xref: /linux/net/ipv6/netfilter/nf_conntrack_reasm.c (revision e2be04c7f9958dde770eeb8b30e829ca969b37bb)
1 /*
2  * IPv6 fragment reassembly for connection tracking
3  *
4  * Copyright (C)2004 USAGI/WIDE Project
5  *
6  * Author:
7  *	Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
8  *
9  * Based on: net/ipv6/reassembly.c
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  */
16 
17 #define pr_fmt(fmt) "IPv6-nf: " fmt
18 
19 #include <linux/errno.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/socket.h>
23 #include <linux/sockios.h>
24 #include <linux/jiffies.h>
25 #include <linux/net.h>
26 #include <linux/list.h>
27 #include <linux/netdevice.h>
28 #include <linux/in6.h>
29 #include <linux/ipv6.h>
30 #include <linux/icmpv6.h>
31 #include <linux/random.h>
32 #include <linux/slab.h>
33 
34 #include <net/sock.h>
35 #include <net/snmp.h>
36 #include <net/inet_frag.h>
37 
38 #include <net/ipv6.h>
39 #include <net/protocol.h>
40 #include <net/transp_v6.h>
41 #include <net/rawv6.h>
42 #include <net/ndisc.h>
43 #include <net/addrconf.h>
44 #include <net/inet_ecn.h>
45 #include <net/netfilter/ipv6/nf_conntrack_ipv6.h>
46 #include <linux/sysctl.h>
47 #include <linux/netfilter.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/kernel.h>
50 #include <linux/module.h>
51 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
52 
53 static const char nf_frags_cache_name[] = "nf-frags";
54 
55 struct nf_ct_frag6_skb_cb
56 {
57 	struct inet6_skb_parm	h;
58 	int			offset;
59 };
60 
61 #define NFCT_FRAG6_CB(skb)	((struct nf_ct_frag6_skb_cb *)((skb)->cb))
62 
63 static struct inet_frags nf_frags;
64 
65 #ifdef CONFIG_SYSCTL
66 static int zero;
67 
68 static struct ctl_table nf_ct_frag6_sysctl_table[] = {
69 	{
70 		.procname	= "nf_conntrack_frag6_timeout",
71 		.data		= &init_net.nf_frag.frags.timeout,
72 		.maxlen		= sizeof(unsigned int),
73 		.mode		= 0644,
74 		.proc_handler	= proc_dointvec_jiffies,
75 	},
76 	{
77 		.procname	= "nf_conntrack_frag6_low_thresh",
78 		.data		= &init_net.nf_frag.frags.low_thresh,
79 		.maxlen		= sizeof(unsigned int),
80 		.mode		= 0644,
81 		.proc_handler	= proc_dointvec_minmax,
82 		.extra1		= &zero,
83 		.extra2		= &init_net.nf_frag.frags.high_thresh
84 	},
85 	{
86 		.procname	= "nf_conntrack_frag6_high_thresh",
87 		.data		= &init_net.nf_frag.frags.high_thresh,
88 		.maxlen		= sizeof(unsigned int),
89 		.mode		= 0644,
90 		.proc_handler	= proc_dointvec_minmax,
91 		.extra1		= &init_net.nf_frag.frags.low_thresh
92 	},
93 	{ }
94 };
95 
96 static int nf_ct_frag6_sysctl_register(struct net *net)
97 {
98 	struct ctl_table *table;
99 	struct ctl_table_header *hdr;
100 
101 	table = nf_ct_frag6_sysctl_table;
102 	if (!net_eq(net, &init_net)) {
103 		table = kmemdup(table, sizeof(nf_ct_frag6_sysctl_table),
104 				GFP_KERNEL);
105 		if (table == NULL)
106 			goto err_alloc;
107 
108 		table[0].data = &net->nf_frag.frags.timeout;
109 		table[1].data = &net->nf_frag.frags.low_thresh;
110 		table[1].extra2 = &net->nf_frag.frags.high_thresh;
111 		table[2].data = &net->nf_frag.frags.high_thresh;
112 		table[2].extra1 = &net->nf_frag.frags.low_thresh;
113 		table[2].extra2 = &init_net.nf_frag.frags.high_thresh;
114 	}
115 
116 	hdr = register_net_sysctl(net, "net/netfilter", table);
117 	if (hdr == NULL)
118 		goto err_reg;
119 
120 	net->nf_frag.sysctl.frags_hdr = hdr;
121 	return 0;
122 
123 err_reg:
124 	if (!net_eq(net, &init_net))
125 		kfree(table);
