xref: /linux/net/ipv4/tcp_input.c (revision fbc872c38c8fed31948c85683b5326ee5ab9fccc)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
97 
98 int sysctl_tcp_thin_dupack __read_mostly;
99 
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
103 
104 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
105 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
106 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
107 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
108 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
109 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
110 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
111 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
112 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
114 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
118 
119 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
123 
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126 
127 #define REXMIT_NONE	0 /* no loss recovery to do */
128 #define REXMIT_LOST	1 /* retransmit packets marked lost */
129 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
130 
131 /* Adapt the MSS value used to make delayed ack decision to the
132  * real world.
133  */
134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
135 {
136 	struct inet_connection_sock *icsk = inet_csk(sk);
137 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
138 	unsigned int len;
139 
140 	icsk->icsk_ack.last_seg_size = 0;
141 
142 	/* skb->len may jitter because of SACKs, even if peer
143 	 * sends good full-sized frames.
144 	 */
145 	len = skb_shinfo(skb)->gso_size ? : skb->len;
146 	if (len >= icsk->icsk_ack.rcv_mss) {
147 		icsk->icsk_ack.rcv_mss = len;
148 	} else {
149 		/* Otherwise, we make more careful check taking into account,
150 		 * that SACKs block is variable.
151 		 *
152 		 * "len" is invariant segment length, including TCP header.
153 		 */
154 		len += skb->data - skb_transport_header(skb);
155 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
156 		    /* If PSH is not set, packet should be
157 		     * full sized, provided peer TCP is not badly broken.
158 		     * This observation (if it is correct 8)) allows
159 		     * to handle super-low mtu links fairly.
160 		     */
161 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
162 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
163 			/* Subtract also invariant (if peer is RFC compliant),
164 			 * tcp header plus fixed timestamp option length.
165 			 * Resulting "len" is MSS free of SACK jitter.
166 			 */
167 			len -= tcp_sk(sk)->tcp_header_len;
168 			icsk->icsk_ack.last_seg_size = len;
169 			if (len == lss) {
170 				icsk->icsk_ack.rcv_mss = len;
171 				return;
172 			}
173 		}
174 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
175 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
176 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
177 	}
178 }
179 
180 static void tcp_incr_quickack(struct sock *sk)
181 {
182 	struct inet_connection_sock *icsk = inet_csk(sk);
183 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
184 
185 	if (quickacks == 0)
186 		quickacks = 2;
187 	if (quickacks > icsk->icsk_ack.quick)
188 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
189 }
190 
191 static void tcp_enter_quickack_mode(struct sock *sk)
192 {
193 	struct inet_connection_sock *icsk = inet_csk(sk);
194 	tcp_incr_quickack(sk);
195 	icsk->icsk_ack.pingpong = 0;
196 	icsk->icsk_ack.ato = TCP_ATO_MIN;
197 }
198 
199 /* Send ACKs quickly, if "quick" count is not exhausted
200  * and the session is not interactive.
201  */
202 
203 static bool tcp_in_quickack_mode(struct sock *sk)
204 {
205 	const struct inet_connection_sock *icsk = inet_csk(sk);
206 	const struct dst_entry *dst = __sk_dst_get(sk);
207 
208 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
209 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
210 }
211 
212 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
213 {
214 	if (tp->ecn_flags & TCP_ECN_OK)
215 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
216 }
217 
218 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
219 {
220 	if (tcp_hdr(skb)->cwr)
221 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222 }
223 
224 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
225 {
226 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
227 }
228 
229 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
230 {
231 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
232 	case INET_ECN_NOT_ECT:
233 		/* Funny extension: if ECT is not set on a segment,
234 		 * and we already seen ECT on a previous segment,
235 		 * it is probably a retransmit.
236 		 */
237 		if (tp->ecn_flags & TCP_ECN_SEEN)
238 			tcp_enter_quickack_mode((struct sock *)tp);
239 		break;
240 	case INET_ECN_CE:
241 		if (tcp_ca_needs_ecn((struct sock *)tp))
242 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
243 
244 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
245 			/* Better not delay acks, sender can have a very low cwnd */
246 			tcp_enter_quickack_mode((struct sock *)tp);
247 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
248 		}
249 		tp->ecn_flags |= TCP_ECN_SEEN;
250 		break;
251 	default:
252 		if (tcp_ca_needs_ecn((struct sock *)tp))
253 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
254 		tp->ecn_flags |= TCP_ECN_SEEN;
255 		break;
256 	}
257 }
258 
259 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
260 {
261 	if (tp->ecn_flags & TCP_ECN_OK)
262 		__tcp_ecn_check_ce(tp, skb);
263 }
264 
265 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
266 {
267 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
268 		tp->ecn_flags &= ~TCP_ECN_OK;
269 }
270 
271 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
274 		tp->ecn_flags &= ~TCP_ECN_OK;
275 }
276 
277 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
278 {
279 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
280 		return true;
281 	return false;
282 }
283 
284 /* Buffer size and advertised window tuning.
285  *
286  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
287  */
288 
289 static void tcp_sndbuf_expand(struct sock *sk)
290 {
291 	const struct tcp_sock *tp = tcp_sk(sk);
292 	int sndmem, per_mss;
293 	u32 nr_segs;
294 
295 	/* Worst case is non GSO/TSO : each frame consumes one skb
296 	 * and skb->head is kmalloced using power of two area of memory
297 	 */
298 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
299 		  MAX_TCP_HEADER +
300 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
301 
302 	per_mss = roundup_pow_of_two(per_mss) +
303 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
304 
305 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
306 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
307 
308 	/* Fast Recovery (RFC 5681 3.2) :
309 	 * Cubic needs 1.7 factor, rounded to 2 to include
310 	 * extra cushion (application might react slowly to POLLOUT)
311 	 */
312 	sndmem = 2 * nr_segs * per_mss;
313 
314 	if (sk->sk_sndbuf < sndmem)
315 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
316 }
317 
318 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
319  *
320  * All tcp_full_space() is split to two parts: "network" buffer, allocated
321  * forward and advertised in receiver window (tp->rcv_wnd) and
322  * "application buffer", required to isolate scheduling/application
323  * latencies from network.
324  * window_clamp is maximal advertised window. It can be less than
325  * tcp_full_space(), in this case tcp_full_space() - window_clamp
326  * is reserved for "application" buffer. The less window_clamp is
327  * the smoother our behaviour from viewpoint of network, but the lower
328  * throughput and the higher sensitivity of the connection to losses. 8)
329  *
330  * rcv_ssthresh is more strict window_clamp used at "slow start"
331  * phase to predict further behaviour of this connection.
332  * It is used for two goals:
333  * - to enforce header prediction at sender, even when application
334  *   requires some significant "application buffer". It is check #1.
335  * - to prevent pruning of receive queue because of misprediction
336  *   of receiver window. Check #2.
337  *
338  * The scheme does not work when sender sends good segments opening
339  * window and then starts to feed us spaghetti. But it should work
340  * in common situations. Otherwise, we have to rely on queue collapsing.
341  */
342 
343 /* Slow part of check#2. */
344 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
345 {
346 	struct tcp_sock *tp = tcp_sk(sk);
347 	/* Optimize this! */
348 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
349 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
350 
351 	while (tp->rcv_ssthresh <= window) {
352 		if (truesize <= skb->len)
353 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
354 
355 		truesize >>= 1;
356 		window >>= 1;
357 	}
358 	return 0;
359 }
360 
361 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
362 {
363 	struct tcp_sock *tp = tcp_sk(sk);
364 
365 	/* Check #1 */
366 	if (tp->rcv_ssthresh < tp->window_clamp &&
367 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
368 	    !tcp_under_memory_pressure(sk)) {
369 		int incr;
370 
371 		/* Check #2. Increase window, if skb with such overhead
372 		 * will fit to rcvbuf in future.
373 		 */
374 		if (tcp_win_from_space(skb->truesize) <= skb->len)
375 			incr = 2 * tp->advmss;
376 		else
377 			incr = __tcp_grow_window(sk, skb);
378 
379 		if (incr) {
380 			incr = max_t(int, incr, 2 * skb->len);
381 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
382 					       tp->window_clamp);
383 			inet_csk(sk)->icsk_ack.quick |= 1;
384 		}
385 	}
386 }
387 
388 /* 3. Tuning rcvbuf, when connection enters established state. */
389 static void tcp_fixup_rcvbuf(struct sock *sk)
390 {
391 	u32 mss = tcp_sk(sk)->advmss;
392 	int rcvmem;
393 
394 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
395 		 tcp_default_init_rwnd(mss);
396 
397 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
398 	 * Allow enough cushion so that sender is not limited by our window
399 	 */
400 	if (sysctl_tcp_moderate_rcvbuf)
401 		rcvmem <<= 2;
402 
403 	if (sk->sk_rcvbuf < rcvmem)
404 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
405 }
406 
407 /* 4. Try to fixup all. It is made immediately after connection enters
408  *    established state.
409  */
410 void tcp_init_buffer_space(struct sock *sk)
411 {
412 	struct tcp_sock *tp = tcp_sk(sk);
413 	int maxwin;
414 
415 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
416 		tcp_fixup_rcvbuf(sk);
417 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
418 		tcp_sndbuf_expand(sk);
419 
420 	tp->rcvq_space.space = tp->rcv_wnd;
421 	tp->rcvq_space.time = tcp_time_stamp;
422 	tp->rcvq_space.seq = tp->copied_seq;
423 
424 	maxwin = tcp_full_space(sk);
425 
426 	if (tp->window_clamp >= maxwin) {
427 		tp->window_clamp = maxwin;
428 
429 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
430 			tp->window_clamp = max(maxwin -
431 					       (maxwin >> sysctl_tcp_app_win),
432 					       4 * tp->advmss);
433 	}
434 
435 	/* Force reservation of one segment. */
436 	if (sysctl_tcp_app_win &&
437 	    tp->window_clamp > 2 * tp->advmss &&
438 	    tp->window_clamp + tp->advmss > maxwin)
439 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
440 
441 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
442 	tp->snd_cwnd_stamp = tcp_time_stamp;
443 }
444 
445 /* 5. Recalculate window clamp after socket hit its memory bounds. */
446 static void tcp_clamp_window(struct sock *sk)
447 {
448 	struct tcp_sock *tp = tcp_sk(sk);
449 	struct inet_connection_sock *icsk = inet_csk(sk);
450 
451 	icsk->icsk_ack.quick = 0;
452 
453 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
454 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
455 	    !tcp_under_memory_pressure(sk) &&
456 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
457 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
458 				    sysctl_tcp_rmem[2]);
459 	}
460 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
461 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
462 }
463 
464 /* Initialize RCV_MSS value.
465  * RCV_MSS is an our guess about MSS used by the peer.
466  * We haven't any direct information about the MSS.
467  * It's better to underestimate the RCV_MSS rather than overestimate.
468  * Overestimations make us ACKing less frequently than needed.
469  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
470  */
471 void tcp_initialize_rcv_mss(struct sock *sk)
472 {
473 	const struct tcp_sock *tp = tcp_sk(sk);
474 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
475 
476 	hint = min(hint, tp->rcv_wnd / 2);
477 	hint = min(hint, TCP_MSS_DEFAULT);
478 	hint = max(hint, TCP_MIN_MSS);
479 
480 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
481 }
482 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
483 
484 /* Receiver "autotuning" code.
485  *
486  * The algorithm for RTT estimation w/o timestamps is based on
487  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
488  * <http://public.lanl.gov/radiant/pubs.html#DRS>
489  *
490  * More detail on this code can be found at
491  * <http://staff.psc.edu/jheffner/>,
492  * though this reference is out of date.  A new paper
493  * is pending.
494  */
495 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
496 {
497 	u32 new_sample = tp->rcv_rtt_est.rtt;
498 	long m = sample;
499 
500 	if (m == 0)
501 		m = 1;
502 
503 	if (new_sample != 0) {
504 		/* If we sample in larger samples in the non-timestamp
505 		 * case, we could grossly overestimate the RTT especially
506 		 * with chatty applications or bulk transfer apps which
507 		 * are stalled on filesystem I/O.
508 		 *
509 		 * Also, since we are only going for a minimum in the
510 		 * non-timestamp case, we do not smooth things out
511 		 * else with timestamps disabled convergence takes too
512 		 * long.
513 		 */
514 		if (!win_dep) {
515 			m -= (new_sample >> 3);
516 			new_sample += m;
517 		} else {
518 			m <<= 3;
519 			if (m < new_sample)
520 				new_sample = m;
521 		}
522 	} else {
523 		/* No previous measure. */
524 		new_sample = m << 3;
525 	}
526 
527 	if (tp->rcv_rtt_est.rtt != new_sample)
528 		tp->rcv_rtt_est.rtt = new_sample;
529 }
530 
531 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
532 {
533 	if (tp->rcv_rtt_est.time == 0)
534 		goto new_measure;
535 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
536 		return;
537 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
538 
539 new_measure:
540 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
541 	tp->rcv_rtt_est.time = tcp_time_stamp;
542 }
543 
544 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
545 					  const struct sk_buff *skb)
546 {
547 	struct tcp_sock *tp = tcp_sk(sk);
548 	if (tp->rx_opt.rcv_tsecr &&
549 	    (TCP_SKB_CB(skb)->end_seq -
550 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
551 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
552 }
553 
554 /*
555  * This function should be called every time data is copied to user space.
556  * It calculates the appropriate TCP receive buffer space.
557  */
558 void tcp_rcv_space_adjust(struct sock *sk)
559 {
560 	struct tcp_sock *tp = tcp_sk(sk);
561 	int time;
562 	int copied;
563 
564 	time = tcp_time_stamp - tp->rcvq_space.time;
565 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
566 		return;
567 
568 	/* Number of bytes copied to user in last RTT */
569 	copied = tp->copied_seq - tp->rcvq_space.seq;
570 	if (copied <= tp->rcvq_space.space)
571 		goto new_measure;
572 
573 	/* A bit of theory :
574 	 * copied = bytes received in previous RTT, our base window
575 	 * To cope with packet losses, we need a 2x factor
576 	 * To cope with slow start, and sender growing its cwin by 100 %
577 	 * every RTT, we need a 4x factor, because the ACK we are sending
578 	 * now is for the next RTT, not the current one :
579 	 * <prev RTT . ><current RTT .. ><next RTT .... >
580 	 */
581 
582 	if (sysctl_tcp_moderate_rcvbuf &&
583 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
584 		int rcvwin, rcvmem, rcvbuf;
585 
586 		/* minimal window to cope with packet losses, assuming
587 		 * steady state. Add some cushion because of small variations.
588 		 */
589 		rcvwin = (copied << 1) + 16 * tp->advmss;
590 
591 		/* If rate increased by 25%,
592 		 *	assume slow start, rcvwin = 3 * copied
593 		 * If rate increased by 50%,
594 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
595 		 */
596 		if (copied >=
597 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
598 			if (copied >=
599 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
600 				rcvwin <<= 1;
601 			else
602 				rcvwin += (rcvwin >> 1);
603 		}
604 
605 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
606 		while (tcp_win_from_space(rcvmem) < tp->advmss)
607 			rcvmem += 128;
608 
609 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
610 		if (rcvbuf > sk->sk_rcvbuf) {
611 			sk->sk_rcvbuf = rcvbuf;
612 
613 			/* Make the window clamp follow along.  */
614 			tp->window_clamp = rcvwin;
615 		}
616 	}
617 	tp->rcvq_space.space = copied;
618 
619 new_measure:
620 	tp->rcvq_space.seq = tp->copied_seq;
621 	tp->rcvq_space.time = tcp_time_stamp;
622 }
623 
624 /* There is something which you must keep in mind when you analyze the
625  * behavior of the tp->ato delayed ack timeout interval.  When a
626  * connection starts up, we want to ack as quickly as possible.  The
627  * problem is that "good" TCP's do slow start at the beginning of data
628  * transmission.  The means that until we send the first few ACK's the
629  * sender will sit on his end and only queue most of his data, because
630  * he can only send snd_cwnd unacked packets at any given time.  For
631  * each ACK we send, he increments snd_cwnd and transmits more of his
632  * queue.  -DaveM
633  */
634 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
635 {
636 	struct tcp_sock *tp = tcp_sk(sk);
637 	struct inet_connection_sock *icsk = inet_csk(sk);
638 	u32 now;
639 
640 	inet_csk_schedule_ack(sk);
641 
642 	tcp_measure_rcv_mss(sk, skb);
643 
644 	tcp_rcv_rtt_measure(tp);
645 
646 	now = tcp_time_stamp;
647 
648 	if (!icsk->icsk_ack.ato) {
649 		/* The _first_ data packet received, initialize
650 		 * delayed ACK engine.
651 		 */
652 		tcp_incr_quickack(sk);
653 		icsk->icsk_ack.ato = TCP_ATO_MIN;
654 	} else {
655 		int m = now - icsk->icsk_ack.lrcvtime;
656 
657 		if (m <= TCP_ATO_MIN / 2) {
658 			/* The fastest case is the first. */
659 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
660 		} else if (m < icsk->icsk_ack.ato) {
661 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
662 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
663 				icsk->icsk_ack.ato = icsk->icsk_rto;
664 		} else if (m > icsk->icsk_rto) {
665 			/* Too long gap. Apparently sender failed to
666 			 * restart window, so that we send ACKs quickly.
667 			 */
668 			tcp_incr_quickack(sk);
669 			sk_mem_reclaim(sk);
670 		}
671 	}
672 	icsk->icsk_ack.lrcvtime = now;
673 
674 	tcp_ecn_check_ce(tp, skb);
675 
676 	if (skb->len >= 128)
677 		tcp_grow_window(sk, skb);
678 }
679 
680 /* Called to compute a smoothed rtt estimate. The data fed to this
681  * routine either comes from timestamps, or from segments that were
682  * known _not_ to have been retransmitted [see Karn/Partridge
683  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
684  * piece by Van Jacobson.
685  * NOTE: the next three routines used to be one big routine.
686  * To save cycles in the RFC 1323 implementation it was better to break
687  * it up into three procedures. -- erics
688  */
689 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
690 {
691 	struct tcp_sock *tp = tcp_sk(sk);
692 	long m = mrtt_us; /* RTT */
693 	u32 srtt = tp->srtt_us;
694 
695 	/*	The following amusing code comes from Jacobson's
696 	 *	article in SIGCOMM '88.  Note that rtt and mdev
697 	 *	are scaled versions of rtt and mean deviation.
698 	 *	This is designed to be as fast as possible
699 	 *	m stands for "measurement".
700 	 *
701 	 *	On a 1990 paper the rto value is changed to:
702 	 *	RTO = rtt + 4 * mdev
703 	 *
704 	 * Funny. This algorithm seems to be very broken.
705 	 * These formulae increase RTO, when it should be decreased, increase
706 	 * too slowly, when it should be increased quickly, decrease too quickly
707 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
708 	 * does not matter how to _calculate_ it. Seems, it was trap
709 	 * that VJ failed to avoid. 8)
710 	 */
711 	if (srtt != 0) {
712 		m -= (srtt >> 3);	/* m is now error in rtt est */
713 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
714 		if (m < 0) {
715 			m = -m;		/* m is now abs(error) */
716 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
717 			/* This is similar to one of Eifel findings.
718 			 * Eifel blocks mdev updates when rtt decreases.
719 			 * This solution is a bit different: we use finer gain
720 			 * for mdev in this case (alpha*beta).
721 			 * Like Eifel it also prevents growth of rto,
722 			 * but also it limits too fast rto decreases,
723 			 * happening in pure Eifel.
724 			 */
725 			if (m > 0)
726 				m >>= 3;
727 		} else {
728 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
729 		}
730 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
731 		if (tp->mdev_us > tp->mdev_max_us) {
732 			tp->mdev_max_us = tp->mdev_us;
733 			if (tp->mdev_max_us > tp->rttvar_us)
734 				tp->rttvar_us = tp->mdev_max_us;
735 		}
736 		if (after(tp->snd_una, tp->rtt_seq)) {
737 			if (tp->mdev_max_us < tp->rttvar_us)
738 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
739 			tp->rtt_seq = tp->snd_nxt;
740 			tp->mdev_max_us = tcp_rto_min_us(sk);
741 		}
742 	} else {
743 		/* no previous measure. */
744 		srtt = m << 3;		/* take the measured time to be rtt */
745 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
746 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
747 		tp->mdev_max_us = tp->rttvar_us;
748 		tp->rtt_seq = tp->snd_nxt;
749 	}
750 	tp->srtt_us = max(1U, srtt);
751 }
752 
753 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
754  * Note: TCP stack does not yet implement pacing.
755  * FQ packet scheduler can be used to implement cheap but effective
756  * TCP pacing, to smooth the burst on large writes when packets
757  * in flight is significantly lower than cwnd (or rwin)
758  */
759 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
760 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
761 
762 static void tcp_update_pacing_rate(struct sock *sk)
763 {
764 	const struct tcp_sock *tp = tcp_sk(sk);
765 	u64 rate;
766 
767 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
768 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
769 
770 	/* current rate is (cwnd * mss) / srtt
771 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
772 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
773 	 *
774 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
775 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
776 	 *	 end of slow start and should slow down.
777 	 */
778 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
779 		rate *= sysctl_tcp_pacing_ss_ratio;
780 	else
781 		rate *= sysctl_tcp_pacing_ca_ratio;
782 
783 	rate *= max(tp->snd_cwnd, tp->packets_out);
784 
785 	if (likely(tp->srtt_us))
786 		do_div(rate, tp->srtt_us);
787 
788 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
789 	 * without any lock. We want to make sure compiler wont store
790 	 * intermediate values in this location.
791 	 */
792 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
793 						sk->sk_max_pacing_rate);
794 }
795 
796 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
797  * routine referred to above.
798  */
799 static void tcp_set_rto(struct sock *sk)
800 {
801 	const struct tcp_sock *tp = tcp_sk(sk);
802 	/* Old crap is replaced with new one. 8)
803 	 *
804 	 * More seriously:
805 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
806 	 *    It cannot be less due to utterly erratic ACK generation made
807 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
808 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
809 	 *    is invisible. Actually, Linux-2.4 also generates erratic
810 	 *    ACKs in some circumstances.
811 	 */
812 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
813 
814 	/* 2. Fixups made earlier cannot be right.
815 	 *    If we do not estimate RTO correctly without them,
816 	 *    all the algo is pure shit and should be replaced
817 	 *    with correct one. It is exactly, which we pretend to do.
818 	 */
819 
820 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
821 	 * guarantees that rto is higher.
822 	 */
823 	tcp_bound_rto(sk);
824 }
825 
826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
827 {
828 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829 
830 	if (!cwnd)
831 		cwnd = TCP_INIT_CWND;
832 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833 }
834 
835 /*
836  * Packet counting of FACK is based on in-order assumptions, therefore TCP
837  * disables it when reordering is detected
838  */
839 void tcp_disable_fack(struct tcp_sock *tp)
840 {
841 	/* RFC3517 uses different metric in lost marker => reset on change */
842 	if (tcp_is_fack(tp))
843 		tp->lost_skb_hint = NULL;
844 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
845 }
846 
847 /* Take a notice that peer is sending D-SACKs */
848 static void tcp_dsack_seen(struct tcp_sock *tp)
849 {
850 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
851 }
852 
853 static void tcp_update_reordering(struct sock *sk, const int metric,
854 				  const int ts)
855 {
856 	struct tcp_sock *tp = tcp_sk(sk);
857 	if (metric > tp->reordering) {
858 		int mib_idx;
859 
860 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
861 
862 		/* This exciting event is worth to be remembered. 8) */
863 		if (ts)
864 			mib_idx = LINUX_MIB_TCPTSREORDER;
865 		else if (tcp_is_reno(tp))
866 			mib_idx = LINUX_MIB_TCPRENOREORDER;
867 		else if (tcp_is_fack(tp))
868 			mib_idx = LINUX_MIB_TCPFACKREORDER;
869 		else
870 			mib_idx = LINUX_MIB_TCPSACKREORDER;
871 
872 		NET_INC_STATS(sock_net(sk), mib_idx);
873 #if FASTRETRANS_DEBUG > 1
874 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
875 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
876 			 tp->reordering,
877 			 tp->fackets_out,
878 			 tp->sacked_out,
879 			 tp->undo_marker ? tp->undo_retrans : 0);
880 #endif
881 		tcp_disable_fack(tp);
882 	}
883 
884 	if (metric > 0)
885 		tcp_disable_early_retrans(tp);
886 	tp->rack.reord = 1;
887 }
888 
889 /* This must be called before lost_out is incremented */
890 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
891 {
892 	if (!tp->retransmit_skb_hint ||
893 	    before(TCP_SKB_CB(skb)->seq,
894 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
895 		tp->retransmit_skb_hint = skb;
896 
897 	if (!tp->lost_out ||
898 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
899 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
900 }
901 
902 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
903 {
904 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
905 		tcp_verify_retransmit_hint(tp, skb);
906 
907 		tp->lost_out += tcp_skb_pcount(skb);
908 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
909 	}
910 }
911 
912 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
913 {
914 	tcp_verify_retransmit_hint(tp, skb);
915 
916 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
917 		tp->lost_out += tcp_skb_pcount(skb);
918 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
919 	}
920 }
921 
922 /* This procedure tags the retransmission queue when SACKs arrive.
