 }
112 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
113 
114 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
115 {
116 	h1 %= CONNTRACK_LOCKS;
117 	h2 %= CONNTRACK_LOCKS;
118 	spin_unlock(&nf_conntrack_locks[h1]);
119 	if (h1 != h2)
120 		spin_unlock(&nf_conntrack_locks[h2]);
121 }
122 
123 /* return true if we need to recompute hashes (in case hash table was resized) */
124 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
125 				     unsigned int h2, unsigned int sequence)
126 {
127 	h1 %= CONNTRACK_LOCKS;
128 	h2 %= CONNTRACK_LOCKS;
129 	if (h1 <= h2) {
130 		nf_conntrack_lock(&nf_conntrack_locks[h1]);
131 		if (h1 != h2)
132 			spin_lock_nested(&nf_conntrack_locks[h2],
133 					 SINGLE_DEPTH_NESTING);
134 	} else {
135 		nf_conntrack_lock(&nf_conntrack_locks[h2]);
136 		spin_lock_nested(&nf_conntrack_locks[h1],
137 				 SINGLE_DEPTH_NESTING);
138 	}
139 	if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
140 		nf_conntrack_double_unlock(h1, h2);
141 		return true;
142 	}
143 	return false;
144 }
145 
146 static void nf_conntrack_all_lock(void)
147 {
148 	int i;
149 
150 	spin_lock(&nf_conntrack_locks_all_lock);
151 	nf_conntrack_locks_all = true;
152 
153 	/*
154 	 * Order the above store of 'nf_conntrack_locks_all' against
155 	 * the spin_unlock_wait() loads below, such that if
156 	 * nf_conntrack_lock() observes 'nf_conntrack_locks_all'
157 	 * we must observe nf_conntrack_locks[] held:
158 	 */
159 	smp_mb(); /* spin_lock(&nf_conntrack_locks_all_lock) */
160 
161 	for (i = 0; i < CONNTRACK_LOCKS; i++) {
162 		spin_unlock_wait(&nf_conntrack_locks[i]);
163 	}
164 }
165 
166 static void nf_conntrack_all_unlock(void)
167 {
168 	/*
169 	 * All prior stores must be complete before we clear
170 	 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
171 	 * might observe the false value but not the entire
172 	 * critical section:
173 	 */
174 	smp_store_release(&nf_conntrack_locks_all, false);
175 	spin_unlock(&nf_conntrack_locks_all_lock);
176 }
177 
178 unsigned int nf_conntrack_htable_size __read_mostly;
179 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
180 
181 unsigned int nf_conntrack_max __read_mostly;
182 seqcount_t nf_conntrack_generation __read_mostly;
183 
184 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
185 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
186 
187 static unsigned int nf_conntrack_hash_rnd __read_mostly;
188 
189 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
190 			      const struct net *net)
191 {
192 	unsigned int n;
193 	u32 seed;
194 
195 	get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
196 
197 	/* The direction must be ignored, so we hash everything up to the
198 	 * destination ports (which is a multiple of 4) and treat the last
199 	 * three bytes manually.
200 	 */
201 	seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
202 	n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
203 	return jhash2((u32 *)tuple, n, seed ^
204 		      (((__force __u16)tuple->dst.u.all << 16) |
205 		      tuple->dst.protonum));
206 }
207 
208 static u32 scale_hash(u32 hash)
209 {
210 	return reciprocal_scale(hash, nf_conntrack_htable_size);
211 }
212 
213 static u32 __hash_conntrack(const struct net *net,
214 			    const struct nf_conntrack_tuple *tuple,
215 			    unsigned int size)
216 {
217 	return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
218 }
219 
220 static u32 hash_conntrack(const struct net *net,
221 			  const struct nf_conntrack_tuple *tuple)
222 {
223 	return scale_hash(hash_conntrack_raw(tuple, net));
224 }
225 
226 bool
227 nf_ct_get_tuple(const struct sk_buff *skb,
228 		unsigned int nhoff,
229 		unsigned int dataoff,
230 		u_int16_t l3num,
231 		u_int8_t protonum,
232 		struct net *net,
233 		struct nf_conntrack_tuple *tuple,
234 		const struct nf_conntrack_l3proto *l3proto,
235 		const struct nf_conntrack_l4proto *l4proto)
236 {
237 	memset(tuple, 0, sizeof(*tuple));
238 
239 	tuple->src.l3num = l3num;
240 	if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
241 		return false;
242 
243 	tuple->dst.protonum = protonum;
244 	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
245 
246 	return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
247 }
248 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
249 
250 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
251 		       u_int16_t l3num,
252 		       struct net *net, struct nf_conntrack_tuple *tuple)
253 {
254 	struct nf_conntrack_l3proto *l3proto;
255 	struct nf_conntrack_l4proto *l4proto;
256 	unsigned int protoff;
257 	u_int8_t protonum;
258 	int ret;
259 
260 	rcu_read_lock();
261 
262 	l3proto = __nf_ct_l3proto_find(l3num);
263 	ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
264 	if (ret != NF_ACCEPT) {
265 		rcu_read_unlock();
266 		return false;
267 	}
268 
269 	l4proto = __nf_ct_l4proto_find(l3num, protonum);
270 
271 	ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple,
272 			      l3proto, l4proto);
273 
274 	rcu_read_unlock();
275 	return ret;
276 }
277 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
278 
279 bool
280 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
281 		   const struct nf_conntrack_tuple *orig,
282 		   const struct nf_conntrack_l3proto *l3proto,
283 		   const struct nf_conntrack_l4proto *l4proto)
284 {
285 	memset(inverse, 0, sizeof(*inverse));
286 
287 	inverse->src.l3num = orig->src.l3num;
288 	if (l3proto->invert_tuple(inverse, orig) == 0)
289 		return false;
290 
291 	inverse->dst.dir = !orig->dst.dir;
292 
293 	inverse->dst.protonum = orig->dst.protonum;
294 	return l4proto->invert_tuple(inverse, orig);
295 }
296 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
297 
298 static void
299 clean_from_lists(struct nf_conn *ct)
300 {
301 	pr_debug("clean_from_lists(%p)\n", ct);
302 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
303 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
304 
305 	/* Destroy all pending expectations */
306 	nf_ct_remove_expectations(ct);
307 }
308 
309 /* must be called with local_bh_disable */
310 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
311 {
312 	struct ct_pcpu *pcpu;
313 
314 	/* add this conntrack to the (per cpu) dying list */
315 	ct->cpu = smp_processor_id();
316 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
317 
318 	spin_lock(&pcpu->lock);
319 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
320 			     &pcpu->dying);
321 	spin_unlock(&pcpu->lock);
322 }
323 
324 /* must be called with local_bh_disable */
325 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
326 {
327 	struct ct_pcpu *pcpu;
328 
329 	/* add this conntrack to the (per cpu) unconfirmed list */
330 	ct->cpu = smp_processor_id();
331 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
332 
333 	spin_lock(&pcpu->lock);
334 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
335 			     &pcpu->unconfirmed);
336 	spin_unlock(&pcpu->lock);
337 }
338 
339 /* must be called with local_bh_disable */
340 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
341 {
342 	struct ct_pcpu *pcpu;
343 
344 	/* We overload first tuple to link into unconfirmed or dying list.*/
345 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
346 
347 	spin_lock(&pcpu->lock);
348 	BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
349 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
350 	spin_unlock(&pcpu->lock);
351 }
352 
353 /* Released via destroy_conntrack() */
354 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
355 				 const struct nf_conntrack_zone *zone,
356 				 gfp_t flags)
357 {
358 	struct nf_conn *tmpl;
359 
360 	tmpl = kzalloc(sizeof(*tmpl), flags);
361 	if (tmpl == NULL)
362 		return NULL;
363 
364 	tmpl->status = IPS_TEMPLATE;
365 	write_pnet(&tmpl->ct_net, net);
366 	nf_ct_zone_add(tmpl, zone);
367 	atomic_set(&tmpl->ct_general.use, 0);
368 
369 	return tmpl;
370 }
371 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
372 
373 void nf_ct_tmpl_free(struct nf_conn *tmpl)
374 {
375 	nf_ct_ext_destroy(tmpl);
376 	nf_ct_ext_free(tmpl);
377 	kfree(tmpl);
378 }
379 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
380 
381 static void
382 destroy_conntrack(struct nf_conntrack *nfct)
383 {
384 	struct nf_conn *ct = (struct nf_conn *)nfct;
385 	struct nf_conntrack_l4proto *l4proto;
386 
387 	pr_debug("destroy_conntrack(%p)\n", ct);
388 	NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
389 
390 	if (unlikely(nf_ct_is_template(ct))) {
391 		nf_ct_tmpl_free(ct);
392 		return;
393 	}
394 	rcu_read_lock();
395 	l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
396 	if (l4proto->destroy)
397 		l4proto->destroy(ct);
398 
399 	rcu_read_unlock();
400 
401 	local_bh_disable();
402 	/* Expectations will have been removed in clean_from_lists,
403 	 * except TFTP can create an expectation on the first packet,
404 	 * before connection is in the list, so we need to clean here,
405 	 * too.
