xref: /linux/net/ipv4/tcp.c (revision 60063497a95e716c9a689af3be2687d261f115b4)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #include <linux/kernel.h>
249 #include <linux/module.h>
250 #include <linux/types.h>
251 #include <linux/fcntl.h>
252 #include <linux/poll.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/bootmem.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/crypto.h>
267 #include <linux/time.h>
268 #include <linux/slab.h>
269 
270 #include <net/icmp.h>
271 #include <net/tcp.h>
272 #include <net/xfrm.h>
273 #include <net/ip.h>
274 #include <net/netdma.h>
275 #include <net/sock.h>
276 
277 #include <asm/uaccess.h>
278 #include <asm/ioctls.h>
279 
280 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
281 
282 struct percpu_counter tcp_orphan_count;
283 EXPORT_SYMBOL_GPL(tcp_orphan_count);
284 
285 long sysctl_tcp_mem[3] __read_mostly;
286 int sysctl_tcp_wmem[3] __read_mostly;
287 int sysctl_tcp_rmem[3] __read_mostly;
288 
289 EXPORT_SYMBOL(sysctl_tcp_mem);
290 EXPORT_SYMBOL(sysctl_tcp_rmem);
291 EXPORT_SYMBOL(sysctl_tcp_wmem);
292 
293 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
294 EXPORT_SYMBOL(tcp_memory_allocated);
295 
296 /*
297  * Current number of TCP sockets.
298  */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301 
302 /*
303  * TCP splice context
304  */
305 struct tcp_splice_state {
306 	struct pipe_inode_info *pipe;
307 	size_t len;
308 	unsigned int flags;
309 };
310 
311 /*
312  * Pressure flag: try to collapse.
313  * Technical note: it is used by multiple contexts non atomically.
314  * All the __sk_mem_schedule() is of this nature: accounting
315  * is strict, actions are advisory and have some latency.
316  */
317 int tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL(tcp_memory_pressure);
319 
320 void tcp_enter_memory_pressure(struct sock *sk)
321 {
322 	if (!tcp_memory_pressure) {
323 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324 		tcp_memory_pressure = 1;
325 	}
326 }
327 EXPORT_SYMBOL(tcp_enter_memory_pressure);
328 
329 /* Convert seconds to retransmits based on initial and max timeout */
330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331 {
332 	u8 res = 0;
333 
334 	if (seconds > 0) {
335 		int period = timeout;
336 
337 		res = 1;
338 		while (seconds > period && res < 255) {
339 			res++;
340 			timeout <<= 1;
341 			if (timeout > rto_max)
342 				timeout = rto_max;
343 			period += timeout;
344 		}
345 	}
346 	return res;
347 }
348 
349 /* Convert retransmits to seconds based on initial and max timeout */
350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351 {
352 	int period = 0;
353 
354 	if (retrans > 0) {
355 		period = timeout;
356 		while (--retrans) {
357 			timeout <<= 1;
358 			if (timeout > rto_max)
359 				timeout = rto_max;
360 			period += timeout;
361 		}
362 	}
363 	return period;
364 }
365 
366 /*
367  *	Wait for a TCP event.
368  *
369  *	Note that we don't need to lock the socket, as the upper poll layers
370  *	take care of normal races (between the test and the event) and we don't
371  *	go look at any of the socket buffers directly.
372  */
373 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
374 {
375 	unsigned int mask;
376 	struct sock *sk = sock->sk;
377 	struct tcp_sock *tp = tcp_sk(sk);
378 
379 	sock_poll_wait(file, sk_sleep(sk), wait);
380 	if (sk->sk_state == TCP_LISTEN)
381 		return inet_csk_listen_poll(sk);
382 
383 	/* Socket is not locked. We are protected from async events
384 	 * by poll logic and correct handling of state changes
385 	 * made by other threads is impossible in any case.
386 	 */
387 
388 	mask = 0;
389 
390 	/*
391 	 * POLLHUP is certainly not done right. But poll() doesn't
392 	 * have a notion of HUP in just one direction, and for a
393 	 * socket the read side is more interesting.