923  *
924  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
925  * Packets in queue with these bits set are counted in variables
926  * sacked_out, retrans_out and lost_out, correspondingly.
927  *
928  * Valid combinations are:
929  * Tag  InFlight	Description
930  * 0	1		- orig segment is in flight.
931  * S	0		- nothing flies, orig reached receiver.
932  * L	0		- nothing flies, orig lost by net.
933  * R	2		- both orig and retransmit are in flight.
934  * L|R	1		- orig is lost, retransmit is in flight.
935  * S|R  1		- orig reached receiver, retrans is still in flight.
936  * (L|S|R is logically valid, it could occur when L|R is sacked,
937  *  but it is equivalent to plain S and code short-curcuits it to S.
938  *  L|S is logically invalid, it would mean -1 packet in flight 8))
939  *
940  * These 6 states form finite state machine, controlled by the following events:
941  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
942  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
943  * 3. Loss detection event of two flavors:
944  *	A. Scoreboard estimator decided the packet is lost.
945  *	   A'. Reno "three dupacks" marks head of queue lost.
946  *	   A''. Its FACK modification, head until snd.fack is lost.
947  *	B. SACK arrives sacking SND.NXT at the moment, when the
948  *	   segment was retransmitted.
949  * 4. D-SACK added new rule: D-SACK changes any tag to S.
950  *
951  * It is pleasant to note, that state diagram turns out to be commutative,
952  * so that we are allowed not to be bothered by order of our actions,
953  * when multiple events arrive simultaneously. (see the function below).
954  *
955  * Reordering detection.
956  * --------------------
957  * Reordering metric is maximal distance, which a packet can be displaced
958  * in packet stream. With SACKs we can estimate it:
959  *
960  * 1. SACK fills old hole and the corresponding segment was not
961  *    ever retransmitted -> reordering. Alas, we cannot use it
962  *    when segment was retransmitted.
963  * 2. The last flaw is solved with D-SACK. D-SACK arrives
964  *    for retransmitted and already SACKed segment -> reordering..
965  * Both of these heuristics are not used in Loss state, when we cannot
966  * account for retransmits accurately.
967  *
968  * SACK block validation.
969  * ----------------------
970  *
971  * SACK block range validation checks that the received SACK block fits to
972  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
973  * Note that SND.UNA is not included to the range though being valid because
974  * it means that the receiver is rather inconsistent with itself reporting
975  * SACK reneging when it should advance SND.UNA. Such SACK block this is
976  * perfectly valid, however, in light of RFC2018 which explicitly states
977  * that "SACK block MUST reflect the newest segment.  Even if the newest
978  * segment is going to be discarded ...", not that it looks very clever
979  * in case of head skb. Due to potentional receiver driven attacks, we
980  * choose to avoid immediate execution of a walk in write queue due to
981  * reneging and defer head skb's loss recovery to standard loss recovery
982  * procedure that will eventually trigger (nothing forbids us doing this).
983  *
984  * Implements also blockage to start_seq wrap-around. Problem lies in the
985  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
986  * there's no guarantee that it will be before snd_nxt (n). The problem
987  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
988  * wrap (s_w):
989  *
990  *         <- outs wnd ->                          <- wrapzone ->
991  *         u     e      n                         u_w   e_w  s n_w
992  *         |     |      |                          |     |   |  |
993  * |<------------+------+----- TCP seqno space --------------+---------->|
994  * ...-- <2^31 ->|                                           |<--------...
995  * ...---- >2^31 ------>|                                    |<--------...
996  *
997  * Current code wouldn't be vulnerable but it's better still to discard such
998  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
999  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1000  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1001  * equal to the ideal case (infinite seqno space without wrap caused issues).
1002  *
1003  * With D-SACK the lower bound is extended to cover sequence space below
1004  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1005  * again, D-SACK block must not to go across snd_una (for the same reason as
1006  * for the normal SACK blocks, explained above). But there all simplicity
1007  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1008  * fully below undo_marker they do not affect behavior in anyway and can
1009  * therefore be safely ignored. In rare cases (which are more or less
1010  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1011  * fragmentation and packet reordering past skb's retransmission. To consider
1012  * them correctly, the acceptable range must be extended even more though
1013  * the exact amount is rather hard to quantify. However, tp->max_window can
1014  * be used as an exaggerated estimate.
1015  */
1016 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1017 				   u32 start_seq, u32 end_seq)
1018 {
1019 	/* Too far in future, or reversed (interpretation is ambiguous) */
1020 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1021 		return false;
1022 
1023 	/* Nasty start_seq wrap-around check (see comments above) */
1024 	if (!before(start_seq, tp->snd_nxt))
1025 		return false;
1026 
1027 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1028 	 * start_seq == snd_una is non-sensical (see comments above)
1029 	 */
1030 	if (after(start_seq, tp->snd_una))
1031 		return true;
1032 
1033 	if (!is_dsack || !tp->undo_marker)
1034 		return false;
1035 
1036 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1037 	if (after(end_seq, tp->snd_una))
1038 		return false;
1039 
1040 	if (!before(start_seq, tp->undo_marker))
1041 		return true;
1042 
1043 	/* Too old */
1044 	if (!after(end_seq, tp->undo_marker))
1045 		return false;
1046 
1047 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1048 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1049 	 */
1050 	return !before(start_seq, end_seq - tp->max_window);
1051 }
1052 
1053 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1054 			    struct tcp_sack_block_wire *sp, int num_sacks,
1055 			    u32 prior_snd_una)
1056 {
1057 	struct tcp_sock *tp = tcp_sk(sk);
1058 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1059 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1060 	bool dup_sack = false;
1061 
1062 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1063 		dup_sack = true;
1064 		tcp_dsack_seen(tp);
1065 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1066 	} else if (num_sacks > 1) {
1067 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1068 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1069 
1070 		if (!after(end_seq_0, end_seq_1) &&
1071 		    !before(start_seq_0, start_seq_1)) {
1072 			dup_sack = true;
1073 			tcp_dsack_seen(tp);
1074 			NET_INC_STATS(sock_net(sk),
1075 					LINUX_MIB_TCPDSACKOFORECV);
1076 		}
1077 	}
1078 
1079 	/* D-SACK for already forgotten data... Do dumb counting. */
1080 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1081 	    !after(end_seq_0, prior_snd_una) &&
1082 	    after(end_seq_0, tp->undo_marker))
1083 		tp->undo_retrans--;
1084 
1085 	return dup_sack;
1086 }
1087 
1088 struct tcp_sacktag_state {
1089 	int	reord;
1090 	int	fack_count;
1091 	/* Timestamps for earliest and latest never-retransmitted segment
1092 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1093 	 * but congestion control should still get an accurate delay signal.
1094 	 */
1095 	struct skb_mstamp first_sackt;
1096 	struct skb_mstamp last_sackt;
1097 	int	flag;
1098 };
1099 
1100 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1101  * the incoming SACK may not exactly match but we can find smaller MSS
1102  * aligned portion of it that matches. Therefore we might need to fragment
1103  * which may fail and creates some hassle (caller must handle error case
1104  * returns).
1105  *
1106  * FIXME: this could be merged to shift decision code
1107  */
1108 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1109 				  u32 start_seq, u32 end_seq)
1110 {
1111 	int err;
1112 	bool in_sack;
1113 	unsigned int pkt_len;
1114 	unsigned int mss;
1115 
1116 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1117 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1118 
1119 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1120 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1121 		mss = tcp_skb_mss(skb);
1122 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1123 
1124 		if (!in_sack) {
1125 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1126 			if (pkt_len < mss)
1127 				pkt_len = mss;
1128 		} else {
1129 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1130 			if (pkt_len < mss)
1131 				return -EINVAL;
1132 		}
1133 
1134 		/* Round if necessary so that SACKs cover only full MSSes
1135 		 * and/or the remaining small portion (if present)
1136 		 */
1137 		if (pkt_len > mss) {
1138 			unsigned int new_len = (pkt_len / mss) * mss;
1139 			if (!in_sack && new_len < pkt_len) {
1140 				new_len += mss;
1141 				if (new_len >= skb->len)
1142 					return 0;
1143 			}
1144 			pkt_len = new_len;
1145 		}
1146 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1147 		if (err < 0)
1148 			return err;
1149 	}
1150 
1151 	return in_sack;
1152 }
1153 
1154 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1155 static u8 tcp_sacktag_one(struct sock *sk,
1156 			  struct tcp_sacktag_state *state, u8 sacked,
1157 			  u32 start_seq, u32 end_seq,
1158 			  int dup_sack, int pcount,
1159 			  const struct skb_mstamp *xmit_time)
1160 {
1161 	struct tcp_sock *tp = tcp_sk(sk);
1162 	int fack_count = state->fack_count;
1163 
1164 	/* Account D-SACK for retransmitted packet. */
1165 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1166 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1167 		    after(end_seq, tp->undo_marker))
1168 			tp->undo_retrans--;
1169 		if (sacked & TCPCB_SACKED_ACKED)
1170 			state->reord = min(fack_count, state->reord);
1171 	}
1172 
1173 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1174 	if (!after(end_seq, tp->snd_una))
1175 		return sacked;
1176 
1177 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1178 		tcp_rack_advance(tp, xmit_time, sacked);
1179 
1180 		if (sacked & TCPCB_SACKED_RETRANS) {
1181 			/* If the segment is not tagged as lost,
1182 			 * we do not clear RETRANS, believing
1183 			 * that retransmission is still in flight.
1184 			 */
1185 			if (sacked & TCPCB_LOST) {
1186 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1187 				tp->lost_out -= pcount;
1188 				tp->retrans_out -= pcount;
1189 			}
1190 		} else {
1191 			if (!(sacked & TCPCB_RETRANS)) {
1192 				/* New sack for not retransmitted frame,
1193 				 * which was in hole. It is reordering.
1194 				 */
1195 				if (before(start_seq,
1196 					   tcp_highest_sack_seq(tp)))
1197 					state->reord = min(fack_count,
1198 							   state->reord);
1199 				if (!after(end_seq, tp->high_seq))
1200 					state->flag |= FLAG_ORIG_SACK_ACKED;
1201 				if (state->first_sackt.v64 == 0)
1202 					state->first_sackt = *xmit_time;
1203 				state->last_sackt = *xmit_time;
1204 			}
1205 
1206 			if (sacked & TCPCB_LOST) {
1207 				sacked &= ~TCPCB_LOST;
1208 				tp->lost_out -= pcount;
1209 			}
1210 		}
1211 
1212 		sacked |= TCPCB_SACKED_ACKED;
1213 		state->flag |= FLAG_DATA_SACKED;
1214 		tp->sacked_out += pcount;
1215 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1216 
1217 		fack_count += pcount;
1218 
1219 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1220 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1221 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1222 			tp->lost_cnt_hint += pcount;
1223 
1224 		if (fack_count > tp->fackets_out)
1225 			tp->fackets_out = fack_count;
1226 	}
1227 
1228 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1229 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1230 	 * are accounted above as well.
1231 	 */
1232 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1233 		sacked &= ~TCPCB_SACKED_RETRANS;
1234 		tp->retrans_out -= pcount;
1235 	}
1236 
1237 	return sacked;
1238 }
1239 
1240 /* Shift newly-SACKed bytes from this skb to the immediately previous
1241  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1242  */
1243 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1244 			    struct tcp_sacktag_state *state,
1245 			    unsigned int pcount, int shifted, int mss,
1246 			    bool dup_sack)
1247 {
1248 	struct tcp_sock *tp = tcp_sk(sk);
1249 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1250 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1251 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1252 
1253 	BUG_ON(!pcount);
1254 
1255 	/* Adjust counters and hints for the newly sacked sequence
1256 	 * range but discard the return value since prev is already
1257 	 * marked. We must tag the range first because the seq
1258 	 * advancement below implicitly advances
1259 	 * tcp_highest_sack_seq() when skb is highest_sack.
1260 	 */
1261 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1262 			start_seq, end_seq, dup_sack, pcount,
1263 			&skb->skb_mstamp);
1264 
1265 	if (skb == tp->lost_skb_hint)
1266 		tp->lost_cnt_hint += pcount;
1267 
1268 	TCP_SKB_CB(prev)->end_seq += shifted;
1269 	TCP_SKB_CB(skb)->seq += shifted;
1270 
1271 	tcp_skb_pcount_add(prev, pcount);
1272 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1273 	tcp_skb_pcount_add(skb, -pcount);
1274 
1275 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1276 	 * in theory this shouldn't be necessary but as long as DSACK
1277 	 * code can come after this skb later on it's better to keep
1278 	 * setting gso_size to something.
1279 	 */
1280 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1281 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1282 
1283 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1284 	if (tcp_skb_pcount(skb) <= 1)
1285 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1286 
1287 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1288 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1289 
1290 	if (skb->len > 0) {
1291 		BUG_ON(!tcp_skb_pcount(skb));
1292 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1293 		return false;
1294 	}
1295 
1296 	/* Whole SKB was eaten :-) */
1297 
1298 	if (skb == tp->retransmit_skb_hint)
1299 		tp->retransmit_skb_hint = prev;
1300 	if (skb == tp->lost_skb_hint) {
1301 		tp->lost_skb_hint = prev;
1302 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1303 	}
1304 
1305 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1306 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1307 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1308 		TCP_SKB_CB(prev)->end_seq++;
1309 
1310 	if (skb == tcp_highest_sack(sk))
1311 		tcp_advance_highest_sack(sk, skb);
1312 
1313 	tcp_skb_collapse_tstamp(prev, skb);
1314 	tcp_unlink_write_queue(skb, sk);
1315 	sk_wmem_free_skb(sk, skb);
1316 
1317 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1318 
1319 	return true;
1320 }
1321 
1322 /* I wish gso_size would have a bit more sane initialization than
1323  * something-or-zero which complicates things
1324  */
1325 static int tcp_skb_seglen(const struct sk_buff *skb)
1326 {
1327 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1328 }
1329 
1330 /* Shifting pages past head area doesn't work */
1331 static int skb_can_shift(const struct sk_buff *skb)
1332 {
1333 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1334 }
1335 
1336 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1337  * skb.
1338  */
1339 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1340 					  struct tcp_sacktag_state *state,
1341 					  u32 start_seq, u32 end_seq,
1342 					  bool dup_sack)
1343 {
1344 	struct tcp_sock *tp = tcp_sk(sk);
1345 	struct sk_buff *prev;
1346 	int mss;
1347 	int pcount = 0;
1348 	int len;
1349 	int in_sack;
1350 
1351 	if (!sk_can_gso(sk))
1352 		goto fallback;
1353 
1354 	/* Normally R but no L won't result in plain S */
1355 	if (!dup_sack &&
1356 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1357 		goto fallback;
1358 	if (!skb_can_shift(skb))
1359 		goto fallback;
1360 	/* This frame is about to be dropped (was ACKed). */
1361 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1362 		goto fallback;
1363 
1364 	/* Can only happen with delayed DSACK + discard craziness */
1365 	if (unlikely(skb == tcp_write_queue_head(sk)))
1366 		goto fallback;
1367 	prev = tcp_write_queue_prev(sk, skb);
1368 
1369 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1370 		goto fallback;
1371 
1372 	if (!tcp_skb_can_collapse_to(prev))
1373 		goto fallback;
1374 
1375 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1376 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1377 
1378 	if (in_sack) {
1379 		len = skb->len;
1380 		pcount = tcp_skb_pcount(skb);
1381 		mss = tcp_skb_seglen(skb);
1382 
1383 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1384 		 * drop this restriction as unnecessary
1385 		 */
1386 		if (mss != tcp_skb_seglen(prev))
1387 			goto fallback;
1388 	} else {
1389 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1390 			goto noop;
1391 		/* CHECKME: This is non-MSS split case only?, this will
1392 		 * cause skipped skbs due to advancing loop btw, original
1393 		 * has that feature too
1394 		 */
1395 		if (tcp_skb_pcount(skb) <= 1)
1396 			goto noop;
1397 
1398 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1399 		if (!in_sack) {
1400 			/* TODO: head merge to next could be attempted here
1401 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1402 			 * though it might not be worth of the additional hassle
1403 			 *
1404 			 * ...we can probably just fallback to what was done
1405 			 * previously. We could try merging non-SACKed ones
1406 			 * as well but it probably isn't going to buy off
1407 			 * because later SACKs might again split them, and
1408 			 * it would make skb timestamp tracking considerably
1409 			 * harder problem.
1410 			 */
1411 			goto fallback;
1412 		}
1413 
1414 		len = end_seq - TCP_SKB_CB(skb)->seq;
1415 		BUG_ON(len < 0);
1416 		BUG_ON(len > skb->len);
1417 
1418 		/* MSS boundaries should be honoured or else pcount will
1419 		 * severely break even though it makes things bit trickier.
1420 		 * Optimize common case to avoid most of the divides
1421 		 */
1422 		mss = tcp_skb_mss(skb);
1423 
1424 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1425 		 * drop this restriction as unnecessary
1426 		 */
1427 		if (mss != tcp_skb_seglen(prev))
1428 			goto fallback;
1429 
1430 		if (len == mss) {
1431 			pcount = 1;
1432 		} else if (len < mss) {
1433 			goto noop;
1434 		} else {
1435 			pcount = len / mss;
1436 			len = pcount * mss;
1437 		}
1438 	}
1439 
1440 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1441 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1442 		goto fallback;
1443 
1444 	if (!skb_shift(prev, skb, len))
1445 		goto fallback;
1446 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1447 		goto out;
1448 
1449 	/* Hole filled allows collapsing with the next as well, this is very
1450 	 * useful when hole on every nth skb pattern happens
1451 	 */
1452 	if (prev == tcp_write_queue_tail(sk))
1453 		goto out;
1454 	skb = tcp_write_queue_next(sk, prev);
1455 
1456 	if (!skb_can_shift(skb) ||
1457 	    (skb == tcp_send_head(sk)) ||
1458 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1459 	    (mss != tcp_skb_seglen(skb)))
1460 		goto out;
1461 
1462 	len = skb->len;
1463 	if (skb_shift(prev, skb, len)) {
1464 		pcount += tcp_skb_pcount(skb);
1465 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1466 	}
1467 
1468 out:
1469 	state->fack_count += pcount;
1470 	return prev;
1471 
1472 noop:
1473 	return skb;
1474 
1475 fallback:
1476 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1477 	return NULL;
1478 }
1479 
1480 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1481 					struct tcp_sack_block *next_dup,
1482 					struct tcp_sacktag_state *state,
1483 					u32 start_seq, u32 end_seq,
1484 					bool dup_sack_in)
1485 {
1486 	struct tcp_sock *tp = tcp_sk(sk);
1487 	struct sk_buff *tmp;
1488 
1489 	tcp_for_write_queue_from(skb, sk) {
1490 		int in_sack = 0;
1491 		bool dup_sack = dup_sack_in;
1492 
1493 		if (skb == tcp_send_head(sk))
1494 			break;
1495 
1496 		/* queue is in-order => we can short-circuit the walk early */
1497 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1498 			break;
1499 
1500 		if (next_dup  &&
1501 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1502 			in_sack = tcp_match_skb_to_sack(sk, skb,
1503 							next_dup->start_seq,
1504 							next_dup->end_seq);
1505 			if (in_sack > 0)
1506 				dup_sack = true;
1507 		}
1508 
1509 		/* skb reference here is a bit tricky to get right, since
1510 		 * shifting can eat and free both this skb and the next,
1511 		 * so not even _safe variant of the loop is enough.
1512 		 */
1513 		if (in_sack <= 0) {
1514 			tmp = tcp_shift_skb_data(sk, skb, state,
1515 						 start_seq, end_seq, dup_sack);
1516 			if (tmp) {
1517 				if (tmp != skb) {
1518 					skb = tmp;
1519 					continue;
1520 				}
1521 
1522 				in_sack = 0;
1523 			} else {
1524 				in_sack = tcp_match_skb_to_sack(sk, skb,
1525 								start_seq,
1526 								end_seq);
1527 			}
1528 		}
1529 
1530 		if (unlikely(in_sack < 0))
1531 			break;
1532 
1533 		if (in_sack) {
1534 			TCP_SKB_CB(skb)->sacked =
1535 				tcp_sacktag_one(sk,
1536 						state,
1537 						TCP_SKB_CB(skb)->sacked,
1538 						TCP_SKB_CB(skb)->seq,
1539 						TCP_SKB_CB(skb)->end_seq,
1540 						dup_sack,
1541 						tcp_skb_pcount(skb),
1542 						&skb->skb_mstamp);
1543 
1544 			if (!before(TCP_SKB_CB(skb)->seq,
1545 				    tcp_highest_sack_seq(tp)))
1546 				tcp_advance_highest_sack(sk, skb);
1547 		}
1548 
1549 		state->fack_count += tcp_skb_pcount(skb);
1550 	}
1551 	return skb;
1552 }
1553 
1554 /* Avoid all extra work that is being done by sacktag while walking in
1555  * a normal way
1556  */
1557 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1558 					struct tcp_sacktag_state *state,
1559 					u32 skip_to_seq)
1560 {
1561 	tcp_for_write_queue_from(skb, sk) {
1562 		if (skb == tcp_send_head(sk))
1563 			break;
1564 
1565 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1566 			break;
1567 
1568 		state->fack_count += tcp_skb_pcount(skb);
1569 	}
1570 	return skb;
1571 }
1572 
1573 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1574 						struct sock *sk,
1575 						struct tcp_sack_block *next_dup,
1576 						struct tcp_sacktag_state *state,
1577 						u32 skip_to_seq)
1578 {
1579 	if (!next_dup)
1580 		return skb;
1581 
1582 	if (before(next_dup->start_seq, skip_to_seq)) {
1583 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1584 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1585 				       next_dup->start_seq, next_dup->end_seq,
1586 				       1);
1587 	}
1588 
1589 	return skb;
1590 }
1591 
1592 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1593 {
1594 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1595 }
1596 
1597 static int
1598 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1599 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1600 {
1601 	struct tcp_sock *tp = tcp_sk(sk);
1602 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1603 				    TCP_SKB_CB(ack_skb)->sacked);
1604 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1605 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1606 	struct tcp_sack_block *cache;
1607 	struct sk_buff *skb;
1608 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1609 	int used_sacks;
1610 	bool found_dup_sack = false;
1611 	int i, j;
1612 	int first_sack_index;
1613 
1614 	state->flag = 0;
1615 	state->reord = tp->packets_out;
1616 
1617 	if (!tp->sacked_out) {
1618 		if (WARN_ON(tp->fackets_out))
1619 			tp->fackets_out = 0;
1620 		tcp_highest_sack_reset(sk);
1621 	}
1622 
1623 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1624 					 num_sacks, prior_snd_una);
1625 	if (found_dup_sack)
1626 		state->flag |= FLAG_DSACKING_ACK;
1627 
1628 	/* Eliminate too old ACKs, but take into
1629 	 * account more or less fresh ones, they can
1630 	 * contain valid SACK info.