126 err_alloc:
127 	return -ENOMEM;
128 }
129 
130 static void __net_exit nf_ct_frags6_sysctl_unregister(struct net *net)
131 {
132 	struct ctl_table *table;
133 
134 	table = net->nf_frag.sysctl.frags_hdr->ctl_table_arg;
135 	unregister_net_sysctl_table(net->nf_frag.sysctl.frags_hdr);
136 	if (!net_eq(net, &init_net))
137 		kfree(table);
138 }
139 
140 #else
141 static int nf_ct_frag6_sysctl_register(struct net *net)
142 {
143 	return 0;
144 }
145 static void __net_exit nf_ct_frags6_sysctl_unregister(struct net *net)
146 {
147 }
148 #endif
149 
150 static inline u8 ip6_frag_ecn(const struct ipv6hdr *ipv6h)
151 {
152 	return 1 << (ipv6_get_dsfield(ipv6h) & INET_ECN_MASK);
153 }
154 
155 static unsigned int nf_hash_frag(__be32 id, const struct in6_addr *saddr,
156 				 const struct in6_addr *daddr)
157 {
158 	net_get_random_once(&nf_frags.rnd, sizeof(nf_frags.rnd));
159 	return jhash_3words(ipv6_addr_hash(saddr), ipv6_addr_hash(daddr),
160 			    (__force u32)id, nf_frags.rnd);
161 }
162 
163 
164 static unsigned int nf_hashfn(const struct inet_frag_queue *q)
165 {
166 	const struct frag_queue *nq;
167 
168 	nq = container_of(q, struct frag_queue, q);
169 	return nf_hash_frag(nq->id, &nq->saddr, &nq->daddr);
170 }
171 
172 static void nf_ct_frag6_expire(unsigned long data)
173 {
174 	struct frag_queue *fq;
175 	struct net *net;
176 
177 	fq = container_of((struct inet_frag_queue *)data, struct frag_queue, q);
178 	net = container_of(fq->q.net, struct net, nf_frag.frags);
179 
180 	ip6_expire_frag_queue(net, fq, &nf_frags);
181 }
182 
183 /* Creation primitives. */
184 static inline struct frag_queue *fq_find(struct net *net, __be32 id,
185 					 u32 user, struct in6_addr *src,
186 					 struct in6_addr *dst, int iif, u8 ecn)
187 {
188 	struct inet_frag_queue *q;
189 	struct ip6_create_arg arg;
190 	unsigned int hash;
191 
192 	arg.id = id;
193 	arg.user = user;
194 	arg.src = src;
195 	arg.dst = dst;
196 	arg.iif = iif;
197 	arg.ecn = ecn;
198 
199 	local_bh_disable();
200 	hash = nf_hash_frag(id, src, dst);
201 
202 	q = inet_frag_find(&net->nf_frag.frags, &nf_frags, &arg, hash);
203 	local_bh_enable();
204 	if (IS_ERR_OR_NULL(q)) {
205 		inet_frag_maybe_warn_overflow(q, pr_fmt());
206 		return NULL;
207 	}
208 	return container_of(q, struct frag_queue, q);
209 }
210 
211 
212 static int nf_ct_frag6_queue(struct frag_queue *fq, struct sk_buff *skb,
213 			     const struct frag_hdr *fhdr, int nhoff)
214 {
215 	struct sk_buff *prev, *next;
216 	unsigned int payload_len;
217 	int offset, end;
218 	u8 ecn;
219 
220 	if (fq->q.flags & INET_FRAG_COMPLETE) {
221 		pr_debug("Already completed\n");
222 		goto err;
223 	}
224 
225 	payload_len = ntohs(ipv6_hdr(skb)->payload_len);
226 
227 	offset = ntohs(fhdr->frag_off) & ~0x7;
228 	end = offset + (payload_len -
229 			((u8 *)(fhdr + 1) - (u8 *)(ipv6_hdr(skb) + 1)));
230 
231 	if ((unsigned int)end > IPV6_MAXPLEN) {
232 		pr_debug("offset is too large.\n");
233 		return -1;
234 	}
235 
236 	ecn = ip6_frag_ecn(ipv6_hdr(skb));
237 
238 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
239 		const unsigned char *nh = skb_network_header(skb);
240 		skb->csum = csum_sub(skb->csum,
241 				     csum_partial(nh, (u8 *)(fhdr + 1) - nh,
242 						  0));
243 	}
244 
245 	/* Is this the final fragment? */
246 	if (!(fhdr->frag_off & htons(IP6_MF))) {
247 		/* If we already have some bits beyond end
248 		 * or have different end, the segment is corrupted.