394 	 *
395 	 * Some poll() documentation says that POLLHUP is incompatible
396 	 * with the POLLOUT/POLLWR flags, so somebody should check this
397 	 * all. But careful, it tends to be safer to return too many
398 	 * bits than too few, and you can easily break real applications
399 	 * if you don't tell them that something has hung up!
400 	 *
401 	 * Check-me.
402 	 *
403 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
404 	 * our fs/select.c). It means that after we received EOF,
405 	 * poll always returns immediately, making impossible poll() on write()
406 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
407 	 * if and only if shutdown has been made in both directions.
408 	 * Actually, it is interesting to look how Solaris and DUX
409 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
410 	 * then we could set it on SND_SHUTDOWN. BTW examples given
411 	 * in Stevens' books assume exactly this behaviour, it explains
412 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
413 	 *
414 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
415 	 * blocking on fresh not-connected or disconnected socket. --ANK
416 	 */
417 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
418 		mask |= POLLHUP;
419 	if (sk->sk_shutdown & RCV_SHUTDOWN)
420 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
421 
422 	/* Connected? */
423 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
424 		int target = sock_rcvlowat(sk, 0, INT_MAX);
425 
426 		if (tp->urg_seq == tp->copied_seq &&
427 		    !sock_flag(sk, SOCK_URGINLINE) &&
428 		    tp->urg_data)
429 			target++;
430 
431 		/* Potential race condition. If read of tp below will
432 		 * escape above sk->sk_state, we can be illegally awaken
433 		 * in SYN_* states. */
434 		if (tp->rcv_nxt - tp->copied_seq >= target)
435 			mask |= POLLIN | POLLRDNORM;
436 
437 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
438 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
439 				mask |= POLLOUT | POLLWRNORM;
440 			} else {  /* send SIGIO later */
441 				set_bit(SOCK_ASYNC_NOSPACE,
442 					&sk->sk_socket->flags);
443 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
444 
445 				/* Race breaker. If space is freed after
446 				 * wspace test but before the flags are set,
447 				 * IO signal will be lost.
448 				 */
449 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
450 					mask |= POLLOUT | POLLWRNORM;
451 			}
452 		} else
453 			mask |= POLLOUT | POLLWRNORM;
454 
455 		if (tp->urg_data & TCP_URG_VALID)
456 			mask |= POLLPRI;
457 	}
458 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
459 	smp_rmb();
460 	if (sk->sk_err)
461 		mask |= POLLERR;
462 
463 	return mask;
464 }
465 EXPORT_SYMBOL(tcp_poll);
466 
467 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
468 {
469 	struct tcp_sock *tp = tcp_sk(sk);
470 	int answ;
471 
472 	switch (cmd) {
473 	case SIOCINQ:
474 		if (sk->sk_state == TCP_LISTEN)
475 			return -EINVAL;
476 
477 		lock_sock(sk);
478 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
479 			answ = 0;
480 		else if (sock_flag(sk, SOCK_URGINLINE) ||
481 			 !tp->urg_data ||
482 			 before(tp->urg_seq, tp->copied_seq) ||
483 			 !before(tp->urg_seq, tp->rcv_nxt)) {
484 			struct sk_buff *skb;
485 
486 			answ = tp->rcv_nxt - tp->copied_seq;
487 
488 			/* Subtract 1, if FIN is in queue. */
489 			skb = skb_peek_tail(&sk->sk_receive_queue);
490 			if (answ && skb)
491 				answ -= tcp_hdr(skb)->fin;
492 		} else
493 			answ = tp->urg_seq - tp->copied_seq;
494 		release_sock(sk);
495 		break;
496 	case SIOCATMARK:
497 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
498 		break;
499 	case SIOCOUTQ:
500 		if (sk->sk_state == TCP_LISTEN)
501 			return -EINVAL;
502 
503 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
504 			answ = 0;
505 		else
506 			answ = tp->write_seq - tp->snd_una;
