xref: /linux/net/ipv4/tcp.c (revision fcc8487d477a3452a1d0ccbdd4c5e0e1e3cb8bed)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 
284 int sysctl_tcp_min_tso_segs __read_mostly = 2;
285 
286 int sysctl_tcp_autocorking __read_mostly = 1;
287 
288 struct percpu_counter tcp_orphan_count;
289 EXPORT_SYMBOL_GPL(tcp_orphan_count);
290 
291 long sysctl_tcp_mem[3] __read_mostly;
292 int sysctl_tcp_wmem[3] __read_mostly;
293 int sysctl_tcp_rmem[3] __read_mostly;
294 
295 EXPORT_SYMBOL(sysctl_tcp_mem);
296 EXPORT_SYMBOL(sysctl_tcp_rmem);
297 EXPORT_SYMBOL(sysctl_tcp_wmem);
298 
299 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
300 EXPORT_SYMBOL(tcp_memory_allocated);
301 
302 /*
303  * Current number of TCP sockets.
304  */
305 struct percpu_counter tcp_sockets_allocated;
306 EXPORT_SYMBOL(tcp_sockets_allocated);
307 
308 /*
309  * TCP splice context
310  */
311 struct tcp_splice_state {
312 	struct pipe_inode_info *pipe;
313 	size_t len;
314 	unsigned int flags;
315 };
316 
317 /*
318  * Pressure flag: try to collapse.
319  * Technical note: it is used by multiple contexts non atomically.
320  * All the __sk_mem_schedule() is of this nature: accounting
321  * is strict, actions are advisory and have some latency.
322  */
323 int tcp_memory_pressure __read_mostly;
324 EXPORT_SYMBOL(tcp_memory_pressure);
325 
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 	if (!tcp_memory_pressure) {
329 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
330 		tcp_memory_pressure = 1;
331 	}
332 }
333 EXPORT_SYMBOL(tcp_enter_memory_pressure);
334 
335 /* Convert seconds to retransmits based on initial and max timeout */
336 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
337 {
338 	u8 res = 0;
339 
340 	if (seconds > 0) {
341 		int period = timeout;
342 
343 		res = 1;
344 		while (seconds > period && res < 255) {
345 			res++;
346 			timeout <<= 1;
347 			if (timeout > rto_max)
348 				timeout = rto_max;
349 			period += timeout;
350 		}
351 	}
352 	return res;
353 }
354 
355 /* Convert retransmits to seconds based on initial and max timeout */
356 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
357 {
358 	int period = 0;
359 
360 	if (retrans > 0) {
361 		period = timeout;
362 		while (--retrans) {
363 			timeout <<= 1;
364 			if (timeout > rto_max)
365 				timeout = rto_max;
366 			period += timeout;
367 		}
368 	}
369 	return period;
370 }
371 
372 /* Address-family independent initialization for a tcp_sock.
373  *
374  * NOTE: A lot of things set to zero explicitly by call to
375  *       sk_alloc() so need not be done here.
376  */
377 void tcp_init_sock(struct sock *sk)
378 {
379 	struct inet_connection_sock *icsk = inet_csk(sk);
380 	struct tcp_sock *tp = tcp_sk(sk);
381 
382 	tp->out_of_order_queue = RB_ROOT;
383 	tcp_init_xmit_timers(sk);
384 	tcp_prequeue_init(tp);
385 	INIT_LIST_HEAD(&tp->tsq_node);
386 
387 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
388 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
389 	minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U);
390 
391 	/* So many TCP implementations out there (incorrectly) count the
392 	 * initial SYN frame in their delayed-ACK and congestion control
393 	 * algorithms that we must have the following bandaid to talk
394 	 * efficiently to them.  -DaveM
395 	 */
396 	tp->snd_cwnd = TCP_INIT_CWND;
397 
398 	/* There's a bubble in the pipe until at least the first ACK. */
399 	tp->app_limited = ~0U;
400 
401 	/* See draft-stevens-tcpca-spec-01 for discussion of the
402 	 * initialization of these values.
403 	 */
404 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
405 	tp->snd_cwnd_clamp = ~0;
406 	tp->mss_cache = TCP_MSS_DEFAULT;
407 
408 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
409 	tcp_assign_congestion_control(sk);
410 
411 	tp->tsoffset = 0;
412 
413 	sk->sk_state = TCP_CLOSE;
414 
415 	sk->sk_write_space = sk_stream_write_space;
416 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
417 
418 	icsk->icsk_sync_mss = tcp_sync_mss;
419 
420 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422 
423 	sk_sockets_allocated_inc(sk);
424 }
425 EXPORT_SYMBOL(tcp_init_sock);
426 
427 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
428 {
429 	if (tsflags && skb) {
430 		struct skb_shared_info *shinfo = skb_shinfo(skb);
431 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
432 
433 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
434 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
435 			tcb->txstamp_ack = 1;
436 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
437 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
438 	}
439 }
440 
441 /*
442  *	Wait for a TCP event.
443  *
444  *	Note that we don't need to lock the socket, as the upper poll layers
445  *	take care of normal races (between the test and the event) and we don't
446  *	go look at any of the socket buffers directly.
447  */
448 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
449 {
450 	unsigned int mask;
451 	struct sock *sk = sock->sk;
452 	const struct tcp_sock *tp = tcp_sk(sk);
453 	int state;
454 
455 	sock_rps_record_flow(sk);
456 
457 	sock_poll_wait(file, sk_sleep(sk), wait);
458 
459 	state = sk_state_load(sk);
460 	if (state == TCP_LISTEN)
461 		return inet_csk_listen_poll(sk);
462 
463 	/* Socket is not locked. We are protected from async events
464 	 * by poll logic and correct handling of state changes
465 	 * made by other threads is impossible in any case.
466 	 */
467 
468 	mask = 0;
469 
470 	/*
471 	 * POLLHUP is certainly not done right. But poll() doesn't
472 	 * have a notion of HUP in just one direction, and for a
473 	 * socket the read side is more interesting.
474 	 *
475 	 * Some poll() documentation says that POLLHUP is incompatible
476 	 * with the POLLOUT/POLLWR flags, so somebody should check this
477 	 * all. But careful, it tends to be safer to return too many
478 	 * bits than too few, and you can easily break real applications
479 	 * if you don't tell them that something has hung up!
480 	 *
481 	 * Check-me.
482 	 *
483 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
484 	 * our fs/select.c). It means that after we received EOF,
485 	 * poll always returns immediately, making impossible poll() on write()
486 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
487 	 * if and only if shutdown has been made in both directions.
488 	 * Actually, it is interesting to look how Solaris and DUX
489 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
490 	 * then we could set it on SND_SHUTDOWN. BTW examples given
491 	 * in Stevens' books assume exactly this behaviour, it explains
492 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
493 	 *
494 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
495 	 * blocking on fresh not-connected or disconnected socket. --ANK
496 	 */
497 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
498 		mask |= POLLHUP;
499 	if (sk->sk_shutdown & RCV_SHUTDOWN)
500 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
501 
502 	/* Connected or passive Fast Open socket? */
503 	if (state != TCP_SYN_SENT &&
504 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
505 		int target = sock_rcvlowat(sk, 0, INT_MAX);
506 
507 		if (tp->urg_seq == tp->copied_seq &&
508 		    !sock_flag(sk, SOCK_URGINLINE) &&
509 		    tp->urg_data)
510 			target++;
511 
512 		if (tp->rcv_nxt - tp->copied_seq >= target)
513 			mask |= POLLIN | POLLRDNORM;
514 
515 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
516 			if (sk_stream_is_writeable(sk)) {
517 				mask |= POLLOUT | POLLWRNORM;
518 			} else {  /* send SIGIO later */
519 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
520 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
521 
522 				/* Race breaker. If space is freed after
523 				 * wspace test but before the flags are set,
524 				 * IO signal will be lost. Memory barrier
525 				 * pairs with the input side.
526 				 */
527 				smp_mb__after_atomic();
528 				if (sk_stream_is_writeable(sk))
529 					mask |= POLLOUT | POLLWRNORM;
530 			}
531 		} else
532 			mask |= POLLOUT | POLLWRNORM;
533 
534 		if (tp->urg_data & TCP_URG_VALID)
535 			mask |= POLLPRI;
536 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
537 		/* Active TCP fastopen socket with defer_connect
538 		 * Return POLLOUT so application can call write()
539 		 * in order for kernel to generate SYN+data
540 		 */
541 		mask |= POLLOUT | POLLWRNORM;
542 	}
543 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
544 	smp_rmb();
545 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
546 		mask |= POLLERR;
547 
548 	return mask;
549 }
550 EXPORT_SYMBOL(tcp_poll);
551 
552 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
553 {
554 	struct tcp_sock *tp = tcp_sk(sk);
555 	int answ;
556 	bool slow;
557 
558 	switch (cmd) {
559 	case SIOCINQ:
560 		if (sk->sk_state == TCP_LISTEN)
561 			return -EINVAL;
562 
563 		slow = lock_sock_fast(sk);
564 		answ = tcp_inq(sk);
565 		unlock_sock_fast(sk, slow);
566 		break;
567 	case SIOCATMARK:
568 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
569 		break;
570 	case SIOCOUTQ:
571 		if (sk->sk_state == TCP_LISTEN)
572 			return -EINVAL;
573 
574 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
575 			answ = 0;
576 		else
577 			answ = tp->write_seq - tp->snd_una;
578 		break;
579 	case SIOCOUTQNSD:
580 		if (sk->sk_state == TCP_LISTEN)
581 			return -EINVAL;
582 
583 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
584 			answ = 0;
585 		else
586 			answ = tp->write_seq - tp->snd_nxt;
587 		break;
588 	default:
589 		return -ENOIOCTLCMD;
590 	}
591 
592 	return put_user(answ, (int __user *)arg);
593 }
594 EXPORT_SYMBOL(tcp_ioctl);
595 
596 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
597 {
598 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
599 	tp->pushed_seq = tp->write_seq;
600 }
601 
602 static inline bool forced_push(const struct tcp_sock *tp)
603 {
604 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
605 }
606 
607 static void skb_entail(struct sock *sk, struct sk_buff *skb)
608 {
609 	struct tcp_sock *tp = tcp_sk(sk);
610 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
611 
612 	skb->csum    = 0;
613 	tcb->seq     = tcb->end_seq = tp->write_seq;
614 	tcb->tcp_flags = TCPHDR_ACK;
615 	tcb->sacked  = 0;
616 	__skb_header_release(skb);
617 	tcp_add_write_queue_tail(sk, skb);
618 	sk->sk_wmem_queued += skb->truesize;
619 	sk_mem_charge(sk, skb->truesize);
620 	if (tp->nonagle & TCP_NAGLE_PUSH)
621 		tp->nonagle &= ~TCP_NAGLE_PUSH;
622 
623 	tcp_slow_start_after_idle_check(sk);
624 }
625 
626 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
627 {
628 	if (flags & MSG_OOB)
629 		tp->snd_up = tp->write_seq;
630 }
631 
632 /* If a not yet filled skb is pushed, do not send it if
633  * we have data packets in Qdisc or NIC queues :
634  * Because TX completion will happen shortly, it gives a chance
635  * to coalesce future sendmsg() payload into this skb, without
636  * need for a timer, and with no latency trade off.
637  * As packets containing data payload have a bigger truesize
638  * than pure acks (dataless) packets, the last checks prevent
639  * autocorking if we only have an ACK in Qdisc/NIC queues,
640  * or if TX completion was delayed after we processed ACK packet.
641  */
642 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
643 				int size_goal)
644 {
645 	return skb->len < size_goal &&
646 	       sysctl_tcp_autocorking &&
647 	       skb != tcp_write_queue_head(sk) &&
648 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
649 }
650 
651 static void tcp_push(struct sock *sk, int flags, int mss_now,
652 		     int nonagle, int size_goal)
653 {
654 	struct tcp_sock *tp = tcp_sk(sk);
655 	struct sk_buff *skb;
656 
657 	if (!tcp_send_head(sk))
658 		return;
659 
660 	skb = tcp_write_queue_tail(sk);
661 	if (!(flags & MSG_MORE) || forced_push(tp))
662 		tcp_mark_push(tp, skb);
663 
664 	tcp_mark_urg(tp, flags);
665 
666 	if (tcp_should_autocork(sk, skb, size_goal)) {
667 
668 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
669 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
670 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
671 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
672 		}
673 		/* It is possible TX completion already happened
674 		 * before we set TSQ_THROTTLED.