1631 	 */
1632 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1633 		return 0;
1634 
1635 	if (!tp->packets_out)
1636 		goto out;
1637 
1638 	used_sacks = 0;
1639 	first_sack_index = 0;
1640 	for (i = 0; i < num_sacks; i++) {
1641 		bool dup_sack = !i && found_dup_sack;
1642 
1643 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1644 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1645 
1646 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1647 					    sp[used_sacks].start_seq,
1648 					    sp[used_sacks].end_seq)) {
1649 			int mib_idx;
1650 
1651 			if (dup_sack) {
1652 				if (!tp->undo_marker)
1653 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1654 				else
1655 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1656 			} else {
1657 				/* Don't count olds caused by ACK reordering */
1658 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1659 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1660 					continue;
1661 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1662 			}
1663 
1664 			NET_INC_STATS(sock_net(sk), mib_idx);
1665 			if (i == 0)
1666 				first_sack_index = -1;
1667 			continue;
1668 		}
1669 
1670 		/* Ignore very old stuff early */
1671 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1672 			continue;
1673 
1674 		used_sacks++;
1675 	}
1676 
1677 	/* order SACK blocks to allow in order walk of the retrans queue */
1678 	for (i = used_sacks - 1; i > 0; i--) {
1679 		for (j = 0; j < i; j++) {
1680 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1681 				swap(sp[j], sp[j + 1]);
1682 
1683 				/* Track where the first SACK block goes to */
1684 				if (j == first_sack_index)
1685 					first_sack_index = j + 1;
1686 			}
1687 		}
1688 	}
1689 
1690 	skb = tcp_write_queue_head(sk);
1691 	state->fack_count = 0;
1692 	i = 0;
1693 
1694 	if (!tp->sacked_out) {
1695 		/* It's already past, so skip checking against it */
1696 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1697 	} else {
1698 		cache = tp->recv_sack_cache;
1699 		/* Skip empty blocks in at head of the cache */
1700 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1701 		       !cache->end_seq)
1702 			cache++;
1703 	}
1704 
1705 	while (i < used_sacks) {
1706 		u32 start_seq = sp[i].start_seq;
1707 		u32 end_seq = sp[i].end_seq;
1708 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1709 		struct tcp_sack_block *next_dup = NULL;
1710 
1711 		if (found_dup_sack && ((i + 1) == first_sack_index))
1712 			next_dup = &sp[i + 1];
1713 
1714 		/* Skip too early cached blocks */
1715 		while (tcp_sack_cache_ok(tp, cache) &&
1716 		       !before(start_seq, cache->end_seq))
1717 			cache++;
1718 
1719 		/* Can skip some work by looking recv_sack_cache? */
1720 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1721 		    after(end_seq, cache->start_seq)) {
1722 
1723 			/* Head todo? */
1724 			if (before(start_seq, cache->start_seq)) {
1725 				skb = tcp_sacktag_skip(skb, sk, state,
1726 						       start_seq);
1727 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1728 						       state,
1729 						       start_seq,
1730 						       cache->start_seq,
1731 						       dup_sack);
1732 			}
1733 
1734 			/* Rest of the block already fully processed? */
1735 			if (!after(end_seq, cache->end_seq))
1736 				goto advance_sp;
1737 
1738 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1739 						       state,
1740 						       cache->end_seq);
1741 
1742 			/* ...tail remains todo... */
1743 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1744 				/* ...but better entrypoint exists! */
1745 				skb = tcp_highest_sack(sk);
1746 				if (!skb)
1747 					break;
1748 				state->fack_count = tp->fackets_out;
1749 				cache++;
1750 				goto walk;
1751 			}
1752 
1753 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1754 			/* Check overlap against next cached too (past this one already) */
1755 			cache++;
1756 			continue;
1757 		}
1758 
1759 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1760 			skb = tcp_highest_sack(sk);
1761 			if (!skb)
1762 				break;
1763 			state->fack_count = tp->fackets_out;
1764 		}
1765 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1766 
1767 walk:
1768 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1769 				       start_seq, end_seq, dup_sack);
1770 
1771 advance_sp:
1772 		i++;
1773 	}
1774 
1775 	/* Clear the head of the cache sack blocks so we can skip it next time */
1776 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1777 		tp->recv_sack_cache[i].start_seq = 0;
1778 		tp->recv_sack_cache[i].end_seq = 0;
1779 	}
1780 	for (j = 0; j < used_sacks; j++)
1781 		tp->recv_sack_cache[i++] = sp[j];
1782 
1783 	if ((state->reord < tp->fackets_out) &&
1784 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1785 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1786 
1787 	tcp_verify_left_out(tp);
1788 out:
1789 
1790 #if FASTRETRANS_DEBUG > 0
1791 	WARN_ON((int)tp->sacked_out < 0);
1792 	WARN_ON((int)tp->lost_out < 0);
1793 	WARN_ON((int)tp->retrans_out < 0);
1794 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1795 #endif
1796 	return state->flag;
1797 }
1798 
1799 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1800  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1801  */
1802 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1803 {
1804 	u32 holes;
1805 
1806 	holes = max(tp->lost_out, 1U);
1807 	holes = min(holes, tp->packets_out);
1808 
1809 	if ((tp->sacked_out + holes) > tp->packets_out) {
1810 		tp->sacked_out = tp->packets_out - holes;
1811 		return true;
1812 	}
1813 	return false;
1814 }
1815 
1816 /* If we receive more dupacks than we expected counting segments
1817  * in assumption of absent reordering, interpret this as reordering.
1818  * The only another reason could be bug in receiver TCP.
1819  */
1820 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1821 {
1822 	struct tcp_sock *tp = tcp_sk(sk);
1823 	if (tcp_limit_reno_sacked(tp))
1824 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1825 }
1826 
1827 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1828 
1829 static void tcp_add_reno_sack(struct sock *sk)
1830 {
1831 	struct tcp_sock *tp = tcp_sk(sk);
1832 	u32 prior_sacked = tp->sacked_out;
1833 
1834 	tp->sacked_out++;
1835 	tcp_check_reno_reordering(sk, 0);
1836 	if (tp->sacked_out > prior_sacked)
1837 		tp->delivered++; /* Some out-of-order packet is delivered */
1838 	tcp_verify_left_out(tp);
1839 }
1840 
1841 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1842 
1843 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1844 {
1845 	struct tcp_sock *tp = tcp_sk(sk);
1846 
1847 	if (acked > 0) {
1848 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1849 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1850 		if (acked - 1 >= tp->sacked_out)
1851 			tp->sacked_out = 0;
1852 		else
1853 			tp->sacked_out -= acked - 1;
1854 	}
1855 	tcp_check_reno_reordering(sk, acked);
1856 	tcp_verify_left_out(tp);
1857 }
1858 
1859 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1860 {
1861 	tp->sacked_out = 0;
1862 }
1863 
1864 void tcp_clear_retrans(struct tcp_sock *tp)
1865 {
1866 	tp->retrans_out = 0;
1867 	tp->lost_out = 0;
1868 	tp->undo_marker = 0;
1869 	tp->undo_retrans = -1;
1870 	tp->fackets_out = 0;
1871 	tp->sacked_out = 0;
1872 }
1873 
1874 static inline void tcp_init_undo(struct tcp_sock *tp)
1875 {
1876 	tp->undo_marker = tp->snd_una;
1877 	/* Retransmission still in flight may cause DSACKs later. */
1878 	tp->undo_retrans = tp->retrans_out ? : -1;
1879 }
1880 
1881 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1882  * and reset tags completely, otherwise preserve SACKs. If receiver
1883  * dropped its ofo queue, we will know this due to reneging detection.
1884  */
1885 void tcp_enter_loss(struct sock *sk)
1886 {
1887 	const struct inet_connection_sock *icsk = inet_csk(sk);
1888 	struct tcp_sock *tp = tcp_sk(sk);
1889 	struct net *net = sock_net(sk);
1890 	struct sk_buff *skb;
1891 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1892 	bool is_reneg;			/* is receiver reneging on SACKs? */
1893 
1894 	/* Reduce ssthresh if it has not yet been made inside this window. */
1895 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1896 	    !after(tp->high_seq, tp->snd_una) ||
1897 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1898 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1899 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1900 		tcp_ca_event(sk, CA_EVENT_LOSS);
1901 		tcp_init_undo(tp);
1902 	}
1903 	tp->snd_cwnd	   = 1;
1904 	tp->snd_cwnd_cnt   = 0;
1905 	tp->snd_cwnd_stamp = tcp_time_stamp;
1906 
1907 	tp->retrans_out = 0;
1908 	tp->lost_out = 0;
1909 
1910 	if (tcp_is_reno(tp))
1911 		tcp_reset_reno_sack(tp);
1912 
1913 	skb = tcp_write_queue_head(sk);
1914 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1915 	if (is_reneg) {
1916 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1917 		tp->sacked_out = 0;
1918 		tp->fackets_out = 0;
1919 	}
1920 	tcp_clear_all_retrans_hints(tp);
1921 
1922 	tcp_for_write_queue(skb, sk) {
1923 		if (skb == tcp_send_head(sk))
1924 			break;
1925 
1926 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1927 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1928 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1929 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1930 			tp->lost_out += tcp_skb_pcount(skb);
1931 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1932 		}
1933 	}
1934 	tcp_verify_left_out(tp);
1935 
1936 	/* Timeout in disordered state after receiving substantial DUPACKs
1937 	 * suggests that the degree of reordering is over-estimated.
1938 	 */
1939 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1940 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1941 		tp->reordering = min_t(unsigned int, tp->reordering,
1942 				       net->ipv4.sysctl_tcp_reordering);
1943 	tcp_set_ca_state(sk, TCP_CA_Loss);
1944 	tp->high_seq = tp->snd_nxt;
1945 	tcp_ecn_queue_cwr(tp);
1946 
1947 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1948 	 * loss recovery is underway except recurring timeout(s) on
1949 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1950 	 */
1951 	tp->frto = sysctl_tcp_frto &&
1952 		   (new_recovery || icsk->icsk_retransmits) &&
1953 		   !inet_csk(sk)->icsk_mtup.probe_size;
1954 }
1955 
1956 /* If ACK arrived pointing to a remembered SACK, it means that our
1957  * remembered SACKs do not reflect real state of receiver i.e.
1958  * receiver _host_ is heavily congested (or buggy).
1959  *
1960  * To avoid big spurious retransmission bursts due to transient SACK
1961  * scoreboard oddities that look like reneging, we give the receiver a
1962  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1963  * restore sanity to the SACK scoreboard. If the apparent reneging
1964  * persists until this RTO then we'll clear the SACK scoreboard.
1965  */
1966 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1967 {
1968 	if (flag & FLAG_SACK_RENEGING) {
1969 		struct tcp_sock *tp = tcp_sk(sk);
1970 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1971 					  msecs_to_jiffies(10));
1972 
1973 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1974 					  delay, TCP_RTO_MAX);
1975 		return true;
1976 	}
1977 	return false;
1978 }
1979 
1980 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1981 {
1982 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1983 }
1984 
1985 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1986  * counter when SACK is enabled (without SACK, sacked_out is used for
1987  * that purpose).
1988  *
1989  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1990  * segments up to the highest received SACK block so far and holes in
1991  * between them.
1992  *
1993  * With reordering, holes may still be in flight, so RFC3517 recovery
1994  * uses pure sacked_out (total number of SACKed segments) even though
1995  * it violates the RFC that uses duplicate ACKs, often these are equal
1996  * but when e.g. out-of-window ACKs or packet duplication occurs,
1997  * they differ. Since neither occurs due to loss, TCP should really
1998  * ignore them.
1999  */
2000 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2001 {
2002 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2003 }
2004 
2005 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2006 {
2007 	struct tcp_sock *tp = tcp_sk(sk);
2008 	unsigned long delay;
2009 
2010 	/* Delay early retransmit and entering fast recovery for
2011 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2012 	 * available, or RTO is scheduled to fire first.
2013 	 */
2014 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2015 	    (flag & FLAG_ECE) || !tp->srtt_us)
2016 		return false;
2017 
2018 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2019 		    msecs_to_jiffies(2));
2020 
2021 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2022 		return false;
2023 
2024 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2025 				  TCP_RTO_MAX);
2026 	return true;
2027 }
2028 
2029 /* Linux NewReno/SACK/FACK/ECN state machine.
2030  * --------------------------------------
2031  *
2032  * "Open"	Normal state, no dubious events, fast path.
2033  * "Disorder"   In all the respects it is "Open",
2034  *		but requires a bit more attention. It is entered when
2035  *		we see some SACKs or dupacks. It is split of "Open"
2036  *		mainly to move some processing from fast path to slow one.
2037  * "CWR"	CWND was reduced due to some Congestion Notification event.
2038  *		It can be ECN, ICMP source quench, local device congestion.
2039  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2040  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2041  *
2042  * tcp_fastretrans_alert() is entered:
2043  * - each incoming ACK, if state is not "Open"
2044  * - when arrived ACK is unusual, namely:
2045  *	* SACK
2046  *	* Duplicate ACK.
2047  *	* ECN ECE.
2048  *
2049  * Counting packets in flight is pretty simple.
2050  *
2051  *	in_flight = packets_out - left_out + retrans_out
2052  *
2053  *	packets_out is SND.NXT-SND.UNA counted in packets.
2054  *
2055  *	retrans_out is number of retransmitted segments.
2056  *
2057  *	left_out is number of segments left network, but not ACKed yet.
2058  *
2059  *		left_out = sacked_out + lost_out
2060  *
2061  *     sacked_out: Packets, which arrived to receiver out of order
2062  *		   and hence not ACKed. With SACKs this number is simply
2063  *		   amount of SACKed data. Even without SACKs
2064  *		   it is easy to give pretty reliable estimate of this number,
2065  *		   counting duplicate ACKs.
2066  *
2067  *       lost_out: Packets lost by network. TCP has no explicit
2068  *		   "loss notification" feedback from network (for now).
2069  *		   It means that this number can be only _guessed_.
2070  *		   Actually, it is the heuristics to predict lossage that
2071  *		   distinguishes different algorithms.
2072  *
2073  *	F.e. after RTO, when all the queue is considered as lost,
2074  *	lost_out = packets_out and in_flight = retrans_out.
2075  *
2076  *		Essentially, we have now two algorithms counting
2077  *		lost packets.
2078  *
2079  *		FACK: It is the simplest heuristics. As soon as we decided
2080  *		that something is lost, we decide that _all_ not SACKed
2081  *		packets until the most forward SACK are lost. I.e.
2082  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2083  *		It is absolutely correct estimate, if network does not reorder
2084  *		packets. And it loses any connection to reality when reordering
2085  *		takes place. We use FACK by default until reordering
2086  *		is suspected on the path to this destination.
2087  *
2088  *		NewReno: when Recovery is entered, we assume that one segment
2089  *		is lost (classic Reno). While we are in Recovery and
2090  *		a partial ACK arrives, we assume that one more packet
2091  *		is lost (NewReno). This heuristics are the same in NewReno
2092  *		and SACK.
2093  *
2094  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2095  *  deflation etc. CWND is real congestion window, never inflated, changes
2096  *  only according to classic VJ rules.
2097  *
2098  * Really tricky (and requiring careful tuning) part of algorithm
2099  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2100  * The first determines the moment _when_ we should reduce CWND and,
2101  * hence, slow down forward transmission. In fact, it determines the moment
2102  * when we decide that hole is caused by loss, rather than by a reorder.
2103  *
2104  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2105  * holes, caused by lost packets.
2106  *
2107  * And the most logically complicated part of algorithm is undo
2108  * heuristics. We detect false retransmits due to both too early
2109  * fast retransmit (reordering) and underestimated RTO, analyzing
2110  * timestamps and D-SACKs. When we detect that some segments were
2111  * retransmitted by mistake and CWND reduction was wrong, we undo
2112  * window reduction and abort recovery phase. This logic is hidden
2113  * inside several functions named tcp_try_undo_<something>.
2114  */
2115 
2116 /* This function decides, when we should leave Disordered state
2117  * and enter Recovery phase, reducing congestion window.
2118  *
2119  * Main question: may we further continue forward transmission
2120  * with the same cwnd?
2121  */
2122 static bool tcp_time_to_recover(struct sock *sk, int flag)
2123 {
2124 	struct tcp_sock *tp = tcp_sk(sk);
2125 	__u32 packets_out;
2126 	int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2127 
2128 	/* Trick#1: The loss is proven. */
2129 	if (tp->lost_out)
2130 		return true;
2131 
2132 	/* Not-A-Trick#2 : Classic rule... */
2133 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2134 		return true;
2135 
2136 	/* Trick#4: It is still not OK... But will it be useful to delay
2137 	 * recovery more?
2138 	 */
2139 	packets_out = tp->packets_out;
2140 	if (packets_out <= tp->reordering &&
2141 	    tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2142 	    !tcp_may_send_now(sk)) {
2143 		/* We have nothing to send. This connection is limited
2144 		 * either by receiver window or by application.
2145 		 */
2146 		return true;
2147 	}
2148 
2149 	/* If a thin stream is detected, retransmit after first
2150 	 * received dupack. Employ only if SACK is supported in order
2151 	 * to avoid possible corner-case series of spurious retransmissions
2152 	 * Use only if there are no unsent data.
2153 	 */
2154 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2155 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2156 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2157 		return true;
2158 
2159 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2160 	 * retransmissions due to small network reorderings, we implement
2161 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2162 	 * interval if appropriate.
2163 	 */
2164 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2165 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2166 	    !tcp_may_send_now(sk))
2167 		return !tcp_pause_early_retransmit(sk, flag);
2168 
2169 	return false;
2170 }
2171 
2172 /* Detect loss in event "A" above by marking head of queue up as lost.
2173  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2174  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2175  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2176  * the maximum SACKed segments to pass before reaching this limit.
2177  */
2178 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2179 {
2180 	struct tcp_sock *tp = tcp_sk(sk);
2181 	struct sk_buff *skb;
2182 	int cnt, oldcnt, lost;
2183 	unsigned int mss;
2184 	/* Use SACK to deduce losses of new sequences sent during recovery */
2185 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2186 
2187 	WARN_ON(packets > tp->packets_out);
2188 	if (tp->lost_skb_hint) {
2189 		skb = tp->lost_skb_hint;
2190 		cnt = tp->lost_cnt_hint;
2191 		/* Head already handled? */
2192 		if (mark_head && skb != tcp_write_queue_head(sk))
2193 			return;
2194 	} else {
2195 		skb = tcp_write_queue_head(sk);
2196 		cnt = 0;
2197 	}
2198 
2199 	tcp_for_write_queue_from(skb, sk) {
2200 		if (skb == tcp_send_head(sk))
2201 			break;
2202 		/* TODO: do this better */
2203 		/* this is not the most efficient way to do this... */
2204 		tp->lost_skb_hint = skb;
2205 		tp->lost_cnt_hint = cnt;
2206 
2207 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2208 			break;
2209 
2210 		oldcnt = cnt;
2211 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2212 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2213 			cnt += tcp_skb_pcount(skb);
2214 
2215 		if (cnt > packets) {
2216 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2217 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2218 			    (oldcnt >= packets))
2219 				break;
2220 
2221 			mss = tcp_skb_mss(skb);
2222 			/* If needed, chop off the prefix to mark as lost. */
2223 			lost = (packets - oldcnt) * mss;
2224 			if (lost < skb->len &&
2225 			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2226 				break;
2227 			cnt = packets;
2228 		}
2229 
2230 		tcp_skb_mark_lost(tp, skb);
2231 
2232 		if (mark_head)
2233 			break;
2234 	}
2235 	tcp_verify_left_out(tp);
2236 }
2237 
2238 /* Account newly detected lost packet(s) */
2239 
2240 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2241 {
2242 	struct tcp_sock *tp = tcp_sk(sk);
2243 
2244 	if (tcp_is_reno(tp)) {
2245 		tcp_mark_head_lost(sk, 1, 1);
2246 	} else if (tcp_is_fack(tp)) {
2247 		int lost = tp->fackets_out - tp->reordering;
2248 		if (lost <= 0)
2249 			lost = 1;
2250 		tcp_mark_head_lost(sk, lost, 0);
2251 	} else {
2252 		int sacked_upto = tp->sacked_out - tp->reordering;
2253 		if (sacked_upto >= 0)
2254 			tcp_mark_head_lost(sk, sacked_upto, 0);
2255 		else if (fast_rexmit)
2256 			tcp_mark_head_lost(sk, 1, 1);
2257 	}
2258 }
2259 
2260 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2261 {
2262 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2263 	       before(tp->rx_opt.rcv_tsecr, when);
2264 }
2265 
2266 /* skb is spurious retransmitted if the returned timestamp echo
2267  * reply is prior to the skb transmission time
2268  */
2269 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2270 				     const struct sk_buff *skb)
2271 {
2272 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2273 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2274 }
2275 
2276 /* Nothing was retransmitted or returned timestamp is less
2277  * than timestamp of the first retransmission.
2278  */
2279 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2280 {
2281 	return !tp->retrans_stamp ||
2282 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2283 }
2284 
2285 /* Undo procedures. */
2286 
2287 /* We can clear retrans_stamp when there are no retransmissions in the
2288  * window. It would seem that it is trivially available for us in
2289  * tp->retrans_out, however, that kind of assumptions doesn't consider
2290  * what will happen if errors occur when sending retransmission for the
2291  * second time. ...It could the that such segment has only
2292  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2293  * the head skb is enough except for some reneging corner cases that
2294  * are not worth the effort.
2295  *
2296  * Main reason for all this complexity is the fact that connection dying
2297  * time now depends on the validity of the retrans_stamp, in particular,
2298  * that successive retransmissions of a segment must not advance
2299  * retrans_stamp under any conditions.
2300  */
2301 static bool tcp_any_retrans_done(const struct sock *sk)
2302 {
2303 	const struct tcp_sock *tp = tcp_sk(sk);
2304 	struct sk_buff *skb;
2305 
2306 	if (tp->retrans_out)
2307 		return true;
2308 
2309 	skb = tcp_write_queue_head(sk);
2310 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2311 		return true;
2312 
2313 	return false;
2314 }
2315 
2316 #if FASTRETRANS_DEBUG > 1
2317 static void DBGUNDO(struct sock *sk, const char *msg)
2318 {
2319 	struct tcp_sock *tp = tcp_sk(sk);
2320 	struct inet_sock *inet = inet_sk(sk);
2321 
2322 	if (sk->sk_family == AF_INET) {
2323 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2324 			 msg,
2325 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2326 			 tp->snd_cwnd, tcp_left_out(tp),
2327 			 tp->snd_ssthresh, tp->prior_ssthresh,
2328 			 tp->packets_out);
2329 	}
2330 #if IS_ENABLED(CONFIG_IPV6)
2331 	else if (sk->sk_family == AF_INET6) {
2332 		struct ipv6_pinfo *np = inet6_sk(sk);
2333 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2334 			 msg,
2335 			 &np->daddr, ntohs(inet->inet_dport),
2336 			 tp->snd_cwnd, tcp_left_out(tp),
2337 			 tp->snd_ssthresh, tp->prior_ssthresh,
2338 			 tp->packets_out);
2339 	}
2340 #endif
2341 }
2342 #else
2343 #define DBGUNDO(x...) do { } while (0)
2344 #endif
2345 
2346 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2347 {
2348 	struct tcp_sock *tp = tcp_sk(sk);
2349 
2350 	if (unmark_loss) {
2351 		struct sk_buff *skb;
2352 
2353 		tcp_for_write_queue(skb, sk) {
2354 			if (skb == tcp_send_head(sk))
2355 				break;
2356 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2357 		}
2358 		tp->lost_out = 0;
2359 		tcp_clear_all_retrans_hints(tp);
2360 	}
2361 
2362 	if (tp->prior_ssthresh) {
2363 		const struct inet_connection_sock *icsk = inet_csk(sk);
2364 
2365 		if (icsk->icsk_ca_ops->undo_cwnd)
2366 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2367 		else
2368 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2369 
2370 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2371 			tp->snd_ssthresh = tp->prior_ssthresh;
2372 			tcp_ecn_withdraw_cwr(tp);
2373 		}
2374 	}
2375 	tp->snd_cwnd_stamp = tcp_time_stamp;
2376 	tp->undo_marker = 0;
2377 }
2378 
2379 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2380 {
2381 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2382 }
2383 
2384 /* People celebrate: "We love our President!" */
2385 static bool tcp_try_undo_recovery(struct sock *sk)
2386 {
2387 	struct tcp_sock *tp = tcp_sk(sk);
2388 
2389 	if (tcp_may_undo(tp)) {
2390 		int mib_idx;
2391 
2392 		/* Happy end! We did not retransmit anything
2393 		 * or our original transmission succeeded.
2394 		 */
2395 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2396 		tcp_undo_cwnd_reduction(sk, false);
2397 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2398 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2399 		else
2400 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2401 
2402 		NET_INC_STATS(sock_net(sk), mib_idx);
2403 	}
2404 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2405 		/* Hold old state until something *above* high_seq
2406 		 * is ACKed. For Reno it is MUST to prevent false
2407 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2408 		if (!tcp_any_retrans_done(sk))
2409 			tp->retrans_stamp = 0;
2410 		return true;
2411 	}
2412 	tcp_set_ca_state(sk, TCP_CA_Open);
2413 	return false;
2414 }
2415 
2416 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2417 static bool tcp_try_undo_dsack(struct sock *sk)
2418 {
2419 	struct tcp_sock *tp = tcp_sk(sk);
2420 
2421 	if (tp->undo_marker && !tp->undo_retrans) {
2422 		DBGUNDO(sk, "D-SACK");
2423 		tcp_undo_cwnd_reduction(sk, false);
2424 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2425 		return true;
2426 	}
2427 	return false;
2428 }
2429 
2430 /* Undo during loss recovery after partial ACK or using F-RTO. */
2431 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2432 {
2433 	struct tcp_sock *tp = tcp_sk(sk);
2434 
2435 	if (frto_undo || tcp_may_undo(tp)) {
2436 		tcp_undo_cwnd_reduction(sk, true);
2437 
2438 		DBGUNDO(sk, "partial loss");
2439 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2440 		if (frto_undo)
2441 			NET_INC_STATS(sock_net(sk),
2442 					LINUX_MIB_TCPSPURIOUSRTOS);
2443 		inet_csk(sk)->icsk_retransmits = 0;
2444 		if (frto_undo || tcp_is_sack(tp))
2445 			tcp_set_ca_state(sk, TCP_CA_Open);
2446 		return true;
2447 	}
2448 	return false;
2449 }
2450 
2451 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2452  * It computes the number of packets to send (sndcnt) based on packets newly
2453  * delivered:
2454  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2455  *	cwnd reductions across a full RTT.