249 		 */
250 		if (end < fq->q.len ||
251 		    ((fq->q.flags & INET_FRAG_LAST_IN) && end != fq->q.len)) {
252 			pr_debug("already received last fragment\n");
253 			goto err;
254 		}
255 		fq->q.flags |= INET_FRAG_LAST_IN;
256 		fq->q.len = end;
257 	} else {
258 		/* Check if the fragment is rounded to 8 bytes.
259 		 * Required by the RFC.
260 		 */
261 		if (end & 0x7) {
262 			/* RFC2460 says always send parameter problem in
263 			 * this case. -DaveM
264 			 */
265 			pr_debug("end of fragment not rounded to 8 bytes.\n");
266 			return -1;
267 		}
268 		if (end > fq->q.len) {
269 			/* Some bits beyond end -> corruption. */
270 			if (fq->q.flags & INET_FRAG_LAST_IN) {
271 				pr_debug("last packet already reached.\n");
272 				goto err;
273 			}
274 			fq->q.len = end;
275 		}
276 	}
277 
278 	if (end == offset)
279 		goto err;
280 
281 	/* Point into the IP datagram 'data' part. */
282 	if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data)) {
283 		pr_debug("queue: message is too short.\n");
284 		goto err;
285 	}
286 	if (pskb_trim_rcsum(skb, end - offset)) {
287 		pr_debug("Can't trim\n");
288 		goto err;
289 	}
290 
291 	/* Find out which fragments are in front and at the back of us
292 	 * in the chain of fragments so far.  We must know where to put
293 	 * this fragment, right?
294 	 */
295 	prev = fq->q.fragments_tail;
296 	if (!prev || NFCT_FRAG6_CB(prev)->offset < offset) {
297 		next = NULL;
298 		goto found;
299 	}
300 	prev = NULL;
301 	for (next = fq->q.fragments; next != NULL; next = next->next) {
302 		if (NFCT_FRAG6_CB(next)->offset >= offset)
303 			break;	/* bingo! */
304 		prev = next;
305 	}
306 
307 found:
308 	/* RFC5722, Section 4:
309 	 *                                  When reassembling an IPv6 datagram, if
310 	 *   one or more its constituent fragments is determined to be an
311 	 *   overlapping fragment, the entire datagram (and any constituent
312 	 *   fragments, including those not yet received) MUST be silently
313 	 *   discarded.
314 	 */
315 
316 	/* Check for overlap with preceding fragment. */
317 	if (prev &&
318 	    (NFCT_FRAG6_CB(prev)->offset + prev->len) > offset)
319 		goto discard_fq;
320 
321 	/* Look for overlap with succeeding segment. */
322 	if (next && NFCT_FRAG6_CB(next)->offset < end)
323 		goto discard_fq;
324 
325 	NFCT_FRAG6_CB(skb)->offset = offset;
326 
327 	/* Insert this fragment in the chain of fragments. */
328 	skb->next = next;
329 	if (!next)
330 		fq->q.fragments_tail = skb;
331 	if (prev)
332 		prev->next = skb;
333 	else
334 		fq->q.fragments = skb;
335 
336 	if (skb->dev) {
337 		fq->iif = skb->dev->ifindex;
338 		skb->dev = NULL;
339 	}
340 	fq->q.stamp = skb->tstamp;
341 	fq->q.meat += skb->len;
342 	fq->ecn |= ecn;
343 	if (payload_len > fq->q.max_size)
344 		fq->q.max_size = payload_len;
345 	add_frag_mem_limit(fq->q.net, skb->truesize);
346 
347 	/* The first fragment.