675 		 */
676 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
677 			return;
678 	}
679 
680 	if (flags & MSG_MORE)
681 		nonagle = TCP_NAGLE_CORK;
682 
683 	__tcp_push_pending_frames(sk, mss_now, nonagle);
684 }
685 
686 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
687 				unsigned int offset, size_t len)
688 {
689 	struct tcp_splice_state *tss = rd_desc->arg.data;
690 	int ret;
691 
692 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
693 			      min(rd_desc->count, len), tss->flags);
694 	if (ret > 0)
695 		rd_desc->count -= ret;
696 	return ret;
697 }
698 
699 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
700 {
701 	/* Store TCP splice context information in read_descriptor_t. */
702 	read_descriptor_t rd_desc = {
703 		.arg.data = tss,
704 		.count	  = tss->len,
705 	};
706 
707 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
708 }
709 
710 /**
711  *  tcp_splice_read - splice data from TCP socket to a pipe
712  * @sock:	socket to splice from
713  * @ppos:	position (not valid)
714  * @pipe:	pipe to splice to
715  * @len:	number of bytes to splice
716  * @flags:	splice modifier flags
717  *
718  * Description:
719  *    Will read pages from given socket and fill them into a pipe.
720  *
721  **/
722 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
723 			struct pipe_inode_info *pipe, size_t len,
724 			unsigned int flags)
725 {
726 	struct sock *sk = sock->sk;
727 	struct tcp_splice_state tss = {
728 		.pipe = pipe,
729 		.len = len,
730 		.flags = flags,
731 	};
732 	long timeo;
733 	ssize_t spliced;
734 	int ret;
735 
736 	sock_rps_record_flow(sk);
737 	/*
738 	 * We can't seek on a socket input
739 	 */
740 	if (unlikely(*ppos))
741 		return -ESPIPE;
742 
743 	ret = spliced = 0;
744 
745 	lock_sock(sk);
746 
747 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
748 	while (tss.len) {
749 		ret = __tcp_splice_read(sk, &tss);
750 		if (ret < 0)
751 			break;
752 		else if (!ret) {
753 			if (spliced)
754 				break;
755 			if (sock_flag(sk, SOCK_DONE))
756 				break;
757 			if (sk->sk_err) {
758 				ret = sock_error(sk);
759 				break;
760 			}
761 			if (sk->sk_shutdown & RCV_SHUTDOWN)
762 				break;
763 			if (sk->sk_state == TCP_CLOSE) {
764 				/*
765 				 * This occurs when user tries to read
766 				 * from never connected socket.
767 				 */
768 				if (!sock_flag(sk, SOCK_DONE))
769 					ret = -ENOTCONN;
770 				break;
771 			}
772 			if (!timeo) {
773 				ret = -EAGAIN;
774 				break;
775 			}
776 			/* if __tcp_splice_read() got nothing while we have
777 			 * an skb in receive queue, we do not want to loop.
778 			 * This might happen with URG data.
779 			 */
780 			if (!skb_queue_empty(&sk->sk_receive_queue))
781 				break;
782 			sk_wait_data(sk, &timeo, NULL);
783 			if (signal_pending(current)) {
784 				ret = sock_intr_errno(timeo);
785 				break;
786 			}
787 			continue;
788 		}
789 		tss.len -= ret;
790 		spliced += ret;
791 
792 		if (!timeo)
793 			break;
794 		release_sock(sk);
795 		lock_sock(sk);
796 
797 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
798 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
799 		    signal_pending(current))
800 			break;
801 	}
802 
803 	release_sock(sk);
804 
805 	if (spliced)
806 		return spliced;
807 
808 	return ret;
809 }
810 EXPORT_SYMBOL(tcp_splice_read);
811 
812 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
813 				    bool force_schedule)
814 {
815 	struct sk_buff *skb;
816 
817 	/* The TCP header must be at least 32-bit aligned.  */
818 	size = ALIGN(size, 4);
819 
820 	if (unlikely(tcp_under_memory_pressure(sk)))
821 		sk_mem_reclaim_partial(sk);
822 
823 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
824 	if (likely(skb)) {
825 		bool mem_scheduled;
826 
827 		if (force_schedule) {
828 			mem_scheduled = true;
829 			sk_forced_mem_schedule(sk, skb->truesize);
830 		} else {
831 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
832 		}
833 		if (likely(mem_scheduled)) {
834 			skb_reserve(skb, sk->sk_prot->max_header);
835 			/*
836 			 * Make sure that we have exactly size bytes
837 			 * available to the caller, no more, no less.
838 			 */
839 			skb->reserved_tailroom = skb->end - skb->tail - size;
840 			return skb;
841 		}
842 		__kfree_skb(skb);
843 	} else {
844 		sk->sk_prot->enter_memory_pressure(sk);
845 		sk_stream_moderate_sndbuf(sk);
846 	}
847 	return NULL;
848 }
849 
850 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
851 				       int large_allowed)
852 {
853 	struct tcp_sock *tp = tcp_sk(sk);
854 	u32 new_size_goal, size_goal;
855 
856 	if (!large_allowed || !sk_can_gso(sk))
857 		return mss_now;
858 
859 	/* Note : tcp_tso_autosize() will eventually split this later */
860 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
861 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
862 
863 	/* We try hard to avoid divides here */
864 	size_goal = tp->gso_segs * mss_now;
865 	if (unlikely(new_size_goal < size_goal ||
866 		     new_size_goal >= size_goal + mss_now)) {
867 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
868 				     sk->sk_gso_max_segs);
869 		size_goal = tp->gso_segs * mss_now;
870 	}
871 
872 	return max(size_goal, mss_now);
873 }
874 
875 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
876 {
877 	int mss_now;
878 
879 	mss_now = tcp_current_mss(sk);
880 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
881 
882 	return mss_now;
883 }
884 
885 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
886 				size_t size, int flags)
887 {
888 	struct tcp_sock *tp = tcp_sk(sk);
889 	int mss_now, size_goal;
890 	int err;
891 	ssize_t copied;
892 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
893 
894 	/* Wait for a connection to finish. One exception is TCP Fast Open
895 	 * (passive side) where data is allowed to be sent before a connection
896 	 * is fully established.
897 	 */
898 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
899 	    !tcp_passive_fastopen(sk)) {
900 		err = sk_stream_wait_connect(sk, &timeo);
901 		if (err != 0)
902 			goto out_err;
903 	}
904 
905 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
906 
907 	mss_now = tcp_send_mss(sk, &size_goal, flags);
908 	copied = 0;
909 
910 	err = -EPIPE;
911 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
912 		goto out_err;
913 
914 	while (size > 0) {
915 		struct sk_buff *skb = tcp_write_queue_tail(sk);
916 		int copy, i;
917 		bool can_coalesce;
918 
919 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
920 		    !tcp_skb_can_collapse_to(skb)) {
921 new_segment:
922 			if (!sk_stream_memory_free(sk))
923 				goto wait_for_sndbuf;
924 
925 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
926 						  skb_queue_empty(&sk->sk_write_queue));
927 			if (!skb)
928 				goto wait_for_memory;
929 
930 			skb_entail(sk, skb);
931 			copy = size_goal;
932 		}
933 
934 		if (copy > size)
935 			copy = size;
936 
937 		i = skb_shinfo(skb)->nr_frags;
938 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
939 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
940 			tcp_mark_push(tp, skb);
941 			goto new_segment;
942 		}
943 		if (!sk_wmem_schedule(sk, copy))
944 			goto wait_for_memory;
945 
946 		if (can_coalesce) {
947 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
948 		} else {
949 			get_page(page);
950 			skb_fill_page_desc(skb, i, page, offset, copy);
951 		}
952 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
953 
954 		skb->len += copy;
955 		skb->data_len += copy;
956 		skb->truesize += copy;
957 		sk->sk_wmem_queued += copy;
958 		sk_mem_charge(sk, copy);
959 		skb->ip_summed = CHECKSUM_PARTIAL;
960 		tp->write_seq += copy;
961 		TCP_SKB_CB(skb)->end_seq += copy;
962 		tcp_skb_pcount_set(skb, 0);
963 
964 		if (!copied)
965 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
966 
967 		copied += copy;
968 		offset += copy;
969 		size -= copy;
970 		if (!size)
971 			goto out;
972 
973 		if (skb->len < size_goal || (flags & MSG_OOB))
974 			continue;
975 
976 		if (forced_push(tp)) {
977 			tcp_mark_push(tp, skb);
978 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
979 		} else if (skb == tcp_send_head(sk))
980 			tcp_push_one(sk, mss_now);
981 		continue;
982 
983 wait_for_sndbuf:
984 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
985 wait_for_memory:
986 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
987 			 TCP_NAGLE_PUSH, size_goal);
988 
989 		err = sk_stream_wait_memory(sk, &timeo);
990 		if (err != 0)
991 			goto do_error;
992 
993 		mss_now = tcp_send_mss(sk, &size_goal, flags);
994 	}
995 
996 out:
997 	if (copied) {
998 		tcp_tx_timestamp(sk, sk->sk_tsflags, tcp_write_queue_tail(sk));
999 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1000 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1001 	}
1002 	return copied;
1003 
1004 do_error:
1005 	if (copied)
1006 		goto out;
1007 out_err:
1008 	/* make sure we wake any epoll edge trigger waiter */
1009 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1010 		     err == -EAGAIN)) {
1011 		sk->sk_write_space(sk);
1012 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1013 	}
1014 	return sk_stream_error(sk, flags, err);
1015 }
1016 
1017 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1018 		 size_t size, int flags)
1019 {
1020 	ssize_t res;
1021 
1022 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1023 	    !sk_check_csum_caps(sk))
1024 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1025 					flags);
1026 
1027 	lock_sock(sk);
1028 
1029 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1030 
1031 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1032 	release_sock(sk);
1033 	return res;
1034 }
1035 EXPORT_SYMBOL(tcp_sendpage);
1036 
1037 /* Do not bother using a page frag for very small frames.
1038  * But use this heuristic only for the first skb in write queue.
1039  *
1040  * Having no payload in skb->head allows better SACK shifting
1041  * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1042  * write queue has less skbs.
1043  * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1044  * This also speeds up tso_fragment(), since it wont fallback
1045  * to tcp_fragment().
1046  */
1047 static int linear_payload_sz(bool first_skb)
1048 {
1049 	if (first_skb)
1050 		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1051 	return 0;
1052 }
1053 
1054 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1055 {
1056 	const struct tcp_sock *tp = tcp_sk(sk);
1057 	int tmp = tp->mss_cache;
1058 
1059 	if (sg) {
1060 		if (sk_can_gso(sk)) {
1061 			tmp = linear_payload_sz(first_skb);
1062 		} else {
1063 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1064 
1065 			if (tmp >= pgbreak &&
1066 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1067 				tmp = pgbreak;
1068 		}
1069 	}
1070 
1071 	return tmp;
1072 }
1073 
1074 void tcp_free_fastopen_req(struct tcp_sock *tp)
1075 {
1076 	if (tp->fastopen_req) {
1077 		kfree(tp->fastopen_req);
1078 		tp->fastopen_req = NULL;
1079 	}
1080 }
1081 
1082 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1083 				int *copied, size_t size)
1084 {
1085 	struct tcp_sock *tp = tcp_sk(sk);
1086 	struct inet_sock *inet = inet_sk(sk);
1087 	int err, flags;
1088 
1089 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1090 		return -EOPNOTSUPP;
1091 	if (tp->fastopen_req)
1092 		return -EALREADY; /* Another Fast Open is in progress */
1093 
1094 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1095 				   sk->sk_allocation);
1096 	if (unlikely(!tp->fastopen_req))
1097 		return -ENOBUFS;
1098 	tp->fastopen_req->data = msg;
1099 	tp->fastopen_req->size = size;
1100 
1101 	if (inet->defer_connect) {
1102 		err = tcp_connect(sk);
1103 		/* Same failure procedure as in tcp_v4/6_connect */
1104 		if (err) {
1105 			tcp_set_state(sk, TCP_CLOSE);
1106 			inet->inet_dport = 0;
1107 			sk->sk_route_caps = 0;
1108 		}
1109 	}
1110 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1111 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1112 				    msg->msg_namelen, flags, 1);
1113 	/* fastopen_req could already be freed in __inet_stream_connect
1114 	 * if the connection times out or gets rst
1115 	 */
1116 	if (tp->fastopen_req) {
1117 		*copied = tp->fastopen_req->copied;
1118 		tcp_free_fastopen_req(tp);
1119 		inet->defer_connect = 0;
1120 	}
1121 	return err;
1122 }
1123 
1124 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1125 {
1126 	struct tcp_sock *tp = tcp_sk(sk);
1127 	struct sk_buff *skb;
1128 	struct sockcm_cookie sockc;
1129 	int flags, err, copied = 0;
1130 	int mss_now = 0, size_goal, copied_syn = 0;
1131 	bool process_backlog = false;
1132 	bool sg;
1133 	long timeo;
1134 
1135 	lock_sock(sk);
1136 
1137 	flags = msg->msg_flags;
1138 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) {
1139 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1140 		if (err == -EINPROGRESS && copied_syn > 0)
1141 			goto out;
1142 		else if (err)
1143 			goto out_err;
1144 	}
1145 
1146 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1147 
1148 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1149 
1150 	/* Wait for a connection to finish. One exception is TCP Fast Open
1151 	 * (passive side) where data is allowed to be sent before a connection
1152 	 * is fully established.