2456  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2457  *      But when the retransmits are acked without further losses, PRR
2458  *      slow starts cwnd up to ssthresh to speed up the recovery.
2459  */
2460 static void tcp_init_cwnd_reduction(struct sock *sk)
2461 {
2462 	struct tcp_sock *tp = tcp_sk(sk);
2463 
2464 	tp->high_seq = tp->snd_nxt;
2465 	tp->tlp_high_seq = 0;
2466 	tp->snd_cwnd_cnt = 0;
2467 	tp->prior_cwnd = tp->snd_cwnd;
2468 	tp->prr_delivered = 0;
2469 	tp->prr_out = 0;
2470 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2471 	tcp_ecn_queue_cwr(tp);
2472 }
2473 
2474 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2475 			       int flag)
2476 {
2477 	struct tcp_sock *tp = tcp_sk(sk);
2478 	int sndcnt = 0;
2479 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2480 
2481 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2482 		return;
2483 
2484 	tp->prr_delivered += newly_acked_sacked;
2485 	if (delta < 0) {
2486 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2487 			       tp->prior_cwnd - 1;
2488 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2489 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2490 		   !(flag & FLAG_LOST_RETRANS)) {
2491 		sndcnt = min_t(int, delta,
2492 			       max_t(int, tp->prr_delivered - tp->prr_out,
2493 				     newly_acked_sacked) + 1);
2494 	} else {
2495 		sndcnt = min(delta, newly_acked_sacked);
2496 	}
2497 	/* Force a fast retransmit upon entering fast recovery */
2498 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2499 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2500 }
2501 
2502 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2503 {
2504 	struct tcp_sock *tp = tcp_sk(sk);
2505 
2506 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2507 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2508 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2509 		tp->snd_cwnd = tp->snd_ssthresh;
2510 		tp->snd_cwnd_stamp = tcp_time_stamp;
2511 	}
2512 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2513 }
2514 
2515 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2516 void tcp_enter_cwr(struct sock *sk)
2517 {
2518 	struct tcp_sock *tp = tcp_sk(sk);
2519 
2520 	tp->prior_ssthresh = 0;
2521 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2522 		tp->undo_marker = 0;
2523 		tcp_init_cwnd_reduction(sk);
2524 		tcp_set_ca_state(sk, TCP_CA_CWR);
2525 	}
2526 }
2527 EXPORT_SYMBOL(tcp_enter_cwr);
2528 
2529 static void tcp_try_keep_open(struct sock *sk)
2530 {
2531 	struct tcp_sock *tp = tcp_sk(sk);
2532 	int state = TCP_CA_Open;
2533 
2534 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2535 		state = TCP_CA_Disorder;
2536 
2537 	if (inet_csk(sk)->icsk_ca_state != state) {
2538 		tcp_set_ca_state(sk, state);
2539 		tp->high_seq = tp->snd_nxt;
2540 	}
2541 }
2542 
2543 static void tcp_try_to_open(struct sock *sk, int flag)
2544 {
2545 	struct tcp_sock *tp = tcp_sk(sk);
2546 
2547 	tcp_verify_left_out(tp);
2548 
2549 	if (!tcp_any_retrans_done(sk))
2550 		tp->retrans_stamp = 0;
2551 
2552 	if (flag & FLAG_ECE)
2553 		tcp_enter_cwr(sk);
2554 
2555 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2556 		tcp_try_keep_open(sk);
2557 	}
2558 }
2559 
2560 static void tcp_mtup_probe_failed(struct sock *sk)
2561 {
2562 	struct inet_connection_sock *icsk = inet_csk(sk);
2563 
2564 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2565 	icsk->icsk_mtup.probe_size = 0;
2566 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2567 }
2568 
2569 static void tcp_mtup_probe_success(struct sock *sk)
2570 {
2571 	struct tcp_sock *tp = tcp_sk(sk);
2572 	struct inet_connection_sock *icsk = inet_csk(sk);
2573 
2574 	/* FIXME: breaks with very large cwnd */
2575 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2576 	tp->snd_cwnd = tp->snd_cwnd *
2577 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2578 		       icsk->icsk_mtup.probe_size;
2579 	tp->snd_cwnd_cnt = 0;
2580 	tp->snd_cwnd_stamp = tcp_time_stamp;
2581 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2582 
2583 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2584 	icsk->icsk_mtup.probe_size = 0;
2585 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2586 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2587 }
2588 
2589 /* Do a simple retransmit without using the backoff mechanisms in
2590  * tcp_timer. This is used for path mtu discovery.
2591  * The socket is already locked here.
2592  */
2593 void tcp_simple_retransmit(struct sock *sk)
2594 {
2595 	const struct inet_connection_sock *icsk = inet_csk(sk);
2596 	struct tcp_sock *tp = tcp_sk(sk);
2597 	struct sk_buff *skb;
2598 	unsigned int mss = tcp_current_mss(sk);
2599 	u32 prior_lost = tp->lost_out;
2600 
2601 	tcp_for_write_queue(skb, sk) {
2602 		if (skb == tcp_send_head(sk))
2603 			break;
2604 		if (tcp_skb_seglen(skb) > mss &&
2605 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2606 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2607 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2608 				tp->retrans_out -= tcp_skb_pcount(skb);
2609 			}
2610 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2611 		}
2612 	}
2613 
2614 	tcp_clear_retrans_hints_partial(tp);
2615 
2616 	if (prior_lost == tp->lost_out)
2617 		return;
2618 
2619 	if (tcp_is_reno(tp))
2620 		tcp_limit_reno_sacked(tp);
2621 
2622 	tcp_verify_left_out(tp);
2623 
2624 	/* Don't muck with the congestion window here.
2625 	 * Reason is that we do not increase amount of _data_
2626 	 * in network, but units changed and effective
2627 	 * cwnd/ssthresh really reduced now.
2628 	 */
2629 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2630 		tp->high_seq = tp->snd_nxt;
2631 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2632 		tp->prior_ssthresh = 0;
2633 		tp->undo_marker = 0;
2634 		tcp_set_ca_state(sk, TCP_CA_Loss);
2635 	}
2636 	tcp_xmit_retransmit_queue(sk);
2637 }
2638 EXPORT_SYMBOL(tcp_simple_retransmit);
2639 
2640 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2641 {
2642 	struct tcp_sock *tp = tcp_sk(sk);
2643 	int mib_idx;
2644 
2645 	if (tcp_is_reno(tp))
2646 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2647 	else
2648 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2649 
2650 	NET_INC_STATS(sock_net(sk), mib_idx);
2651 
2652 	tp->prior_ssthresh = 0;
2653 	tcp_init_undo(tp);
2654 
2655 	if (!tcp_in_cwnd_reduction(sk)) {
2656 		if (!ece_ack)
2657 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2658 		tcp_init_cwnd_reduction(sk);
2659 	}
2660 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2661 }
2662 
2663 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2664  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2665  */
2666 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2667 			     int *rexmit)
2668 {
2669 	struct tcp_sock *tp = tcp_sk(sk);
2670 	bool recovered = !before(tp->snd_una, tp->high_seq);
2671 
2672 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2673 	    tcp_try_undo_loss(sk, false))
2674 		return;
2675 
2676 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2677 		/* Step 3.b. A timeout is spurious if not all data are
2678 		 * lost, i.e., never-retransmitted data are (s)acked.
2679 		 */
2680 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2681 		    tcp_try_undo_loss(sk, true))
2682 			return;
2683 
2684 		if (after(tp->snd_nxt, tp->high_seq)) {
2685 			if (flag & FLAG_DATA_SACKED || is_dupack)
2686 				tp->frto = 0; /* Step 3.a. loss was real */
2687 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2688 			tp->high_seq = tp->snd_nxt;
2689 			/* Step 2.b. Try send new data (but deferred until cwnd
2690 			 * is updated in tcp_ack()). Otherwise fall back to
2691 			 * the conventional recovery.
2692 			 */
2693 			if (tcp_send_head(sk) &&
2694 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2695 				*rexmit = REXMIT_NEW;
2696 				return;
2697 			}
2698 			tp->frto = 0;
2699 		}
2700 	}
2701 
2702 	if (recovered) {
2703 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2704 		tcp_try_undo_recovery(sk);
2705 		return;
2706 	}
2707 	if (tcp_is_reno(tp)) {
2708 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2709 		 * delivered. Lower inflight to clock out (re)tranmissions.
2710 		 */
2711 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2712 			tcp_add_reno_sack(sk);
2713 		else if (flag & FLAG_SND_UNA_ADVANCED)
2714 			tcp_reset_reno_sack(tp);
2715 	}
2716 	*rexmit = REXMIT_LOST;
2717 }
2718 
2719 /* Undo during fast recovery after partial ACK. */
2720 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2721 {
2722 	struct tcp_sock *tp = tcp_sk(sk);
2723 
2724 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2725 		/* Plain luck! Hole if filled with delayed
2726 		 * packet, rather than with a retransmit.
2727 		 */
2728 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2729 
2730 		/* We are getting evidence that the reordering degree is higher
2731 		 * than we realized. If there are no retransmits out then we
2732 		 * can undo. Otherwise we clock out new packets but do not
2733 		 * mark more packets lost or retransmit more.
2734 		 */
2735 		if (tp->retrans_out)
2736 			return true;
2737 
2738 		if (!tcp_any_retrans_done(sk))
2739 			tp->retrans_stamp = 0;
2740 
2741 		DBGUNDO(sk, "partial recovery");
2742 		tcp_undo_cwnd_reduction(sk, true);
2743 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2744 		tcp_try_keep_open(sk);
2745 		return true;
2746 	}
2747 	return false;
2748 }
2749 
2750 /* Process an event, which can update packets-in-flight not trivially.
2751  * Main goal of this function is to calculate new estimate for left_out,
2752  * taking into account both packets sitting in receiver's buffer and
2753  * packets lost by network.
2754  *
2755  * Besides that it updates the congestion state when packet loss or ECN
2756  * is detected. But it does not reduce the cwnd, it is done by the
2757  * congestion control later.
2758  *
2759  * It does _not_ decide what to send, it is made in function
2760  * tcp_xmit_retransmit_queue().
2761  */
2762 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2763 				  bool is_dupack, int *ack_flag, int *rexmit)
2764 {
2765 	struct inet_connection_sock *icsk = inet_csk(sk);
2766 	struct tcp_sock *tp = tcp_sk(sk);
2767 	int fast_rexmit = 0, flag = *ack_flag;
2768 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2769 				    (tcp_fackets_out(tp) > tp->reordering));
2770 
2771 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2772 		tp->sacked_out = 0;
2773 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2774 		tp->fackets_out = 0;
2775 
2776 	/* Now state machine starts.
2777 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2778 	if (flag & FLAG_ECE)
2779 		tp->prior_ssthresh = 0;
2780 
2781 	/* B. In all the states check for reneging SACKs. */
2782 	if (tcp_check_sack_reneging(sk, flag))
2783 		return;
2784 
2785 	/* C. Check consistency of the current state. */
2786 	tcp_verify_left_out(tp);
2787 
2788 	/* D. Check state exit conditions. State can be terminated
2789 	 *    when high_seq is ACKed. */
2790 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2791 		WARN_ON(tp->retrans_out != 0);
2792 		tp->retrans_stamp = 0;
2793 	} else if (!before(tp->snd_una, tp->high_seq)) {
2794 		switch (icsk->icsk_ca_state) {
2795 		case TCP_CA_CWR:
2796 			/* CWR is to be held something *above* high_seq
2797 			 * is ACKed for CWR bit to reach receiver. */
2798 			if (tp->snd_una != tp->high_seq) {
2799 				tcp_end_cwnd_reduction(sk);
2800 				tcp_set_ca_state(sk, TCP_CA_Open);
2801 			}
2802 			break;
2803 
2804 		case TCP_CA_Recovery:
2805 			if (tcp_is_reno(tp))
2806 				tcp_reset_reno_sack(tp);
2807 			if (tcp_try_undo_recovery(sk))
2808 				return;
2809 			tcp_end_cwnd_reduction(sk);
2810 			break;
2811 		}
2812 	}
2813 
2814 	/* Use RACK to detect loss */
2815 	if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2816 	    tcp_rack_mark_lost(sk)) {
2817 		flag |= FLAG_LOST_RETRANS;
2818 		*ack_flag |= FLAG_LOST_RETRANS;
2819 	}
2820 
2821 	/* E. Process state. */
2822 	switch (icsk->icsk_ca_state) {
2823 	case TCP_CA_Recovery:
2824 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2825 			if (tcp_is_reno(tp) && is_dupack)
2826 				tcp_add_reno_sack(sk);
2827 		} else {
2828 			if (tcp_try_undo_partial(sk, acked))
2829 				return;
2830 			/* Partial ACK arrived. Force fast retransmit. */
2831 			do_lost = tcp_is_reno(tp) ||
2832 				  tcp_fackets_out(tp) > tp->reordering;
2833 		}
2834 		if (tcp_try_undo_dsack(sk)) {
2835 			tcp_try_keep_open(sk);
2836 			return;
2837 		}
2838 		break;
2839 	case TCP_CA_Loss:
2840 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2841 		if (icsk->icsk_ca_state != TCP_CA_Open &&
2842 		    !(flag & FLAG_LOST_RETRANS))
2843 			return;
2844 		/* Change state if cwnd is undone or retransmits are lost */
2845 	default:
2846 		if (tcp_is_reno(tp)) {
2847 			if (flag & FLAG_SND_UNA_ADVANCED)
2848 				tcp_reset_reno_sack(tp);
2849 			if (is_dupack)
2850 				tcp_add_reno_sack(sk);
2851 		}
2852 
2853 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2854 			tcp_try_undo_dsack(sk);
2855 
2856 		if (!tcp_time_to_recover(sk, flag)) {
2857 			tcp_try_to_open(sk, flag);
2858 			return;
2859 		}
2860 
2861 		/* MTU probe failure: don't reduce cwnd */
2862 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2863 		    icsk->icsk_mtup.probe_size &&
2864 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2865 			tcp_mtup_probe_failed(sk);
2866 			/* Restores the reduction we did in tcp_mtup_probe() */
2867 			tp->snd_cwnd++;
2868 			tcp_simple_retransmit(sk);
2869 			return;
2870 		}
2871 
2872 		/* Otherwise enter Recovery state */
2873 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2874 		fast_rexmit = 1;
2875 	}
2876 
2877 	if (do_lost)
2878 		tcp_update_scoreboard(sk, fast_rexmit);
2879 	*rexmit = REXMIT_LOST;
2880 }
2881 
2882 /* Kathleen Nichols' algorithm for tracking the minimum value of
2883  * a data stream over some fixed time interval. (E.g., the minimum
2884  * RTT over the past five minutes.) It uses constant space and constant
2885  * time per update yet almost always delivers the same minimum as an
2886  * implementation that has to keep all the data in the window.
2887  *
2888  * The algorithm keeps track of the best, 2nd best & 3rd best min
2889  * values, maintaining an invariant that the measurement time of the
2890  * n'th best >= n-1'th best. It also makes sure that the three values
2891  * are widely separated in the time window since that bounds the worse
2892  * case error when that data is monotonically increasing over the window.
2893  *
2894  * Upon getting a new min, we can forget everything earlier because it
2895  * has no value - the new min is <= everything else in the window by
2896  * definition and it's the most recent. So we restart fresh on every new min
2897  * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2898  * best.
2899  */
2900 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2901 {
2902 	const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2903 	struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2904 	struct rtt_meas rttm = {
2905 		.rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
2906 		.ts = now,
2907 	};
2908 	u32 elapsed;
2909 
2910 	/* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2911 	if (unlikely(rttm.rtt <= m[0].rtt))
2912 		m[0] = m[1] = m[2] = rttm;
2913 	else if (rttm.rtt <= m[1].rtt)
2914 		m[1] = m[2] = rttm;
2915 	else if (rttm.rtt <= m[2].rtt)
2916 		m[2] = rttm;
2917 
2918 	elapsed = now - m[0].ts;
2919 	if (unlikely(elapsed > wlen)) {
2920 		/* Passed entire window without a new min so make 2nd choice
2921 		 * the new min & 3rd choice the new 2nd. So forth and so on.
2922 		 */
2923 		m[0] = m[1];
2924 		m[1] = m[2];
2925 		m[2] = rttm;
2926 		if (now - m[0].ts > wlen) {
2927 			m[0] = m[1];
2928 			m[1] = rttm;
2929 			if (now - m[0].ts > wlen)
2930 				m[0] = rttm;
2931 		}
2932 	} else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2933 		/* Passed a quarter of the window without a new min so
2934 		 * take 2nd choice from the 2nd quarter of the window.
2935 		 */
2936 		m[2] = m[1] = rttm;
2937 	} else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2938 		/* Passed half the window without a new min so take the 3rd
2939 		 * choice from the last half of the window.
2940 		 */
2941 		m[2] = rttm;
2942 	}
2943 }
2944 
2945 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2946 				      long seq_rtt_us, long sack_rtt_us,
2947 				      long ca_rtt_us)
2948 {
2949 	const struct tcp_sock *tp = tcp_sk(sk);
2950 
2951 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2952 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2953 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2954 	 * is acked (RFC6298).
2955 	 */
2956 	if (seq_rtt_us < 0)
2957 		seq_rtt_us = sack_rtt_us;
2958 
2959 	/* RTTM Rule: A TSecr value received in a segment is used to
2960 	 * update the averaged RTT measurement only if the segment
2961 	 * acknowledges some new data, i.e., only if it advances the
2962 	 * left edge of the send window.
2963 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2964 	 */
2965 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2966 	    flag & FLAG_ACKED)
2967 		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2968 							  tp->rx_opt.rcv_tsecr);
2969 	if (seq_rtt_us < 0)
2970 		return false;
2971 
2972 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2973 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2974 	 * values will be skipped with the seq_rtt_us < 0 check above.
2975 	 */
2976 	tcp_update_rtt_min(sk, ca_rtt_us);
2977 	tcp_rtt_estimator(sk, seq_rtt_us);
2978 	tcp_set_rto(sk);
2979 
2980 	/* RFC6298: only reset backoff on valid RTT measurement. */
2981 	inet_csk(sk)->icsk_backoff = 0;
2982 	return true;
2983 }
2984 
2985 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2986 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2987 {
2988 	long rtt_us = -1L;
2989 
2990 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2991 		struct skb_mstamp now;
2992 
2993 		skb_mstamp_get(&now);
2994 		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2995 	}
2996 
2997 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2998 }
2999 
3000 
3001 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3002 {
3003 	const struct inet_connection_sock *icsk = inet_csk(sk);
3004 
3005 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3006 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3007 }
3008 
3009 /* Restart timer after forward progress on connection.
3010  * RFC2988 recommends to restart timer to now+rto.
3011  */
3012 void tcp_rearm_rto(struct sock *sk)
3013 {
3014 	const struct inet_connection_sock *icsk = inet_csk(sk);
3015 	struct tcp_sock *tp = tcp_sk(sk);
3016 
3017 	/* If the retrans timer is currently being used by Fast Open
3018 	 * for SYN-ACK retrans purpose, stay put.
3019 	 */
3020 	if (tp->fastopen_rsk)
3021 		return;
3022 
3023 	if (!tp->packets_out) {
3024 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3025 	} else {
3026 		u32 rto = inet_csk(sk)->icsk_rto;
3027 		/* Offset the time elapsed after installing regular RTO */
3028 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3029 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3030 			struct sk_buff *skb = tcp_write_queue_head(sk);
3031 			const u32 rto_time_stamp =
3032 				tcp_skb_timestamp(skb) + rto;
3033 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3034 			/* delta may not be positive if the socket is locked
3035 			 * when the retrans timer fires and is rescheduled.
3036 			 */
3037 			if (delta > 0)
3038 				rto = delta;
3039 		}
3040 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3041 					  TCP_RTO_MAX);
3042 	}
3043 }
3044 
3045 /* This function is called when the delayed ER timer fires. TCP enters
3046  * fast recovery and performs fast-retransmit.
3047  */
3048 void tcp_resume_early_retransmit(struct sock *sk)
3049 {
3050 	struct tcp_sock *tp = tcp_sk(sk);
3051 
3052 	tcp_rearm_rto(sk);
3053 
3054 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3055 	if (!tp->do_early_retrans)
3056 		return;
3057 
3058 	tcp_enter_recovery(sk, false);
3059 	tcp_update_scoreboard(sk, 1);
3060 	tcp_xmit_retransmit_queue(sk);
3061 }
3062 
3063 /* If we get here, the whole TSO packet has not been acked. */
3064 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3065 {
3066 	struct tcp_sock *tp = tcp_sk(sk);
3067 	u32 packets_acked;
3068 
3069 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3070 
3071 	packets_acked = tcp_skb_pcount(skb);
3072 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3073 		return 0;
3074 	packets_acked -= tcp_skb_pcount(skb);
3075 
3076 	if (packets_acked) {
3077 		BUG_ON(tcp_skb_pcount(skb) == 0);
3078 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3079 	}
3080 
3081 	return packets_acked;
3082 }
3083 
3084 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3085 			   u32 prior_snd_una)
3086 {
3087 	const struct skb_shared_info *shinfo;
3088 
3089 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3090 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3091 		return;
3092 
3093 	shinfo = skb_shinfo(skb);
3094 	if (!before(shinfo->tskey, prior_snd_una) &&
3095 	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3096 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3097 }
3098 
3099 /* Remove acknowledged frames from the retransmission queue. If our packet
3100  * is before the ack sequence we can discard it as it's confirmed to have
3101  * arrived at the other end.
3102  */
3103 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3104 			       u32 prior_snd_una, int *acked,
3105 			       struct tcp_sacktag_state *sack)
3106 {
3107 	const struct inet_connection_sock *icsk = inet_csk(sk);
3108 	struct skb_mstamp first_ackt, last_ackt, now;
3109 	struct tcp_sock *tp = tcp_sk(sk);
3110 	u32 prior_sacked = tp->sacked_out;
3111 	u32 reord = tp->packets_out;
3112 	bool fully_acked = true;
3113 	long sack_rtt_us = -1L;
3114 	long seq_rtt_us = -1L;
3115 	long ca_rtt_us = -1L;
3116 	struct sk_buff *skb;
3117 	u32 pkts_acked = 0;
3118 	bool rtt_update;
3119 	int flag = 0;
3120 
3121 	first_ackt.v64 = 0;
3122 
3123 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3124 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3125 		u8 sacked = scb->sacked;
3126 		u32 acked_pcount;
3127 
3128 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3129 
3130 		/* Determine how many packets and what bytes were acked, tso and else */
3131 		if (after(scb->end_seq, tp->snd_una)) {
3132 			if (tcp_skb_pcount(skb) == 1 ||
3133 			    !after(tp->snd_una, scb->seq))
3134 				break;
3135 
3136 			acked_pcount = tcp_tso_acked(sk, skb);
3137 			if (!acked_pcount)
3138 				break;
3139 
3140 			fully_acked = false;
3141 		} else {
3142 			/* Speedup tcp_unlink_write_queue() and next loop */
3143 			prefetchw(skb->next);
3144 			acked_pcount = tcp_skb_pcount(skb);
3145 		}
3146 
3147 		if (unlikely(sacked & TCPCB_RETRANS)) {
3148 			if (sacked & TCPCB_SACKED_RETRANS)
3149 				tp->retrans_out -= acked_pcount;
3150 			flag |= FLAG_RETRANS_DATA_ACKED;
3151 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3152 			last_ackt = skb->skb_mstamp;
3153 			WARN_ON_ONCE(last_ackt.v64 == 0);
3154 			if (!first_ackt.v64)
3155 				first_ackt = last_ackt;
3156 
3157 			reord = min(pkts_acked, reord);
3158 			if (!after(scb->end_seq, tp->high_seq))
3159 				flag |= FLAG_ORIG_SACK_ACKED;
3160 		}
3161 
3162 		if (sacked & TCPCB_SACKED_ACKED) {
3163 			tp->sacked_out -= acked_pcount;
3164 		} else if (tcp_is_sack(tp)) {
3165 			tp->delivered += acked_pcount;
3166 			if (!tcp_skb_spurious_retrans(tp, skb))
3167 				tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3168 		}
3169 		if (sacked & TCPCB_LOST)
3170 			tp->lost_out -= acked_pcount;
3171 
3172 		tp->packets_out -= acked_pcount;
3173 		pkts_acked += acked_pcount;
3174 
3175 		/* Initial outgoing SYN's get put onto the write_queue
3176 		 * just like anything else we transmit.  It is not
3177 		 * true data, and if we misinform our callers that
3178 		 * this ACK acks real data, we will erroneously exit
3179 		 * connection startup slow start one packet too
3180 		 * quickly.  This is severely frowned upon behavior.