406 	 */
407 	nf_ct_remove_expectations(ct);
408 
409 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
410 
411 	local_bh_enable();
412 
413 	if (ct->master)
414 		nf_ct_put(ct->master);
415 
416 	pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
417 	nf_conntrack_free(ct);
418 }
419 
420 static void nf_ct_delete_from_lists(struct nf_conn *ct)
421 {
422 	struct net *net = nf_ct_net(ct);
423 	unsigned int hash, reply_hash;
424 	unsigned int sequence;
425 
426 	nf_ct_helper_destroy(ct);
427 
428 	local_bh_disable();
429 	do {
430 		sequence = read_seqcount_begin(&nf_conntrack_generation);
431 		hash = hash_conntrack(net,
432 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
433 		reply_hash = hash_conntrack(net,
434 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
435 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
436 
437 	clean_from_lists(ct);
438 	nf_conntrack_double_unlock(hash, reply_hash);
439 
440 	nf_ct_add_to_dying_list(ct);
441 
442 	local_bh_enable();
443 }
444 
445 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
446 {
447 	struct nf_conn_tstamp *tstamp;
448 
449 	if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
450 		return false;
451 
452 	tstamp = nf_conn_tstamp_find(ct);
453 	if (tstamp && tstamp->stop == 0)
454 		tstamp->stop = ktime_get_real_ns();
455 
456 	if (nf_conntrack_event_report(IPCT_DESTROY, ct,
457 				    portid, report) < 0) {
458 		/* destroy event was not delivered. nf_ct_put will
459 		 * be done by event cache worker on redelivery.
460 		 */
461 		nf_ct_delete_from_lists(ct);
462 		nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
463 		return false;
464 	}
465 
466 	nf_conntrack_ecache_work(nf_ct_net(ct));
467 	nf_ct_delete_from_lists(ct);
468 	nf_ct_put(ct);
469 	return true;
470 }
471 EXPORT_SYMBOL_GPL(nf_ct_delete);
472 
473 static inline bool
474 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
475 		const struct nf_conntrack_tuple *tuple,
476 		const struct nf_conntrack_zone *zone,
477 		const struct net *net)
478 {
479 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
480 
481 	/* A conntrack can be recreated with the equal tuple,
482 	 * so we need to check that the conntrack is confirmed
483 	 */
484 	return nf_ct_tuple_equal(tuple, &h->tuple) &&
485 	       nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
486 	       nf_ct_is_confirmed(ct) &&
487 	       net_eq(net, nf_ct_net(ct));
488 }
489 
490 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
491 static void nf_ct_gc_expired(struct nf_conn *ct)
492 {
493 	if (!atomic_inc_not_zero(&ct->ct_general.use))
494 		return;
495 
496 	if (nf_ct_should_gc(ct))
497 		nf_ct_kill(ct);
498 
499 	nf_ct_put(ct);
500 }
501 
502 /*
503  * Warning :
504  * - Caller must take a reference on returned object
505  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
506  */
507 static struct nf_conntrack_tuple_hash *
508 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
509 		      const struct nf_conntrack_tuple *tuple, u32 hash)
510 {
511 	struct nf_conntrack_tuple_hash *h;
512 	struct hlist_nulls_head *ct_hash;
513 	struct hlist_nulls_node *n;
514 	unsigned int bucket, hsize;
515 
516 begin:
517 	nf_conntrack_get_ht(&ct_hash, &hsize);
518 	bucket = reciprocal_scale(hash, hsize);
519 
520 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
521 		struct nf_conn *ct;
522 
523 		ct = nf_ct_tuplehash_to_ctrack(h);
524 		if (nf_ct_is_expired(ct)) {
525 			nf_ct_gc_expired(ct);
526 			continue;
527 		}
528 
529 		if (nf_ct_is_dying(ct))
530 			continue;
531 
532 		if (nf_ct_key_equal(h, tuple, zone, net))
533 			return h;
534 	}
535 	/*
536 	 * if the nulls value we got at the end of this lookup is
537 	 * not the expected one, we must restart lookup.
538 	 * We probably met an item that was moved to another chain.
539 	 */
540 	if (get_nulls_value(n) != bucket) {
541 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
542 		goto begin;
543 	}
544 
545 	return NULL;
546 }
547 
548 /* Find a connection corresponding to a tuple. */
549 static struct nf_conntrack_tuple_hash *
550 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
551 			const struct nf_conntrack_tuple *tuple, u32 hash)
552 {
553 	struct nf_conntrack_tuple_hash *h;
554 	struct nf_conn *ct;
555 
556 	rcu_read_lock();
557 begin:
558 	h = ____nf_conntrack_find(net, zone, tuple, hash);
559 	if (h) {
560 		ct = nf_ct_tuplehash_to_ctrack(h);
561 		if (unlikely(nf_ct_is_dying(ct) ||
562 			     !atomic_inc_not_zero(&ct->ct_general.use)))
563 			h = NULL;
564 		else {
565 			if (unlikely(!nf_ct_key_equal(h, tuple, zone, net))) {
566 				nf_ct_put(ct);
567 				goto begin;
568 			}
569 		}
570 	}
571 	rcu_read_unlock();
572 
573 	return h;
574 }
575 
576 struct nf_conntrack_tuple_hash *
577 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
578 		      const struct nf_conntrack_tuple *tuple)
579 {
580 	return __nf_conntrack_find_get(net, zone, tuple,
581 				       hash_conntrack_raw(tuple, net));
582 }
583 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
584 
585 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
586 				       unsigned int hash,
587 				       unsigned int reply_hash)
588 {
589 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
590 			   &nf_conntrack_hash[hash]);
591 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
592 			   &nf_conntrack_hash[reply_hash]);
593 }
594 
595 int
596 nf_conntrack_hash_check_insert(struct nf_conn *ct)
597 {
598 	const struct nf_conntrack_zone *zone;
599 	struct net *net = nf_ct_net(ct);
600 	unsigned int hash, reply_hash;
601 	struct nf_conntrack_tuple_hash *h;
602 	struct hlist_nulls_node *n;
603 	unsigned int sequence;
604 
605 	zone = nf_ct_zone(ct);
606 
607 	local_bh_disable();
608 	do {
609 		sequence = read_seqcount_begin(&nf_conntrack_generation);
610 		hash = hash_conntrack(net,
611 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
612 		reply_hash = hash_conntrack(net,
613 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
614 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
615 
616 	/* See if there's one in the list already, including reverse */
617 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
618 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
619 				    zone, net))
620 			goto out;
621 
622 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
623 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
624 				    zone, net))
625 			goto out;
626 
627 	smp_wmb();
628 	/* The caller holds a reference to this object */
629 	atomic_set(&ct->ct_general.use, 2);
630 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
631 	nf_conntrack_double_unlock(hash, reply_hash);
632 	NF_CT_STAT_INC(net, insert);
633 	local_bh_enable();
634 	return 0;
635 
636 out:
637 	nf_conntrack_double_unlock(hash, reply_hash);
638 	NF_CT_STAT_INC(net, insert_failed);
639 	local_bh_enable();
640 	return -EEXIST;
641 }
642 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
643 
644 static inline void nf_ct_acct_update(struct nf_conn *ct,
645 				     enum ip_conntrack_info ctinfo,
646 				     unsigned int len)
647 {
648 	struct nf_conn_acct *acct;
649 
650 	acct = nf_conn_acct_find(ct);
651 	if (acct) {
652 		struct nf_conn_counter *counter = acct->counter;
653 
654 		atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
655 		atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
656 	}
657 }
658 
659 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
660 			     const struct nf_conn *loser_ct)
661 {
662 	struct nf_conn_acct *acct;
663 
664 	acct = nf_conn_acct_find(loser_ct);
665 	if (acct) {
666 		struct nf_conn_counter *counter = acct->counter;
667 		unsigned int bytes;
668 
669 		/* u32 should be fine since we must have seen one packet. */
670 		bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
671 		nf_ct_acct_update(ct, ctinfo, bytes);
672 	}
673 }
674 
675 /* Resolve race on insertion if this protocol allows this. */
676 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
677 			       enum ip_conntrack_info ctinfo,
678 			       struct nf_conntrack_tuple_hash *h)
679 {
680 	/* This is the conntrack entry already in hashes that won race. */
681 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
682 	struct nf_conntrack_l4proto *l4proto;
683 
684 	l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
685 	if (l4proto->allow_clash &&
686 	    !nfct_nat(ct) &&
687 	    !nf_ct_is_dying(ct) &&
688 	    atomic_inc_not_zero(&ct->ct_general.use)) {
689 		nf_ct_acct_merge(ct, ctinfo, (struct nf_conn *)skb->nfct);
690 		nf_conntrack_put(skb->nfct);
691 		/* Assign conntrack already in hashes to this skbuff. Don't
692 		 * modify skb->nfctinfo to ensure consistent stateful filtering.