1153 	 */
1154 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1155 	    !tcp_passive_fastopen(sk)) {
1156 		err = sk_stream_wait_connect(sk, &timeo);
1157 		if (err != 0)
1158 			goto do_error;
1159 	}
1160 
1161 	if (unlikely(tp->repair)) {
1162 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1163 			copied = tcp_send_rcvq(sk, msg, size);
1164 			goto out_nopush;
1165 		}
1166 
1167 		err = -EINVAL;
1168 		if (tp->repair_queue == TCP_NO_QUEUE)
1169 			goto out_err;
1170 
1171 		/* 'common' sending to sendq */
1172 	}
1173 
1174 	sockc.tsflags = sk->sk_tsflags;
1175 	if (msg->msg_controllen) {
1176 		err = sock_cmsg_send(sk, msg, &sockc);
1177 		if (unlikely(err)) {
1178 			err = -EINVAL;
1179 			goto out_err;
1180 		}
1181 	}
1182 
1183 	/* This should be in poll */
1184 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1185 
1186 	/* Ok commence sending. */
1187 	copied = 0;
1188 
1189 restart:
1190 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1191 
1192 	err = -EPIPE;
1193 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1194 		goto do_error;
1195 
1196 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1197 
1198 	while (msg_data_left(msg)) {
1199 		int copy = 0;
1200 		int max = size_goal;
1201 
1202 		skb = tcp_write_queue_tail(sk);
1203 		if (tcp_send_head(sk)) {
1204 			if (skb->ip_summed == CHECKSUM_NONE)
1205 				max = mss_now;
1206 			copy = max - skb->len;
1207 		}
1208 
1209 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1210 			bool first_skb;
1211 
1212 new_segment:
1213 			/* Allocate new segment. If the interface is SG,
1214 			 * allocate skb fitting to single page.
1215 			 */
1216 			if (!sk_stream_memory_free(sk))
1217 				goto wait_for_sndbuf;
1218 
1219 			if (process_backlog && sk_flush_backlog(sk)) {
1220 				process_backlog = false;
1221 				goto restart;
1222 			}
1223 			first_skb = skb_queue_empty(&sk->sk_write_queue);
1224 			skb = sk_stream_alloc_skb(sk,
1225 						  select_size(sk, sg, first_skb),
1226 						  sk->sk_allocation,
1227 						  first_skb);
1228 			if (!skb)
1229 				goto wait_for_memory;
1230 
1231 			process_backlog = true;
1232 			/*
1233 			 * Check whether we can use HW checksum.
1234 			 */
1235 			if (sk_check_csum_caps(sk))
1236 				skb->ip_summed = CHECKSUM_PARTIAL;
1237 
1238 			skb_entail(sk, skb);
1239 			copy = size_goal;
1240 			max = size_goal;
1241 
1242 			/* All packets are restored as if they have
1243 			 * already been sent. skb_mstamp isn't set to
1244 			 * avoid wrong rtt estimation.
1245 			 */
1246 			if (tp->repair)
1247 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1248 		}
1249 
1250 		/* Try to append data to the end of skb. */
1251 		if (copy > msg_data_left(msg))
1252 			copy = msg_data_left(msg);
1253 
1254 		/* Where to copy to? */
1255 		if (skb_availroom(skb) > 0) {
1256 			/* We have some space in skb head. Superb! */
1257 			copy = min_t(int, copy, skb_availroom(skb));
1258 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1259 			if (err)
1260 				goto do_fault;
1261 		} else {
1262 			bool merge = true;
1263 			int i = skb_shinfo(skb)->nr_frags;
1264 			struct page_frag *pfrag = sk_page_frag(sk);
1265 
1266 			if (!sk_page_frag_refill(sk, pfrag))
1267 				goto wait_for_memory;
1268 
1269 			if (!skb_can_coalesce(skb, i, pfrag->page,
1270 					      pfrag->offset)) {
1271 				if (i >= sysctl_max_skb_frags || !sg) {
1272 					tcp_mark_push(tp, skb);
1273 					goto new_segment;
1274 				}
1275 				merge = false;
1276 			}
1277 
1278 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1279 
1280 			if (!sk_wmem_schedule(sk, copy))
1281 				goto wait_for_memory;
1282 
1283 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1284 						       pfrag->page,
1285 						       pfrag->offset,
1286 						       copy);
1287 			if (err)
1288 				goto do_error;
1289 
1290 			/* Update the skb. */
1291 			if (merge) {
1292 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1293 			} else {
1294 				skb_fill_page_desc(skb, i, pfrag->page,
1295 						   pfrag->offset, copy);
1296 				page_ref_inc(pfrag->page);
1297 			}
1298 			pfrag->offset += copy;
1299 		}
1300 
1301 		if (!copied)
1302 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1303 
1304 		tp->write_seq += copy;
1305 		TCP_SKB_CB(skb)->end_seq += copy;
1306 		tcp_skb_pcount_set(skb, 0);
1307 
1308 		copied += copy;
1309 		if (!msg_data_left(msg)) {
1310 			if (unlikely(flags & MSG_EOR))
1311 				TCP_SKB_CB(skb)->eor = 1;
1312 			goto out;
1313 		}
1314 
1315 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1316 			continue;
1317 
1318 		if (forced_push(tp)) {
1319 			tcp_mark_push(tp, skb);
1320 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1321 		} else if (skb == tcp_send_head(sk))
1322 			tcp_push_one(sk, mss_now);
1323 		continue;
1324 
1325 wait_for_sndbuf:
1326 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1327 wait_for_memory:
1328 		if (copied)
1329 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1330 				 TCP_NAGLE_PUSH, size_goal);
1331 
1332 		err = sk_stream_wait_memory(sk, &timeo);
1333 		if (err != 0)
1334 			goto do_error;
1335 
1336 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1337 	}
1338 
1339 out:
1340 	if (copied) {
1341 		tcp_tx_timestamp(sk, sockc.tsflags, tcp_write_queue_tail(sk));
1342 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1343 	}
1344 out_nopush:
1345 	release_sock(sk);
1346 	return copied + copied_syn;
1347 
1348 do_fault:
1349 	if (!skb->len) {
1350 		tcp_unlink_write_queue(skb, sk);
1351 		/* It is the one place in all of TCP, except connection
1352 		 * reset, where we can be unlinking the send_head.
1353 		 */
1354 		tcp_check_send_head(sk, skb);
1355 		sk_wmem_free_skb(sk, skb);
1356 	}
1357 
1358 do_error:
1359 	if (copied + copied_syn)
1360 		goto out;
1361 out_err:
1362 	err = sk_stream_error(sk, flags, err);
1363 	/* make sure we wake any epoll edge trigger waiter */
1364 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1365 		     err == -EAGAIN)) {
1366 		sk->sk_write_space(sk);
1367 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1368 	}
1369 	release_sock(sk);
1370 	return err;
1371 }
1372 EXPORT_SYMBOL(tcp_sendmsg);
1373 
1374 /*
1375  *	Handle reading urgent data. BSD has very simple semantics for
1376  *	this, no blocking and very strange errors 8)
1377  */
1378 
1379 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1380 {
1381 	struct tcp_sock *tp = tcp_sk(sk);
1382 
1383 	/* No URG data to read. */
1384 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1385 	    tp->urg_data == TCP_URG_READ)
1386 		return -EINVAL;	/* Yes this is right ! */
1387 
1388 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1389 		return -ENOTCONN;
1390 
1391 	if (tp->urg_data & TCP_URG_VALID) {
1392 		int err = 0;
1393 		char c = tp->urg_data;
1394 
1395 		if (!(flags & MSG_PEEK))
1396 			tp->urg_data = TCP_URG_READ;
1397 
1398 		/* Read urgent data. */
1399 		msg->msg_flags |= MSG_OOB;
1400 
1401 		if (len > 0) {
1402 			if (!(flags & MSG_TRUNC))
1403 				err = memcpy_to_msg(msg, &c, 1);
1404 			len = 1;
1405 		} else
1406 			msg->msg_flags |= MSG_TRUNC;
1407 
1408 		return err ? -EFAULT : len;
1409 	}
1410 
1411 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1412 		return 0;
1413 
1414 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1415 	 * the available implementations agree in this case:
1416 	 * this call should never block, independent of the
1417 	 * blocking state of the socket.
1418 	 * Mike <pall@rz.uni-karlsruhe.de>
1419 	 */
1420 	return -EAGAIN;
1421 }
1422 
1423 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1424 {
1425 	struct sk_buff *skb;
1426 	int copied = 0, err = 0;
1427 
1428 	/* XXX -- need to support SO_PEEK_OFF */
1429 
1430 	skb_queue_walk(&sk->sk_write_queue, skb) {
1431 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1432 		if (err)
1433 			break;
1434 
1435 		copied += skb->len;
1436 	}
1437 
1438 	return err ?: copied;
1439 }
1440 
1441 /* Clean up the receive buffer for full frames taken by the user,
1442  * then send an ACK if necessary.  COPIED is the number of bytes
1443  * tcp_recvmsg has given to the user so far, it speeds up the
1444  * calculation of whether or not we must ACK for the sake of
1445  * a window update.
1446  */
1447 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1448 {
1449 	struct tcp_sock *tp = tcp_sk(sk);
1450 	bool time_to_ack = false;
1451 
1452 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1453 
1454 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1455 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1456 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1457 
1458 	if (inet_csk_ack_scheduled(sk)) {
1459 		const struct inet_connection_sock *icsk = inet_csk(sk);
1460 		   /* Delayed ACKs frequently hit locked sockets during bulk
1461 		    * receive. */
1462 		if (icsk->icsk_ack.blocked ||
1463 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1464 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1465 		    /*
1466 		     * If this read emptied read buffer, we send ACK, if
1467 		     * connection is not bidirectional, user drained
1468 		     * receive buffer and there was a small segment
1469 		     * in queue.
1470 		     */
1471 		    (copied > 0 &&
1472 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1473 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1474 		       !icsk->icsk_ack.pingpong)) &&
1475 		      !atomic_read(&sk->sk_rmem_alloc)))
1476 			time_to_ack = true;
1477 	}
1478 
1479 	/* We send an ACK if we can now advertise a non-zero window
1480 	 * which has been raised "significantly".
1481 	 *
1482 	 * Even if window raised up to infinity, do not send window open ACK
1483 	 * in states, where we will not receive more. It is useless.
1484 	 */
1485 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1486 		__u32 rcv_window_now = tcp_receive_window(tp);
1487 
1488 		/* Optimize, __tcp_select_window() is not cheap. */
1489 		if (2*rcv_window_now <= tp->window_clamp) {
1490 			__u32 new_window = __tcp_select_window(sk);
1491 
1492 			/* Send ACK now, if this read freed lots of space
1493 			 * in our buffer. Certainly, new_window is new window.
1494 			 * We can advertise it now, if it is not less than current one.
1495 			 * "Lots" means "at least twice" here.