3181 		 */
3182 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3183 			flag |= FLAG_DATA_ACKED;
3184 		} else {
3185 			flag |= FLAG_SYN_ACKED;
3186 			tp->retrans_stamp = 0;
3187 		}
3188 
3189 		if (!fully_acked)
3190 			break;
3191 
3192 		tcp_unlink_write_queue(skb, sk);
3193 		sk_wmem_free_skb(sk, skb);
3194 		if (unlikely(skb == tp->retransmit_skb_hint))
3195 			tp->retransmit_skb_hint = NULL;
3196 		if (unlikely(skb == tp->lost_skb_hint))
3197 			tp->lost_skb_hint = NULL;
3198 	}
3199 
3200 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3201 		tp->snd_up = tp->snd_una;
3202 
3203 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3204 		flag |= FLAG_SACK_RENEGING;
3205 
3206 	skb_mstamp_get(&now);
3207 	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3208 		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3209 		ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3210 	}
3211 	if (sack->first_sackt.v64) {
3212 		sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3213 		ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3214 	}
3215 
3216 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3217 					ca_rtt_us);
3218 
3219 	if (flag & FLAG_ACKED) {
3220 		tcp_rearm_rto(sk);
3221 		if (unlikely(icsk->icsk_mtup.probe_size &&
3222 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3223 			tcp_mtup_probe_success(sk);
3224 		}
3225 
3226 		if (tcp_is_reno(tp)) {
3227 			tcp_remove_reno_sacks(sk, pkts_acked);
3228 		} else {
3229 			int delta;
3230 
3231 			/* Non-retransmitted hole got filled? That's reordering */
3232 			if (reord < prior_fackets)
3233 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3234 
3235 			delta = tcp_is_fack(tp) ? pkts_acked :
3236 						  prior_sacked - tp->sacked_out;
3237 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3238 		}
3239 
3240 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3241 
3242 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3243 		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3244 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3245 		 * after when the head was last (re)transmitted. Otherwise the
3246 		 * timeout may continue to extend in loss recovery.
3247 		 */
3248 		tcp_rearm_rto(sk);
3249 	}
3250 
3251 	if (icsk->icsk_ca_ops->pkts_acked) {
3252 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3253 					     .rtt_us = ca_rtt_us };
3254 
3255 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3256 	}
3257 
3258 #if FASTRETRANS_DEBUG > 0
3259 	WARN_ON((int)tp->sacked_out < 0);
3260 	WARN_ON((int)tp->lost_out < 0);
3261 	WARN_ON((int)tp->retrans_out < 0);
3262 	if (!tp->packets_out && tcp_is_sack(tp)) {
3263 		icsk = inet_csk(sk);
3264 		if (tp->lost_out) {
3265 			pr_debug("Leak l=%u %d\n",
3266 				 tp->lost_out, icsk->icsk_ca_state);
3267 			tp->lost_out = 0;
3268 		}
3269 		if (tp->sacked_out) {
3270 			pr_debug("Leak s=%u %d\n",
3271 				 tp->sacked_out, icsk->icsk_ca_state);
3272 			tp->sacked_out = 0;
3273 		}
3274 		if (tp->retrans_out) {
3275 			pr_debug("Leak r=%u %d\n",
3276 				 tp->retrans_out, icsk->icsk_ca_state);
3277 			tp->retrans_out = 0;
3278 		}
3279 	}
3280 #endif
3281 	*acked = pkts_acked;
3282 	return flag;
3283 }
3284 
3285 static void tcp_ack_probe(struct sock *sk)
3286 {
3287 	const struct tcp_sock *tp = tcp_sk(sk);
3288 	struct inet_connection_sock *icsk = inet_csk(sk);
3289 
3290 	/* Was it a usable window open? */
3291 
3292 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3293 		icsk->icsk_backoff = 0;
3294 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3295 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3296 		 * This function is not for random using!
3297 		 */
3298 	} else {
3299 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3300 
3301 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3302 					  when, TCP_RTO_MAX);
3303 	}
3304 }
3305 
3306 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3307 {
3308 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3309 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3310 }
3311 
3312 /* Decide wheather to run the increase function of congestion control. */
3313 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3314 {
3315 	/* If reordering is high then always grow cwnd whenever data is
3316 	 * delivered regardless of its ordering. Otherwise stay conservative
3317 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3318 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3319 	 * cwnd in tcp_fastretrans_alert() based on more states.
3320 	 */
3321 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3322 		return flag & FLAG_FORWARD_PROGRESS;
3323 
3324 	return flag & FLAG_DATA_ACKED;
3325 }
3326 
3327 /* The "ultimate" congestion control function that aims to replace the rigid
3328  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3329  * It's called toward the end of processing an ACK with precise rate
3330  * information. All transmission or retransmission are delayed afterwards.
3331  */
3332 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3333 			     int flag)
3334 {
3335 	if (tcp_in_cwnd_reduction(sk)) {
3336 		/* Reduce cwnd if state mandates */
3337 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3338 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3339 		/* Advance cwnd if state allows */
3340 		tcp_cong_avoid(sk, ack, acked_sacked);
3341 	}
3342 	tcp_update_pacing_rate(sk);
3343 }
3344 
3345 /* Check that window update is acceptable.
3346  * The function assumes that snd_una<=ack<=snd_next.
3347  */
3348 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3349 					const u32 ack, const u32 ack_seq,
3350 					const u32 nwin)
3351 {
3352 	return	after(ack, tp->snd_una) ||
3353 		after(ack_seq, tp->snd_wl1) ||
3354 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3355 }
3356 
3357 /* If we update tp->snd_una, also update tp->bytes_acked */
3358 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3359 {
3360 	u32 delta = ack - tp->snd_una;
3361 
3362 	sock_owned_by_me((struct sock *)tp);
3363 	u64_stats_update_begin_raw(&tp->syncp);
3364 	tp->bytes_acked += delta;
3365 	u64_stats_update_end_raw(&tp->syncp);
3366 	tp->snd_una = ack;
3367 }
3368 
3369 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3370 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3371 {
3372 	u32 delta = seq - tp->rcv_nxt;
3373 
3374 	sock_owned_by_me((struct sock *)tp);
3375 	u64_stats_update_begin_raw(&tp->syncp);
3376 	tp->bytes_received += delta;
3377 	u64_stats_update_end_raw(&tp->syncp);
3378 	tp->rcv_nxt = seq;
3379 }
3380 
3381 /* Update our send window.
3382  *
3383  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3384  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3385  */
3386 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3387 				 u32 ack_seq)
3388 {
3389 	struct tcp_sock *tp = tcp_sk(sk);
3390 	int flag = 0;
3391 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3392 
3393 	if (likely(!tcp_hdr(skb)->syn))
3394 		nwin <<= tp->rx_opt.snd_wscale;
3395 
3396 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3397 		flag |= FLAG_WIN_UPDATE;
3398 		tcp_update_wl(tp, ack_seq);
3399 
3400 		if (tp->snd_wnd != nwin) {
3401 			tp->snd_wnd = nwin;
3402 
3403 			/* Note, it is the only place, where
3404 			 * fast path is recovered for sending TCP.
3405 			 */
3406 			tp->pred_flags = 0;
3407 			tcp_fast_path_check(sk);
3408 
3409 			if (tcp_send_head(sk))
3410 				tcp_slow_start_after_idle_check(sk);
3411 
3412 			if (nwin > tp->max_window) {
3413 				tp->max_window = nwin;
3414 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3415 			}
3416 		}
3417 	}
3418 
3419 	tcp_snd_una_update(tp, ack);
3420 
3421 	return flag;
3422 }
3423 
3424 /* Return true if we're currently rate-limiting out-of-window ACKs and
3425  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3426  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3427  * attacks that send repeated SYNs or ACKs for the same connection. To
3428  * do this, we do not send a duplicate SYNACK or ACK if the remote
3429  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3430  */
3431 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3432 			  int mib_idx, u32 *last_oow_ack_time)
3433 {
3434 	/* Data packets without SYNs are not likely part of an ACK loop. */
3435 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3436 	    !tcp_hdr(skb)->syn)
3437 		goto not_rate_limited;
3438 
3439 	if (*last_oow_ack_time) {
3440 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3441 
3442 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3443 			NET_INC_STATS(net, mib_idx);
3444 			return true;	/* rate-limited: don't send yet! */
3445 		}
3446 	}
3447 
3448 	*last_oow_ack_time = tcp_time_stamp;
3449 
3450 not_rate_limited:
3451 	return false;	/* not rate-limited: go ahead, send dupack now! */
3452 }
3453 
3454 /* RFC 5961 7 [ACK Throttling] */
3455 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3456 {
3457 	/* unprotected vars, we dont care of overwrites */
3458 	static u32 challenge_timestamp;
3459 	static unsigned int challenge_count;
3460 	struct tcp_sock *tp = tcp_sk(sk);
3461 	u32 now;
3462 
3463 	/* First check our per-socket dupack rate limit. */
3464 	if (tcp_oow_rate_limited(sock_net(sk), skb,
3465 				 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3466 				 &tp->last_oow_ack_time))
3467 		return;
3468 
3469 	/* Then check the check host-wide RFC 5961 rate limit. */
3470 	now = jiffies / HZ;
3471 	if (now != challenge_timestamp) {
3472 		challenge_timestamp = now;
3473 		challenge_count = 0;
3474 	}
3475 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3476 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3477 		tcp_send_ack(sk);
3478 	}
3479 }
3480 
3481 static void tcp_store_ts_recent(struct tcp_sock *tp)
3482 {
3483 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3484 	tp->rx_opt.ts_recent_stamp = get_seconds();
3485 }
3486 
3487 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3488 {
3489 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3490 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3491 		 * extra check below makes sure this can only happen
3492 		 * for pure ACK frames.  -DaveM
3493 		 *
3494 		 * Not only, also it occurs for expired timestamps.
3495 		 */
3496 
3497 		if (tcp_paws_check(&tp->rx_opt, 0))
3498 			tcp_store_ts_recent(tp);
3499 	}
3500 }
3501 
3502 /* This routine deals with acks during a TLP episode.
3503  * We mark the end of a TLP episode on receiving TLP dupack or when
3504  * ack is after tlp_high_seq.
3505  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3506  */
3507 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3508 {
3509 	struct tcp_sock *tp = tcp_sk(sk);
3510 
3511 	if (before(ack, tp->tlp_high_seq))
3512 		return;
3513 
3514 	if (flag & FLAG_DSACKING_ACK) {
3515 		/* This DSACK means original and TLP probe arrived; no loss */
3516 		tp->tlp_high_seq = 0;
3517 	} else if (after(ack, tp->tlp_high_seq)) {
3518 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3519 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3520 		 */
3521 		tcp_init_cwnd_reduction(sk);
3522 		tcp_set_ca_state(sk, TCP_CA_CWR);
3523 		tcp_end_cwnd_reduction(sk);
3524 		tcp_try_keep_open(sk);
3525 		NET_INC_STATS(sock_net(sk),
3526 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3527 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3528 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3529 		/* Pure dupack: original and TLP probe arrived; no loss */
3530 		tp->tlp_high_seq = 0;
3531 	}
3532 }
3533 
3534 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3535 {
3536 	const struct inet_connection_sock *icsk = inet_csk(sk);
3537 
3538 	if (icsk->icsk_ca_ops->in_ack_event)
3539 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3540 }
3541 
3542 /* Congestion control has updated the cwnd already. So if we're in
3543  * loss recovery then now we do any new sends (for FRTO) or
3544  * retransmits (for CA_Loss or CA_recovery) that make sense.
3545  */
3546 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3547 {
3548 	struct tcp_sock *tp = tcp_sk(sk);
3549 
3550 	if (rexmit == REXMIT_NONE)
3551 		return;
3552 
3553 	if (unlikely(rexmit == 2)) {
3554 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3555 					  TCP_NAGLE_OFF);
3556 		if (after(tp->snd_nxt, tp->high_seq))
3557 			return;
3558 		tp->frto = 0;
3559 	}
3560 	tcp_xmit_retransmit_queue(sk);
3561 }
3562 
3563 /* This routine deals with incoming acks, but not outgoing ones. */
3564 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3565 {
3566 	struct inet_connection_sock *icsk = inet_csk(sk);
3567 	struct tcp_sock *tp = tcp_sk(sk);
3568 	struct tcp_sacktag_state sack_state;
3569 	u32 prior_snd_una = tp->snd_una;
3570 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3571 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3572 	bool is_dupack = false;
3573 	u32 prior_fackets;
3574 	int prior_packets = tp->packets_out;
3575 	u32 prior_delivered = tp->delivered;
3576 	int acked = 0; /* Number of packets newly acked */
3577 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3578 
3579 	sack_state.first_sackt.v64 = 0;
3580 
3581 	/* We very likely will need to access write queue head. */
3582 	prefetchw(sk->sk_write_queue.next);
3583 
3584 	/* If the ack is older than previous acks
3585 	 * then we can probably ignore it.
3586 	 */
3587 	if (before(ack, prior_snd_una)) {
3588 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3589 		if (before(ack, prior_snd_una - tp->max_window)) {
3590 			tcp_send_challenge_ack(sk, skb);
3591 			return -1;
3592 		}
3593 		goto old_ack;
3594 	}
3595 
3596 	/* If the ack includes data we haven't sent yet, discard
3597 	 * this segment (RFC793 Section 3.9).
3598 	 */
3599 	if (after(ack, tp->snd_nxt))
3600 		goto invalid_ack;
3601 
3602 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3603 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3604 		tcp_rearm_rto(sk);
3605 
3606 	if (after(ack, prior_snd_una)) {
3607 		flag |= FLAG_SND_UNA_ADVANCED;
3608 		icsk->icsk_retransmits = 0;
3609 	}
3610 
3611 	prior_fackets = tp->fackets_out;
3612 
3613 	/* ts_recent update must be made after we are sure that the packet
3614 	 * is in window.
3615 	 */
3616 	if (flag & FLAG_UPDATE_TS_RECENT)
3617 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3618 
3619 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3620 		/* Window is constant, pure forward advance.
3621 		 * No more checks are required.
3622 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3623 		 */
3624 		tcp_update_wl(tp, ack_seq);
3625 		tcp_snd_una_update(tp, ack);
3626 		flag |= FLAG_WIN_UPDATE;
3627 
3628 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3629 
3630 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3631 	} else {
3632 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3633 
3634 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3635 			flag |= FLAG_DATA;
3636 		else
3637 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3638 
3639 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3640 
3641 		if (TCP_SKB_CB(skb)->sacked)
3642 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3643 							&sack_state);
3644 
3645 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3646 			flag |= FLAG_ECE;
3647 			ack_ev_flags |= CA_ACK_ECE;
3648 		}
3649 
3650 		if (flag & FLAG_WIN_UPDATE)
3651 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3652 
3653 		tcp_in_ack_event(sk, ack_ev_flags);
3654 	}
3655 
3656 	/* We passed data and got it acked, remove any soft error
3657 	 * log. Something worked...
3658 	 */
3659 	sk->sk_err_soft = 0;
3660 	icsk->icsk_probes_out = 0;
3661 	tp->rcv_tstamp = tcp_time_stamp;
3662 	if (!prior_packets)
3663 		goto no_queue;
3664 
3665 	/* See if we can take anything off of the retransmit queue. */
3666 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3667 				    &sack_state);
3668 
3669 	if (tcp_ack_is_dubious(sk, flag)) {
3670 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3671 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3672 	}
3673 	if (tp->tlp_high_seq)
3674 		tcp_process_tlp_ack(sk, ack, flag);
3675 
3676 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3677 		struct dst_entry *dst = __sk_dst_get(sk);
3678 		if (dst)
3679 			dst_confirm(dst);
3680 	}
3681 
3682 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3683 		tcp_schedule_loss_probe(sk);
3684 	tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag);
3685 	tcp_xmit_recovery(sk, rexmit);
3686 	return 1;
3687 
3688 no_queue:
3689 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3690 	if (flag & FLAG_DSACKING_ACK)
3691 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3692 	/* If this ack opens up a zero window, clear backoff.  It was
3693 	 * being used to time the probes, and is probably far higher than
3694 	 * it needs to be for normal retransmission.
3695 	 */
3696 	if (tcp_send_head(sk))
3697 		tcp_ack_probe(sk);
3698 
3699 	if (tp->tlp_high_seq)
3700 		tcp_process_tlp_ack(sk, ack, flag);
3701 	return 1;
3702 
3703 invalid_ack:
3704 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3705 	return -1;
3706 
3707 old_ack:
3708 	/* If data was SACKed, tag it and see if we should send more data.
3709 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3710 	 */
3711 	if (TCP_SKB_CB(skb)->sacked) {
3712 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3713 						&sack_state);
3714 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3715 		tcp_xmit_recovery(sk, rexmit);
3716 	}
3717 
3718 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3719 	return 0;
3720 }
3721 
3722 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3723 				      bool syn, struct tcp_fastopen_cookie *foc,
3724 				      bool exp_opt)
3725 {
3726 	/* Valid only in SYN or SYN-ACK with an even length.  */
3727 	if (!foc || !syn || len < 0 || (len & 1))
3728 		return;
3729 
3730 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3731 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3732 		memcpy(foc->val, cookie, len);
3733 	else if (len != 0)
3734 		len = -1;
3735 	foc->len = len;
3736 	foc->exp = exp_opt;
3737 }
3738 
3739 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3740  * But, this can also be called on packets in the established flow when
3741  * the fast version below fails.
3742  */
3743 void tcp_parse_options(const struct sk_buff *skb,
3744 		       struct tcp_options_received *opt_rx, int estab,
3745 		       struct tcp_fastopen_cookie *foc)
3746 {
3747 	const unsigned char *ptr;
3748 	const struct tcphdr *th = tcp_hdr(skb);
3749 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3750 
3751 	ptr = (const unsigned char *)(th + 1);
3752 	opt_rx->saw_tstamp = 0;
3753 
3754 	while (length > 0) {
3755 		int opcode = *ptr++;
3756 		int opsize;
3757 
3758 		switch (opcode) {
3759 		case TCPOPT_EOL:
3760 			return;
3761 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3762 			length--;
3763 			continue;
3764 		default:
3765 			opsize = *ptr++;
3766 			if (opsize < 2) /* "silly options" */
3767 				return;
3768 			if (opsize > length)
3769 				return;	/* don't parse partial options */
3770 			switch (opcode) {
3771 			case TCPOPT_MSS:
3772 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3773 					u16 in_mss = get_unaligned_be16(ptr);
3774 					if (in_mss) {
3775 						if (opt_rx->user_mss &&
3776 						    opt_rx->user_mss < in_mss)
3777 							in_mss = opt_rx->user_mss;
3778 						opt_rx->mss_clamp = in_mss;
3779 					}
3780 				}
3781 				break;
3782 			case TCPOPT_WINDOW:
3783 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3784 				    !estab && sysctl_tcp_window_scaling) {
3785 					__u8 snd_wscale = *(__u8 *)ptr;
3786 					opt_rx->wscale_ok = 1;
3787 					if (snd_wscale > 14) {
3788 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3789 								     __func__,
3790 								     snd_wscale);
3791 						snd_wscale = 14;
3792 					}
3793 					opt_rx->snd_wscale = snd_wscale;
3794 				}
3795 				break;
3796 			case TCPOPT_TIMESTAMP:
3797 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3798 				    ((estab && opt_rx->tstamp_ok) ||
3799 				     (!estab && sysctl_tcp_timestamps))) {
3800 					opt_rx->saw_tstamp = 1;
3801 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3802 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3803 				}
3804 				break;
3805 			case TCPOPT_SACK_PERM:
3806 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3807 				    !estab && sysctl_tcp_sack) {
3808 					opt_rx->sack_ok = TCP_SACK_SEEN;
3809 					tcp_sack_reset(opt_rx);
3810 				}
3811 				break;
3812 
3813 			case TCPOPT_SACK:
3814 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3815 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3816 				   opt_rx->sack_ok) {
3817 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3818 				}
3819 				break;
3820 #ifdef CONFIG_TCP_MD5SIG
3821 			case TCPOPT_MD5SIG:
3822 				/*
3823 				 * The MD5 Hash has already been
3824 				 * checked (see tcp_v{4,6}_do_rcv()).
3825 				 */
3826 				break;
3827 #endif
3828 			case TCPOPT_FASTOPEN:
3829 				tcp_parse_fastopen_option(
3830 					opsize - TCPOLEN_FASTOPEN_BASE,
3831 					ptr, th->syn, foc, false);
3832 				break;
3833 
3834 			case TCPOPT_EXP:
3835 				/* Fast Open option shares code 254 using a
3836 				 * 16 bits magic number.
3837 				 */
3838 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3839 				    get_unaligned_be16(ptr) ==
3840 				    TCPOPT_FASTOPEN_MAGIC)
3841 					tcp_parse_fastopen_option(opsize -
3842 						TCPOLEN_EXP_FASTOPEN_BASE,
3843 						ptr + 2, th->syn, foc, true);
3844 				break;
3845 
3846 			}
3847 			ptr += opsize-2;
3848 			length -= opsize;
3849 		}
3850 	}
3851 }
3852 EXPORT_SYMBOL(tcp_parse_options);
3853 
3854 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3855 {
3856 	const __be32 *ptr = (const __be32 *)(th + 1);
3857 
3858 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3859 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3860 		tp->rx_opt.saw_tstamp = 1;
3861 		++ptr;
3862 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3863 		++ptr;
3864 		if (*ptr)
3865 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3866 		else
3867 			tp->rx_opt.rcv_tsecr = 0;
3868 		return true;
3869 	}
3870 	return false;
3871 }
3872 
3873 /* Fast parse options. This hopes to only see timestamps.
3874  * If it is wrong it falls back on tcp_parse_options().
3875  */
3876 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3877 				   const struct tcphdr *th, struct tcp_sock *tp)
3878 {
3879 	/* In the spirit of fast parsing, compare doff directly to constant
3880 	 * values.  Because equality is used, short doff can be ignored here.
3881 	 */
3882 	if (th->doff == (sizeof(*th) / 4)) {
3883 		tp->rx_opt.saw_tstamp = 0;
3884 		return false;
3885 	} else if (tp->rx_opt.tstamp_ok &&
3886 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3887 		if (tcp_parse_aligned_timestamp(tp, th))
3888 			return true;
3889 	}
3890 
3891 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3892 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3893 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3894 
3895 	return true;
3896 }
3897 
3898 #ifdef CONFIG_TCP_MD5SIG
3899 /*
3900  * Parse MD5 Signature option
3901  */
3902 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3903 {
3904 	int length = (th->doff << 2) - sizeof(*th);
3905 	const u8 *ptr = (const u8 *)(th + 1);
3906 
3907 	/* If the TCP option is too short, we can short cut */
3908 	if (length < TCPOLEN_MD5SIG)
3909 		return NULL;
3910 
3911 	while (length > 0) {
3912 		int opcode = *ptr++;
3913 		int opsize;
3914 
3915 		switch (opcode) {
3916 		case TCPOPT_EOL:
3917 			return NULL;
3918 		case TCPOPT_NOP:
3919 			length--;
3920 			continue;
3921 		default:
3922 			opsize = *ptr++;
3923 			if (opsize < 2 || opsize > length)
3924 				return NULL;
3925 			if (opcode == TCPOPT_MD5SIG)
3926 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3927 		}
3928 		ptr += opsize - 2;
3929 		length -= opsize;
3930 	}
3931 	return NULL;
3932 }
3933 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3934 #endif
3935 
3936 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3937  *
3938  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3939  * it can pass through stack. So, the following predicate verifies that
3940  * this segment is not used for anything but congestion avoidance or
3941  * fast retransmit. Moreover, we even are able to eliminate most of such
3942  * second order effects, if we apply some small "replay" window (~RTO)
3943  * to timestamp space.