693 		 */
694 		skb->nfct = &ct->ct_general;
695 		return NF_ACCEPT;
696 	}
697 	NF_CT_STAT_INC(net, drop);
698 	return NF_DROP;
699 }
700 
701 /* Confirm a connection given skb; places it in hash table */
702 int
703 __nf_conntrack_confirm(struct sk_buff *skb)
704 {
705 	const struct nf_conntrack_zone *zone;
706 	unsigned int hash, reply_hash;
707 	struct nf_conntrack_tuple_hash *h;
708 	struct nf_conn *ct;
709 	struct nf_conn_help *help;
710 	struct nf_conn_tstamp *tstamp;
711 	struct hlist_nulls_node *n;
712 	enum ip_conntrack_info ctinfo;
713 	struct net *net;
714 	unsigned int sequence;
715 	int ret = NF_DROP;
716 
717 	ct = nf_ct_get(skb, &ctinfo);
718 	net = nf_ct_net(ct);
719 
720 	/* ipt_REJECT uses nf_conntrack_attach to attach related
721 	   ICMP/TCP RST packets in other direction.  Actual packet
722 	   which created connection will be IP_CT_NEW or for an
723 	   expected connection, IP_CT_RELATED. */
724 	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
725 		return NF_ACCEPT;
726 
727 	zone = nf_ct_zone(ct);
728 	local_bh_disable();
729 
730 	do {
731 		sequence = read_seqcount_begin(&nf_conntrack_generation);
732 		/* reuse the hash saved before */
733 		hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
734 		hash = scale_hash(hash);
735 		reply_hash = hash_conntrack(net,
736 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
737 
738 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
739 
740 	/* We're not in hash table, and we refuse to set up related
741 	 * connections for unconfirmed conns.  But packet copies and
742 	 * REJECT will give spurious warnings here.
743 	 */
744 	/* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
745 
746 	/* No external references means no one else could have
747 	 * confirmed us.
748 	 */
749 	NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
750 	pr_debug("Confirming conntrack %p\n", ct);
751 	/* We have to check the DYING flag after unlink to prevent
752 	 * a race against nf_ct_get_next_corpse() possibly called from
753 	 * user context, else we insert an already 'dead' hash, blocking
754 	 * further use of that particular connection -JM.
755 	 */
756 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
757 
758 	if (unlikely(nf_ct_is_dying(ct))) {
759 		nf_ct_add_to_dying_list(ct);
760 		goto dying;
761 	}
762 
763 	/* See if there's one in the list already, including reverse:
764 	   NAT could have grabbed it without realizing, since we're
765 	   not in the hash.  If there is, we lost race. */
766 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
767 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
768 				    zone, net))
769 			goto out;
770 
771 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
772 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
773 				    zone, net))
774 			goto out;
775 
776 	/* Timer relative to confirmation time, not original
777 	   setting time, otherwise we'd get timer wrap in
778 	   weird delay cases. */
779 	ct->timeout += nfct_time_stamp;
780 	atomic_inc(&ct->ct_general.use);
781 	ct->status |= IPS_CONFIRMED;
782 
783 	/* set conntrack timestamp, if enabled. */
784 	tstamp = nf_conn_tstamp_find(ct);
785 	if (tstamp) {
786 		if (skb->tstamp == 0)
787 			__net_timestamp(skb);
788 
789 		tstamp->start = ktime_to_ns(skb->tstamp);
790 	}
791 	/* Since the lookup is lockless, hash insertion must be done after
792 	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
793 	 * guarantee that no other CPU can find the conntrack before the above
794 	 * stores are visible.
795 	 */
796 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
797 	nf_conntrack_double_unlock(hash, reply_hash);
798 	local_bh_enable();
799 
800 	help = nfct_help(ct);
801 	if (help && help->helper)
802 		nf_conntrack_event_cache(IPCT_HELPER, ct);
803 
804 	nf_conntrack_event_cache(master_ct(ct) ?
805 				 IPCT_RELATED : IPCT_NEW, ct);
806 	return NF_ACCEPT;
807 
808 out:
809 	nf_ct_add_to_dying_list(ct);
810 	ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
811 dying:
812 	nf_conntrack_double_unlock(hash, reply_hash);
813 	NF_CT_STAT_INC(net, insert_failed);
814 	local_bh_enable();
815 	return ret;
816 }
817 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
818 
819 /* Returns true if a connection correspondings to the tuple (required
820    for NAT). */
821 int
822 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
823 			 const struct nf_conn *ignored_conntrack)
824 {
825 	struct net *net = nf_ct_net(ignored_conntrack);
826 	const struct nf_conntrack_zone *zone;
827 	struct nf_conntrack_tuple_hash *h;
828 	struct hlist_nulls_head *ct_hash;
829 	unsigned int hash, hsize;
830 	struct hlist_nulls_node *n;
831 	struct nf_conn *ct;
832 
833 	zone = nf_ct_zone(ignored_conntrack);
834 
835 	rcu_read_lock();
836  begin:
837 	nf_conntrack_get_ht(&ct_hash, &hsize);
838 	hash = __hash_conntrack(net, tuple, hsize);
839 
840 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
841 		ct = nf_ct_tuplehash_to_ctrack(h);
842 
843 		if (ct == ignored_conntrack)
844 			continue;
845 
846 		if (nf_ct_is_expired(ct)) {
847 			nf_ct_gc_expired(ct);
848 			continue;
849 		}
850 
851 		if (nf_ct_key_equal(h, tuple, zone, net)) {
852 			NF_CT_STAT_INC_ATOMIC(net, found);
853 			rcu_read_unlock();
854 			return 1;
855 		}
856 	}
857 
858 	if (get_nulls_value(n) != hash) {
859 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
860 		goto begin;
861 	}
862 
863 	rcu_read_unlock();
864 
865 	return 0;
866 }
867 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
868 
869 #define NF_CT_EVICTION_RANGE	8
870 
871 /* There's a small race here where we may free a just-assured
872    connection.  Too bad: we're in trouble anyway. */
873 static unsigned int early_drop_list(struct net *net,
874 				    struct hlist_nulls_head *head)
875 {
876 	struct nf_conntrack_tuple_hash *h;
877 	struct hlist_nulls_node *n;
878 	unsigned int drops = 0;
879 	struct nf_conn *tmp;
880 
881 	hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
882 		tmp = nf_ct_tuplehash_to_ctrack(h);
883 
884 		if (nf_ct_is_expired(tmp)) {
885 			nf_ct_gc_expired(tmp);
886 			continue;
887 		}
888 
889 		if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
890 		    !net_eq(nf_ct_net(tmp), net) ||
891 		    nf_ct_is_dying(tmp))
892 			continue;
893 
894 		if (!atomic_inc_not_zero(&tmp->ct_general.use))
895 			continue;
896 
897 		/* kill only if still in same netns -- might have moved due to
898 		 * SLAB_DESTROY_BY_RCU rules.