1496 			 */
1497 			if (new_window && new_window >= 2 * rcv_window_now)
1498 				time_to_ack = true;
1499 		}
1500 	}
1501 	if (time_to_ack)
1502 		tcp_send_ack(sk);
1503 }
1504 
1505 static void tcp_prequeue_process(struct sock *sk)
1506 {
1507 	struct sk_buff *skb;
1508 	struct tcp_sock *tp = tcp_sk(sk);
1509 
1510 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1511 
1512 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1513 		sk_backlog_rcv(sk, skb);
1514 
1515 	/* Clear memory counter. */
1516 	tp->ucopy.memory = 0;
1517 }
1518 
1519 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1520 {
1521 	struct sk_buff *skb;
1522 	u32 offset;
1523 
1524 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1525 		offset = seq - TCP_SKB_CB(skb)->seq;
1526 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1527 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1528 			offset--;
1529 		}
1530 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1531 			*off = offset;
1532 			return skb;
1533 		}
1534 		/* This looks weird, but this can happen if TCP collapsing
1535 		 * splitted a fat GRO packet, while we released socket lock
1536 		 * in skb_splice_bits()
1537 		 */
1538 		sk_eat_skb(sk, skb);
1539 	}
1540 	return NULL;
1541 }
1542 
1543 /*
1544  * This routine provides an alternative to tcp_recvmsg() for routines
1545  * that would like to handle copying from skbuffs directly in 'sendfile'
1546  * fashion.
1547  * Note:
1548  *	- It is assumed that the socket was locked by the caller.
1549  *	- The routine does not block.
1550  *	- At present, there is no support for reading OOB data
1551  *	  or for 'peeking' the socket using this routine
1552  *	  (although both would be easy to implement).
1553  */
1554 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1555 		  sk_read_actor_t recv_actor)
1556 {
1557 	struct sk_buff *skb;
1558 	struct tcp_sock *tp = tcp_sk(sk);
1559 	u32 seq = tp->copied_seq;
1560 	u32 offset;
1561 	int copied = 0;
1562 
1563 	if (sk->sk_state == TCP_LISTEN)
1564 		return -ENOTCONN;
1565 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1566 		if (offset < skb->len) {
1567 			int used;
1568 			size_t len;
1569 
1570 			len = skb->len - offset;
1571 			/* Stop reading if we hit a patch of urgent data */
1572 			if (tp->urg_data) {
1573 				u32 urg_offset = tp->urg_seq - seq;
1574 				if (urg_offset < len)
1575 					len = urg_offset;
1576 				if (!len)
1577 					break;
1578 			}
1579 			used = recv_actor(desc, skb, offset, len);
1580 			if (used <= 0) {
1581 				if (!copied)
1582 					copied = used;
1583 				break;
1584 			} else if (used <= len) {
1585 				seq += used;
1586 				copied += used;
1587 				offset += used;
1588 			}
1589 			/* If recv_actor drops the lock (e.g. TCP splice
1590 			 * receive) the skb pointer might be invalid when
1591 			 * getting here: tcp_collapse might have deleted it
1592 			 * while aggregating skbs from the socket queue.
1593 			 */
1594 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1595 			if (!skb)
1596 				break;
1597 			/* TCP coalescing might have appended data to the skb.
1598 			 * Try to splice more frags
1599 			 */
1600 			if (offset + 1 != skb->len)
1601 				continue;
1602 		}
1603 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1604 			sk_eat_skb(sk, skb);
1605 			++seq;
1606 			break;
1607 		}
1608 		sk_eat_skb(sk, skb);
1609 		if (!desc->count)
1610 			break;
1611 		tp->copied_seq = seq;
1612 	}
1613 	tp->copied_seq = seq;
1614 
1615 	tcp_rcv_space_adjust(sk);
1616 
1617 	/* Clean up data we have read: This will do ACK frames. */
1618 	if (copied > 0) {
1619 		tcp_recv_skb(sk, seq, &offset);
1620 		tcp_cleanup_rbuf(sk, copied);
1621 	}
1622 	return copied;
1623 }
1624 EXPORT_SYMBOL(tcp_read_sock);
1625 
1626 int tcp_peek_len(struct socket *sock)
1627 {
1628 	return tcp_inq(sock->sk);
1629 }
1630 EXPORT_SYMBOL(tcp_peek_len);
1631 
1632 /*
1633  *	This routine copies from a sock struct into the user buffer.
1634  *
1635  *	Technical note: in 2.3 we work on _locked_ socket, so that
1636  *	tricks with *seq access order and skb->users are not required.
1637  *	Probably, code can be easily improved even more.
1638  */
1639 
1640 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1641 		int flags, int *addr_len)
1642 {
1643 	struct tcp_sock *tp = tcp_sk(sk);
1644 	int copied = 0;
1645 	u32 peek_seq;
1646 	u32 *seq;
1647 	unsigned long used;
1648 	int err;
1649 	int target;		/* Read at least this many bytes */
1650 	long timeo;
1651 	struct task_struct *user_recv = NULL;
1652 	struct sk_buff *skb, *last;
1653 	u32 urg_hole = 0;
1654 
1655 	if (unlikely(flags & MSG_ERRQUEUE))
1656 		return inet_recv_error(sk, msg, len, addr_len);
1657 
1658 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1659 	    (sk->sk_state == TCP_ESTABLISHED))
1660 		sk_busy_loop(sk, nonblock);
1661 
1662 	lock_sock(sk);
1663 
1664 	err = -ENOTCONN;
1665 	if (sk->sk_state == TCP_LISTEN)
1666 		goto out;
1667 
1668 	timeo = sock_rcvtimeo(sk, nonblock);
1669 
1670 	/* Urgent data needs to be handled specially. */
1671 	if (flags & MSG_OOB)
1672 		goto recv_urg;
1673 
1674 	if (unlikely(tp->repair)) {
1675 		err = -EPERM;
1676 		if (!(flags & MSG_PEEK))
1677 			goto out;
1678 
1679 		if (tp->repair_queue == TCP_SEND_QUEUE)
1680 			goto recv_sndq;
1681 
1682 		err = -EINVAL;
1683 		if (tp->repair_queue == TCP_NO_QUEUE)
1684 			goto out;
1685 
1686 		/* 'common' recv queue MSG_PEEK-ing */
1687 	}
1688 
1689 	seq = &tp->copied_seq;
1690 	if (flags & MSG_PEEK) {
1691 		peek_seq = tp->copied_seq;
1692 		seq = &peek_seq;
1693 	}
1694 
1695 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1696 
1697 	do {
1698 		u32 offset;
1699 
1700 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1701 		if (tp->urg_data && tp->urg_seq == *seq) {
1702 			if (copied)
1703 				break;
1704 			if (signal_pending(current)) {
1705 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1706 				break;
1707 			}
1708 		}
1709 
1710 		/* Next get a buffer. */
1711 
1712 		last = skb_peek_tail(&sk->sk_receive_queue);
1713 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1714 			last = skb;
1715 			/* Now that we have two receive queues this
1716 			 * shouldn't happen.
1717 			 */
1718 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1719 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1720 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1721 				 flags))
1722 				break;
1723 
1724 			offset = *seq - TCP_SKB_CB(skb)->seq;
1725 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1726 				pr_err_once("%s: found a SYN, please report !\n", __func__);
1727 				offset--;
1728 			}
1729 			if (offset < skb->len)
1730 				goto found_ok_skb;
1731 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1732 				goto found_fin_ok;
1733 			WARN(!(flags & MSG_PEEK),
1734 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1735 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1736 		}
1737 
1738 		/* Well, if we have backlog, try to process it now yet. */
1739 
1740 		if (copied >= target && !sk->sk_backlog.tail)
1741 			break;
1742 
1743 		if (copied) {
1744 			if (sk->sk_err ||
1745 			    sk->sk_state == TCP_CLOSE ||
1746 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1747 			    !timeo ||
1748 			    signal_pending(current))
1749 				break;
1750 		} else {
1751 			if (sock_flag(sk, SOCK_DONE))
1752 				break;
1753 
1754 			if (sk->sk_err) {
1755 				copied = sock_error(sk);
1756 				break;
1757 			}
1758 
1759 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1760 				break;
1761 
1762 			if (sk->sk_state == TCP_CLOSE) {
1763 				if (!sock_flag(sk, SOCK_DONE)) {
1764 					/* This occurs when user tries to read
1765 					 * from never connected socket.
1766 					 */
1767 					copied = -ENOTCONN;
1768 					break;
1769 				}
1770 				break;
1771 			}
1772 
1773 			if (!timeo) {
1774 				copied = -EAGAIN;
1775 				break;
1776 			}
1777 
1778 			if (signal_pending(current)) {
1779 				copied = sock_intr_errno(timeo);
1780 				break;
1781 			}
1782 		}
1783 
1784 		tcp_cleanup_rbuf(sk, copied);
1785 
1786 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1787 			/* Install new reader */
1788 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1789 				user_recv = current;
1790 				tp->ucopy.task = user_recv;
1791 				tp->ucopy.msg = msg;
1792 			}
1793 
1794 			tp->ucopy.len = len;
1795 
1796 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1797 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1798 
1799 			/* Ugly... If prequeue is not empty, we have to
1800 			 * process it before releasing socket, otherwise
1801 			 * order will be broken at second iteration.
1802 			 * More elegant solution is required!!!
1803 			 *
1804 			 * Look: we have the following (pseudo)queues:
1805 			 *
1806 			 * 1. packets in flight
1807 			 * 2. backlog
1808 			 * 3. prequeue
1809 			 * 4. receive_queue
1810 			 *
1811 			 * Each queue can be processed only if the next ones
1812 			 * are empty. At this point we have empty receive_queue.
1813 			 * But prequeue _can_ be not empty after 2nd iteration,
1814 			 * when we jumped to start of loop because backlog
1815 			 * processing added something to receive_queue.
1816 			 * We cannot release_sock(), because backlog contains
1817 			 * packets arrived _after_ prequeued ones.
1818 			 *
1819 			 * Shortly, algorithm is clear --- to process all
1820 			 * the queues in order. We could make it more directly,
1821 			 * requeueing packets from backlog to prequeue, if
1822 			 * is not empty. It is more elegant, but eats cycles,
1823 			 * unfortunately.
1824 			 */
1825 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1826 				goto do_prequeue;
1827 
1828 			/* __ Set realtime policy in scheduler __ */
1829 		}
1830 
1831 		if (copied >= target) {
1832 			/* Do not sleep, just process backlog. */
1833 			release_sock(sk);
1834 			lock_sock(sk);
1835 		} else {
1836 			sk_wait_data(sk, &timeo, last);
1837 		}
1838 
1839 		if (user_recv) {
1840 			int chunk;
1841 
1842 			/* __ Restore normal policy in scheduler __ */
1843 
1844 			chunk = len - tp->ucopy.len;
1845 			if (chunk != 0) {
1846 				NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1847 				len -= chunk;
1848 				copied += chunk;
1849 			}
1850 
1851 			if (tp->rcv_nxt == tp->copied_seq &&
1852 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1853 do_prequeue:
1854 				tcp_prequeue_process(sk);
1855 
1856 				chunk = len - tp->ucopy.len;
1857 				if (chunk != 0) {
1858 					NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1859 					len -= chunk;
1860 					copied += chunk;
1861 				}
1862 			}
1863 		}
1864 		if ((flags & MSG_PEEK) &&
1865 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1866 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1867 					    current->comm,
1868 					    task_pid_nr(current));
1869 			peek_seq = tp->copied_seq;
1870 		}
1871 		continue;
1872 
1873 	found_ok_skb:
1874 		/* Ok so how much can we use? */
1875 		used = skb->len - offset;
1876 		if (len < used)
1877 			used = len;
1878 
1879 		/* Do we have urgent data here? */
1880 		if (tp->urg_data) {
1881 			u32 urg_offset = tp->urg_seq - *seq;
1882 			if (urg_offset < used) {
1883 				if (!urg_offset) {
1884 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1885 						++*seq;
1886 						urg_hole++;
1887 						offset++;
1888 						used--;
1889 						if (!used)
1890 							goto skip_copy;
1891 					}
1892 				} else
1893 					used = urg_offset;
1894 			}
1895 		}
1896 
1897 		if (!(flags & MSG_TRUNC)) {
1898 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1899 			if (err) {
1900 				/* Exception. Bailout! */
1901 				if (!copied)
1902 					copied = -EFAULT;
1903 				break;
1904 			}
1905 		}
1906 
1907 		*seq += used;
1908 		copied += used;
1909 		len -= used;
1910 
1911 		tcp_rcv_space_adjust(sk);
1912 
1913 skip_copy:
1914 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1915 			tp->urg_data = 0;
1916 			tcp_fast_path_check(sk);
1917 		}
1918 		if (used + offset < skb->len)
1919 			continue;
1920 
1921 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1922 			goto found_fin_ok;
1923 		if (!(flags & MSG_PEEK))
1924 			sk_eat_skb(sk, skb);
1925 		continue;
1926 
1927 	found_fin_ok:
1928 		/* Process the FIN. */
1929 		++*seq;
1930 		if (!(flags & MSG_PEEK))
1931 			sk_eat_skb(sk, skb);
1932 		break;
1933 	} while (len > 0);
1934 
1935 	if (user_recv) {
1936 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1937 			int chunk;
1938 
1939 			tp->ucopy.len = copied > 0 ? len : 0;
1940 
1941 			tcp_prequeue_process(sk);
1942 
1943 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1944 				NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1945 				len -= chunk;
1946 				copied += chunk;
1947 			}
1948 		}
1949 
1950 		tp->ucopy.task = NULL;
1951 		tp->ucopy.len = 0;
1952 	}
1953 
1954 	/* According to UNIX98, msg_name/msg_namelen are ignored
1955 	 * on connected socket. I was just happy when found this 8) --ANK
1956 	 */
1957 
1958 	/* Clean up data we have read: This will do ACK frames. */
1959 	tcp_cleanup_rbuf(sk, copied);
1960 
1961 	release_sock(sk);
1962 	return copied;
1963 
1964 out:
1965 	release_sock(sk);
1966 	return err;
1967 
1968 recv_urg:
1969 	err = tcp_recv_urg(sk, msg, len, flags);
1970 	goto out;
1971 
1972 recv_sndq:
1973 	err = tcp_peek_sndq(sk, msg, len);
1974 	goto out;
1975 }
1976 EXPORT_SYMBOL(tcp_recvmsg);
1977 
1978 void tcp_set_state(struct sock *sk, int state)
1979 {
1980 	int oldstate = sk->sk_state;
1981 
1982 	switch (state) {
1983 	case TCP_ESTABLISHED:
1984 		if (oldstate != TCP_ESTABLISHED)
1985 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1986 		break;
1987 
1988 	case TCP_CLOSE:
1989 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1990 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1991 
1992 		sk->sk_prot->unhash(sk);
1993 		if (inet_csk(sk)->icsk_bind_hash &&
1994 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1995 			inet_put_port(sk);
1996 		/* fall through */
1997 	default:
1998 		if (oldstate == TCP_ESTABLISHED)
1999 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2000 	}
2001 
2002 	/* Change state AFTER socket is unhashed to avoid closed
2003 	 * socket sitting in hash tables.