3944  *
3945  * All these measures still do not guarantee that we reject wrapped ACKs
3946  * on networks with high bandwidth, when sequence space is recycled fastly,
3947  * but it guarantees that such events will be very rare and do not affect
3948  * connection seriously. This doesn't look nice, but alas, PAWS is really
3949  * buggy extension.
3950  *
3951  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3952  * states that events when retransmit arrives after original data are rare.
3953  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3954  * the biggest problem on large power networks even with minor reordering.
3955  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3956  * up to bandwidth of 18Gigabit/sec. 8) ]
3957  */
3958 
3959 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3960 {
3961 	const struct tcp_sock *tp = tcp_sk(sk);
3962 	const struct tcphdr *th = tcp_hdr(skb);
3963 	u32 seq = TCP_SKB_CB(skb)->seq;
3964 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3965 
3966 	return (/* 1. Pure ACK with correct sequence number. */
3967 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3968 
3969 		/* 2. ... and duplicate ACK. */
3970 		ack == tp->snd_una &&
3971 
3972 		/* 3. ... and does not update window. */
3973 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3974 
3975 		/* 4. ... and sits in replay window. */
3976 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3977 }
3978 
3979 static inline bool tcp_paws_discard(const struct sock *sk,
3980 				   const struct sk_buff *skb)
3981 {
3982 	const struct tcp_sock *tp = tcp_sk(sk);
3983 
3984 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3985 	       !tcp_disordered_ack(sk, skb);
3986 }
3987 
3988 /* Check segment sequence number for validity.
3989  *
3990  * Segment controls are considered valid, if the segment
3991  * fits to the window after truncation to the window. Acceptability
3992  * of data (and SYN, FIN, of course) is checked separately.
3993  * See tcp_data_queue(), for example.
3994  *
3995  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3996  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3997  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3998  * (borrowed from freebsd)
3999  */
4000 
4001 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4002 {
4003 	return	!before(end_seq, tp->rcv_wup) &&
4004 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4005 }
4006 
4007 /* When we get a reset we do this. */
4008 void tcp_reset(struct sock *sk)
4009 {
4010 	/* We want the right error as BSD sees it (and indeed as we do). */
4011 	switch (sk->sk_state) {
4012 	case TCP_SYN_SENT:
4013 		sk->sk_err = ECONNREFUSED;
4014 		break;
4015 	case TCP_CLOSE_WAIT:
4016 		sk->sk_err = EPIPE;
4017 		break;
4018 	case TCP_CLOSE:
4019 		return;
4020 	default:
4021 		sk->sk_err = ECONNRESET;
4022 	}
4023 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4024 	smp_wmb();
4025 
4026 	if (!sock_flag(sk, SOCK_DEAD))
4027 		sk->sk_error_report(sk);
4028 
4029 	tcp_done(sk);
4030 }
4031 
4032 /*
4033  * 	Process the FIN bit. This now behaves as it is supposed to work
4034  *	and the FIN takes effect when it is validly part of sequence
4035  *	space. Not before when we get holes.
4036  *
4037  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4038  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4039  *	TIME-WAIT)
4040  *
4041  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4042  *	close and we go into CLOSING (and later onto TIME-WAIT)
4043  *
4044  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4045  */
4046 void tcp_fin(struct sock *sk)
4047 {
4048 	struct tcp_sock *tp = tcp_sk(sk);
4049 
4050 	inet_csk_schedule_ack(sk);
4051 
4052 	sk->sk_shutdown |= RCV_SHUTDOWN;
4053 	sock_set_flag(sk, SOCK_DONE);
4054 
4055 	switch (sk->sk_state) {
4056 	case TCP_SYN_RECV:
4057 	case TCP_ESTABLISHED:
4058 		/* Move to CLOSE_WAIT */
4059 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4060 		inet_csk(sk)->icsk_ack.pingpong = 1;
4061 		break;
4062 
4063 	case TCP_CLOSE_WAIT:
4064 	case TCP_CLOSING:
4065 		/* Received a retransmission of the FIN, do
4066 		 * nothing.
4067 		 */
4068 		break;
4069 	case TCP_LAST_ACK:
4070 		/* RFC793: Remain in the LAST-ACK state. */
4071 		break;
4072 
4073 	case TCP_FIN_WAIT1:
4074 		/* This case occurs when a simultaneous close
4075 		 * happens, we must ack the received FIN and
4076 		 * enter the CLOSING state.
4077 		 */
4078 		tcp_send_ack(sk);
4079 		tcp_set_state(sk, TCP_CLOSING);
4080 		break;
4081 	case TCP_FIN_WAIT2:
4082 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4083 		tcp_send_ack(sk);
4084 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4085 		break;
4086 	default:
4087 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4088 		 * cases we should never reach this piece of code.
4089 		 */
4090 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4091 		       __func__, sk->sk_state);
4092 		break;
4093 	}
4094 
4095 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4096 	 * Probably, we should reset in this case. For now drop them.
4097 	 */
4098 	__skb_queue_purge(&tp->out_of_order_queue);
4099 	if (tcp_is_sack(tp))
4100 		tcp_sack_reset(&tp->rx_opt);
4101 	sk_mem_reclaim(sk);
4102 
4103 	if (!sock_flag(sk, SOCK_DEAD)) {
4104 		sk->sk_state_change(sk);
4105 
4106 		/* Do not send POLL_HUP for half duplex close. */
4107 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4108 		    sk->sk_state == TCP_CLOSE)
4109 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4110 		else
4111 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4112 	}
4113 }
4114 
4115 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4116 				  u32 end_seq)
4117 {
4118 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4119 		if (before(seq, sp->start_seq))
4120 			sp->start_seq = seq;
4121 		if (after(end_seq, sp->end_seq))
4122 			sp->end_seq = end_seq;
4123 		return true;
4124 	}
4125 	return false;
4126 }
4127 
4128 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4129 {
4130 	struct tcp_sock *tp = tcp_sk(sk);
4131 
4132 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4133 		int mib_idx;
4134 
4135 		if (before(seq, tp->rcv_nxt))
4136 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4137 		else
4138 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4139 
4140 		NET_INC_STATS(sock_net(sk), mib_idx);
4141 
4142 		tp->rx_opt.dsack = 1;
4143 		tp->duplicate_sack[0].start_seq = seq;
4144 		tp->duplicate_sack[0].end_seq = end_seq;
4145 	}
4146 }
4147 
4148 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4149 {
4150 	struct tcp_sock *tp = tcp_sk(sk);
4151 
4152 	if (!tp->rx_opt.dsack)
4153 		tcp_dsack_set(sk, seq, end_seq);
4154 	else
4155 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4156 }
4157 
4158 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4159 {
4160 	struct tcp_sock *tp = tcp_sk(sk);
4161 
4162 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4163 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4164 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4165 		tcp_enter_quickack_mode(sk);
4166 
4167 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4168 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4169 
4170 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4171 				end_seq = tp->rcv_nxt;
4172 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4173 		}
4174 	}
4175 
4176 	tcp_send_ack(sk);
4177 }
4178 
4179 /* These routines update the SACK block as out-of-order packets arrive or
4180  * in-order packets close up the sequence space.
4181  */
4182 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4183 {
4184 	int this_sack;
4185 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4186 	struct tcp_sack_block *swalk = sp + 1;
4187 
4188 	/* See if the recent change to the first SACK eats into
4189 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4190 	 */
4191 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4192 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4193 			int i;
4194 
4195 			/* Zap SWALK, by moving every further SACK up by one slot.
4196 			 * Decrease num_sacks.
4197 			 */
4198 			tp->rx_opt.num_sacks--;
4199 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4200 				sp[i] = sp[i + 1];
4201 			continue;
4202 		}
4203 		this_sack++, swalk++;
4204 	}
4205 }
4206 
4207 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4208 {
4209 	struct tcp_sock *tp = tcp_sk(sk);
4210 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4211 	int cur_sacks = tp->rx_opt.num_sacks;
4212 	int this_sack;
4213 
4214 	if (!cur_sacks)
4215 		goto new_sack;
4216 
4217 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4218 		if (tcp_sack_extend(sp, seq, end_seq)) {
4219 			/* Rotate this_sack to the first one. */
4220 			for (; this_sack > 0; this_sack--, sp--)
4221 				swap(*sp, *(sp - 1));
4222 			if (cur_sacks > 1)
4223 				tcp_sack_maybe_coalesce(tp);
4224 			return;
4225 		}
4226 	}
4227 
4228 	/* Could not find an adjacent existing SACK, build a new one,
4229 	 * put it at the front, and shift everyone else down.  We
4230 	 * always know there is at least one SACK present already here.
4231 	 *
4232 	 * If the sack array is full, forget about the last one.
4233 	 */
4234 	if (this_sack >= TCP_NUM_SACKS) {
4235 		this_sack--;
4236 		tp->rx_opt.num_sacks--;
4237 		sp--;
4238 	}
4239 	for (; this_sack > 0; this_sack--, sp--)
4240 		*sp = *(sp - 1);
4241 
4242 new_sack:
4243 	/* Build the new head SACK, and we're done. */
4244 	sp->start_seq = seq;
4245 	sp->end_seq = end_seq;
4246 	tp->rx_opt.num_sacks++;
4247 }
4248 
4249 /* RCV.NXT advances, some SACKs should be eaten. */
4250 
4251 static void tcp_sack_remove(struct tcp_sock *tp)
4252 {
4253 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4254 	int num_sacks = tp->rx_opt.num_sacks;
4255 	int this_sack;
4256 
4257 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4258 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4259 		tp->rx_opt.num_sacks = 0;
4260 		return;
4261 	}
4262 
4263 	for (this_sack = 0; this_sack < num_sacks;) {
4264 		/* Check if the start of the sack is covered by RCV.NXT. */
4265 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4266 			int i;
4267 
4268 			/* RCV.NXT must cover all the block! */
4269 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4270 
4271 			/* Zap this SACK, by moving forward any other SACKS. */
4272 			for (i = this_sack+1; i < num_sacks; i++)
4273 				tp->selective_acks[i-1] = tp->selective_acks[i];
4274 			num_sacks--;
4275 			continue;
4276 		}
4277 		this_sack++;
4278 		sp++;
4279 	}
4280 	tp->rx_opt.num_sacks = num_sacks;
4281 }
4282 
4283 /**
4284  * tcp_try_coalesce - try to merge skb to prior one
4285  * @sk: socket
4286  * @to: prior buffer
4287  * @from: buffer to add in queue
4288  * @fragstolen: pointer to boolean
4289  *
4290  * Before queueing skb @from after @to, try to merge them
4291  * to reduce overall memory use and queue lengths, if cost is small.
4292  * Packets in ofo or receive queues can stay a long time.
4293  * Better try to coalesce them right now to avoid future collapses.
4294  * Returns true if caller should free @from instead of queueing it
4295  */
4296 static bool tcp_try_coalesce(struct sock *sk,
4297 			     struct sk_buff *to,
4298 			     struct sk_buff *from,
4299 			     bool *fragstolen)
4300 {
4301 	int delta;
4302 
4303 	*fragstolen = false;
4304 
4305 	/* Its possible this segment overlaps with prior segment in queue */
4306 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4307 		return false;
4308 
4309 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4310 		return false;
4311 
4312 	atomic_add(delta, &sk->sk_rmem_alloc);
4313 	sk_mem_charge(sk, delta);
4314 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4315 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4316 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4317 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4318 	return true;
4319 }
4320 
4321 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4322 {
4323 	sk_drops_add(sk, skb);
4324 	__kfree_skb(skb);
4325 }
4326 
4327 /* This one checks to see if we can put data from the
4328  * out_of_order queue into the receive_queue.
4329  */
4330 static void tcp_ofo_queue(struct sock *sk)
4331 {
4332 	struct tcp_sock *tp = tcp_sk(sk);
4333 	__u32 dsack_high = tp->rcv_nxt;
4334 	struct sk_buff *skb, *tail;
4335 	bool fragstolen, eaten;
4336 
4337 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4338 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4339 			break;
4340 
4341 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4342 			__u32 dsack = dsack_high;
4343 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4344 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4345 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4346 		}
4347 
4348 		__skb_unlink(skb, &tp->out_of_order_queue);
4349 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4350 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4351 			tcp_drop(sk, skb);
4352 			continue;
4353 		}
4354 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4355 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4356 			   TCP_SKB_CB(skb)->end_seq);
4357 
4358 		tail = skb_peek_tail(&sk->sk_receive_queue);
4359 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4360 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4361 		if (!eaten)
4362 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4363 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4364 			tcp_fin(sk);
4365 		if (eaten)
4366 			kfree_skb_partial(skb, fragstolen);
4367 	}
4368 }
4369 
4370 static bool tcp_prune_ofo_queue(struct sock *sk);
4371 static int tcp_prune_queue(struct sock *sk);
4372 
4373 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4374 				 unsigned int size)
4375 {
4376 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4377 	    !sk_rmem_schedule(sk, skb, size)) {
4378 
4379 		if (tcp_prune_queue(sk) < 0)
4380 			return -1;
4381 
4382 		if (!sk_rmem_schedule(sk, skb, size)) {
4383 			if (!tcp_prune_ofo_queue(sk))
4384 				return -1;
4385 
4386 			if (!sk_rmem_schedule(sk, skb, size))
4387 				return -1;
4388 		}
4389 	}
4390 	return 0;
4391 }
4392 
4393 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4394 {
4395 	struct tcp_sock *tp = tcp_sk(sk);
4396 	struct sk_buff *skb1;
4397 	u32 seq, end_seq;
4398 
4399 	tcp_ecn_check_ce(tp, skb);
4400 
4401 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4402 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4403 		tcp_drop(sk, skb);
4404 		return;
4405 	}
4406 
4407 	/* Disable header prediction. */
4408 	tp->pred_flags = 0;
4409 	inet_csk_schedule_ack(sk);
4410 
4411 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4412 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4413 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4414 
4415 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4416 	if (!skb1) {
4417 		/* Initial out of order segment, build 1 SACK. */
4418 		if (tcp_is_sack(tp)) {
4419 			tp->rx_opt.num_sacks = 1;
4420 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4421 			tp->selective_acks[0].end_seq =
4422 						TCP_SKB_CB(skb)->end_seq;
4423 		}
4424 		__skb_queue_head(&tp->out_of_order_queue, skb);
4425 		goto end;
4426 	}
4427 
4428 	seq = TCP_SKB_CB(skb)->seq;
4429 	end_seq = TCP_SKB_CB(skb)->end_seq;
4430 
4431 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4432 		bool fragstolen;
4433 
4434 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4435 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4436 		} else {
4437 			tcp_grow_window(sk, skb);
4438 			kfree_skb_partial(skb, fragstolen);
4439 			skb = NULL;
4440 		}
4441 
4442 		if (!tp->rx_opt.num_sacks ||
4443 		    tp->selective_acks[0].end_seq != seq)
4444 			goto add_sack;
4445 
4446 		/* Common case: data arrive in order after hole. */
4447 		tp->selective_acks[0].end_seq = end_seq;
4448 		goto end;
4449 	}
4450 
4451 	/* Find place to insert this segment. */
4452 	while (1) {
4453 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4454 			break;
4455 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4456 			skb1 = NULL;
4457 			break;
4458 		}
4459 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4460 	}
4461 
4462 	/* Do skb overlap to previous one? */
4463 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4464 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4465 			/* All the bits are present. Drop. */
4466 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4467 			tcp_drop(sk, skb);
4468 			skb = NULL;
4469 			tcp_dsack_set(sk, seq, end_seq);
4470 			goto add_sack;
4471 		}
4472 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4473 			/* Partial overlap. */
4474 			tcp_dsack_set(sk, seq,
4475 				      TCP_SKB_CB(skb1)->end_seq);
4476 		} else {
4477 			if (skb_queue_is_first(&tp->out_of_order_queue,
4478 					       skb1))
4479 				skb1 = NULL;
4480 			else
4481 				skb1 = skb_queue_prev(
4482 					&tp->out_of_order_queue,
4483 					skb1);
4484 		}
4485 	}
4486 	if (!skb1)
4487 		__skb_queue_head(&tp->out_of_order_queue, skb);
4488 	else
4489 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4490 
4491 	/* And clean segments covered by new one as whole. */
4492 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4493 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4494 
4495 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4496 			break;
4497 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4498 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4499 					 end_seq);
4500 			break;
4501 		}
4502 		__skb_unlink(skb1, &tp->out_of_order_queue);
4503 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4504 				 TCP_SKB_CB(skb1)->end_seq);
4505 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4506 		tcp_drop(sk, skb1);
4507 	}
4508 
4509 add_sack:
4510 	if (tcp_is_sack(tp))
4511 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4512 end:
4513 	if (skb) {
4514 		tcp_grow_window(sk, skb);
4515 		skb_set_owner_r(skb, sk);
4516 	}
4517 }
4518 
4519 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4520 		  bool *fragstolen)
4521 {
4522 	int eaten;
4523 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4524 
4525 	__skb_pull(skb, hdrlen);
4526 	eaten = (tail &&
4527 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4528 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4529 	if (!eaten) {
4530 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4531 		skb_set_owner_r(skb, sk);
4532 	}
4533 	return eaten;
4534 }
4535 
4536 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4537 {
4538 	struct sk_buff *skb;
4539 	int err = -ENOMEM;
4540 	int data_len = 0;
4541 	bool fragstolen;
4542 
4543 	if (size == 0)
4544 		return 0;
4545 
4546 	if (size > PAGE_SIZE) {
4547 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4548 
4549 		data_len = npages << PAGE_SHIFT;
4550 		size = data_len + (size & ~PAGE_MASK);
4551 	}
4552 	skb = alloc_skb_with_frags(size - data_len, data_len,
4553 				   PAGE_ALLOC_COSTLY_ORDER,
4554 				   &err, sk->sk_allocation);
4555 	if (!skb)
4556 		goto err;
4557 
4558 	skb_put(skb, size - data_len);
4559 	skb->data_len = data_len;
4560 	skb->len = size;
4561 
4562 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4563 		goto err_free;
4564 
4565 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4566 	if (err)
4567 		goto err_free;
4568 
4569 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4570 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4571 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4572 
4573 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4574 		WARN_ON_ONCE(fragstolen); /* should not happen */
4575 		__kfree_skb(skb);
4576 	}
4577 	return size;
4578 
4579 err_free:
4580 	kfree_skb(skb);
4581 err:
4582 	return err;
4583 
4584 }
4585 
4586 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4587 {
4588 	struct tcp_sock *tp = tcp_sk(sk);
4589 	bool fragstolen = false;
4590 	int eaten = -1;
4591 
4592 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4593 		__kfree_skb(skb);
4594 		return;
4595 	}
4596 	skb_dst_drop(skb);
4597 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4598 
4599 	tcp_ecn_accept_cwr(tp, skb);
4600 
4601 	tp->rx_opt.dsack = 0;
4602 
4603 	/*  Queue data for delivery to the user.
4604 	 *  Packets in sequence go to the receive queue.
4605 	 *  Out of sequence packets to the out_of_order_queue.
4606 	 */
4607 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4608 		if (tcp_receive_window(tp) == 0)
4609 			goto out_of_window;
4610 
4611 		/* Ok. In sequence. In window. */
4612 		if (tp->ucopy.task == current &&
4613 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4614 		    sock_owned_by_user(sk) && !tp->urg_data) {
4615 			int chunk = min_t(unsigned int, skb->len,
4616 					  tp->ucopy.len);
4617 
4618 			__set_current_state(TASK_RUNNING);
4619 
4620 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4621 				tp->ucopy.len -= chunk;
4622 				tp->copied_seq += chunk;
4623 				eaten = (chunk == skb->len);
4624 				tcp_rcv_space_adjust(sk);
4625 			}
4626 		}
4627 
4628 		if (eaten <= 0) {
4629 queue_and_out:
4630 			if (eaten < 0) {
4631 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4632 					sk_forced_mem_schedule(sk, skb->truesize);
4633 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4634 					goto drop;
4635 			}
4636 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4637 		}
4638 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4639 		if (skb->len)
4640 			tcp_event_data_recv(sk, skb);
4641 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4642 			tcp_fin(sk);
4643 
4644 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4645 			tcp_ofo_queue(sk);
4646 
4647 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4648 			 * gap in queue is filled.
4649 			 */
4650 			if (skb_queue_empty(&tp->out_of_order_queue))
4651 				inet_csk(sk)->icsk_ack.pingpong = 0;
4652 		}
4653 
4654 		if (tp->rx_opt.num_sacks)
4655 			tcp_sack_remove(tp);
4656 
4657 		tcp_fast_path_check(sk);
4658 
4659 		if (eaten > 0)
4660 			kfree_skb_partial(skb, fragstolen);
4661 		if (!sock_flag(sk, SOCK_DEAD))
4662 			sk->sk_data_ready(sk);
4663 		return;
4664 	}
4665 
4666 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4667 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4668 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4669 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4670 
4671 out_of_window:
4672 		tcp_enter_quickack_mode(sk);
4673 		inet_csk_schedule_ack(sk);
4674 drop:
4675 		tcp_drop(sk, skb);
4676 		return;
4677 	}
4678 
4679 	/* Out of window. F.e. zero window probe. */
4680 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4681 		goto out_of_window;
4682 
4683 	tcp_enter_quickack_mode(sk);
4684 
4685 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4686 		/* Partial packet, seq < rcv_next < end_seq */
4687 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4688 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4689 			   TCP_SKB_CB(skb)->end_seq);
4690 
4691 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4692 
4693 		/* If window is closed, drop tail of packet. But after
4694 		 * remembering D-SACK for its head made in previous line.
4695 		 */
4696 		if (!tcp_receive_window(tp))
4697 			goto out_of_window;
4698 		goto queue_and_out;
4699 	}
4700 
4701 	tcp_data_queue_ofo(sk, skb);
4702 }
4703 
4704 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4705 					struct sk_buff_head *list)
4706 {
4707 	struct sk_buff *next = NULL;
4708 
4709 	if (!skb_queue_is_last(list, skb))
4710 		next = skb_queue_next(list, skb);
4711 
4712 	__skb_unlink(skb, list);
4713 	__kfree_skb(skb);
4714 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4715 
4716 	return next;
4717 }
4718 
4719 /* Collapse contiguous sequence of skbs head..tail with
4720  * sequence numbers start..end.
4721  *
4722  * If tail is NULL, this means until the end of the list.
4723  *
4724  * Segments with FIN/SYN are not collapsed (only because this
4725  * simplifies code)
4726  */
4727 static void
4728 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4729 	     struct sk_buff *head, struct sk_buff *tail,
4730 	     u32 start, u32 end)
4731 {
4732 	struct sk_buff *skb, *n;
4733 	bool end_of_skbs;
4734 
4735 	/* First, check that queue is collapsible and find
4736 	 * the point where collapsing can be useful. */
4737 	skb = head;
4738 restart:
4739 	end_of_skbs = true;
4740 	skb_queue_walk_from_safe(list, skb, n) {
4741 		if (skb == tail)
4742 			break;
4743 		/* No new bits? It is possible on ofo queue. */
4744 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4745 			skb = tcp_collapse_one(sk, skb, list);
4746 			if (!skb)
4747 				break;
4748 			goto restart;
4749 		}
4750 
4751 		/* The first skb to collapse is:
4752 		 * - not SYN/FIN and
4753 		 * - bloated or contains data before "start" or
4754 		 *   overlaps to the next one.
4755 		 */
4756 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4757 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4758 		     before(TCP_SKB_CB(skb)->seq, start))) {
4759 			end_of_skbs = false;
4760 			break;
4761 		}
4762 
4763 		if (!skb_queue_is_last(list, skb)) {
4764 			struct sk_buff *next = skb_queue_next(list, skb);
4765 			if (next != tail &&
4766 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4767 				end_of_skbs = false;
4768 				break;
4769 			}
4770 		}
4771 
4772 		/* Decided to skip this, advance start seq. */
4773 		start = TCP_SKB_CB(skb)->end_seq;
4774 	}
4775 	if (end_of_skbs ||
4776 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4777 		return;
4778 
4779 	while (before(start, end)) {
4780 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4781 		struct sk_buff *nskb;
4782 
4783 		nskb = alloc_skb(copy, GFP_ATOMIC);
4784 		if (!nskb)
4785 			return;
4786 
4787 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4788 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4789 		__skb_queue_before(list, skb, nskb);
4790 		skb_set_owner_r(nskb, sk);
4791 
4792 		/* Copy data, releasing collapsed skbs. */
4793 		while (copy > 0) {
4794 			int offset = start - TCP_SKB_CB(skb)->seq;
4795 			int size = TCP_SKB_CB(skb)->end_seq - start;
4796 
4797 			BUG_ON(offset < 0);
4798 			if (size > 0) {
4799 				size = min(copy, size);
4800 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4801 					BUG();
4802 				TCP_SKB_CB(nskb)->end_seq += size;
4803 				copy -= size;
4804 				start += size;
4805 			}
4806 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4807 				skb = tcp_collapse_one(sk, skb, list);
4808 				if (!skb ||
4809 				    skb == tail ||
4810 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4811 					return;
4812 			}
4813 		}
4814 	}
4815 }
4816 
4817 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4818  * and tcp_collapse() them until all the queue is collapsed.