899 		 *
900 		 * We steal the timer reference.  If that fails timer has
901 		 * already fired or someone else deleted it. Just drop ref
902 		 * and move to next entry.
903 		 */
904 		if (net_eq(nf_ct_net(tmp), net) &&
905 		    nf_ct_is_confirmed(tmp) &&
906 		    nf_ct_delete(tmp, 0, 0))
907 			drops++;
908 
909 		nf_ct_put(tmp);
910 	}
911 
912 	return drops;
913 }
914 
915 static noinline int early_drop(struct net *net, unsigned int _hash)
916 {
917 	unsigned int i;
918 
919 	for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
920 		struct hlist_nulls_head *ct_hash;
921 		unsigned int hash, hsize, drops;
922 
923 		rcu_read_lock();
924 		nf_conntrack_get_ht(&ct_hash, &hsize);
925 		hash = reciprocal_scale(_hash++, hsize);
926 
927 		drops = early_drop_list(net, &ct_hash[hash]);
928 		rcu_read_unlock();
929 
930 		if (drops) {
931 			NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
932 			return true;
933 		}
934 	}
935 
936 	return false;
937 }
938 
939 static void gc_worker(struct work_struct *work)
940 {
941 	unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
942 	unsigned int i, goal, buckets = 0, expired_count = 0;
943 	struct conntrack_gc_work *gc_work;
944 	unsigned int ratio, scanned = 0;
945 	unsigned long next_run;
946 
947 	gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
948 
949 	goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
950 	i = gc_work->last_bucket;
951 
952 	do {
953 		struct nf_conntrack_tuple_hash *h;
954 		struct hlist_nulls_head *ct_hash;
955 		struct hlist_nulls_node *n;
956 		unsigned int hashsz;
957 		struct nf_conn *tmp;
958 
959 		i++;
960 		rcu_read_lock();
961 
962 		nf_conntrack_get_ht(&ct_hash, &hashsz);
963 		if (i >= hashsz)
964 			i = 0;
965 
966 		hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
967 			tmp = nf_ct_tuplehash_to_ctrack(h);
968 
969 			scanned++;
970 			if (nf_ct_is_expired(tmp)) {
971 				nf_ct_gc_expired(tmp);
972 				expired_count++;
973 				continue;
974 			}
975 		}
976 
977 		/* could check get_nulls_value() here and restart if ct
978 		 * was moved to another chain.  But given gc is best-effort
979 		 * we will just continue with next hash slot.
980 		 */
981 		rcu_read_unlock();
982 		cond_resched_rcu_qs();
983 	} while (++buckets < goal);
984 
985 	if (gc_work->exiting)
986 		return;
987 
988 	/*
989 	 * Eviction will normally happen from the packet path, and not
990 	 * from this gc worker.
991 	 *
992 	 * This worker is only here to reap expired entries when system went
993 	 * idle after a busy period.
994 	 *
995 	 * The heuristics below are supposed to balance conflicting goals:
996 	 *
997 	 * 1. Minimize time until we notice a stale entry
998 	 * 2. Maximize scan intervals to not waste cycles
999 	 *
1000 	 * Normally, expire ratio will be close to 0.
1001 	 *
1002 	 * As soon as a sizeable fraction of the entries have expired
1003 	 * increase scan frequency.
1004 	 */
1005 	ratio = scanned ? expired_count * 100 / scanned : 0;
1006 	if (ratio > GC_EVICT_RATIO) {
1007 		gc_work->next_gc_run = min_interval;
1008 	} else {
1009 		unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1010 
1011 		BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1012 
1013 		gc_work->next_gc_run += min_interval;
1014 		if (gc_work->next_gc_run > max)
1015 			gc_work->next_gc_run = max;
1016 	}
1017 
1018 	next_run = gc_work->next_gc_run;
1019 	gc_work->last_bucket = i;
1020 	queue_delayed_work(system_long_wq, &gc_work->dwork, next_run);
1021 }
1022 
1023 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1024 {
1025 	INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1026 	gc_work->next_gc_run = HZ;
1027 	gc_work->exiting = false;
1028 }
1029 
1030 static struct nf_conn *
1031 __nf_conntrack_alloc(struct net *net,
1032 		     const struct nf_conntrack_zone *zone,
1033 		     const struct nf_conntrack_tuple *orig,
1034 		     const struct nf_conntrack_tuple *repl,
1035 		     gfp_t gfp, u32 hash)
1036 {
1037 	struct nf_conn *ct;
1038 
1039 	/* We don't want any race condition at early drop stage */
1040 	atomic_inc(&net->ct.count);
1041 
1042 	if (nf_conntrack_max &&
1043 	    unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1044 		if (!early_drop(net, hash)) {
1045 			atomic_dec(&net->ct.count);
1046 			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1047 			return ERR_PTR(-ENOMEM);
1048 		}
1049 	}
1050 
1051 	/*
1052 	 * Do not use kmem_cache_zalloc(), as this cache uses
1053 	 * SLAB_DESTROY_BY_RCU.
1054 	 */
1055 	ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1056 	if (ct == NULL)
1057 		goto out;
1058 
1059 	spin_lock_init(&ct->lock);
1060 	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1061 	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1062 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1063 	/* save hash for reusing when confirming */
1064 	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1065 	ct->status = 0;
1066 	write_pnet(&ct->ct_net, net);
1067 	memset(&ct->__nfct_init_offset[0], 0,
1068 	       offsetof(struct nf_conn, proto) -
1069 	       offsetof(struct nf_conn, __nfct_init_offset[0]));
1070 
1071 	nf_ct_zone_add(ct, zone);
1072 
1073 	/* Because we use RCU lookups, we set ct_general.use to zero before
1074 	 * this is inserted in any list.