2004 	 */
2005 	sk_state_store(sk, state);
2006 
2007 #ifdef STATE_TRACE
2008 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2009 #endif
2010 }
2011 EXPORT_SYMBOL_GPL(tcp_set_state);
2012 
2013 /*
2014  *	State processing on a close. This implements the state shift for
2015  *	sending our FIN frame. Note that we only send a FIN for some
2016  *	states. A shutdown() may have already sent the FIN, or we may be
2017  *	closed.
2018  */
2019 
2020 static const unsigned char new_state[16] = {
2021   /* current state:        new state:      action:	*/
2022   [0 /* (Invalid) */]	= TCP_CLOSE,
2023   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2024   [TCP_SYN_SENT]	= TCP_CLOSE,
2025   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2026   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2027   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2028   [TCP_TIME_WAIT]	= TCP_CLOSE,
2029   [TCP_CLOSE]		= TCP_CLOSE,
2030   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2031   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2032   [TCP_LISTEN]		= TCP_CLOSE,
2033   [TCP_CLOSING]		= TCP_CLOSING,
2034   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2035 };
2036 
2037 static int tcp_close_state(struct sock *sk)
2038 {
2039 	int next = (int)new_state[sk->sk_state];
2040 	int ns = next & TCP_STATE_MASK;
2041 
2042 	tcp_set_state(sk, ns);
2043 
2044 	return next & TCP_ACTION_FIN;
2045 }
2046 
2047 /*
2048  *	Shutdown the sending side of a connection. Much like close except
2049  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2050  */
2051 
2052 void tcp_shutdown(struct sock *sk, int how)
2053 {
2054 	/*	We need to grab some memory, and put together a FIN,
2055 	 *	and then put it into the queue to be sent.
2056 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2057 	 */
2058 	if (!(how & SEND_SHUTDOWN))
2059 		return;
2060 
2061 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2062 	if ((1 << sk->sk_state) &
2063 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2064 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2065 		/* Clear out any half completed packets.  FIN if needed. */
2066 		if (tcp_close_state(sk))
2067 			tcp_send_fin(sk);
2068 	}
2069 }
2070 EXPORT_SYMBOL(tcp_shutdown);
2071 
2072 bool tcp_check_oom(struct sock *sk, int shift)
2073 {
2074 	bool too_many_orphans, out_of_socket_memory;
2075 
2076 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2077 	out_of_socket_memory = tcp_out_of_memory(sk);
2078 
2079 	if (too_many_orphans)
2080 		net_info_ratelimited("too many orphaned sockets\n");
2081 	if (out_of_socket_memory)
2082 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2083 	return too_many_orphans || out_of_socket_memory;
2084 }
2085 
2086 void tcp_close(struct sock *sk, long timeout)
2087 {
2088 	struct sk_buff *skb;
2089 	int data_was_unread = 0;
2090 	int state;
2091 
2092 	lock_sock(sk);
2093 	sk->sk_shutdown = SHUTDOWN_MASK;
2094 
2095 	if (sk->sk_state == TCP_LISTEN) {
2096 		tcp_set_state(sk, TCP_CLOSE);
2097 
2098 		/* Special case. */
2099 		inet_csk_listen_stop(sk);
2100 
2101 		goto adjudge_to_death;
2102 	}
2103 
2104 	/*  We need to flush the recv. buffs.  We do this only on the
2105 	 *  descriptor close, not protocol-sourced closes, because the
2106 	 *  reader process may not have drained the data yet!
2107 	 */
2108 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2109 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2110 
2111 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2112 			len--;
2113 		data_was_unread += len;
2114 		__kfree_skb(skb);
2115 	}
2116 
2117 	sk_mem_reclaim(sk);
2118 
2119 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2120 	if (sk->sk_state == TCP_CLOSE)
2121 		goto adjudge_to_death;
2122 
2123 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2124 	 * data was lost. To witness the awful effects of the old behavior of
2125 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2126 	 * GET in an FTP client, suspend the process, wait for the client to
2127 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2128 	 * Note: timeout is always zero in such a case.
2129 	 */
2130 	if (unlikely(tcp_sk(sk)->repair)) {
2131 		sk->sk_prot->disconnect(sk, 0);
2132 	} else if (data_was_unread) {
2133 		/* Unread data was tossed, zap the connection. */
2134 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2135 		tcp_set_state(sk, TCP_CLOSE);
2136 		tcp_send_active_reset(sk, sk->sk_allocation);
2137 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2138 		/* Check zero linger _after_ checking for unread data. */
2139 		sk->sk_prot->disconnect(sk, 0);
2140 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2141 	} else if (tcp_close_state(sk)) {
2142 		/* We FIN if the application ate all the data before
2143 		 * zapping the connection.
2144 		 */
2145 
2146 		/* RED-PEN. Formally speaking, we have broken TCP state
2147 		 * machine. State transitions:
2148 		 *
2149 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2150 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2151 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2152 		 *
2153 		 * are legal only when FIN has been sent (i.e. in window),
2154 		 * rather than queued out of window. Purists blame.
2155 		 *
2156 		 * F.e. "RFC state" is ESTABLISHED,
2157 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2158 		 *
2159 		 * The visible declinations are that sometimes
2160 		 * we enter time-wait state, when it is not required really
2161 		 * (harmless), do not send active resets, when they are
2162 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2163 		 * they look as CLOSING or LAST_ACK for Linux)
2164 		 * Probably, I missed some more holelets.
2165 		 * 						--ANK
2166 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2167 		 * in a single packet! (May consider it later but will
2168 		 * probably need API support or TCP_CORK SYN-ACK until
2169 		 * data is written and socket is closed.)
2170 		 */
2171 		tcp_send_fin(sk);
2172 	}
2173 
2174 	sk_stream_wait_close(sk, timeout);
2175 
2176 adjudge_to_death:
2177 	state = sk->sk_state;
2178 	sock_hold(sk);
2179 	sock_orphan(sk);
2180 
2181 	/* It is the last release_sock in its life. It will remove backlog. */
2182 	release_sock(sk);
2183 
2184 
2185 	/* Now socket is owned by kernel and we acquire BH lock
2186 	   to finish close. No need to check for user refs.
2187 	 */
2188 	local_bh_disable();
2189 	bh_lock_sock(sk);
2190 	WARN_ON(sock_owned_by_user(sk));
2191 
2192 	percpu_counter_inc(sk->sk_prot->orphan_count);
2193 
2194 	/* Have we already been destroyed by a softirq or backlog? */
2195 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2196 		goto out;
2197 
2198 	/*	This is a (useful) BSD violating of the RFC. There is a
2199 	 *	problem with TCP as specified in that the other end could
2200 	 *	keep a socket open forever with no application left this end.
2201 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2202 	 *	our end. If they send after that then tough - BUT: long enough
2203 	 *	that we won't make the old 4*rto = almost no time - whoops
2204 	 *	reset mistake.
2205 	 *
2206 	 *	Nope, it was not mistake. It is really desired behaviour
2207 	 *	f.e. on http servers, when such sockets are useless, but
2208 	 *	consume significant resources. Let's do it with special
2209 	 *	linger2	option.					--ANK
2210 	 */
2211 
2212 	if (sk->sk_state == TCP_FIN_WAIT2) {
2213 		struct tcp_sock *tp = tcp_sk(sk);
2214 		if (tp->linger2 < 0) {
2215 			tcp_set_state(sk, TCP_CLOSE);
2216 			tcp_send_active_reset(sk, GFP_ATOMIC);
2217 			__NET_INC_STATS(sock_net(sk),
2218 					LINUX_MIB_TCPABORTONLINGER);
2219 		} else {
2220 			const int tmo = tcp_fin_time(sk);
2221 
2222 			if (tmo > TCP_TIMEWAIT_LEN) {
2223 				inet_csk_reset_keepalive_timer(sk,
2224 						tmo - TCP_TIMEWAIT_LEN);
2225 			} else {
2226 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2227 				goto out;
2228 			}
2229 		}
2230 	}
2231 	if (sk->sk_state != TCP_CLOSE) {
2232 		sk_mem_reclaim(sk);
2233 		if (tcp_check_oom(sk, 0)) {
2234 			tcp_set_state(sk, TCP_CLOSE);
2235 			tcp_send_active_reset(sk, GFP_ATOMIC);
2236 			__NET_INC_STATS(sock_net(sk),
2237 					LINUX_MIB_TCPABORTONMEMORY);
2238 		}
2239 	}
2240 
2241 	if (sk->sk_state == TCP_CLOSE) {
2242 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2243 		/* We could get here with a non-NULL req if the socket is
2244 		 * aborted (e.g., closed with unread data) before 3WHS
2245 		 * finishes.