507 		break;
508 	case SIOCOUTQNSD:
509 		if (sk->sk_state == TCP_LISTEN)
510 			return -EINVAL;
511 
512 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
513 			answ = 0;
514 		else
515 			answ = tp->write_seq - tp->snd_nxt;
516 		break;
517 	default:
518 		return -ENOIOCTLCMD;
519 	}
520 
521 	return put_user(answ, (int __user *)arg);
522 }
523 EXPORT_SYMBOL(tcp_ioctl);
524 
525 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
526 {
527 	TCP_SKB_CB(skb)->flags |= TCPHDR_PSH;
528 	tp->pushed_seq = tp->write_seq;
529 }
530 
531 static inline int forced_push(struct tcp_sock *tp)
532 {
533 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
534 }
535 
536 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
537 {
538 	struct tcp_sock *tp = tcp_sk(sk);
539 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
540 
541 	skb->csum    = 0;
542 	tcb->seq     = tcb->end_seq = tp->write_seq;
543 	tcb->flags   = TCPHDR_ACK;
544 	tcb->sacked  = 0;
545 	skb_header_release(skb);
546 	tcp_add_write_queue_tail(sk, skb);
547 	sk->sk_wmem_queued += skb->truesize;
548 	sk_mem_charge(sk, skb->truesize);
549 	if (tp->nonagle & TCP_NAGLE_PUSH)
550 		tp->nonagle &= ~TCP_NAGLE_PUSH;
551 }
552 
553 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
554 {
555 	if (flags & MSG_OOB)
556 		tp->snd_up = tp->write_seq;
557 }
558 
559 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
560 			    int nonagle)
561 {
562 	if (tcp_send_head(sk)) {
563 		struct tcp_sock *tp = tcp_sk(sk);
564 
565 		if (!(flags & MSG_MORE) || forced_push(tp))
566 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
567 
568 		tcp_mark_urg(tp, flags);
569 		__tcp_push_pending_frames(sk, mss_now,
570 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
571 	}
572 }
573 
574 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
575 				unsigned int offset, size_t len)
576 {
577 	struct tcp_splice_state *tss = rd_desc->arg.data;
578 	int ret;
579 
580 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
581 			      tss->flags);
582 	if (ret > 0)
583 		rd_desc->count -= ret;
584 	return ret;
585 }
586 
587 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
588 {
589 	/* Store TCP splice context information in read_descriptor_t. */
590 	read_descriptor_t rd_desc = {
591 		.arg.data = tss,
592 		.count	  = tss->len,
593 	};
594 
595 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
596 }
597 
598 /**
599  *  tcp_splice_read - splice data from TCP socket to a pipe
600  * @sock:	socket to splice from
601  * @ppos:	position (not valid)
602  * @pipe:	pipe to splice to
603  * @len:	number of bytes to splice
604  * @flags:	splice modifier flags
605  *
606  * Description:
607  *    Will read pages from given socket and fill them into a pipe.
608  *
609  **/
610 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
611 			struct pipe_inode_info *pipe, size_t len,
612 			unsigned int flags)
613 {
614 	struct sock *sk = sock->sk;
615 	struct tcp_splice_state tss = {
616 		.pipe = pipe,
617 		.len = len,
618 		.flags = flags,
619 	};
620 	long timeo;
621 	ssize_t spliced;
622 	int ret;
623 
624 	sock_rps_record_flow(sk);
625 	/*
626 	 * We can't seek on a socket input
627 	 */
628 	if (unlikely(*ppos))
629 		return -ESPIPE;
630 
631 	ret = spliced = 0;
632 
633 	lock_sock(sk);
634 
635 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
636 	while (tss.len) {
637 		ret = __tcp_splice_read(sk, &tss);
638 		if (ret < 0)
639 			break;
640 		else if (!ret) {
641 			if (spliced)
642 				break;
643 			if (sock_flag(sk, SOCK_DONE))
644 				break;
645 			if (sk->sk_err) {
646 				ret = sock_error(sk);
647 				break;
648 			}
649 			if (sk->sk_shutdown & RCV_SHUTDOWN)
650 				break;
651 			if (sk->sk_state == TCP_CLOSE) {
652 				/*
653 				 * This occurs when user tries to read
654 				 * from never connected socket.