4819  */
4820 static void tcp_collapse_ofo_queue(struct sock *sk)
4821 {
4822 	struct tcp_sock *tp = tcp_sk(sk);
4823 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4824 	struct sk_buff *head;
4825 	u32 start, end;
4826 
4827 	if (!skb)
4828 		return;
4829 
4830 	start = TCP_SKB_CB(skb)->seq;
4831 	end = TCP_SKB_CB(skb)->end_seq;
4832 	head = skb;
4833 
4834 	for (;;) {
4835 		struct sk_buff *next = NULL;
4836 
4837 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4838 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4839 		skb = next;
4840 
4841 		/* Segment is terminated when we see gap or when
4842 		 * we are at the end of all the queue. */
4843 		if (!skb ||
4844 		    after(TCP_SKB_CB(skb)->seq, end) ||
4845 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4846 			tcp_collapse(sk, &tp->out_of_order_queue,
4847 				     head, skb, start, end);
4848 			head = skb;
4849 			if (!skb)
4850 				break;
4851 			/* Start new segment */
4852 			start = TCP_SKB_CB(skb)->seq;
4853 			end = TCP_SKB_CB(skb)->end_seq;
4854 		} else {
4855 			if (before(TCP_SKB_CB(skb)->seq, start))
4856 				start = TCP_SKB_CB(skb)->seq;
4857 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4858 				end = TCP_SKB_CB(skb)->end_seq;
4859 		}
4860 	}
4861 }
4862 
4863 /*
4864  * Purge the out-of-order queue.
4865  * Return true if queue was pruned.
4866  */
4867 static bool tcp_prune_ofo_queue(struct sock *sk)
4868 {
4869 	struct tcp_sock *tp = tcp_sk(sk);
4870 	bool res = false;
4871 
4872 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4873 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4874 		__skb_queue_purge(&tp->out_of_order_queue);
4875 
4876 		/* Reset SACK state.  A conforming SACK implementation will
4877 		 * do the same at a timeout based retransmit.  When a connection
4878 		 * is in a sad state like this, we care only about integrity
4879 		 * of the connection not performance.
4880 		 */
4881 		if (tp->rx_opt.sack_ok)
4882 			tcp_sack_reset(&tp->rx_opt);
4883 		sk_mem_reclaim(sk);
4884 		res = true;
4885 	}
4886 	return res;
4887 }
4888 
4889 /* Reduce allocated memory if we can, trying to get
4890  * the socket within its memory limits again.
4891  *
4892  * Return less than zero if we should start dropping frames
4893  * until the socket owning process reads some of the data
4894  * to stabilize the situation.
4895  */
4896 static int tcp_prune_queue(struct sock *sk)
4897 {
4898 	struct tcp_sock *tp = tcp_sk(sk);
4899 
4900 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4901 
4902 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4903 
4904 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4905 		tcp_clamp_window(sk);
4906 	else if (tcp_under_memory_pressure(sk))
4907 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4908 
4909 	tcp_collapse_ofo_queue(sk);
4910 	if (!skb_queue_empty(&sk->sk_receive_queue))
4911 		tcp_collapse(sk, &sk->sk_receive_queue,
4912 			     skb_peek(&sk->sk_receive_queue),
4913 			     NULL,
4914 			     tp->copied_seq, tp->rcv_nxt);
4915 	sk_mem_reclaim(sk);
4916 
4917 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4918 		return 0;
4919 
4920 	/* Collapsing did not help, destructive actions follow.
4921 	 * This must not ever occur. */
4922 
4923 	tcp_prune_ofo_queue(sk);
4924 
4925 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4926 		return 0;
4927 
4928 	/* If we are really being abused, tell the caller to silently
4929 	 * drop receive data on the floor.  It will get retransmitted
4930 	 * and hopefully then we'll have sufficient space.
4931 	 */
4932 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4933 
4934 	/* Massive buffer overcommit. */
4935 	tp->pred_flags = 0;
4936 	return -1;
4937 }
4938 
4939 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4940 {
4941 	const struct tcp_sock *tp = tcp_sk(sk);
4942 
4943 	/* If the user specified a specific send buffer setting, do
4944 	 * not modify it.
4945 	 */
4946 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4947 		return false;
4948 
4949 	/* If we are under global TCP memory pressure, do not expand.  */
4950 	if (tcp_under_memory_pressure(sk))
4951 		return false;
4952 
4953 	/* If we are under soft global TCP memory pressure, do not expand.  */
4954 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4955 		return false;
4956 
4957 	/* If we filled the congestion window, do not expand.  */
4958 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4959 		return false;
4960 
4961 	return true;
4962 }
4963 
4964 /* When incoming ACK allowed to free some skb from write_queue,
4965  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4966  * on the exit from tcp input handler.
4967  *
4968  * PROBLEM: sndbuf expansion does not work well with largesend.
4969  */
4970 static void tcp_new_space(struct sock *sk)
4971 {
4972 	struct tcp_sock *tp = tcp_sk(sk);
4973 
4974 	if (tcp_should_expand_sndbuf(sk)) {
4975 		tcp_sndbuf_expand(sk);
4976 		tp->snd_cwnd_stamp = tcp_time_stamp;
4977 	}
4978 
4979 	sk->sk_write_space(sk);
4980 }
4981 
4982 static void tcp_check_space(struct sock *sk)
4983 {
4984 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4985 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4986 		/* pairs with tcp_poll() */
4987 		smp_mb__after_atomic();
4988 		if (sk->sk_socket &&
4989 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4990 			tcp_new_space(sk);
4991 	}
4992 }
4993 
4994 static inline void tcp_data_snd_check(struct sock *sk)
4995 {
4996 	tcp_push_pending_frames(sk);
4997 	tcp_check_space(sk);
4998 }
4999 
5000 /*
5001  * Check if sending an ack is needed.
5002  */
5003 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5004 {
5005 	struct tcp_sock *tp = tcp_sk(sk);
5006 
5007 	    /* More than one full frame received... */
5008 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5009 	     /* ... and right edge of window advances far enough.
5010 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5011 	      */
5012 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5013 	    /* We ACK each frame or... */
5014 	    tcp_in_quickack_mode(sk) ||
5015 	    /* We have out of order data. */
5016 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5017 		/* Then ack it now */
5018 		tcp_send_ack(sk);
5019 	} else {
5020 		/* Else, send delayed ack. */
5021 		tcp_send_delayed_ack(sk);
5022 	}
5023 }
5024 
5025 static inline void tcp_ack_snd_check(struct sock *sk)
5026 {
5027 	if (!inet_csk_ack_scheduled(sk)) {
5028 		/* We sent a data segment already. */
5029 		return;
5030 	}
5031 	__tcp_ack_snd_check(sk, 1);
5032 }
5033 
5034 /*
5035  *	This routine is only called when we have urgent data
5036  *	signaled. Its the 'slow' part of tcp_urg. It could be
5037  *	moved inline now as tcp_urg is only called from one
5038  *	place. We handle URGent data wrong. We have to - as
5039  *	BSD still doesn't use the correction from RFC961.
5040  *	For 1003.1g we should support a new option TCP_STDURG to permit
5041  *	either form (or just set the sysctl tcp_stdurg).
5042  */
5043 
5044 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5045 {
5046 	struct tcp_sock *tp = tcp_sk(sk);
5047 	u32 ptr = ntohs(th->urg_ptr);
5048 
5049 	if (ptr && !sysctl_tcp_stdurg)
5050 		ptr--;
5051 	ptr += ntohl(th->seq);
5052 
5053 	/* Ignore urgent data that we've already seen and read. */
5054 	if (after(tp->copied_seq, ptr))
5055 		return;
5056 
5057 	/* Do not replay urg ptr.
5058 	 *
5059 	 * NOTE: interesting situation not covered by specs.
5060 	 * Misbehaving sender may send urg ptr, pointing to segment,
5061 	 * which we already have in ofo queue. We are not able to fetch
5062 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5063 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5064 	 * situations. But it is worth to think about possibility of some
5065 	 * DoSes using some hypothetical application level deadlock.
5066 	 */
5067 	if (before(ptr, tp->rcv_nxt))
5068 		return;
5069 
5070 	/* Do we already have a newer (or duplicate) urgent pointer? */
5071 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5072 		return;
5073 
5074 	/* Tell the world about our new urgent pointer. */
5075 	sk_send_sigurg(sk);
5076 
5077 	/* We may be adding urgent data when the last byte read was
5078 	 * urgent. To do this requires some care. We cannot just ignore
5079 	 * tp->copied_seq since we would read the last urgent byte again
5080 	 * as data, nor can we alter copied_seq until this data arrives
5081 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5082 	 *
5083 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5084 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5085 	 * and expect that both A and B disappear from stream. This is _wrong_.
5086 	 * Though this happens in BSD with high probability, this is occasional.
5087 	 * Any application relying on this is buggy. Note also, that fix "works"
5088 	 * only in this artificial test. Insert some normal data between A and B and we will
5089 	 * decline of BSD again. Verdict: it is better to remove to trap
5090 	 * buggy users.
5091 	 */
5092 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5093 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5094 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5095 		tp->copied_seq++;
5096 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5097 			__skb_unlink(skb, &sk->sk_receive_queue);
5098 			__kfree_skb(skb);
5099 		}
5100 	}
5101 
5102 	tp->urg_data = TCP_URG_NOTYET;
5103 	tp->urg_seq = ptr;
5104 
5105 	/* Disable header prediction. */
5106 	tp->pred_flags = 0;
5107 }
5108 
5109 /* This is the 'fast' part of urgent handling. */
5110 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5111 {
5112 	struct tcp_sock *tp = tcp_sk(sk);
5113 
5114 	/* Check if we get a new urgent pointer - normally not. */
5115 	if (th->urg)
5116 		tcp_check_urg(sk, th);
5117 
5118 	/* Do we wait for any urgent data? - normally not... */
5119 	if (tp->urg_data == TCP_URG_NOTYET) {
5120 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5121 			  th->syn;
5122 
5123 		/* Is the urgent pointer pointing into this packet? */
5124 		if (ptr < skb->len) {
5125 			u8 tmp;
5126 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5127 				BUG();
5128 			tp->urg_data = TCP_URG_VALID | tmp;
5129 			if (!sock_flag(sk, SOCK_DEAD))
5130 				sk->sk_data_ready(sk);
5131 		}
5132 	}
5133 }
5134 
5135 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5136 {
5137 	struct tcp_sock *tp = tcp_sk(sk);
5138 	int chunk = skb->len - hlen;
5139 	int err;
5140 
5141 	if (skb_csum_unnecessary(skb))
5142 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5143 	else
5144 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5145 
5146 	if (!err) {
5147 		tp->ucopy.len -= chunk;
5148 		tp->copied_seq += chunk;
5149 		tcp_rcv_space_adjust(sk);
5150 	}
5151 
5152 	return err;
5153 }
5154 
5155 /* Does PAWS and seqno based validation of an incoming segment, flags will
5156  * play significant role here.
5157  */
5158 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5159 				  const struct tcphdr *th, int syn_inerr)
5160 {
5161 	struct tcp_sock *tp = tcp_sk(sk);
5162 
5163 	/* RFC1323: H1. Apply PAWS check first. */
5164 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5165 	    tcp_paws_discard(sk, skb)) {
5166 		if (!th->rst) {
5167 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5168 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5169 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5170 						  &tp->last_oow_ack_time))
5171 				tcp_send_dupack(sk, skb);
5172 			goto discard;
5173 		}
5174 		/* Reset is accepted even if it did not pass PAWS. */
5175 	}
5176 
5177 	/* Step 1: check sequence number */
5178 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5179 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5180 		 * (RST) segments are validated by checking their SEQ-fields."
5181 		 * And page 69: "If an incoming segment is not acceptable,
5182 		 * an acknowledgment should be sent in reply (unless the RST
5183 		 * bit is set, if so drop the segment and return)".
5184 		 */
5185 		if (!th->rst) {
5186 			if (th->syn)
5187 				goto syn_challenge;
5188 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5189 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5190 						  &tp->last_oow_ack_time))
5191 				tcp_send_dupack(sk, skb);
5192 		}
5193 		goto discard;
5194 	}
5195 
5196 	/* Step 2: check RST bit */
5197 	if (th->rst) {
5198 		/* RFC 5961 3.2 :
5199 		 * If sequence number exactly matches RCV.NXT, then
5200 		 *     RESET the connection
5201 		 * else
5202 		 *     Send a challenge ACK
5203 		 */
5204 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5205 			tcp_reset(sk);
5206 		else
5207 			tcp_send_challenge_ack(sk, skb);
5208 		goto discard;
5209 	}
5210 
5211 	/* step 3: check security and precedence [ignored] */
5212 
5213 	/* step 4: Check for a SYN
5214 	 * RFC 5961 4.2 : Send a challenge ack
5215 	 */
5216 	if (th->syn) {
5217 syn_challenge:
5218 		if (syn_inerr)
5219 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5220 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5221 		tcp_send_challenge_ack(sk, skb);
5222 		goto discard;
5223 	}
5224 
5225 	return true;
5226 
5227 discard:
5228 	tcp_drop(sk, skb);
5229 	return false;
5230 }
5231 
5232 /*
5233  *	TCP receive function for the ESTABLISHED state.
5234  *
5235  *	It is split into a fast path and a slow path. The fast path is
5236  * 	disabled when:
5237  *	- A zero window was announced from us - zero window probing
5238  *        is only handled properly in the slow path.
5239  *	- Out of order segments arrived.
5240  *	- Urgent data is expected.
5241  *	- There is no buffer space left
5242  *	- Unexpected TCP flags/window values/header lengths are received
5243  *	  (detected by checking the TCP header against pred_flags)
5244  *	- Data is sent in both directions. Fast path only supports pure senders
5245  *	  or pure receivers (this means either the sequence number or the ack
5246  *	  value must stay constant)
5247  *	- Unexpected TCP option.
5248  *
5249  *	When these conditions are not satisfied it drops into a standard
5250  *	receive procedure patterned after RFC793 to handle all cases.
5251  *	The first three cases are guaranteed by proper pred_flags setting,
5252  *	the rest is checked inline. Fast processing is turned on in
5253  *	tcp_data_queue when everything is OK.
5254  */
5255 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5256 			 const struct tcphdr *th, unsigned int len)
5257 {
5258 	struct tcp_sock *tp = tcp_sk(sk);
5259 
5260 	if (unlikely(!sk->sk_rx_dst))
5261 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5262 	/*
5263 	 *	Header prediction.
5264 	 *	The code loosely follows the one in the famous
5265 	 *	"30 instruction TCP receive" Van Jacobson mail.
5266 	 *
5267 	 *	Van's trick is to deposit buffers into socket queue
5268 	 *	on a device interrupt, to call tcp_recv function
5269 	 *	on the receive process context and checksum and copy
5270 	 *	the buffer to user space. smart...
5271 	 *
5272 	 *	Our current scheme is not silly either but we take the
5273 	 *	extra cost of the net_bh soft interrupt processing...
5274 	 *	We do checksum and copy also but from device to kernel.
5275 	 */
5276 
5277 	tp->rx_opt.saw_tstamp = 0;
5278 
5279 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5280 	 *	if header_prediction is to be made
5281 	 *	'S' will always be tp->tcp_header_len >> 2
5282 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5283 	 *  turn it off	(when there are holes in the receive
5284 	 *	 space for instance)
5285 	 *	PSH flag is ignored.
5286 	 */
5287 
5288 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5289 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5290 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5291 		int tcp_header_len = tp->tcp_header_len;
5292 
5293 		/* Timestamp header prediction: tcp_header_len
5294 		 * is automatically equal to th->doff*4 due to pred_flags
5295 		 * match.
5296 		 */
5297 
5298 		/* Check timestamp */
5299 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5300 			/* No? Slow path! */
5301 			if (!tcp_parse_aligned_timestamp(tp, th))
5302 				goto slow_path;
5303 
5304 			/* If PAWS failed, check it more carefully in slow path */
5305 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5306 				goto slow_path;
5307 
5308 			/* DO NOT update ts_recent here, if checksum fails
5309 			 * and timestamp was corrupted part, it will result
5310 			 * in a hung connection since we will drop all
5311 			 * future packets due to the PAWS test.
5312 			 */
5313 		}
5314 
5315 		if (len <= tcp_header_len) {
5316 			/* Bulk data transfer: sender */
5317 			if (len == tcp_header_len) {
5318 				/* Predicted packet is in window by definition.
5319 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5320 				 * Hence, check seq<=rcv_wup reduces to:
5321 				 */
5322 				if (tcp_header_len ==
5323 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5324 				    tp->rcv_nxt == tp->rcv_wup)
5325 					tcp_store_ts_recent(tp);
5326 
5327 				/* We know that such packets are checksummed
5328 				 * on entry.
5329 				 */
5330 				tcp_ack(sk, skb, 0);
5331 				__kfree_skb(skb);
5332 				tcp_data_snd_check(sk);
5333 				return;
5334 			} else { /* Header too small */
5335 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5336 				goto discard;
5337 			}
5338 		} else {
5339 			int eaten = 0;
5340 			bool fragstolen = false;
5341 
5342 			if (tp->ucopy.task == current &&
5343 			    tp->copied_seq == tp->rcv_nxt &&
5344 			    len - tcp_header_len <= tp->ucopy.len &&
5345 			    sock_owned_by_user(sk)) {
5346 				__set_current_state(TASK_RUNNING);
5347 
5348 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5349 					/* Predicted packet is in window by definition.
5350 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5351 					 * Hence, check seq<=rcv_wup reduces to:
5352 					 */
5353 					if (tcp_header_len ==
5354 					    (sizeof(struct tcphdr) +
5355 					     TCPOLEN_TSTAMP_ALIGNED) &&
5356 					    tp->rcv_nxt == tp->rcv_wup)
5357 						tcp_store_ts_recent(tp);
5358 
5359 					tcp_rcv_rtt_measure_ts(sk, skb);
5360 
5361 					__skb_pull(skb, tcp_header_len);
5362 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5363 					NET_INC_STATS(sock_net(sk),
5364 							LINUX_MIB_TCPHPHITSTOUSER);
5365 					eaten = 1;
5366 				}
5367 			}
5368 			if (!eaten) {
5369 				if (tcp_checksum_complete(skb))
5370 					goto csum_error;
5371 
5372 				if ((int)skb->truesize > sk->sk_forward_alloc)
5373 					goto step5;
5374 
5375 				/* Predicted packet is in window by definition.
5376 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5377 				 * Hence, check seq<=rcv_wup reduces to:
5378 				 */
5379 				if (tcp_header_len ==
5380 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5381 				    tp->rcv_nxt == tp->rcv_wup)
5382 					tcp_store_ts_recent(tp);
5383 
5384 				tcp_rcv_rtt_measure_ts(sk, skb);
5385 
5386 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5387 
5388 				/* Bulk data transfer: receiver */
5389 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5390 						      &fragstolen);
5391 			}
5392 
5393 			tcp_event_data_recv(sk, skb);
5394 
5395 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5396 				/* Well, only one small jumplet in fast path... */
5397 				tcp_ack(sk, skb, FLAG_DATA);
5398 				tcp_data_snd_check(sk);
5399 				if (!inet_csk_ack_scheduled(sk))
5400 					goto no_ack;
5401 			}
5402 
5403 			__tcp_ack_snd_check(sk, 0);
5404 no_ack:
5405 			if (eaten)
5406 				kfree_skb_partial(skb, fragstolen);
5407 			sk->sk_data_ready(sk);
5408 			return;
5409 		}
5410 	}
5411 
5412 slow_path:
5413 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5414 		goto csum_error;
5415 
5416 	if (!th->ack && !th->rst && !th->syn)
5417 		goto discard;
5418 
5419 	/*
5420 	 *	Standard slow path.
5421 	 */
5422 
5423 	if (!tcp_validate_incoming(sk, skb, th, 1))
5424 		return;
5425 
5426 step5:
5427 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5428 		goto discard;
5429 
5430 	tcp_rcv_rtt_measure_ts(sk, skb);
5431 
5432 	/* Process urgent data. */
5433 	tcp_urg(sk, skb, th);
5434 
5435 	/* step 7: process the segment text */
5436 	tcp_data_queue(sk, skb);
5437 
5438 	tcp_data_snd_check(sk);
5439 	tcp_ack_snd_check(sk);
5440 	return;
5441 
5442 csum_error:
5443 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5444 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5445 
5446 discard:
5447 	tcp_drop(sk, skb);
5448 }
5449 EXPORT_SYMBOL(tcp_rcv_established);
5450 
5451 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5452 {
5453 	struct tcp_sock *tp = tcp_sk(sk);
5454 	struct inet_connection_sock *icsk = inet_csk(sk);
5455 
5456 	tcp_set_state(sk, TCP_ESTABLISHED);
5457 
5458 	if (skb) {
5459 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5460 		security_inet_conn_established(sk, skb);
5461 	}
5462 
5463 	/* Make sure socket is routed, for correct metrics.  */
5464 	icsk->icsk_af_ops->rebuild_header(sk);
5465 
5466 	tcp_init_metrics(sk);
5467 
5468 	tcp_init_congestion_control(sk);
5469 
5470 	/* Prevent spurious tcp_cwnd_restart() on first data
5471 	 * packet.
5472 	 */
5473 	tp->lsndtime = tcp_time_stamp;
5474 
5475 	tcp_init_buffer_space(sk);
5476 
5477 	if (sock_flag(sk, SOCK_KEEPOPEN))
5478 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5479 
5480 	if (!tp->rx_opt.snd_wscale)
5481 		__tcp_fast_path_on(tp, tp->snd_wnd);
5482 	else
5483 		tp->pred_flags = 0;
5484 
5485 	if (!sock_flag(sk, SOCK_DEAD)) {
5486 		sk->sk_state_change(sk);
5487 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5488 	}
5489 }
5490 
5491 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5492 				    struct tcp_fastopen_cookie *cookie)
5493 {
5494 	struct tcp_sock *tp = tcp_sk(sk);
5495 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5496 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5497 	bool syn_drop = false;
5498 
5499 	if (mss == tp->rx_opt.user_mss) {
5500 		struct tcp_options_received opt;
5501 
5502 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5503 		tcp_clear_options(&opt);
5504 		opt.user_mss = opt.mss_clamp = 0;
5505 		tcp_parse_options(synack, &opt, 0, NULL);
5506 		mss = opt.mss_clamp;
5507 	}
5508 
5509 	if (!tp->syn_fastopen) {
5510 		/* Ignore an unsolicited cookie */
5511 		cookie->len = -1;
5512 	} else if (tp->total_retrans) {
5513 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5514 		 * acknowledges data. Presumably the remote received only
5515 		 * the retransmitted (regular) SYNs: either the original
5516 		 * SYN-data or the corresponding SYN-ACK was dropped.
5517 		 */
5518 		syn_drop = (cookie->len < 0 && data);
5519 	} else if (cookie->len < 0 && !tp->syn_data) {
5520 		/* We requested a cookie but didn't get it. If we did not use
5521 		 * the (old) exp opt format then try so next time (try_exp=1).
5522 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5523 		 */
5524 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5525 	}
5526 
5527 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5528 
5529 	if (data) { /* Retransmit unacked data in SYN */
5530 		tcp_for_write_queue_from(data, sk) {
5531 			if (data == tcp_send_head(sk) ||
5532 			    __tcp_retransmit_skb(sk, data, 1))
5533 				break;
5534 		}
5535 		tcp_rearm_rto(sk);
5536 		NET_INC_STATS(sock_net(sk),
5537 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5538 		return true;
5539 	}
5540 	tp->syn_data_acked = tp->syn_data;
5541 	if (tp->syn_data_acked)
5542 		NET_INC_STATS(sock_net(sk),
5543 				LINUX_MIB_TCPFASTOPENACTIVE);
5544 
5545 	tcp_fastopen_add_skb(sk, synack);
5546 
5547 	return false;
5548 }
5549 
5550 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5551 					 const struct tcphdr *th)
5552 {
5553 	struct inet_connection_sock *icsk = inet_csk(sk);
5554 	struct tcp_sock *tp = tcp_sk(sk);
5555 	struct tcp_fastopen_cookie foc = { .len = -1 };
5556 	int saved_clamp = tp->rx_opt.mss_clamp;
5557 
5558 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5559 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5560 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5561 
5562 	if (th->ack) {
5563 		/* rfc793:
5564 		 * "If the state is SYN-SENT then
5565 		 *    first check the ACK bit
5566 		 *      If the ACK bit is set
5567 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5568 		 *        a reset (unless the RST bit is set, if so drop
5569 		 *        the segment and return)"
5570 		 */
5571 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5572 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5573 			goto reset_and_undo;
5574 
5575 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5576 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5577 			     tcp_time_stamp)) {
5578 			NET_INC_STATS(sock_net(sk),
5579 					LINUX_MIB_PAWSACTIVEREJECTED);
5580 			goto reset_and_undo;
5581 		}
5582 
5583 		/* Now ACK is acceptable.