2246 		 */
2247 		if (req)
2248 			reqsk_fastopen_remove(sk, req, false);
2249 		inet_csk_destroy_sock(sk);
2250 	}
2251 	/* Otherwise, socket is reprieved until protocol close. */
2252 
2253 out:
2254 	bh_unlock_sock(sk);
2255 	local_bh_enable();
2256 	sock_put(sk);
2257 }
2258 EXPORT_SYMBOL(tcp_close);
2259 
2260 /* These states need RST on ABORT according to RFC793 */
2261 
2262 static inline bool tcp_need_reset(int state)
2263 {
2264 	return (1 << state) &
2265 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2266 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2267 }
2268 
2269 int tcp_disconnect(struct sock *sk, int flags)
2270 {
2271 	struct inet_sock *inet = inet_sk(sk);
2272 	struct inet_connection_sock *icsk = inet_csk(sk);
2273 	struct tcp_sock *tp = tcp_sk(sk);
2274 	int err = 0;
2275 	int old_state = sk->sk_state;
2276 
2277 	if (old_state != TCP_CLOSE)
2278 		tcp_set_state(sk, TCP_CLOSE);
2279 
2280 	/* ABORT function of RFC793 */
2281 	if (old_state == TCP_LISTEN) {
2282 		inet_csk_listen_stop(sk);
2283 	} else if (unlikely(tp->repair)) {
2284 		sk->sk_err = ECONNABORTED;
2285 	} else if (tcp_need_reset(old_state) ||
2286 		   (tp->snd_nxt != tp->write_seq &&
2287 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2288 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2289 		 * states
2290 		 */
2291 		tcp_send_active_reset(sk, gfp_any());
2292 		sk->sk_err = ECONNRESET;
2293 	} else if (old_state == TCP_SYN_SENT)
2294 		sk->sk_err = ECONNRESET;
2295 
2296 	tcp_clear_xmit_timers(sk);
2297 	__skb_queue_purge(&sk->sk_receive_queue);
2298 	tcp_write_queue_purge(sk);
2299 	tcp_fastopen_active_disable_ofo_check(sk);
2300 	skb_rbtree_purge(&tp->out_of_order_queue);
2301 
2302 	inet->inet_dport = 0;
2303 
2304 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2305 		inet_reset_saddr(sk);
2306 
2307 	sk->sk_shutdown = 0;
2308 	sock_reset_flag(sk, SOCK_DONE);
2309 	tp->srtt_us = 0;
2310 	tp->write_seq += tp->max_window + 2;
2311 	if (tp->write_seq == 0)
2312 		tp->write_seq = 1;
2313 	icsk->icsk_backoff = 0;
2314 	tp->snd_cwnd = 2;
2315 	icsk->icsk_probes_out = 0;
2316 	tp->packets_out = 0;
2317 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2318 	tp->snd_cwnd_cnt = 0;
2319 	tp->window_clamp = 0;
2320 	tcp_set_ca_state(sk, TCP_CA_Open);
2321 	tcp_clear_retrans(tp);
2322 	inet_csk_delack_init(sk);
2323 	tcp_init_send_head(sk);
2324 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2325 	__sk_dst_reset(sk);
2326 	tcp_saved_syn_free(tp);
2327 
2328 	/* Clean up fastopen related fields */
2329 	tcp_free_fastopen_req(tp);
2330 	inet->defer_connect = 0;
2331 
2332 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2333 
2334 	sk->sk_error_report(sk);
2335 	return err;
2336 }
2337 EXPORT_SYMBOL(tcp_disconnect);
2338 
2339 static inline bool tcp_can_repair_sock(const struct sock *sk)
2340 {
2341 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2342 		(sk->sk_state != TCP_LISTEN);
2343 }
2344 
2345 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2346 {
2347 	struct tcp_repair_window opt;
2348 
2349 	if (!tp->repair)
2350 		return -EPERM;
2351 
2352 	if (len != sizeof(opt))
2353 		return -EINVAL;
2354 
2355 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2356 		return -EFAULT;
2357 
2358 	if (opt.max_window < opt.snd_wnd)
2359 		return -EINVAL;
2360 
2361 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2362 		return -EINVAL;
2363 
2364 	if (after(opt.rcv_wup, tp->rcv_nxt))
2365 		return -EINVAL;
2366 
2367 	tp->snd_wl1	= opt.snd_wl1;
2368 	tp->snd_wnd	= opt.snd_wnd;
2369 	tp->max_window	= opt.max_window;
2370 
2371 	tp->rcv_wnd	= opt.rcv_wnd;
2372 	tp->rcv_wup	= opt.rcv_wup;
2373 
2374 	return 0;
2375 }
2376 
2377 static int tcp_repair_options_est(struct tcp_sock *tp,
2378 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2379 {
2380 	struct tcp_repair_opt opt;
2381 
2382 	while (len >= sizeof(opt)) {
2383 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2384 			return -EFAULT;
2385 
2386 		optbuf++;
2387 		len -= sizeof(opt);
2388 
2389 		switch (opt.opt_code) {
2390 		case TCPOPT_MSS:
2391 			tp->rx_opt.mss_clamp = opt.opt_val;
2392 			break;
2393 		case TCPOPT_WINDOW:
2394 			{
2395 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2396 				u16 rcv_wscale = opt.opt_val >> 16;
2397 
2398 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2399 					return -EFBIG;
2400 
2401 				tp->rx_opt.snd_wscale = snd_wscale;
2402 				tp->rx_opt.rcv_wscale = rcv_wscale;
2403 				tp->rx_opt.wscale_ok = 1;
2404 			}
2405 			break;
2406 		case TCPOPT_SACK_PERM:
2407 			if (opt.opt_val != 0)
2408 				return -EINVAL;
2409 
2410 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2411 			if (sysctl_tcp_fack)
2412 				tcp_enable_fack(tp);
2413 			break;
2414 		case TCPOPT_TIMESTAMP:
2415 			if (opt.opt_val != 0)
2416 				return -EINVAL;
2417 
2418 			tp->rx_opt.tstamp_ok = 1;
2419 			break;
2420 		}
2421 	}
2422 
2423 	return 0;
2424 }
2425 
2426 /*
2427  *	Socket option code for TCP.
2428  */
2429 static int do_tcp_setsockopt(struct sock *sk, int level,
2430 		int optname, char __user *optval, unsigned int optlen)
2431 {
2432 	struct tcp_sock *tp = tcp_sk(sk);
2433 	struct inet_connection_sock *icsk = inet_csk(sk);
2434 	struct net *net = sock_net(sk);
2435 	int val;
2436 	int err = 0;
2437 
2438 	/* These are data/string values, all the others are ints */
2439 	switch (optname) {
2440 	case TCP_CONGESTION: {
2441 		char name[TCP_CA_NAME_MAX];
2442 
2443 		if (optlen < 1)
2444 			return -EINVAL;
2445 
2446 		val = strncpy_from_user(name, optval,
2447 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2448 		if (val < 0)
2449 			return -EFAULT;
2450 		name[val] = 0;
2451 
2452 		lock_sock(sk);
2453 		err = tcp_set_congestion_control(sk, name);
2454 		release_sock(sk);
2455 		return err;
2456 	}
2457 	default:
2458 		/* fallthru */
2459 		break;
2460 	}
2461 
2462 	if (optlen < sizeof(int))
2463 		return -EINVAL;
2464 
2465 	if (get_user(val, (int __user *)optval))
2466 		return -EFAULT;
2467 
2468 	lock_sock(sk);
2469 
2470 	switch (optname) {
2471 	case TCP_MAXSEG:
2472 		/* Values greater than interface MTU won't take effect. However
2473 		 * at the point when this call is done we typically don't yet
2474 		 * know which interface is going to be used */
2475 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2476 			err = -EINVAL;
2477 			break;
2478 		}
2479 		tp->rx_opt.user_mss = val;
2480 		break;
2481 
2482 	case TCP_NODELAY:
2483 		if (val) {
2484 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2485 			 * this option on corked socket is remembered, but
2486 			 * it is not activated until cork is cleared.
2487 			 *
2488 			 * However, when TCP_NODELAY is set we make
2489 			 * an explicit push, which overrides even TCP_CORK
2490 			 * for currently queued segments.
2491 			 */
2492 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2493 			tcp_push_pending_frames(sk);
2494 		} else {
2495 			tp->nonagle &= ~TCP_NAGLE_OFF;
2496 		}
2497 		break;
2498 
2499 	case TCP_THIN_LINEAR_TIMEOUTS:
2500 		if (val < 0 || val > 1)
2501 			err = -EINVAL;
2502 		else
2503 			tp->thin_lto = val;
2504 		break;
2505 
2506 	case TCP_THIN_DUPACK:
2507 		if (val < 0 || val > 1)
2508 			err = -EINVAL;
2509 		break;
2510 
2511 	case TCP_REPAIR:
2512 		if (!tcp_can_repair_sock(sk))
2513 			err = -EPERM;
2514 		else if (val == 1) {
2515 			tp->repair = 1;
2516 			sk->sk_reuse = SK_FORCE_REUSE;
2517 			tp->repair_queue = TCP_NO_QUEUE;
2518 		} else if (val == 0) {
2519 			tp->repair = 0;
2520 			sk->sk_reuse = SK_NO_REUSE;
2521 			tcp_send_window_probe(sk);
2522 		} else
2523 			err = -EINVAL;
2524 
2525 		break;
2526 
2527 	case TCP_REPAIR_QUEUE:
2528 		if (!tp->repair)
2529 			err = -EPERM;
2530 		else if (val < TCP_QUEUES_NR)
2531 			tp->repair_queue = val;
2532 		else
2533 			err = -EINVAL;
2534 		break;
2535 
2536 	case TCP_QUEUE_SEQ:
2537 		if (sk->sk_state != TCP_CLOSE)
2538 			err = -EPERM;
2539 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2540 			tp->write_seq = val;
2541 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2542 			tp->rcv_nxt = val;
2543 		else
2544 			err = -EINVAL;
2545 		break;
2546 
2547 	case TCP_REPAIR_OPTIONS:
2548 		if (!tp->repair)
2549 			err = -EINVAL;
2550 		else if (sk->sk_state == TCP_ESTABLISHED)
2551 			err = tcp_repair_options_est(tp,
2552 					(struct tcp_repair_opt __user *)optval,
2553 					optlen);
2554 		else
2555 			err = -EPERM;
2556 		break;
2557 
2558 	case TCP_CORK:
2559 		/* When set indicates to always queue non-full frames.
2560 		 * Later the user clears this option and we transmit
2561 		 * any pending partial frames in the queue.  This is
2562 		 * meant to be used alongside sendfile() to get properly
2563 		 * filled frames when the user (for example) must write
2564 		 * out headers with a write() call first and then use
2565 		 * sendfile to send out the data parts.
2566 		 *
2567 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2568 		 * stronger than TCP_NODELAY.
2569 		 */
2570 		if (val) {
2571 			tp->nonagle |= TCP_NAGLE_CORK;
2572 		} else {
2573 			tp->nonagle &= ~TCP_NAGLE_CORK;
2574 			if (tp->nonagle&TCP_NAGLE_OFF)
2575 				tp->nonagle |= TCP_NAGLE_PUSH;
2576 			tcp_push_pending_frames(sk);
2577 		}
2578 		break;
2579 
2580 	case TCP_KEEPIDLE:
2581 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2582 			err = -EINVAL;
2583 		else {
2584 			tp->keepalive_time = val * HZ;
2585 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2586 			    !((1 << sk->sk_state) &
2587 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2588 				u32 elapsed = keepalive_time_elapsed(tp);
2589 				if (tp->keepalive_time > elapsed)
2590 					elapsed = tp->keepalive_time - elapsed;
2591 				else
2592 					elapsed = 0;
2593 				inet_csk_reset_keepalive_timer(sk, elapsed);
2594 			}
2595 		}
2596 		break;
2597 	case TCP_KEEPINTVL:
2598 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2599 			err = -EINVAL;
2600 		else
2601 			tp->keepalive_intvl = val * HZ;
2602 		break;
2603 	case TCP_KEEPCNT:
2604 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2605 			err = -EINVAL;
2606 		else
2607 			tp->keepalive_probes = val;
2608 		break;
2609 	case TCP_SYNCNT:
2610 		if (val < 1 || val > MAX_TCP_SYNCNT)
2611 			err = -EINVAL;
2612 		else
2613 			icsk->icsk_syn_retries = val;
2614 		break;
2615 
2616 	case TCP_SAVE_SYN:
2617 		if (val < 0 || val > 1)
2618 			err = -EINVAL;
2619 		else
2620 			tp->save_syn = val;
2621 		break;
2622 
2623 	case TCP_LINGER2:
2624 		if (val < 0)
2625 			tp->linger2 = -1;
2626 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2627 			tp->linger2 = 0;
2628 		else
2629 			tp->linger2 = val * HZ;
2630 		break;
2631 
2632 	case TCP_DEFER_ACCEPT:
2633 		/* Translate value in seconds to number of retransmits */
2634 		icsk->icsk_accept_queue.rskq_defer_accept =
2635 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2636 					TCP_RTO_MAX / HZ);
2637 		break;
2638 
2639 	case TCP_WINDOW_CLAMP:
2640 		if (!val) {
2641 			if (sk->sk_state != TCP_CLOSE) {
2642 				err = -EINVAL;
2643 				break;
2644 			}
2645 			tp->window_clamp = 0;
2646 		} else
2647 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2648 						SOCK_MIN_RCVBUF / 2 : val;
2649 		break;
2650 
2651 	case TCP_QUICKACK:
2652 		if (!val) {
2653 			icsk->icsk_ack.pingpong = 1;
2654 		} else {
2655 			icsk->icsk_ack.pingpong = 0;
2656 			if ((1 << sk->sk_state) &
2657 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2658 			    inet_csk_ack_scheduled(sk)) {
2659 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2660 				tcp_cleanup_rbuf(sk, 1);
2661 				if (!(val & 1))
2662 					icsk->icsk_ack.pingpong = 1;
2663 			}
2664 		}
2665 		break;
2666 
2667 #ifdef CONFIG_TCP_MD5SIG
2668 	case TCP_MD5SIG:
2669 		/* Read the IP->Key mappings from userspace */
2670 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2671 		break;
2672 #endif
2673 	case TCP_USER_TIMEOUT:
2674 		/* Cap the max time in ms TCP will retry or probe the window
2675 		 * before giving up and aborting (ETIMEDOUT) a connection.