655 				 */
656 				if (!sock_flag(sk, SOCK_DONE))
657 					ret = -ENOTCONN;
658 				break;
659 			}
660 			if (!timeo) {
661 				ret = -EAGAIN;
662 				break;
663 			}
664 			sk_wait_data(sk, &timeo);
665 			if (signal_pending(current)) {
666 				ret = sock_intr_errno(timeo);
667 				break;
668 			}
669 			continue;
670 		}
671 		tss.len -= ret;
672 		spliced += ret;
673 
674 		if (!timeo)
675 			break;
676 		release_sock(sk);
677 		lock_sock(sk);
678 
679 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
680 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
681 		    signal_pending(current))
682 			break;
683 	}
684 
685 	release_sock(sk);
686 
687 	if (spliced)
688 		return spliced;
689 
690 	return ret;
691 }
692 EXPORT_SYMBOL(tcp_splice_read);
693 
694 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
695 {
696 	struct sk_buff *skb;
697 
698 	/* The TCP header must be at least 32-bit aligned.  */
699 	size = ALIGN(size, 4);
700 
701 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
702 	if (skb) {
703 		if (sk_wmem_schedule(sk, skb->truesize)) {
704 			/*
705 			 * Make sure that we have exactly size bytes
706 			 * available to the caller, no more, no less.
707 			 */
708 			skb_reserve(skb, skb_tailroom(skb) - size);
709 			return skb;
710 		}
711 		__kfree_skb(skb);
712 	} else {
713 		sk->sk_prot->enter_memory_pressure(sk);
714 		sk_stream_moderate_sndbuf(sk);
715 	}
716 	return NULL;
717 }
718 
719 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
720 				       int large_allowed)
721 {
722 	struct tcp_sock *tp = tcp_sk(sk);
723 	u32 xmit_size_goal, old_size_goal;
724 
725 	xmit_size_goal = mss_now;
726 
727 	if (large_allowed && sk_can_gso(sk)) {
728 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
729 				  inet_csk(sk)->icsk_af_ops->net_header_len -
730 				  inet_csk(sk)->icsk_ext_hdr_len -
731 				  tp->tcp_header_len);
732 
733 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
734 
735 		/* We try hard to avoid divides here */
736 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
737 
738 		if (likely(old_size_goal <= xmit_size_goal &&
739 			   old_size_goal + mss_now > xmit_size_goal)) {
740 			xmit_size_goal = old_size_goal;
741 		} else {
742 			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
743 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
744 		}
745 	}
746 
747 	return max(xmit_size_goal, mss_now);
748 }
749 
750 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
751 {
752 	int mss_now;
753 
754 	mss_now = tcp_current_mss(sk);
755 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
756 
757 	return mss_now;
758 }
759 
760 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
761 			 size_t psize, int flags)
762 {
763 	struct tcp_sock *tp = tcp_sk(sk);
764 	int mss_now, size_goal;
765 	int err;
766 	ssize_t copied;
767 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
768 
769 	/* Wait for a connection to finish. */
770 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
771 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
772 			goto out_err;
773 
774 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
775 
776 	mss_now = tcp_send_mss(sk, &size_goal, flags);
777 	copied = 0;
778 
779 	err = -EPIPE;
780 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
781 		goto out_err;
782 
783 	while (psize > 0) {
784 		struct sk_buff *skb = tcp_write_queue_tail(sk);
785 		struct page *page = pages[poffset / PAGE_SIZE];
786 		int copy, i, can_coalesce;
787 		int offset = poffset % PAGE_SIZE;
788 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
789 
790 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
791 new_segment:
792 			if (!sk_stream_memory_free(sk))
793 				goto wait_for_sndbuf;
794 
795 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
796 			if (!skb)
797 				goto wait_for_memory;
798 
799 			skb_entail(sk, skb);
800 			copy = size_goal;
801 		}
802 
803 		if (copy > size)
804 			copy = size;
805 
806 		i = skb_shinfo(skb)->nr_frags;
807 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
808 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
809 			tcp_mark_push(tp, skb);