5584 		 *
5585 		 * "If the RST bit is set
5586 		 *    If the ACK was acceptable then signal the user "error:
5587 		 *    connection reset", drop the segment, enter CLOSED state,
5588 		 *    delete TCB, and return."
5589 		 */
5590 
5591 		if (th->rst) {
5592 			tcp_reset(sk);
5593 			goto discard;
5594 		}
5595 
5596 		/* rfc793:
5597 		 *   "fifth, if neither of the SYN or RST bits is set then
5598 		 *    drop the segment and return."
5599 		 *
5600 		 *    See note below!
5601 		 *                                        --ANK(990513)
5602 		 */
5603 		if (!th->syn)
5604 			goto discard_and_undo;
5605 
5606 		/* rfc793:
5607 		 *   "If the SYN bit is on ...
5608 		 *    are acceptable then ...
5609 		 *    (our SYN has been ACKed), change the connection
5610 		 *    state to ESTABLISHED..."
5611 		 */
5612 
5613 		tcp_ecn_rcv_synack(tp, th);
5614 
5615 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5616 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5617 
5618 		/* Ok.. it's good. Set up sequence numbers and
5619 		 * move to established.
5620 		 */
5621 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5622 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5623 
5624 		/* RFC1323: The window in SYN & SYN/ACK segments is
5625 		 * never scaled.
5626 		 */
5627 		tp->snd_wnd = ntohs(th->window);
5628 
5629 		if (!tp->rx_opt.wscale_ok) {
5630 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5631 			tp->window_clamp = min(tp->window_clamp, 65535U);
5632 		}
5633 
5634 		if (tp->rx_opt.saw_tstamp) {
5635 			tp->rx_opt.tstamp_ok	   = 1;
5636 			tp->tcp_header_len =
5637 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5638 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5639 			tcp_store_ts_recent(tp);
5640 		} else {
5641 			tp->tcp_header_len = sizeof(struct tcphdr);
5642 		}
5643 
5644 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5645 			tcp_enable_fack(tp);
5646 
5647 		tcp_mtup_init(sk);
5648 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5649 		tcp_initialize_rcv_mss(sk);
5650 
5651 		/* Remember, tcp_poll() does not lock socket!
5652 		 * Change state from SYN-SENT only after copied_seq
5653 		 * is initialized. */
5654 		tp->copied_seq = tp->rcv_nxt;
5655 
5656 		smp_mb();
5657 
5658 		tcp_finish_connect(sk, skb);
5659 
5660 		if ((tp->syn_fastopen || tp->syn_data) &&
5661 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5662 			return -1;
5663 
5664 		if (sk->sk_write_pending ||
5665 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5666 		    icsk->icsk_ack.pingpong) {
5667 			/* Save one ACK. Data will be ready after
5668 			 * several ticks, if write_pending is set.
5669 			 *
5670 			 * It may be deleted, but with this feature tcpdumps
5671 			 * look so _wonderfully_ clever, that I was not able
5672 			 * to stand against the temptation 8)     --ANK
5673 			 */
5674 			inet_csk_schedule_ack(sk);
5675 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5676 			tcp_enter_quickack_mode(sk);
5677 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5678 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5679 
5680 discard:
5681 			tcp_drop(sk, skb);
5682 			return 0;
5683 		} else {
5684 			tcp_send_ack(sk);
5685 		}
5686 		return -1;
5687 	}
5688 
5689 	/* No ACK in the segment */
5690 
5691 	if (th->rst) {
5692 		/* rfc793:
5693 		 * "If the RST bit is set
5694 		 *
5695 		 *      Otherwise (no ACK) drop the segment and return."
5696 		 */
5697 
5698 		goto discard_and_undo;
5699 	}
5700 
5701 	/* PAWS check. */
5702 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5703 	    tcp_paws_reject(&tp->rx_opt, 0))
5704 		goto discard_and_undo;
5705 
5706 	if (th->syn) {
5707 		/* We see SYN without ACK. It is attempt of
5708 		 * simultaneous connect with crossed SYNs.
5709 		 * Particularly, it can be connect to self.
5710 		 */
5711 		tcp_set_state(sk, TCP_SYN_RECV);
5712 
5713 		if (tp->rx_opt.saw_tstamp) {
5714 			tp->rx_opt.tstamp_ok = 1;
5715 			tcp_store_ts_recent(tp);
5716 			tp->tcp_header_len =
5717 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5718 		} else {
5719 			tp->tcp_header_len = sizeof(struct tcphdr);
5720 		}
5721 
5722 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5723 		tp->copied_seq = tp->rcv_nxt;
5724 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5725 
5726 		/* RFC1323: The window in SYN & SYN/ACK segments is
5727 		 * never scaled.
5728 		 */
5729 		tp->snd_wnd    = ntohs(th->window);
5730 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5731 		tp->max_window = tp->snd_wnd;
5732 
5733 		tcp_ecn_rcv_syn(tp, th);
5734 
5735 		tcp_mtup_init(sk);
5736 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5737 		tcp_initialize_rcv_mss(sk);
5738 
5739 		tcp_send_synack(sk);
5740 #if 0
5741 		/* Note, we could accept data and URG from this segment.
5742 		 * There are no obstacles to make this (except that we must
5743 		 * either change tcp_recvmsg() to prevent it from returning data
5744 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5745 		 *
5746 		 * However, if we ignore data in ACKless segments sometimes,
5747 		 * we have no reasons to accept it sometimes.
5748 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5749 		 * is not flawless. So, discard packet for sanity.
5750 		 * Uncomment this return to process the data.
5751 		 */
5752 		return -1;
5753 #else
5754 		goto discard;
5755 #endif
5756 	}
5757 	/* "fifth, if neither of the SYN or RST bits is set then
5758 	 * drop the segment and return."
5759 	 */
5760 
5761 discard_and_undo:
5762 	tcp_clear_options(&tp->rx_opt);
5763 	tp->rx_opt.mss_clamp = saved_clamp;
5764 	goto discard;
5765 
5766 reset_and_undo:
5767 	tcp_clear_options(&tp->rx_opt);
5768 	tp->rx_opt.mss_clamp = saved_clamp;
5769 	return 1;
5770 }
5771 
5772 /*
5773  *	This function implements the receiving procedure of RFC 793 for
5774  *	all states except ESTABLISHED and TIME_WAIT.
5775  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5776  *	address independent.
5777  */
5778 
5779 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5780 {
5781 	struct tcp_sock *tp = tcp_sk(sk);
5782 	struct inet_connection_sock *icsk = inet_csk(sk);
5783 	const struct tcphdr *th = tcp_hdr(skb);
5784 	struct request_sock *req;
5785 	int queued = 0;
5786 	bool acceptable;
5787 
5788 	switch (sk->sk_state) {
5789 	case TCP_CLOSE:
5790 		goto discard;
5791 
5792 	case TCP_LISTEN:
5793 		if (th->ack)
5794 			return 1;
5795 
5796 		if (th->rst)
5797 			goto discard;
5798 
5799 		if (th->syn) {
5800 			if (th->fin)
5801 				goto discard;
5802 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5803 				return 1;
5804 
5805 			consume_skb(skb);
5806 			return 0;
5807 		}
5808 		goto discard;
5809 
5810 	case TCP_SYN_SENT:
5811 		tp->rx_opt.saw_tstamp = 0;
5812 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5813 		if (queued >= 0)
5814 			return queued;
5815 
5816 		/* Do step6 onward by hand. */
5817 		tcp_urg(sk, skb, th);
5818 		__kfree_skb(skb);
5819 		tcp_data_snd_check(sk);
5820 		return 0;
5821 	}
5822 
5823 	tp->rx_opt.saw_tstamp = 0;
5824 	req = tp->fastopen_rsk;
5825 	if (req) {
5826 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5827 		    sk->sk_state != TCP_FIN_WAIT1);
5828 
5829 		if (!tcp_check_req(sk, skb, req, true))
5830 			goto discard;
5831 	}
5832 
5833 	if (!th->ack && !th->rst && !th->syn)
5834 		goto discard;
5835 
5836 	if (!tcp_validate_incoming(sk, skb, th, 0))
5837 		return 0;
5838 
5839 	/* step 5: check the ACK field */
5840 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5841 				      FLAG_UPDATE_TS_RECENT) > 0;
5842 
5843 	switch (sk->sk_state) {
5844 	case TCP_SYN_RECV:
5845 		if (!acceptable)
5846 			return 1;
5847 
5848 		if (!tp->srtt_us)
5849 			tcp_synack_rtt_meas(sk, req);
5850 
5851 		/* Once we leave TCP_SYN_RECV, we no longer need req
5852 		 * so release it.
5853 		 */
5854 		if (req) {
5855 			tp->total_retrans = req->num_retrans;
5856 			reqsk_fastopen_remove(sk, req, false);
5857 		} else {
5858 			/* Make sure socket is routed, for correct metrics. */
5859 			icsk->icsk_af_ops->rebuild_header(sk);
5860 			tcp_init_congestion_control(sk);
5861 
5862 			tcp_mtup_init(sk);
5863 			tp->copied_seq = tp->rcv_nxt;
5864 			tcp_init_buffer_space(sk);
5865 		}
5866 		smp_mb();
5867 		tcp_set_state(sk, TCP_ESTABLISHED);
5868 		sk->sk_state_change(sk);
5869 
5870 		/* Note, that this wakeup is only for marginal crossed SYN case.
5871 		 * Passively open sockets are not waked up, because
5872 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5873 		 */
5874 		if (sk->sk_socket)
5875 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5876 
5877 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5878 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5879 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5880 
5881 		if (tp->rx_opt.tstamp_ok)
5882 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5883 
5884 		if (req) {
5885 			/* Re-arm the timer because data may have been sent out.
5886 			 * This is similar to the regular data transmission case
5887 			 * when new data has just been ack'ed.
5888 			 *
5889 			 * (TFO) - we could try to be more aggressive and
5890 			 * retransmitting any data sooner based on when they
5891 			 * are sent out.
5892 			 */
5893 			tcp_rearm_rto(sk);
5894 		} else
5895 			tcp_init_metrics(sk);
5896 
5897 		tcp_update_pacing_rate(sk);
5898 
5899 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5900 		tp->lsndtime = tcp_time_stamp;
5901 
5902 		tcp_initialize_rcv_mss(sk);
5903 		tcp_fast_path_on(tp);
5904 		break;
5905 
5906 	case TCP_FIN_WAIT1: {
5907 		struct dst_entry *dst;
5908 		int tmo;
5909 
5910 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5911 		 * Fast Open socket and this is the first acceptable
5912 		 * ACK we have received, this would have acknowledged
5913 		 * our SYNACK so stop the SYNACK timer.
5914 		 */
5915 		if (req) {
5916 			/* Return RST if ack_seq is invalid.
5917 			 * Note that RFC793 only says to generate a
5918 			 * DUPACK for it but for TCP Fast Open it seems
5919 			 * better to treat this case like TCP_SYN_RECV
5920 			 * above.
5921 			 */
5922 			if (!acceptable)
5923 				return 1;
5924 			/* We no longer need the request sock. */
5925 			reqsk_fastopen_remove(sk, req, false);
5926 			tcp_rearm_rto(sk);
5927 		}
5928 		if (tp->snd_una != tp->write_seq)
5929 			break;
5930 
5931 		tcp_set_state(sk, TCP_FIN_WAIT2);
5932 		sk->sk_shutdown |= SEND_SHUTDOWN;
5933 
5934 		dst = __sk_dst_get(sk);
5935 		if (dst)
5936 			dst_confirm(dst);
5937 
5938 		if (!sock_flag(sk, SOCK_DEAD)) {
5939 			/* Wake up lingering close() */
5940 			sk->sk_state_change(sk);
5941 			break;
5942 		}
5943 
5944 		if (tp->linger2 < 0 ||
5945 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5946 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5947 			tcp_done(sk);
5948 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5949 			return 1;
5950 		}
5951 
5952 		tmo = tcp_fin_time(sk);
5953 		if (tmo > TCP_TIMEWAIT_LEN) {
5954 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5955 		} else if (th->fin || sock_owned_by_user(sk)) {
5956 			/* Bad case. We could lose such FIN otherwise.
5957 			 * It is not a big problem, but it looks confusing
5958 			 * and not so rare event. We still can lose it now,
5959 			 * if it spins in bh_lock_sock(), but it is really
5960 			 * marginal case.
5961 			 */
5962 			inet_csk_reset_keepalive_timer(sk, tmo);
5963 		} else {
5964 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5965 			goto discard;
5966 		}
5967 		break;
5968 	}
5969 
5970 	case TCP_CLOSING:
5971 		if (tp->snd_una == tp->write_seq) {
5972 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5973 			goto discard;
5974 		}
5975 		break;
5976 
5977 	case TCP_LAST_ACK:
5978 		if (tp->snd_una == tp->write_seq) {
5979 			tcp_update_metrics(sk);
5980 			tcp_done(sk);
5981 			goto discard;
5982 		}
5983 		break;
5984 	}
5985 
5986 	/* step 6: check the URG bit */
5987 	tcp_urg(sk, skb, th);
5988 
5989 	/* step 7: process the segment text */
5990 	switch (sk->sk_state) {
5991 	case TCP_CLOSE_WAIT:
5992 	case TCP_CLOSING:
5993 	case TCP_LAST_ACK:
5994 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5995 			break;
5996 	case TCP_FIN_WAIT1:
5997 	case TCP_FIN_WAIT2:
5998 		/* RFC 793 says to queue data in these states,
5999 		 * RFC 1122 says we MUST send a reset.
6000 		 * BSD 4.4 also does reset.
6001 		 */
6002 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6003 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6004 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6005 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6006 				tcp_reset(sk);
6007 				return 1;
6008 			}
6009 		}
6010 		/* Fall through */
6011 	case TCP_ESTABLISHED:
6012 		tcp_data_queue(sk, skb);
6013 		queued = 1;
6014 		break;
6015 	}
6016 
6017 	/* tcp_data could move socket to TIME-WAIT */
6018 	if (sk->sk_state != TCP_CLOSE) {
6019 		tcp_data_snd_check(sk);
6020 		tcp_ack_snd_check(sk);
6021 	}
6022 
6023 	if (!queued) {
6024 discard:
6025 		tcp_drop(sk, skb);
6026 	}
6027 	return 0;
6028 }
6029 EXPORT_SYMBOL(tcp_rcv_state_process);
6030 
6031 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6032 {
6033 	struct inet_request_sock *ireq = inet_rsk(req);
6034 
6035 	if (family == AF_INET)
6036 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6037 				    &ireq->ir_rmt_addr, port);
6038 #if IS_ENABLED(CONFIG_IPV6)
6039 	else if (family == AF_INET6)
6040 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6041 				    &ireq->ir_v6_rmt_addr, port);
6042 #endif
6043 }
6044 
6045 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6046  *
6047  * If we receive a SYN packet with these bits set, it means a
6048  * network is playing bad games with TOS bits. In order to
6049  * avoid possible false congestion notifications, we disable
6050  * TCP ECN negotiation.
6051  *
6052  * Exception: tcp_ca wants ECN. This is required for DCTCP
6053  * congestion control: Linux DCTCP asserts ECT on all packets,
6054  * including SYN, which is most optimal solution; however,
6055  * others, such as FreeBSD do not.
6056  */
6057 static void tcp_ecn_create_request(struct request_sock *req,
6058 				   const struct sk_buff *skb,
6059 				   const struct sock *listen_sk,
6060 				   const struct dst_entry *dst)
6061 {
6062 	const struct tcphdr *th = tcp_hdr(skb);
6063 	const struct net *net = sock_net(listen_sk);
6064 	bool th_ecn = th->ece && th->cwr;
6065 	bool ect, ecn_ok;
6066 	u32 ecn_ok_dst;
6067 
6068 	if (!th_ecn)
6069 		return;
6070 
6071 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6072 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6073 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6074 
6075 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6076 	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6077 		inet_rsk(req)->ecn_ok = 1;
6078 }
6079 
6080 static void tcp_openreq_init(struct request_sock *req,
6081 			     const struct tcp_options_received *rx_opt,
6082 			     struct sk_buff *skb, const struct sock *sk)
6083 {
6084 	struct inet_request_sock *ireq = inet_rsk(req);
6085 
6086 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6087 	req->cookie_ts = 0;
6088 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6089 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6090 	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6091 	tcp_rsk(req)->last_oow_ack_time = 0;
6092 	req->mss = rx_opt->mss_clamp;
6093 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6094 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6095 	ireq->sack_ok = rx_opt->sack_ok;
6096 	ireq->snd_wscale = rx_opt->snd_wscale;
6097 	ireq->wscale_ok = rx_opt->wscale_ok;
6098 	ireq->acked = 0;
6099 	ireq->ecn_ok = 0;
6100 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6101 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6102 	ireq->ir_mark = inet_request_mark(sk, skb);
6103 }
6104 
6105 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6106 				      struct sock *sk_listener,
6107 				      bool attach_listener)
6108 {
6109 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6110 					       attach_listener);
6111 
6112 	if (req) {
6113 		struct inet_request_sock *ireq = inet_rsk(req);
6114 
6115 		kmemcheck_annotate_bitfield(ireq, flags);
6116 		ireq->opt = NULL;
6117 		atomic64_set(&ireq->ir_cookie, 0);
6118 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6119 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6120 		ireq->ireq_family = sk_listener->sk_family;
6121 	}
6122 
6123 	return req;
6124 }
6125 EXPORT_SYMBOL(inet_reqsk_alloc);
6126 
6127 /*
6128  * Return true if a syncookie should be sent
6129  */
6130 static bool tcp_syn_flood_action(const struct sock *sk,
6131 				 const struct sk_buff *skb,
6132 				 const char *proto)
6133 {
6134 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6135 	const char *msg = "Dropping request";
6136 	bool want_cookie = false;
6137 	struct net *net = sock_net(sk);
6138 
6139 #ifdef CONFIG_SYN_COOKIES
6140 	if (net->ipv4.sysctl_tcp_syncookies) {
6141 		msg = "Sending cookies";
6142 		want_cookie = true;
6143 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6144 	} else
6145 #endif
6146 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6147 
6148 	if (!queue->synflood_warned &&
6149 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6150 	    xchg(&queue->synflood_warned, 1) == 0)
6151 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6152 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6153 
6154 	return want_cookie;
6155 }
6156 
6157 static void tcp_reqsk_record_syn(const struct sock *sk,
6158 				 struct request_sock *req,
6159 				 const struct sk_buff *skb)
6160 {
6161 	if (tcp_sk(sk)->save_syn) {
6162 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6163 		u32 *copy;
6164 
6165 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6166 		if (copy) {
6167 			copy[0] = len;
6168 			memcpy(&copy[1], skb_network_header(skb), len);
6169 			req->saved_syn = copy;
6170 		}
6171 	}
6172 }
6173 
6174 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6175 		     const struct tcp_request_sock_ops *af_ops,
6176 		     struct sock *sk, struct sk_buff *skb)
6177 {
6178 	struct tcp_fastopen_cookie foc = { .len = -1 };
6179 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6180 	struct tcp_options_received tmp_opt;
6181 	struct tcp_sock *tp = tcp_sk(sk);
6182 	struct net *net = sock_net(sk);
6183 	struct sock *fastopen_sk = NULL;
6184 	struct dst_entry *dst = NULL;
6185 	struct request_sock *req;
6186 	bool want_cookie = false;
6187 	struct flowi fl;
6188 
6189 	/* TW buckets are converted to open requests without
6190 	 * limitations, they conserve resources and peer is
6191 	 * evidently real one.
6192 	 */
6193 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6194 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6195 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6196 		if (!want_cookie)
6197 			goto drop;
6198 	}
6199 
6200 
6201 	/* Accept backlog is full. If we have already queued enough
6202 	 * of warm entries in syn queue, drop request. It is better than
6203 	 * clogging syn queue with openreqs with exponentially increasing
6204 	 * timeout.
6205 	 */
6206 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6207 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6208 		goto drop;
6209 	}
6210 
6211 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6212 	if (!req)
6213 		goto drop;
6214 
6215 	tcp_rsk(req)->af_specific = af_ops;
6216 
6217 	tcp_clear_options(&tmp_opt);
6218 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6219 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6220 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6221 
6222 	if (want_cookie && !tmp_opt.saw_tstamp)
6223 		tcp_clear_options(&tmp_opt);
6224 
6225 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6226 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6227 
6228 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6229 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6230 
6231 	af_ops->init_req(req, sk, skb);
6232 
6233 	if (security_inet_conn_request(sk, skb, req))
6234 		goto drop_and_free;
6235 
6236 	if (!want_cookie && !isn) {
6237 		/* VJ's idea. We save last timestamp seen
6238 		 * from the destination in peer table, when entering
6239 		 * state TIME-WAIT, and check against it before
6240 		 * accepting new connection request.
6241 		 *
6242 		 * If "isn" is not zero, this request hit alive
6243 		 * timewait bucket, so that all the necessary checks
6244 		 * are made in the function processing timewait state.
6245 		 */
6246 		if (tcp_death_row.sysctl_tw_recycle) {
6247 			bool strict;
6248 
6249 			dst = af_ops->route_req(sk, &fl, req, &strict);
6250 
6251 			if (dst && strict &&
6252 			    !tcp_peer_is_proven(req, dst, true,
6253 						tmp_opt.saw_tstamp)) {
6254 				NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6255 				goto drop_and_release;
6256 			}
6257 		}
6258 		/* Kill the following clause, if you dislike this way. */
6259 		else if (!net->ipv4.sysctl_tcp_syncookies &&
6260 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6261 			  (sysctl_max_syn_backlog >> 2)) &&
6262 			 !tcp_peer_is_proven(req, dst, false,
6263 					     tmp_opt.saw_tstamp)) {
6264 			/* Without syncookies last quarter of
6265 			 * backlog is filled with destinations,
6266 			 * proven to be alive.
6267 			 * It means that we continue to communicate
6268 			 * to destinations, already remembered
6269 			 * to the moment of synflood.
6270 			 */
6271 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6272 				    rsk_ops->family);
6273 			goto drop_and_release;
6274 		}
6275 
6276 		isn = af_ops->init_seq(skb);
6277 	}
6278 	if (!dst) {
6279 		dst = af_ops->route_req(sk, &fl, req, NULL);
6280 		if (!dst)
6281 			goto drop_and_free;
6282 	}
6283 
6284 	tcp_ecn_create_request(req, skb, sk, dst);
6285 
6286 	if (want_cookie) {
6287 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6288 		req->cookie_ts = tmp_opt.tstamp_ok;
6289 		if (!tmp_opt.tstamp_ok)
6290 			inet_rsk(req)->ecn_ok = 0;
6291 	}
6292 
6293 	tcp_rsk(req)->snt_isn = isn;
6294 	tcp_rsk(req)->txhash = net_tx_rndhash();
6295 	tcp_openreq_init_rwin(req, sk, dst);
6296 	if (!want_cookie) {
6297 		tcp_reqsk_record_syn(sk, req, skb);
6298 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6299 	}
6300 	if (fastopen_sk) {
6301 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6302 				    &foc, TCP_SYNACK_FASTOPEN);
6303 		/* Add the child socket directly into the accept queue */
6304 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6305 		sk->sk_data_ready(sk);
6306 		bh_unlock_sock(fastopen_sk);
6307 		sock_put(fastopen_sk);
6308 	} else {
6309 		tcp_rsk(req)->tfo_listener = false;
6310 		if (!want_cookie)
6311 			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6312 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6313 				    !want_cookie ? TCP_SYNACK_NORMAL :
6314 						   TCP_SYNACK_COOKIE);
6315 		if (want_cookie) {
6316 			reqsk_free(req);
6317 			return 0;
6318 		}
6319 	}
6320 	reqsk_put(req);
6321 	return 0;
6322 
6323 drop_and_release:
6324 	dst_release(dst);
6325 drop_and_free:
6326 	reqsk_free(req);
6327 drop:
6328 	tcp_listendrop(sk);
6329 	return 0;
6330 }
6331 EXPORT_SYMBOL(tcp_conn_request);
6332