2676 		 */
2677 		if (val < 0)
2678 			err = -EINVAL;
2679 		else
2680 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2681 		break;
2682 
2683 	case TCP_FASTOPEN:
2684 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2685 		    TCPF_LISTEN))) {
2686 			tcp_fastopen_init_key_once(true);
2687 
2688 			fastopen_queue_tune(sk, val);
2689 		} else {
2690 			err = -EINVAL;
2691 		}
2692 		break;
2693 	case TCP_FASTOPEN_CONNECT:
2694 		if (val > 1 || val < 0) {
2695 			err = -EINVAL;
2696 		} else if (sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2697 			if (sk->sk_state == TCP_CLOSE)
2698 				tp->fastopen_connect = val;
2699 			else
2700 				err = -EINVAL;
2701 		} else {
2702 			err = -EOPNOTSUPP;
2703 		}
2704 		break;
2705 	case TCP_TIMESTAMP:
2706 		if (!tp->repair)
2707 			err = -EPERM;
2708 		else
2709 			tp->tsoffset = val - tcp_time_stamp;
2710 		break;
2711 	case TCP_REPAIR_WINDOW:
2712 		err = tcp_repair_set_window(tp, optval, optlen);
2713 		break;
2714 	case TCP_NOTSENT_LOWAT:
2715 		tp->notsent_lowat = val;
2716 		sk->sk_write_space(sk);
2717 		break;
2718 	default:
2719 		err = -ENOPROTOOPT;
2720 		break;
2721 	}
2722 
2723 	release_sock(sk);
2724 	return err;
2725 }
2726 
2727 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2728 		   unsigned int optlen)
2729 {
2730 	const struct inet_connection_sock *icsk = inet_csk(sk);
2731 
2732 	if (level != SOL_TCP)
2733 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2734 						     optval, optlen);
2735 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2736 }
2737 EXPORT_SYMBOL(tcp_setsockopt);
2738 
2739 #ifdef CONFIG_COMPAT
2740 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2741 			  char __user *optval, unsigned int optlen)
2742 {
2743 	if (level != SOL_TCP)
2744 		return inet_csk_compat_setsockopt(sk, level, optname,
2745 						  optval, optlen);
2746 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2747 }
2748 EXPORT_SYMBOL(compat_tcp_setsockopt);
2749 #endif
2750 
2751 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2752 				      struct tcp_info *info)
2753 {
2754 	u64 stats[__TCP_CHRONO_MAX], total = 0;
2755 	enum tcp_chrono i;
2756 
2757 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2758 		stats[i] = tp->chrono_stat[i - 1];
2759 		if (i == tp->chrono_type)
2760 			stats[i] += tcp_time_stamp - tp->chrono_start;
2761 		stats[i] *= USEC_PER_SEC / HZ;
2762 		total += stats[i];
2763 	}
2764 
2765 	info->tcpi_busy_time = total;
2766 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2767 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2768 }
2769 
2770 /* Return information about state of tcp endpoint in API format. */
2771 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2772 {
2773 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2774 	const struct inet_connection_sock *icsk = inet_csk(sk);
2775 	u32 now, intv;
2776 	u64 rate64;
2777 	bool slow;
2778 	u32 rate;
2779 
2780 	memset(info, 0, sizeof(*info));
2781 	if (sk->sk_type != SOCK_STREAM)
2782 		return;
2783 
2784 	info->tcpi_state = sk_state_load(sk);
2785 
2786 	/* Report meaningful fields for all TCP states, including listeners */
2787 	rate = READ_ONCE(sk->sk_pacing_rate);
2788 	rate64 = rate != ~0U ? rate : ~0ULL;
2789 	info->tcpi_pacing_rate = rate64;
2790 
2791 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2792 	rate64 = rate != ~0U ? rate : ~0ULL;
2793 	info->tcpi_max_pacing_rate = rate64;
2794 
2795 	info->tcpi_reordering = tp->reordering;
2796 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2797 
2798 	if (info->tcpi_state == TCP_LISTEN) {
2799 		/* listeners aliased fields :
2800 		 * tcpi_unacked -> Number of children ready for accept()
2801 		 * tcpi_sacked  -> max backlog
2802 		 */
2803 		info->tcpi_unacked = sk->sk_ack_backlog;
2804 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2805 		return;
2806 	}
2807 
2808 	slow = lock_sock_fast(sk);
2809 
2810 	info->tcpi_ca_state = icsk->icsk_ca_state;
2811 	info->tcpi_retransmits = icsk->icsk_retransmits;
2812 	info->tcpi_probes = icsk->icsk_probes_out;
2813 	info->tcpi_backoff = icsk->icsk_backoff;
2814 
2815 	if (tp->rx_opt.tstamp_ok)
2816 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2817 	if (tcp_is_sack(tp))
2818 		info->tcpi_options |= TCPI_OPT_SACK;
2819 	if (tp->rx_opt.wscale_ok) {
2820 		info->tcpi_options |= TCPI_OPT_WSCALE;
2821 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2822 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2823 	}
2824 
2825 	if (tp->ecn_flags & TCP_ECN_OK)
2826 		info->tcpi_options |= TCPI_OPT_ECN;
2827 	if (tp->ecn_flags & TCP_ECN_SEEN)
2828 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2829 	if (tp->syn_data_acked)
2830 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2831 
2832 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2833 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2834 	info->tcpi_snd_mss = tp->mss_cache;
2835 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2836 
2837 	info->tcpi_unacked = tp->packets_out;
2838 	info->tcpi_sacked = tp->sacked_out;
2839 
2840 	info->tcpi_lost = tp->lost_out;
2841 	info->tcpi_retrans = tp->retrans_out;
2842 	info->tcpi_fackets = tp->fackets_out;
2843 
2844 	now = tcp_time_stamp;
2845 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2846 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2847 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2848 
2849 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2850 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2851 	info->tcpi_rtt = tp->srtt_us >> 3;
2852 	info->tcpi_rttvar = tp->mdev_us >> 2;
2853 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2854 	info->tcpi_advmss = tp->advmss;
2855 
2856 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
2857 	info->tcpi_rcv_space = tp->rcvq_space.space;
2858 
2859 	info->tcpi_total_retrans = tp->total_retrans;
2860 
2861 	info->tcpi_bytes_acked = tp->bytes_acked;
2862 	info->tcpi_bytes_received = tp->bytes_received;
2863 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
2864 	tcp_get_info_chrono_stats(tp, info);
2865 
2866 	info->tcpi_segs_out = tp->segs_out;
2867 	info->tcpi_segs_in = tp->segs_in;
2868 
2869 	info->tcpi_min_rtt = tcp_min_rtt(tp);
2870 	info->tcpi_data_segs_in = tp->data_segs_in;
2871 	info->tcpi_data_segs_out = tp->data_segs_out;
2872 
2873 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2874 	rate = READ_ONCE(tp->rate_delivered);
2875 	intv = READ_ONCE(tp->rate_interval_us);
2876 	if (rate && intv) {
2877 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
2878 		do_div(rate64, intv);
2879 		info->tcpi_delivery_rate = rate64;
2880 	}
2881 	unlock_sock_fast(sk, slow);
2882 }
2883 EXPORT_SYMBOL_GPL(tcp_get_info);
2884 
2885 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
2886 {
2887 	const struct tcp_sock *tp = tcp_sk(sk);
2888 	struct sk_buff *stats;
2889 	struct tcp_info info;
2890 
2891 	stats = alloc_skb(5 * nla_total_size_64bit(sizeof(u64)), GFP_ATOMIC);
2892 	if (!stats)
2893 		return NULL;
2894 
2895 	tcp_get_info_chrono_stats(tp, &info);
2896 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
2897 			  info.tcpi_busy_time, TCP_NLA_PAD);
2898 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
2899 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
2900 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
2901 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
2902 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
2903 			  tp->data_segs_out, TCP_NLA_PAD);
2904 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
2905 			  tp->total_retrans, TCP_NLA_PAD);
2906 	return stats;
2907 }
2908 
2909 static int do_tcp_getsockopt(struct sock *sk, int level,
2910 		int optname, char __user *optval, int __user *optlen)
2911 {
2912 	struct inet_connection_sock *icsk = inet_csk(sk);
2913 	struct tcp_sock *tp = tcp_sk(sk);
2914 	struct net *net = sock_net(sk);
2915 	int val, len;
2916 
2917 	if (get_user(len, optlen))
2918 		return -EFAULT;
2919 
2920 	len = min_t(unsigned int, len, sizeof(int));
2921 
2922 	if (len < 0)
2923 		return -EINVAL;
2924 
2925 	switch (optname) {
2926 	case TCP_MAXSEG:
2927 		val = tp->mss_cache;
2928 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2929 			val = tp->rx_opt.user_mss;
2930 		if (tp->repair)
2931 			val = tp->rx_opt.mss_clamp;
2932 		break;
2933 	case TCP_NODELAY:
2934 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2935 		break;
2936 	case TCP_CORK:
2937 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2938 		break;
2939 	case TCP_KEEPIDLE:
2940 		val = keepalive_time_when(tp) / HZ;
2941 		break;
2942 	case TCP_KEEPINTVL:
2943 		val = keepalive_intvl_when(tp) / HZ;
2944 		break;
2945 	case TCP_KEEPCNT:
2946 		val = keepalive_probes(tp);
2947 		break;
2948 	case TCP_SYNCNT:
2949 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2950 		break;
2951 	case TCP_LINGER2:
2952 		val = tp->linger2;
2953 		if (val >= 0)
2954 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2955 		break;
2956 	case TCP_DEFER_ACCEPT:
2957 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2958 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2959 		break;
2960 	case TCP_WINDOW_CLAMP:
2961 		val = tp->window_clamp;
2962 		break;
2963 	case TCP_INFO: {
2964 		struct tcp_info info;
2965 
2966 		if (get_user(len, optlen))
2967 			return -EFAULT;
2968 
2969 		tcp_get_info(sk, &info);
2970 
2971 		len = min_t(unsigned int, len, sizeof(info));
2972 		if (put_user(len, optlen))
2973 			return -EFAULT;
2974 		if (copy_to_user(optval, &info, len))
2975 			return -EFAULT;
2976 		return 0;
2977 	}
2978 	case TCP_CC_INFO: {
2979 		const struct tcp_congestion_ops *ca_ops;
2980 		union tcp_cc_info info;
2981 		size_t sz = 0;
2982 		int attr;
2983 
2984 		if (get_user(len, optlen))
2985 			return -EFAULT;
2986 
2987 		ca_ops = icsk->icsk_ca_ops;
2988 		if (ca_ops && ca_ops->get_info)
2989 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2990 
2991 		len = min_t(unsigned int, len, sz);
2992 		if (put_user(len, optlen))
2993 			return -EFAULT;
2994 		if (copy_to_user(optval, &info, len))
2995 			return -EFAULT;
2996 		return 0;
2997 	}
2998 	case TCP_QUICKACK:
2999 		val = !icsk->icsk_ack.pingpong;
3000 		break;
3001 
3002 	case TCP_CONGESTION:
3003 		if (get_user(len, optlen))
3004 			return -EFAULT;
3005 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3006 		if (put_user(len, optlen))
3007 			return -EFAULT;
3008 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3009 			return -EFAULT;
3010 		return 0;
3011 
3012 	case TCP_THIN_LINEAR_TIMEOUTS:
3013 		val = tp->thin_lto;
3014 		break;
3015 
3016 	case TCP_THIN_DUPACK:
3017 		val = 0;
3018 		break;
3019 
3020 	case TCP_REPAIR:
3021 		val = tp->repair;
3022 		break;
3023 
3024 	case TCP_REPAIR_QUEUE:
3025 		if (tp->repair)
3026 			val = tp->repair_queue;
3027 		else
3028 			return -EINVAL;
3029 		break;
3030 
3031 	case TCP_REPAIR_WINDOW: {
3032 		struct tcp_repair_window opt;
3033 
3034 		if (get_user(len, optlen))
3035 			return -EFAULT;
3036 
3037 		if (len != sizeof(opt))
3038 			return -EINVAL;
3039 
3040 		if (!tp->repair)
3041 			return -EPERM;
3042 
3043 		opt.snd_wl1	= tp->snd_wl1;
3044 		opt.snd_wnd	= tp->snd_wnd;
3045 		opt.max_window	= tp->max_window;
3046 		opt.rcv_wnd	= tp->rcv_wnd;
3047 		opt.rcv_wup	= tp->rcv_wup;
3048 
3049 		if (copy_to_user(optval, &opt, len))
3050 			return -EFAULT;
3051 		return 0;
3052 	}
3053 	case TCP_QUEUE_SEQ:
3054 		if (tp->repair_queue == TCP_SEND_QUEUE)
3055 			val = tp->write_seq;
3056 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3057 			val = tp->rcv_nxt;