810 			goto new_segment;
811 		}
812 		if (!sk_wmem_schedule(sk, copy))
813 			goto wait_for_memory;
814 
815 		if (can_coalesce) {
816 			skb_shinfo(skb)->frags[i - 1].size += copy;
817 		} else {
818 			get_page(page);
819 			skb_fill_page_desc(skb, i, page, offset, copy);
820 		}
821 
822 		skb->len += copy;
823 		skb->data_len += copy;
824 		skb->truesize += copy;
825 		sk->sk_wmem_queued += copy;
826 		sk_mem_charge(sk, copy);
827 		skb->ip_summed = CHECKSUM_PARTIAL;
828 		tp->write_seq += copy;
829 		TCP_SKB_CB(skb)->end_seq += copy;
830 		skb_shinfo(skb)->gso_segs = 0;
831 
832 		if (!copied)
833 			TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
834 
835 		copied += copy;
836 		poffset += copy;
837 		if (!(psize -= copy))
838 			goto out;
839 
840 		if (skb->len < size_goal || (flags & MSG_OOB))
841 			continue;
842 
843 		if (forced_push(tp)) {
844 			tcp_mark_push(tp, skb);
845 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
846 		} else if (skb == tcp_send_head(sk))
847 			tcp_push_one(sk, mss_now);
848 		continue;
849 
850 wait_for_sndbuf:
851 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
852 wait_for_memory:
853 		if (copied)
854 			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
855 
856 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
857 			goto do_error;
858 
859 		mss_now = tcp_send_mss(sk, &size_goal, flags);
860 	}
861 
862 out:
863 	if (copied)
864 		tcp_push(sk, flags, mss_now, tp->nonagle);
865 	return copied;
866 
867 do_error:
868 	if (copied)
869 		goto out;
870 out_err:
871 	return sk_stream_error(sk, flags, err);
872 }
873 
874 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
875 		 size_t size, int flags)
876 {
877 	ssize_t res;
878 
879 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
880 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
881 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
882 					flags);
883 
884 	lock_sock(sk);
885 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
886 	release_sock(sk);
887 	return res;
888 }
889 EXPORT_SYMBOL(tcp_sendpage);
890 
891 #define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
892 #define TCP_OFF(sk)	(sk->sk_sndmsg_off)
893 
894 static inline int select_size(struct sock *sk, int sg)
895 {
896 	struct tcp_sock *tp = tcp_sk(sk);
897 	int tmp = tp->mss_cache;
898 
899 	if (sg) {
900 		if (sk_can_gso(sk))
901 			tmp = 0;
902 		else {
903 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
904 
905 			if (tmp >= pgbreak &&
906 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
907 				tmp = pgbreak;
908 		}
909 	}
910 
911 	return tmp;
912 }
913 
914 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
915 		size_t size)
916 {
917 	struct iovec *iov;
918 	struct tcp_sock *tp = tcp_sk(sk);
919 	struct sk_buff *skb;
920 	int iovlen, flags;
921 	int mss_now, size_goal;
922 	int sg, err, copied;
923 	long timeo;
924 
925 	lock_sock(sk);
926 
927 	flags = msg->msg_flags;
928 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
929 
930 	/* Wait for a connection to finish. */
931 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
932 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
933 			goto out_err;
934 
935 	/* This should be in poll */
936 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
937 
938 	mss_now = tcp_send_mss(sk, &size_goal, flags);
939 
940 	/* Ok commence sending. */
941 	iovlen = msg->msg_iovlen;
942 	iov = msg->msg_iov;
943 	copied = 0;
944 
945 	err = -EPIPE;
946 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
947 		goto out_err;
948 
949 	sg = sk->sk_route_caps & NETIF_F_SG;
950 
951 	while (--iovlen >= 0) {
952 		size_t seglen = iov->iov_len;
953 		unsigned char __user *from = iov->iov_base;
954 
955 		iov++;
956 
957 		while (seglen > 0) {
958 			int copy = 0;
959 			int max = size_goal;
960 
961 			skb = tcp_write_queue_tail(sk);
962 			if (tcp_send_head(sk)) {
963 				if (skb->ip_summed == CHECKSUM_NONE)
964 					max = mss_now;
965 				copy = max - skb->len;
966 			}
967 
968 			if (copy <= 0) {
969 new_segment:
970 				/* Allocate new segment. If the interface is SG,
971 				 * allocate skb fitting to single page.