1075 	 */
1076 	atomic_set(&ct->ct_general.use, 0);
1077 	return ct;
1078 out:
1079 	atomic_dec(&net->ct.count);
1080 	return ERR_PTR(-ENOMEM);
1081 }
1082 
1083 struct nf_conn *nf_conntrack_alloc(struct net *net,
1084 				   const struct nf_conntrack_zone *zone,
1085 				   const struct nf_conntrack_tuple *orig,
1086 				   const struct nf_conntrack_tuple *repl,
1087 				   gfp_t gfp)
1088 {
1089 	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1090 }
1091 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1092 
1093 void nf_conntrack_free(struct nf_conn *ct)
1094 {
1095 	struct net *net = nf_ct_net(ct);
1096 
1097 	/* A freed object has refcnt == 0, that's
1098 	 * the golden rule for SLAB_DESTROY_BY_RCU
1099 	 */
1100 	NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 0);
1101 
1102 	nf_ct_ext_destroy(ct);
1103 	nf_ct_ext_free(ct);
1104 	kmem_cache_free(nf_conntrack_cachep, ct);
1105 	smp_mb__before_atomic();
1106 	atomic_dec(&net->ct.count);
1107 }
1108 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1109 
1110 
1111 /* Allocate a new conntrack: we return -ENOMEM if classification
1112    failed due to stress.  Otherwise it really is unclassifiable. */
1113 static struct nf_conntrack_tuple_hash *
1114 init_conntrack(struct net *net, struct nf_conn *tmpl,
1115 	       const struct nf_conntrack_tuple *tuple,
1116 	       struct nf_conntrack_l3proto *l3proto,
1117 	       struct nf_conntrack_l4proto *l4proto,
1118 	       struct sk_buff *skb,
1119 	       unsigned int dataoff, u32 hash)
1120 {
1121 	struct nf_conn *ct;
1122 	struct nf_conn_help *help;
1123 	struct nf_conntrack_tuple repl_tuple;
1124 	struct nf_conntrack_ecache *ecache;
1125 	struct nf_conntrack_expect *exp = NULL;
1126 	const struct nf_conntrack_zone *zone;
1127 	struct nf_conn_timeout *timeout_ext;
1128 	struct nf_conntrack_zone tmp;
1129 	unsigned int *timeouts;
1130 
1131 	if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
1132 		pr_debug("Can't invert tuple.\n");
1133 		return NULL;
1134 	}
1135 
1136 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1137 	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1138 				  hash);
1139 	if (IS_ERR(ct))
1140 		return (struct nf_conntrack_tuple_hash *)ct;
1141 
1142 	if (!nf_ct_add_synproxy(ct, tmpl)) {
1143 		nf_conntrack_free(ct);
1144 		return ERR_PTR(-ENOMEM);
1145 	}
1146 
1147 	timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1148 	if (timeout_ext) {
1149 		timeouts = nf_ct_timeout_data(timeout_ext);
1150 		if (unlikely(!timeouts))
1151 			timeouts = l4proto->get_timeouts(net);
1152 	} else {
1153 		timeouts = l4proto->get_timeouts(net);
1154 	}
1155 
1156 	if (!l4proto->new(ct, skb, dataoff, timeouts)) {
1157 		nf_conntrack_free(ct);
1158 		pr_debug("can't track with proto module\n");
1159 		return NULL;
1160 	}
1161 
1162 	if (timeout_ext)
1163 		nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1164 				      GFP_ATOMIC);
1165 
1166 	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1167 	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1168 	nf_ct_labels_ext_add(ct);
1169 
1170 	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1171 	nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1172 				 ecache ? ecache->expmask : 0,
1173 			     GFP_ATOMIC);
1174 
1175 	local_bh_disable();
1176 	if (net->ct.expect_count) {
1177 		spin_lock(&nf_conntrack_expect_lock);
1178 		exp = nf_ct_find_expectation(net, zone, tuple);
1179 		if (exp) {
1180 			pr_debug("expectation arrives ct=%p exp=%p\n",
1181 				 ct, exp);
1182 			/* Welcome, Mr. Bond.  We've been expecting you... */
1183 			__set_bit(IPS_EXPECTED_BIT, &ct->status);
1184 			/* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1185 			ct->master = exp->master;
1186 			if (exp->helper) {
1187 				help = nf_ct_helper_ext_add(ct, exp->helper,
1188 							    GFP_ATOMIC);
1189 				if (help)
1190 					rcu_assign_pointer(help->helper, exp->helper);
1191 			}
1192 
1193 #ifdef CONFIG_NF_CONNTRACK_MARK
1194 			ct->mark = exp->master->mark;
1195 #endif
1196 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1197 			ct->secmark = exp->master->secmark;
1198 #endif
1199 			NF_CT_STAT_INC(net, expect_new);
1200 		}
1201 		spin_unlock(&nf_conntrack_expect_lock);
1202 	}
1203 	if (!exp)
1204 		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1205 
1206 	/* Now it is inserted into the unconfirmed list, bump refcount */
1207 	nf_conntrack_get(&ct->ct_general);
1208 	nf_ct_add_to_unconfirmed_list(ct);
1209 
1210 	local_bh_enable();
1211 
1212 	if (exp) {
1213 		if (exp->expectfn)
1214 			exp->expectfn(ct, exp);
1215 		nf_ct_expect_put(exp);
1216 	}
1217 
1218 	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1219 }
1220 
1221 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
1222 static inline struct nf_conn *
1223 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1224 		  struct sk_buff *skb,
1225 		  unsigned int dataoff,
1226 		  u_int16_t l3num,
1227 		  u_int8_t protonum,
1228 		  struct nf_conntrack_l3proto *l3proto,
1229 		  struct nf_conntrack_l4proto *l4proto,
1230 		  int *set_reply,
1231 		  enum ip_conntrack_info *ctinfo)
1232 {
1233 	const struct nf_conntrack_zone *zone;
1234 	struct nf_conntrack_tuple tuple;
1235 	struct nf_conntrack_tuple_hash *h;
1236 	struct nf_conntrack_zone tmp;
1237 	struct nf_conn *ct;
1238 	u32 hash;
1239 
1240 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1241 			     dataoff, l3num, protonum, net, &tuple, l3proto,
1242 			     l4proto)) {
1243 		pr_debug("Can't get tuple\n");
1244 		return NULL;
1245 	}
1246 
1247 	/* look for tuple match */
1248 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1249 	hash = hash_conntrack_raw(&tuple, net);
1250 	h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1251 	if (!h) {
1252 		h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1253 				   skb, dataoff, hash);
1254 		if (!h)
1255 			return NULL;
1256 		if (IS_ERR(h))
1257 			return (void *)h;
1258 	}
1259 	ct = nf_ct_tuplehash_to_ctrack(h);
1260 
1261 	/* It exists; we have (non-exclusive) reference. */
1262 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1263 		*ctinfo = IP_CT_ESTABLISHED_REPLY;
1264 		/* Please set reply bit if this packet OK */
1265 		*set_reply = 1;
1266 	} else {
1267 		/* Once we've had two way comms, always ESTABLISHED. */
1268 		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1269 			pr_debug("normal packet for %p\n", ct);
1270 			*ctinfo = IP_CT_ESTABLISHED;
1271 		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1272 			pr_debug("related packet for %p\n", ct);
1273 			*ctinfo = IP_CT_RELATED;
1274 		} else {
1275 			pr_debug("new packet for %p\n", ct);
1276 			*ctinfo = IP_CT_NEW;
1277 		}
1278 		*set_reply = 0;
1279 	}
1280 	skb->nfct = &ct->ct_general;
1281 	skb->nfctinfo = *ctinfo;
1282 	return ct;
1283 }
1284 
1285 unsigned int
1286 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1287 		struct sk_buff *skb)
1288 {
1289 	struct nf_conn *ct, *tmpl = NULL;
1290 	enum ip_conntrack_info ctinfo;
1291 	struct nf_conntrack_l3proto *l3proto;
1292 	struct nf_conntrack_l4proto *l4proto;
1293 	unsigned int *timeouts;
1294 	unsigned int dataoff;
1295 	u_int8_t protonum;
1296 	int set_reply = 0;
1297 	int ret;
1298 
1299 	if (skb->nfct) {
1300 		/* Previously seen (loopback or untracked)?  Ignore. */
1301 		tmpl = (struct nf_conn *)skb->nfct;
1302 		if (!nf_ct_is_template(tmpl)) {
1303 			NF_CT_STAT_INC_ATOMIC(net, ignore);
1304 			return NF_ACCEPT;
1305 		}
1306 		skb->nfct = NULL;
1307 	}
1308 
1309 	/* rcu_read_lock()ed by nf_hook_thresh */
1310 	l3proto = __nf_ct_l3proto_find(pf);
1311 	ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1312 				   &dataoff, &protonum);
1313 	if (ret <= 0) {
1314 		pr_debug("not prepared to track yet or error occurred\n");
1315 		NF_CT_STAT_INC_ATOMIC(net, error);
1316 		NF_CT_STAT_INC_ATOMIC(net, invalid);
1317 		ret = -ret;
1318 		goto out;
1319 	}
1320 
1321 	l4proto = __nf_ct_l4proto_find(pf, protonum);
1322 
1323 	/* It may be an special packet, error, unclean...