3058 		else
3059 			return -EINVAL;
3060 		break;
3061 
3062 	case TCP_USER_TIMEOUT:
3063 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
3064 		break;
3065 
3066 	case TCP_FASTOPEN:
3067 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3068 		break;
3069 
3070 	case TCP_FASTOPEN_CONNECT:
3071 		val = tp->fastopen_connect;
3072 		break;
3073 
3074 	case TCP_TIMESTAMP:
3075 		val = tcp_time_stamp + tp->tsoffset;
3076 		break;
3077 	case TCP_NOTSENT_LOWAT:
3078 		val = tp->notsent_lowat;
3079 		break;
3080 	case TCP_SAVE_SYN:
3081 		val = tp->save_syn;
3082 		break;
3083 	case TCP_SAVED_SYN: {
3084 		if (get_user(len, optlen))
3085 			return -EFAULT;
3086 
3087 		lock_sock(sk);
3088 		if (tp->saved_syn) {
3089 			if (len < tp->saved_syn[0]) {
3090 				if (put_user(tp->saved_syn[0], optlen)) {
3091 					release_sock(sk);
3092 					return -EFAULT;
3093 				}
3094 				release_sock(sk);
3095 				return -EINVAL;
3096 			}
3097 			len = tp->saved_syn[0];
3098 			if (put_user(len, optlen)) {
3099 				release_sock(sk);
3100 				return -EFAULT;
3101 			}
3102 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3103 				release_sock(sk);
3104 				return -EFAULT;
3105 			}
3106 			tcp_saved_syn_free(tp);
3107 			release_sock(sk);
3108 		} else {
3109 			release_sock(sk);
3110 			len = 0;
3111 			if (put_user(len, optlen))
3112 				return -EFAULT;
3113 		}
3114 		return 0;
3115 	}
3116 	default:
3117 		return -ENOPROTOOPT;
3118 	}
3119 
3120 	if (put_user(len, optlen))
3121 		return -EFAULT;
3122 	if (copy_to_user(optval, &val, len))
3123 		return -EFAULT;
3124 	return 0;
3125 }
3126 
3127 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3128 		   int __user *optlen)
3129 {
3130 	struct inet_connection_sock *icsk = inet_csk(sk);
3131 
3132 	if (level != SOL_TCP)
3133 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3134 						     optval, optlen);
3135 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3136 }
3137 EXPORT_SYMBOL(tcp_getsockopt);
3138 
3139 #ifdef CONFIG_COMPAT
3140 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3141 			  char __user *optval, int __user *optlen)
3142 {
3143 	if (level != SOL_TCP)
3144 		return inet_csk_compat_getsockopt(sk, level, optname,
3145 						  optval, optlen);
3146 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3147 }
3148 EXPORT_SYMBOL(compat_tcp_getsockopt);
3149 #endif
3150 
3151 #ifdef CONFIG_TCP_MD5SIG
3152 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3153 static DEFINE_MUTEX(tcp_md5sig_mutex);
3154 static bool tcp_md5sig_pool_populated = false;
3155 
3156 static void __tcp_alloc_md5sig_pool(void)
3157 {
3158 	struct crypto_ahash *hash;
3159 	int cpu;
3160 
3161 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3162 	if (IS_ERR(hash))
3163 		return;
3164 
3165 	for_each_possible_cpu(cpu) {
3166 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3167 		struct ahash_request *req;
3168 
3169 		if (!scratch) {
3170 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3171 					       sizeof(struct tcphdr),
3172 					       GFP_KERNEL,
3173 					       cpu_to_node(cpu));
3174 			if (!scratch)
3175 				return;
3176 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3177 		}
3178 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3179 			continue;
3180 
3181 		req = ahash_request_alloc(hash, GFP_KERNEL);
3182 		if (!req)
3183 			return;
3184 
3185 		ahash_request_set_callback(req, 0, NULL, NULL);
3186 
3187 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3188 	}
3189 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3190 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3191 	 */
3192 	smp_wmb();
3193 	tcp_md5sig_pool_populated = true;
3194 }
3195 
3196 bool tcp_alloc_md5sig_pool(void)
3197 {
3198 	if (unlikely(!tcp_md5sig_pool_populated)) {
3199 		mutex_lock(&tcp_md5sig_mutex);
3200 
3201 		if (!tcp_md5sig_pool_populated)
3202 			__tcp_alloc_md5sig_pool();
3203 
3204 		mutex_unlock(&tcp_md5sig_mutex);
3205 	}
3206 	return tcp_md5sig_pool_populated;
3207 }
3208 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3209 
3210 
3211 /**
3212  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3213  *
3214  *	We use percpu structure, so if we succeed, we exit with preemption
3215  *	and BH disabled, to make sure another thread or softirq handling
3216  *	wont try to get same context.
3217  */
3218 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3219 {
3220 	local_bh_disable();
3221 
3222 	if (tcp_md5sig_pool_populated) {
3223 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3224 		smp_rmb();
3225 		return this_cpu_ptr(&tcp_md5sig_pool);
3226 	}
3227 	local_bh_enable();
3228 	return NULL;
3229 }
3230 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3231 
3232 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3233 			  const struct sk_buff *skb, unsigned int header_len)
3234 {
3235 	struct scatterlist sg;
3236 	const struct tcphdr *tp = tcp_hdr(skb);
3237 	struct ahash_request *req = hp->md5_req;
3238 	unsigned int i;
3239 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3240 					   skb_headlen(skb) - header_len : 0;
3241 	const struct skb_shared_info *shi = skb_shinfo(skb);
3242 	struct sk_buff *frag_iter;
3243 
3244 	sg_init_table(&sg, 1);
3245 
3246 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3247 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3248 	if (crypto_ahash_update(req))
3249 		return 1;
3250 
3251 	for (i = 0; i < shi->nr_frags; ++i) {
3252 		const struct skb_frag_struct *f = &shi->frags[i];
3253 		unsigned int offset = f->page_offset;
3254 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3255 
3256 		sg_set_page(&sg, page, skb_frag_size(f),
3257 			    offset_in_page(offset));
3258 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3259 		if (crypto_ahash_update(req))
3260 			return 1;
3261 	}
3262 
3263 	skb_walk_frags(skb, frag_iter)
3264 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3265 			return 1;
3266 
3267 	return 0;
3268 }
3269 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3270 
3271 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3272 {
3273 	struct scatterlist sg;
3274 
3275 	sg_init_one(&sg, key->key, key->keylen);
3276 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3277 	return crypto_ahash_update(hp->md5_req);
3278 }
3279 EXPORT_SYMBOL(tcp_md5_hash_key);
3280 
3281 #endif
3282 
3283 void tcp_done(struct sock *sk)
3284 {
3285 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3286 
3287 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3288 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3289 
3290 	tcp_set_state(sk, TCP_CLOSE);
3291 	tcp_clear_xmit_timers(sk);
3292 	if (req)
3293 		reqsk_fastopen_remove(sk, req, false);
3294 
3295 	sk->sk_shutdown = SHUTDOWN_MASK;
3296 
3297 	if (!sock_flag(sk, SOCK_DEAD))
3298 		sk->sk_state_change(sk);
3299 	else
3300 		inet_csk_destroy_sock(sk);
3301 }
3302 EXPORT_SYMBOL_GPL(tcp_done);
3303 
3304 int tcp_abort(struct sock *sk, int err)
3305 {
3306 	if (!sk_fullsock(sk)) {
3307 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3308 			struct request_sock *req = inet_reqsk(sk);
3309 
3310 			local_bh_disable();
3311 			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3312 							  req);
3313 			local_bh_enable();
3314 			return 0;
3315 		}
3316 		return -EOPNOTSUPP;
3317 	}
3318 
3319 	/* Don't race with userspace socket closes such as tcp_close. */
3320 	lock_sock(sk);
3321 
3322 	if (sk->sk_state == TCP_LISTEN) {
3323 		tcp_set_state(sk, TCP_CLOSE);
3324 		inet_csk_listen_stop(sk);
3325 	}
3326 
3327 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3328 	local_bh_disable();
3329 	bh_lock_sock(sk);
3330 
3331 	if (!sock_flag(sk, SOCK_DEAD)) {
3332 		sk->sk_err = err;
3333 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3334 		smp_wmb();
3335 		sk->sk_error_report(sk);
3336 		if (tcp_need_reset(sk->sk_state))
3337 			tcp_send_active_reset(sk, GFP_ATOMIC);
3338 		tcp_done(sk);
3339 	}
3340 
3341 	bh_unlock_sock(sk);
3342 	local_bh_enable();
3343 	release_sock(sk);
3344 	return 0;
3345 }
3346 EXPORT_SYMBOL_GPL(tcp_abort);
3347 
3348 extern struct tcp_congestion_ops tcp_reno;
3349 
3350 static __initdata unsigned long thash_entries;
3351 static int __init set_thash_entries(char *str)
3352 {
3353 	ssize_t ret;
3354 
3355 	if (!str)
3356 		return 0;
3357 
3358 	ret = kstrtoul(str, 0, &thash_entries);
3359 	if (ret)
3360 		return 0;
3361 
3362 	return 1;
3363 }
3364 __setup("thash_entries=", set_thash_entries);
3365 
3366 static void __init tcp_init_mem(void)
3367 {
3368 	unsigned long limit = nr_free_buffer_pages() / 16;
3369 
3370 	limit = max(limit, 128UL);
3371 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3372 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3373 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3374 }
3375 
3376 void __init tcp_init(void)
3377 {
3378 	int max_rshare, max_wshare, cnt;
3379 	unsigned long limit;
3380 	unsigned int i;
3381 
3382 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3383 		     FIELD_SIZEOF(struct sk_buff, cb));
3384 
3385 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3386 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3387 	inet_hashinfo_init(&tcp_hashinfo);
3388 	tcp_hashinfo.bind_bucket_cachep =
3389 		kmem_cache_create("tcp_bind_bucket",
3390 				  sizeof(struct inet_bind_bucket), 0,
3391 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3392 
3393 	/* Size and allocate the main established and bind bucket
3394 	 * hash tables.
3395 	 *
3396 	 * The methodology is similar to that of the buffer cache.
3397 	 */
3398 	tcp_hashinfo.ehash =
3399 		alloc_large_system_hash("TCP established",
3400 					sizeof(struct inet_ehash_bucket),
3401 					thash_entries,
3402 					17, /* one slot per 128 KB of memory */
3403 					0,
3404 					NULL,
3405 					&tcp_hashinfo.ehash_mask,
3406 					0,
3407 					thash_entries ? 0 : 512 * 1024);
3408 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3409 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3410 
3411 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3412 		panic("TCP: failed to alloc ehash_locks");
3413 	tcp_hashinfo.bhash =
3414 		alloc_large_system_hash("TCP bind",
3415 					sizeof(struct inet_bind_hashbucket),
3416 					tcp_hashinfo.ehash_mask + 1,
3417 					17, /* one slot per 128 KB of memory */
3418 					0,
3419 					&tcp_hashinfo.bhash_size,
3420 					NULL,
3421 					0,
3422 					64 * 1024);
3423 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3424 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3425 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3426 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3427 	}
3428 
3429 
3430 	cnt = tcp_hashinfo.ehash_mask + 1;
3431 	sysctl_tcp_max_orphans = cnt / 2;
3432 
3433 	tcp_init_mem();
3434 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3435 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3436 	max_wshare = min(4UL*1024*1024, limit);
3437 	max_rshare = min(6UL*1024*1024, limit);
3438 
3439 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3440 	sysctl_tcp_wmem[1] = 16*1024;
3441 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3442 
3443 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3444 	sysctl_tcp_rmem[1] = 87380;
3445 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3446 
3447 	pr_info("Hash tables configured (established %u bind %u)\n",
3448 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3449 
3450 	tcp_v4_init();
3451 	tcp_metrics_init();
3452 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3453 	tcp_tasklet_init();
3454 }
3455