972 				 */
973 				if (!sk_stream_memory_free(sk))
974 					goto wait_for_sndbuf;
975 
976 				skb = sk_stream_alloc_skb(sk,
977 							  select_size(sk, sg),
978 							  sk->sk_allocation);
979 				if (!skb)
980 					goto wait_for_memory;
981 
982 				/*
983 				 * Check whether we can use HW checksum.
984 				 */
985 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
986 					skb->ip_summed = CHECKSUM_PARTIAL;
987 
988 				skb_entail(sk, skb);
989 				copy = size_goal;
990 				max = size_goal;
991 			}
992 
993 			/* Try to append data to the end of skb. */
994 			if (copy > seglen)
995 				copy = seglen;
996 
997 			/* Where to copy to? */
998 			if (skb_tailroom(skb) > 0) {
999 				/* We have some space in skb head. Superb! */
1000 				if (copy > skb_tailroom(skb))
1001 					copy = skb_tailroom(skb);
1002 				err = skb_add_data_nocache(sk, skb, from, copy);
1003 				if (err)
1004 					goto do_fault;
1005 			} else {
1006 				int merge = 0;
1007 				int i = skb_shinfo(skb)->nr_frags;
1008 				struct page *page = TCP_PAGE(sk);
1009 				int off = TCP_OFF(sk);
1010 
1011 				if (skb_can_coalesce(skb, i, page, off) &&
1012 				    off != PAGE_SIZE) {
1013 					/* We can extend the last page
1014 					 * fragment. */
1015 					merge = 1;
1016 				} else if (i == MAX_SKB_FRAGS || !sg) {
1017 					/* Need to add new fragment and cannot
1018 					 * do this because interface is non-SG,
1019 					 * or because all the page slots are
1020 					 * busy. */
1021 					tcp_mark_push(tp, skb);
1022 					goto new_segment;
1023 				} else if (page) {
1024 					if (off == PAGE_SIZE) {
1025 						put_page(page);
1026 						TCP_PAGE(sk) = page = NULL;
1027 						off = 0;
1028 					}
1029 				} else
1030 					off = 0;
1031 
1032 				if (copy > PAGE_SIZE - off)
1033 					copy = PAGE_SIZE - off;
1034 
1035 				if (!sk_wmem_schedule(sk, copy))
1036 					goto wait_for_memory;
1037 
1038 				if (!page) {
1039 					/* Allocate new cache page. */
1040 					if (!(page = sk_stream_alloc_page(sk)))
1041 						goto wait_for_memory;
1042 				}
1043 
1044 				/* Time to copy data. We are close to
1045 				 * the end! */
1046 				err = skb_copy_to_page_nocache(sk, from, skb,
1047 							       page, off, copy);
1048 				if (err) {
1049 					/* If this page was new, give it to the
1050 					 * socket so it does not get leaked.