1324 	 * inverse of the return code tells to the netfilter
1325 	 * core what to do with the packet. */
1326 	if (l4proto->error != NULL) {
1327 		ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
1328 				     pf, hooknum);
1329 		if (ret <= 0) {
1330 			NF_CT_STAT_INC_ATOMIC(net, error);
1331 			NF_CT_STAT_INC_ATOMIC(net, invalid);
1332 			ret = -ret;
1333 			goto out;
1334 		}
1335 		/* ICMP[v6] protocol trackers may assign one conntrack. */
1336 		if (skb->nfct)
1337 			goto out;
1338 	}
1339 repeat:
1340 	ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1341 			       l3proto, l4proto, &set_reply, &ctinfo);
1342 	if (!ct) {
1343 		/* Not valid part of a connection */
1344 		NF_CT_STAT_INC_ATOMIC(net, invalid);
1345 		ret = NF_ACCEPT;
1346 		goto out;
1347 	}
1348 
1349 	if (IS_ERR(ct)) {
1350 		/* Too stressed to deal. */
1351 		NF_CT_STAT_INC_ATOMIC(net, drop);
1352 		ret = NF_DROP;
1353 		goto out;
1354 	}
1355 
1356 	NF_CT_ASSERT(skb->nfct);
1357 
1358 	/* Decide what timeout policy we want to apply to this flow. */
1359 	timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1360 
1361 	ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1362 	if (ret <= 0) {
1363 		/* Invalid: inverse of the return code tells
1364 		 * the netfilter core what to do */
1365 		pr_debug("nf_conntrack_in: Can't track with proto module\n");
1366 		nf_conntrack_put(skb->nfct);
1367 		skb->nfct = NULL;
1368 		NF_CT_STAT_INC_ATOMIC(net, invalid);
1369 		if (ret == -NF_DROP)
1370 			NF_CT_STAT_INC_ATOMIC(net, drop);
1371 		/* Special case: TCP tracker reports an attempt to reopen a
1372 		 * closed/aborted connection. We have to go back and create a
1373 		 * fresh conntrack.
1374 		 */
1375 		if (ret == -NF_REPEAT)
1376 			goto repeat;
1377 		ret = -ret;
1378 		goto out;
1379 	}
1380 
1381 	if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1382 		nf_conntrack_event_cache(IPCT_REPLY, ct);
1383 out:
1384 	if (tmpl)
1385 		nf_ct_put(tmpl);
1386 
1387 	return ret;
1388 }
1389 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1390 
1391 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1392 			  const struct nf_conntrack_tuple *orig)
1393 {
1394 	bool ret;
1395 
1396 	rcu_read_lock();
1397 	ret = nf_ct_invert_tuple(inverse, orig,
1398 				 __nf_ct_l3proto_find(orig->src.l3num),
1399 				 __nf_ct_l4proto_find(orig->src.l3num,
1400 						      orig->dst.protonum));
1401 	rcu_read_unlock();
1402 	return ret;
1403 }
1404 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1405 
1406 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
1407    implicitly racy: see __nf_conntrack_confirm */
1408 void nf_conntrack_alter_reply(struct nf_conn *ct,
1409 			      const struct nf_conntrack_tuple *newreply)
1410 {
1411 	struct nf_conn_help *help = nfct_help(ct);
1412 
1413 	/* Should be unconfirmed, so not in hash table yet */
1414 	NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1415 
1416 	pr_debug("Altering reply tuple of %p to ", ct);
1417 	nf_ct_dump_tuple(newreply);
1418 
1419 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1420 	if (ct->master || (help && !hlist_empty(&help->expectations)))
1421 		return;
1422 
1423 	rcu_read_lock();
1424 	__nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1425 	rcu_read_unlock();
1426 }
1427 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1428 
1429 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1430 void __nf_ct_refresh_acct(struct nf_conn *ct,
1431 			  enum ip_conntrack_info ctinfo,
1432 			  const struct sk_buff *skb,
1433 			  unsigned long extra_jiffies,
1434 			  int do_acct)
1435 {
1436 	NF_CT_ASSERT(skb);
1437 
1438 	/* Only update if this is not a fixed timeout */
1439 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1440 		goto acct;
1441 
1442 	/* If not in hash table, timer will not be active yet */
1443 	if (nf_ct_is_confirmed(ct))
1444 		extra_jiffies += nfct_time_stamp;
1445 
1446 	ct->timeout = extra_jiffies;
1447 acct:
1448 	if (do_acct)
1449 		nf_ct_acct_update(ct, ctinfo, skb->len);
1450 }
1451 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1452 
1453 bool nf_ct_kill_acct(struct nf_conn *ct,
1454 		     enum ip_conntrack_info ctinfo,
1455 		     const struct sk_buff *skb)
1456 {
1457 	nf_ct_acct_update(ct, ctinfo, skb->len);
1458 
1459 	return nf_ct_delete(ct, 0, 0);
1460 }
1461 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1462 
1463 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1464 
1465 #include <linux/netfilter/nfnetlink.h>
1466 #include <linux/netfilter/nfnetlink_conntrack.h>
1467 #include <linux/mutex.h>
1468 
1469 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1470  * in ip_conntrack_core, since we don't want the protocols to autoload
1471  * or depend on ctnetlink */
1472 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1473 			       const struct nf_conntrack_tuple *tuple)
1474 {
1475 	if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1476 	    nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1477 		goto nla_put_failure;
1478 	return 0;
1479 
1480 nla_put_failure:
1481 	return -1;
1482 }
1483 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1484 
1485 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1486 	[CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
1487 	[CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
1488 };
1489 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1490 
1491 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1492 			       struct nf_conntrack_tuple *t)
1493 {
1494 	if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1495 		return -EINVAL;
1496 
1497 	t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1498 	t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1499 
1500 	return 0;
1501 }
1502 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1503 
1504 int nf_ct_port_nlattr_tuple_size(void)
1505 {
1506 	return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1507 }
1508 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1509 #endif
1510 
1511 /* Used by ipt_REJECT and ip6t_REJECT. */
1512 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1513 {
1514 	struct nf_conn *ct;
1515 	enum ip_conntrack_info ctinfo;
1516 
1517 	/* This ICMP is in reverse direction to the packet which caused it */
1518 	ct = nf_ct_get(skb, &ctinfo);
1519 	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1520 		ctinfo = IP_CT_RELATED_REPLY;
1521 	else
1522 		ctinfo = IP_CT_RELATED;
1523 
1524 	/* Attach to new skbuff, and increment count */
1525 	nskb->nfct = &ct->ct_general;
1526 	nskb->nfctinfo = ctinfo;
1527 	nf_conntrack_get(nskb->nfct);
1528 }
1529 