348 	 * nhoffset is obtained from the first fragment, of course.
349 	 */
350 	if (offset == 0) {
351 		fq->nhoffset = nhoff;
352 		fq->q.flags |= INET_FRAG_FIRST_IN;
353 	}
354 
355 	return 0;
356 
357 discard_fq:
358 	inet_frag_kill(&fq->q, &nf_frags);
359 err:
360 	return -1;
361 }
362 
363 /*
364  *	Check if this packet is complete.
365  *
366  *	It is called with locked fq, and caller must check that
367  *	queue is eligible for reassembly i.e. it is not COMPLETE,
368  *	the last and the first frames arrived and all the bits are here.
369  *
370  *	returns true if *prev skb has been transformed into the reassembled
371  *	skb, false otherwise.
372  */
373 static bool
374 nf_ct_frag6_reasm(struct frag_queue *fq, struct sk_buff *prev,  struct net_device *dev)
375 {
376 	struct sk_buff *fp, *head = fq->q.fragments;
377 	int    payload_len;
378 	u8 ecn;
379 
380 	inet_frag_kill(&fq->q, &nf_frags);
381 
382 	WARN_ON(head == NULL);
383 	WARN_ON(NFCT_FRAG6_CB(head)->offset != 0);
384 
385 	ecn = ip_frag_ecn_table[fq->ecn];
386 	if (unlikely(ecn == 0xff))
387 		return false;
388 
389 	/* Unfragmented part is taken from the first segment. */
390 	payload_len = ((head->data - skb_network_header(head)) -
391 		       sizeof(struct ipv6hdr) + fq->q.len -
392 		       sizeof(struct frag_hdr));
393 	if (payload_len > IPV6_MAXPLEN) {
394 		net_dbg_ratelimited("nf_ct_frag6_reasm: payload len = %d\n",
395 				    payload_len);
396 		return false;
397 	}
398 
399 	/* Head of list must not be cloned. */
400 	if (skb_unclone(head, GFP_ATOMIC))
401 		return false;
402 
403 	/* If the first fragment is fragmented itself, we split
404 	 * it to two chunks: the first with data and paged part
405 	 * and the second, holding only fragments. */
406 	if (skb_has_frag_list(head)) {
407 		struct sk_buff *clone;
408 		int i, plen = 0;
409 
410 		clone = alloc_skb(0, GFP_ATOMIC);
411 		if (clone == NULL)
412 			return false;
413 
414 		clone->next = head->next;
415 		head->next = clone;
416 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
417 		skb_frag_list_init(head);
418 		for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
419 			plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
420 		clone->len = clone->data_len = head->data_len - plen;
421 		head->data_len -= clone->len;
422 		head->len -= clone->len;
423 		clone->csum = 0;
424 		clone->ip_summed = head->ip_summed;
425 
426 		add_frag_mem_limit(fq->q.net, clone->truesize);
427 	}
428 
429 	/* morph head into last received skb: prev.
430 	 *
431 	 * This allows callers of ipv6 conntrack defrag to continue
432 	 * to use the last skb(frag) passed into the reasm engine.
433 	 * The last skb frag 'silently' turns into the full reassembled skb.
434 	 *
435 	 * Since prev is also part of q->fragments we have to clone it first.
436 	 */
437 	if (head != prev) {
438 		struct sk_buff *iter;
439 
440 		fp = skb_clone(prev, GFP_ATOMIC);
441 		if (!fp)
442 			return false;
443 
444 		fp->next = prev->next;
445 
446 		iter = head;
447 		while (iter) {
448 			if (iter->next == prev) {
449 				iter->next = fp;
450 				break;
451 			}
452 			iter = iter->next;
453 		}
454 
455 		skb_morph(prev, head);
456 		prev->next = head->next;
457 		consume_skb(head);
458 		head = prev;
459 	}
460 
461 	/* We have to remove fragment header from datagram and to relocate
462 	 * header in order to calculate ICV correctly. */
463 	skb_network_header(head)[fq->nhoffset] = skb_transport_header(head)[0];
464 	memmove(head->head + sizeof(struct frag_hdr), head->head,
465 		(head->data - head->head) - sizeof(struct frag_hdr));
466 	head->mac_header += sizeof(struct frag_hdr);
467 	head->network_header += sizeof(struct frag_hdr);
468 
469 	skb_shinfo(head)->frag_list = head->next;
470 	skb_reset_transport_header(head);
471 	skb_push(head, head->data - skb_network_header(head));
472 
473 	for (fp = head->next; fp; fp = fp->next) {
474 		head->data_len += fp->len;
475 		head->len += fp->len;
476 		if (head->ip_summed != fp->ip_summed)
477 			head->ip_summed = CHECKSUM_NONE;
478 		else if (head->ip_summed == CHECKSUM_COMPLETE)
479 			head->csum = csum_add(head->csum, fp->csum);
480 		head->truesize += fp->truesize;
481 	}
482 	sub_frag_mem_limit(fq->q.net, head->truesize);
483 
484 	head->ignore_df = 1;
485 	head->next = NULL;
486 	head->dev = dev;
487 	head->tstamp = fq->q.stamp;
488 	ipv6_hdr(head)->payload_len = htons(payload_len);
489 	ipv6_change_dsfield(ipv6_hdr(head), 0xff, ecn);
490 	IP6CB(head)->frag_max_size = sizeof(struct ipv6hdr) + fq->q.max_size;
491 
492 	/* Yes, and fold redundant checksum back. 8) */
493 	if (head->ip_summed == CHECKSUM_COMPLETE)
494 		head->csum = csum_partial(skb_network_header(head),
495 					  skb_network_header_len(head),
496 					  head->csum);
497 
498 	fq->q.fragments = NULL;
499 	fq->q.fragments_tail = NULL;
500 
501 	return true;
502 }
503 
504 /*
505  * find the header just before Fragment Header.
506  *
507  * if success return 0 and set ...
508  * (*prevhdrp): the value of "Next Header Field" in the header
509  *		just before Fragment Header.
510  * (*prevhoff): the offset of "Next Header Field" in the header
511  *		just before Fragment Header.
512  * (*fhoff)   : the offset of Fragment Header.
513  *
514  * Based on ipv6_skip_hdr() in net/ipv6/exthdr.c
515  *
516  */
517 static int
518 find_prev_fhdr(struct sk_buff *skb, u8 *prevhdrp, int *prevhoff, int *fhoff)
519 {
520 	u8 nexthdr = ipv6_hdr(skb)->nexthdr;
521 	const int netoff = skb_network_offset(skb);
522 	u8 prev_nhoff = netoff + offsetof(struct ipv6hdr, nexthdr);
523 	int start = netoff + sizeof(struct ipv6hdr);
524 	int len = skb->len - start;
525 	u8 prevhdr = NEXTHDR_IPV6;
526 
527 	while (nexthdr != NEXTHDR_FRAGMENT) {
528 		struct ipv6_opt_hdr hdr;
529 		int hdrlen;
530 
531 		if (!ipv6_ext_hdr(nexthdr)) {
532 			return -1;
533 		}
534 		if (nexthdr == NEXTHDR_NONE) {
535 			pr_debug("next header is none\n");
536 			return -1;
537 		}
538 		if (len < (int)sizeof(struct ipv6_opt_hdr)) {
539 			pr_debug("too short\n");
540 			return -1;
541 		}
542 		if (skb_copy_bits(skb, start, &hdr, sizeof(hdr)))
543 			BUG();