1530 /* Bring out ya dead! */
1531 static struct nf_conn *
1532 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1533 		void *data, unsigned int *bucket)
1534 {
1535 	struct nf_conntrack_tuple_hash *h;
1536 	struct nf_conn *ct;
1537 	struct hlist_nulls_node *n;
1538 	int cpu;
1539 	spinlock_t *lockp;
1540 
1541 	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1542 		lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1543 		local_bh_disable();
1544 		nf_conntrack_lock(lockp);
1545 		if (*bucket < nf_conntrack_htable_size) {
1546 			hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
1547 				if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1548 					continue;
1549 				ct = nf_ct_tuplehash_to_ctrack(h);
1550 				if (net_eq(nf_ct_net(ct), net) &&
1551 				    iter(ct, data))
1552 					goto found;
1553 			}
1554 		}
1555 		spin_unlock(lockp);
1556 		local_bh_enable();
1557 		cond_resched();
1558 	}
1559 
1560 	for_each_possible_cpu(cpu) {
1561 		struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1562 
1563 		spin_lock_bh(&pcpu->lock);
1564 		hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1565 			ct = nf_ct_tuplehash_to_ctrack(h);
1566 			if (iter(ct, data))
1567 				set_bit(IPS_DYING_BIT, &ct->status);
1568 		}
1569 		spin_unlock_bh(&pcpu->lock);
1570 		cond_resched();
1571 	}
1572 	return NULL;
1573 found:
1574 	atomic_inc(&ct->ct_general.use);
1575 	spin_unlock(lockp);
1576 	local_bh_enable();
1577 	return ct;
1578 }
1579 
1580 void nf_ct_iterate_cleanup(struct net *net,
1581 			   int (*iter)(struct nf_conn *i, void *data),
1582 			   void *data, u32 portid, int report)
1583 {
1584 	struct nf_conn *ct;
1585 	unsigned int bucket = 0;
1586 
1587 	might_sleep();
1588 
1589 	if (atomic_read(&net->ct.count) == 0)
1590 		return;
1591 
1592 	while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1593 		/* Time to push up daises... */
1594 
1595 		nf_ct_delete(ct, portid, report);
1596 		nf_ct_put(ct);
1597 		cond_resched();
1598 	}
1599 }
1600 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1601 
1602 static int kill_all(struct nf_conn *i, void *data)
1603 {
1604 	return 1;
1605 }
1606 
1607 void nf_ct_free_hashtable(void *hash, unsigned int size)
1608 {
1609 	if (is_vmalloc_addr(hash))
1610 		vfree(hash);
1611 	else
1612 		free_pages((unsigned long)hash,
1613 			   get_order(sizeof(struct hlist_head) * size));
1614 }
1615 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1616 
1617 static int untrack_refs(void)
1618 {
1619 	int cnt = 0, cpu;
1620 
1621 	for_each_possible_cpu(cpu) {
1622 		struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1623 
1624 		cnt += atomic_read(&ct->ct_general.use) - 1;
1625 	}
1626 	return cnt;
1627 }
1628 
1629 void nf_conntrack_cleanup_start(void)
1630 {
1631 	conntrack_gc_work.exiting = true;
1632 	RCU_INIT_POINTER(ip_ct_attach, NULL);
1633 }
1634 
1635 void nf_conntrack_cleanup_end(void)
1636 {
1637 	RCU_INIT_POINTER(nf_ct_destroy, NULL);
1638 	while (untrack_refs() > 0)
1639 		schedule();
1640 
1641 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
1642 	nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1643 
1644 	nf_conntrack_proto_fini();
1645 	nf_conntrack_seqadj_fini();
1646 	nf_conntrack_labels_fini();
1647 	nf_conntrack_helper_fini();
1648 	nf_conntrack_timeout_fini();
1649 	nf_conntrack_ecache_fini();
1650 	nf_conntrack_tstamp_fini();
1651 	nf_conntrack_acct_fini();
1652 	nf_conntrack_expect_fini();
1653 
1654 	kmem_cache_destroy(nf_conntrack_cachep);
1655 }
1656 
1657 /*
1658  * Mishearing the voices in his head, our hero wonders how he's
1659  * supposed to kill the mall.
1660  */
1661 void nf_conntrack_cleanup_net(struct net *net)
1662 {
1663 	LIST_HEAD(single);
1664 
1665 	list_add(&net->exit_list, &single);
1666 	nf_conntrack_cleanup_net_list(&single);
1667 }
1668 
1669 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1670 {
1671 	int busy;
1672 	struct net *net;
1673 
1674 	/*
1675 	 * This makes sure all current packets have passed through
1676 	 *  netfilter framework.  Roll on, two-stage module
1677 	 *  delete...
1678 	 */
1679 	synchronize_net();
1680 i_see_dead_people:
1681 	busy = 0;
1682 	list_for_each_entry(net, net_exit_list, exit_list) {
1683 		nf_ct_iterate_cleanup(net, kill_all, NULL, 0, 0);
1684 		if (atomic_read(&net->ct.count) != 0)
1685 			busy = 1;
1686 	}
1687 	if (busy) {
1688 		schedule();
1689 		goto i_see_dead_people;
1690 	}
1691 
1692 	list_for_each_entry(net, net_exit_list, exit_list) {
1693 		nf_conntrack_proto_pernet_fini(net);
1694 		nf_conntrack_helper_pernet_fini(net);
1695 		nf_conntrack_ecache_pernet_fini(net);
1696 		nf_conntrack_tstamp_pernet_fini(net);
1697 		nf_conntrack_acct_pernet_fini(net);
1698 		nf_conntrack_expect_pernet_fini(net);
1699 		free_percpu(net->ct.stat);
1700 		free_percpu(net->ct.pcpu_lists);
1701 	}
1702 }
1703 
1704 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1705 {
1706 	struct hlist_nulls_head *hash;
1707 	unsigned int nr_slots, i;
1708 	size_t sz;
1709 
1710 	if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1711 		return NULL;
1712 
1713 	BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1714 	nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1715 
1716 	if (nr_slots > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1717 		return NULL;
1718 
1719 	sz = nr_slots * sizeof(struct hlist_nulls_head);
1720 	hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1721 					get_order(sz));
1722 	if (!hash)
1723 		hash = vzalloc(sz);
1724 
1725 	if (hash && nulls)
1726 		for (i = 0; i < nr_slots; i++)
1727 			INIT_HLIST_NULLS_HEAD(&hash[i], i);
1728 
1729 	return hash;
1730 }
1731 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1732 
1733 int nf_conntrack_hash_resize(unsigned int hashsize)
1734 {
1735 	int i, bucket;
1736 	unsigned int old_size;
1737 	struct hlist_nulls_head *hash, *old_hash;
1738 	struct nf_conntrack_tuple_hash *h;
1739 	struct nf_conn *ct;
1740 
1741 	if (!hashsize)
1742 		return -EINVAL;
1743 
1744 	hash = nf_ct_alloc_hashtable(&hashsize, 1);
1745 	if (!hash)
1746 		return -ENOMEM;
1747 
1748 	old_size = nf_conntrack_htable_size;
1749 	if (old_size == hashsize) {
1750 		nf_ct_free_hashtable(hash, hashsize);
1751 		return 0;
1752 	}
1753 
1754 	local_bh_disable();
1755 	nf_conntrack_all_lock();
1756 	write_seqcount_begin(&nf_conntrack_generation);
1757 
1758 	/* Lookups in the old hash might happen in parallel, which means we
1759 	 * might get false negatives during connection lookup. New connections
1760 	 * created because of a false negative won't make it into the hash
1761 	 * though since that required taking the locks.