544 		if (nexthdr == NEXTHDR_AUTH)
545 			hdrlen = (hdr.hdrlen+2)<<2;
546 		else
547 			hdrlen = ipv6_optlen(&hdr);
548 
549 		prevhdr = nexthdr;
550 		prev_nhoff = start;
551 
552 		nexthdr = hdr.nexthdr;
553 		len -= hdrlen;
554 		start += hdrlen;
555 	}
556 
557 	if (len < 0)
558 		return -1;
559 
560 	*prevhdrp = prevhdr;
561 	*prevhoff = prev_nhoff;
562 	*fhoff = start;
563 
564 	return 0;
565 }
566 
567 int nf_ct_frag6_gather(struct net *net, struct sk_buff *skb, u32 user)
568 {
569 	struct net_device *dev = skb->dev;
570 	int fhoff, nhoff, ret;
571 	struct frag_hdr *fhdr;
572 	struct frag_queue *fq;
573 	struct ipv6hdr *hdr;
574 	u8 prevhdr;
575 
576 	/* Jumbo payload inhibits frag. header */
577 	if (ipv6_hdr(skb)->payload_len == 0) {
578 		pr_debug("payload len = 0\n");
579 		return 0;
580 	}
581 
582 	if (find_prev_fhdr(skb, &prevhdr, &nhoff, &fhoff) < 0)
583 		return 0;
584 
585 	if (!pskb_may_pull(skb, fhoff + sizeof(*fhdr)))
586 		return -ENOMEM;
587 
588 	skb_set_transport_header(skb, fhoff);
589 	hdr = ipv6_hdr(skb);
590 	fhdr = (struct frag_hdr *)skb_transport_header(skb);
591 
592 	skb_orphan(skb);
593 	fq = fq_find(net, fhdr->identification, user, &hdr->saddr, &hdr->daddr,
594 		     skb->dev ? skb->dev->ifindex : 0, ip6_frag_ecn(hdr));
595 	if (fq == NULL) {
596 		pr_debug("Can't find and can't create new queue\n");
597 		return -ENOMEM;
598 	}
599 
600 	spin_lock_bh(&fq->q.lock);
601 
602 	if (nf_ct_frag6_queue(fq, skb, fhdr, nhoff) < 0) {
603 		ret = -EINVAL;
604 		goto out_unlock;
605 	}
606 
607 	/* after queue has assumed skb ownership, only 0 or -EINPROGRESS
608 	 * must be returned.
609 	 */
610 	ret = -EINPROGRESS;
611 	if (fq->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
612 	    fq->q.meat == fq->q.len &&
613 	    nf_ct_frag6_reasm(fq, skb, dev))
614 		ret = 0;
615 
616 out_unlock:
617 	spin_unlock_bh(&fq->q.lock);
618 	inet_frag_put(&fq->q, &nf_frags);
619 	return ret;
620 }
621 EXPORT_SYMBOL_GPL(nf_ct_frag6_gather);
622 
623 static int nf_ct_net_init(struct net *net)
624 {
625 	net->nf_frag.frags.high_thresh = IPV6_FRAG_HIGH_THRESH;
626 	net->nf_frag.frags.low_thresh = IPV6_FRAG_LOW_THRESH;
627 	net->nf_frag.frags.timeout = IPV6_FRAG_TIMEOUT;
628 	inet_frags_init_net(&net->nf_frag.frags);
629 
630 	return nf_ct_frag6_sysctl_register(net);
631 }
632 
633 static void nf_ct_net_exit(struct net *net)
634 {
635 	nf_ct_frags6_sysctl_unregister(net);
636 	inet_frags_exit_net(&net->nf_frag.frags, &nf_frags);
637 }
638 
639 static struct pernet_operations nf_ct_net_ops = {
640 	.init = nf_ct_net_init,
641 	.exit = nf_ct_net_exit,
642 };
643 
644 int nf_ct_frag6_init(void)
645 {
646 	int ret = 0;
647 
648 	nf_frags.hashfn = nf_hashfn;
649 	nf_frags.constructor = ip6_frag_init;
650 	nf_frags.destructor = NULL;
651 	nf_frags.qsize = sizeof(struct frag_queue);
652 	nf_frags.match = ip6_frag_match;
653 	nf_frags.frag_expire = nf_ct_frag6_expire;
654 	nf_frags.frags_cache_name = nf_frags_cache_name;
655 	ret = inet_frags_init(&nf_frags);
656 	if (ret)
657 		goto out;
658 	ret = register_pernet_subsys(&nf_ct_net_ops);
659 	if (ret)
660 		inet_frags_fini(&nf_frags);
661 
662 out:
663 	return ret;
664 }
665 
666 void nf_ct_frag6_cleanup(void)
667 {
668 	unregister_pernet_subsys(&nf_ct_net_ops);
669 	inet_frags_fini(&nf_frags);
670 }
671