1762 	 */
1763 
1764 	for (i = 0; i < nf_conntrack_htable_size; i++) {
1765 		while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
1766 			h = hlist_nulls_entry(nf_conntrack_hash[i].first,
1767 					      struct nf_conntrack_tuple_hash, hnnode);
1768 			ct = nf_ct_tuplehash_to_ctrack(h);
1769 			hlist_nulls_del_rcu(&h->hnnode);
1770 			bucket = __hash_conntrack(nf_ct_net(ct),
1771 						  &h->tuple, hashsize);
1772 			hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1773 		}
1774 	}
1775 	old_size = nf_conntrack_htable_size;
1776 	old_hash = nf_conntrack_hash;
1777 
1778 	nf_conntrack_hash = hash;
1779 	nf_conntrack_htable_size = hashsize;
1780 
1781 	write_seqcount_end(&nf_conntrack_generation);
1782 	nf_conntrack_all_unlock();
1783 	local_bh_enable();
1784 
1785 	synchronize_net();
1786 	nf_ct_free_hashtable(old_hash, old_size);
1787 	return 0;
1788 }
1789 
1790 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1791 {
1792 	unsigned int hashsize;
1793 	int rc;
1794 
1795 	if (current->nsproxy->net_ns != &init_net)
1796 		return -EOPNOTSUPP;
1797 
1798 	/* On boot, we can set this without any fancy locking. */
1799 	if (!nf_conntrack_htable_size)
1800 		return param_set_uint(val, kp);
1801 
1802 	rc = kstrtouint(val, 0, &hashsize);
1803 	if (rc)
1804 		return rc;
1805 
1806 	return nf_conntrack_hash_resize(hashsize);
1807 }
1808 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1809 
1810 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1811 		  &nf_conntrack_htable_size, 0600);
1812 
1813 void nf_ct_untracked_status_or(unsigned long bits)
1814 {
1815 	int cpu;
1816 
1817 	for_each_possible_cpu(cpu)
1818 		per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1819 }
1820 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1821 
1822 int nf_conntrack_init_start(void)
1823 {
1824 	int max_factor = 8;
1825 	int ret = -ENOMEM;
1826 	int i, cpu;
1827 
1828 	seqcount_init(&nf_conntrack_generation);
1829 
1830 	for (i = 0; i < CONNTRACK_LOCKS; i++)
1831 		spin_lock_init(&nf_conntrack_locks[i]);
1832 
1833 	if (!nf_conntrack_htable_size) {
1834 		/* Idea from tcp.c: use 1/16384 of memory.
1835 		 * On i386: 32MB machine has 512 buckets.
1836 		 * >= 1GB machines have 16384 buckets.
1837 		 * >= 4GB machines have 65536 buckets.
1838 		 */
1839 		nf_conntrack_htable_size
1840 			= (((totalram_pages << PAGE_SHIFT) / 16384)
1841 			   / sizeof(struct hlist_head));
1842 		if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
1843 			nf_conntrack_htable_size = 65536;
1844 		else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1845 			nf_conntrack_htable_size = 16384;
1846 		if (nf_conntrack_htable_size < 32)
1847 			nf_conntrack_htable_size = 32;
1848 
1849 		/* Use a max. factor of four by default to get the same max as
1850 		 * with the old struct list_heads. When a table size is given
1851 		 * we use the old value of 8 to avoid reducing the max.
1852 		 * entries. */
1853 		max_factor = 4;
1854 	}
1855 
1856 	nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
1857 	if (!nf_conntrack_hash)
1858 		return -ENOMEM;
1859 
1860 	nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1861 
1862 	nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
1863 						sizeof(struct nf_conn), 0,
1864 						SLAB_DESTROY_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
1865 	if (!nf_conntrack_cachep)
1866 		goto err_cachep;
1867 
1868 	printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1869 	       NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1870 	       nf_conntrack_max);
1871 
1872 	ret = nf_conntrack_expect_init();
1873 	if (ret < 0)
1874 		goto err_expect;
1875 
1876 	ret = nf_conntrack_acct_init();
1877 	if (ret < 0)
1878 		goto err_acct;
1879 
1880 	ret = nf_conntrack_tstamp_init();
1881 	if (ret < 0)
1882 		goto err_tstamp;
1883 
1884 	ret = nf_conntrack_ecache_init();
1885 	if (ret < 0)
1886 		goto err_ecache;
1887 
1888 	ret = nf_conntrack_timeout_init();
1889 	if (ret < 0)
1890 		goto err_timeout;
1891 
1892 	ret = nf_conntrack_helper_init();
1893 	if (ret < 0)
1894 		goto err_helper;
1895 
1896 	ret = nf_conntrack_labels_init();
1897 	if (ret < 0)
1898 		goto err_labels;
1899 
1900 	ret = nf_conntrack_seqadj_init();
1901 	if (ret < 0)
1902 		goto err_seqadj;
1903 
1904 	ret = nf_conntrack_proto_init();
1905 	if (ret < 0)
1906 		goto err_proto;
1907 
1908 	/* Set up fake conntrack: to never be deleted, not in any hashes */
1909 	for_each_possible_cpu(cpu) {
1910 		struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1911 		write_pnet(&ct->ct_net, &init_net);
1912 		atomic_set(&ct->ct_general.use, 1);
1913 	}
1914 	/*  - and look it like as a confirmed connection */
1915 	nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1916 
1917 	conntrack_gc_work_init(&conntrack_gc_work);
1918 	queue_delayed_work(system_long_wq, &conntrack_gc_work.dwork, HZ);
1919 
1920 	return 0;
1921 
1922 err_proto:
1923 	nf_conntrack_seqadj_fini();
1924 err_seqadj:
1925 	nf_conntrack_labels_fini();
1926 err_labels:
1927 	nf_conntrack_helper_fini();
1928 err_helper:
1929 	nf_conntrack_timeout_fini();
1930 err_timeout:
1931 	nf_conntrack_ecache_fini();
1932 err_ecache:
1933 	nf_conntrack_tstamp_fini();
1934 err_tstamp:
1935 	nf_conntrack_acct_fini();
1936 err_acct:
1937 	nf_conntrack_expect_fini();
1938 err_expect:
1939 	kmem_cache_destroy(nf_conntrack_cachep);
1940 err_cachep:
1941 	nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1942 	return ret;
1943 }
1944 
1945 void nf_conntrack_init_end(void)
1946 {
1947 	/* For use by REJECT target */
1948 	RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1949 	RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1950 }
1951 
1952 /*
1953  * We need to use special "null" values, not used in hash table
1954  */
1955 #define UNCONFIRMED_NULLS_VAL	((1<<30)+0)
1956 #define DYING_NULLS_VAL		((1<<30)+1)
1957 #define TEMPLATE_NULLS_VAL	((1<<30)+2)
1958 
1959 int nf_conntrack_init_net(struct net *net)
1960 {
1961 	int ret = -ENOMEM;
1962 	int cpu;
1963 
1964 	atomic_set(&net->ct.count, 0);
1965 
1966 	net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
1967 	if (!net->ct.pcpu_lists)
1968 		goto err_stat;
1969 
1970 	for_each_possible_cpu(cpu) {
1971 		struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1972 
1973 		spin_lock_init(&pcpu->lock);
1974 		INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
1975 		INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
1976 	}
1977 
1978 	net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1979 	if (!net->ct.stat)
1980 		goto err_pcpu_lists;
1981 
1982 	ret = nf_conntrack_expect_pernet_init(net);
1983 	if (ret < 0)
1984 		goto err_expect;
1985 	ret = nf_conntrack_acct_pernet_init(net);
1986 	if (ret < 0)
1987 		goto err_acct;
1988 	ret = nf_conntrack_tstamp_pernet_init(net);
1989 	if (ret < 0)
1990 		goto err_tstamp;
1991 	ret = nf_conntrack_ecache_pernet_init(net);
1992 	if (ret < 0)
1993 		goto err_ecache;
1994 	ret = nf_conntrack_helper_pernet_init(net);
1995 	if (ret < 0)
1996 		goto err_helper;
1997 	ret = nf_conntrack_proto_pernet_init(net);
1998 	if (ret < 0)
1999 		goto err_proto;
2000 	return 0;
2001 
2002 err_proto:
2003 	nf_conntrack_helper_pernet_fini(net);
2004 err_helper:
2005 	nf_conntrack_ecache_pernet_fini(net);
2006 err_ecache:
2007 	nf_conntrack_tstamp_pernet_fini(net);
2008 err_tstamp:
2009 	nf_conntrack_acct_pernet_fini(net);
2010 err_acct:
2011 	nf_conntrack_expect_pernet_fini(net);
2012 err_expect:
2013 	free_percpu(net->ct.stat);
2014 err_pcpu_lists:
2015 	free_percpu(net->ct.pcpu_lists);
2016 err_stat:
2017 	return ret;
2018 }
2019