1051 					 */
1052 					if (!TCP_PAGE(sk)) {
1053 						TCP_PAGE(sk) = page;
1054 						TCP_OFF(sk) = 0;
1055 					}
1056 					goto do_error;
1057 				}
1058 
1059 				/* Update the skb. */
1060 				if (merge) {
1061 					skb_shinfo(skb)->frags[i - 1].size +=
1062 									copy;
1063 				} else {
1064 					skb_fill_page_desc(skb, i, page, off, copy);
1065 					if (TCP_PAGE(sk)) {
1066 						get_page(page);
1067 					} else if (off + copy < PAGE_SIZE) {
1068 						get_page(page);
1069 						TCP_PAGE(sk) = page;
1070 					}
1071 				}
1072 
1073 				TCP_OFF(sk) = off + copy;
1074 			}
1075 
1076 			if (!copied)
1077 				TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
1078 
1079 			tp->write_seq += copy;
1080 			TCP_SKB_CB(skb)->end_seq += copy;
1081 			skb_shinfo(skb)->gso_segs = 0;
1082 
1083 			from += copy;
1084 			copied += copy;
1085 			if ((seglen -= copy) == 0 && iovlen == 0)
1086 				goto out;
1087 
1088 			if (skb->len < max || (flags & MSG_OOB))
1089 				continue;
1090 
1091 			if (forced_push(tp)) {
1092 				tcp_mark_push(tp, skb);
1093 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1094 			} else if (skb == tcp_send_head(sk))
1095 				tcp_push_one(sk, mss_now);
1096 			continue;
1097 
1098 wait_for_sndbuf:
1099 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1100 wait_for_memory:
1101 			if (copied)
1102 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1103 
1104 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1105 				goto do_error;
1106 
1107 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1108 		}
1109 	}
1110 
1111 out:
1112 	if (copied)
1113 		tcp_push(sk, flags, mss_now, tp->nonagle);
1114 	release_sock(sk);
1115 	return copied;
1116 
1117 do_fault:
1118 	if (!skb->len) {
1119 		tcp_unlink_write_queue(skb, sk);
1120 		/* It is the one place in all of TCP, except connection
1121 		 * reset, where we can be unlinking the send_head.
1122 		 */
1123 		tcp_check_send_head(sk, skb);
1124 		sk_wmem_free_skb(sk, skb);
1125 	}
1126 
1127 do_error:
1128 	if (copied)
1129 		goto out;
1130 out_err:
1131 	err = sk_stream_error(sk, flags, err);
1132 	release_sock(sk);
1133 	return err;
1134 }
1135 EXPORT_SYMBOL(tcp_sendmsg);
1136 
1137 /*
1138  *	Handle reading urgent data. BSD has very simple semantics for
1139  *	this, no blocking and very strange errors 8)
1140  */
1141 
1142 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1143 {
1144 	struct tcp_sock *tp = tcp_sk(sk);
1145 
1146 	/* No URG data to read. */
1147 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1148 	    tp->urg_data == TCP_URG_READ)
1149 		return -EINVAL;	/* Yes this is right ! */
1150 
1151 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1152 		return -ENOTCONN;
1153 
1154 	if (tp->urg_data & TCP_URG_VALID) {
1155 		int err = 0;
1156 		char c = tp->urg_data;
1157 
1158 		if (!(flags & MSG_PEEK))
1159 			tp->urg_data = TCP_URG_READ;
1160 
1161 		/* Read urgent data. */
1162 		msg->msg_flags |= MSG_OOB;
1163 
1164 		if (len > 0) {
1165 			if (!(flags & MSG_TRUNC))
1166 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1167 			len = 1;
1168 		} else
1169 			msg->msg_flags |= MSG_TRUNC;
1170 
1171 		return err ? -EFAULT : len;
1172 	}
1173 
1174 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1175 		return 0;
1176 
1177 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1178 	 * the available implementations agree in this case:
1179 	 * this call should never block, independent of the
1180 	 * blocking state of the socket.
1181 	 * Mike <pall@rz.uni-karlsruhe.de>
1182 	 */
1183 	return -EAGAIN;
1184 }
1185 
1186 /* Clean up the receive buffer for full frames taken by the user,
1187  * then send an ACK if necessary.  COPIED is the number of bytes
1188  * tcp_recvmsg has given to the user so far, it speeds up the
1189  * calculation of whether or not we must ACK for the sake of
1190  * a window update.
1191  */
1192 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1193 {
1194 	struct tcp_sock *tp = tcp_sk(sk);
1195 	int time_to_ack = 0;
1196 
1197 #if TCP_DEBUG
1198 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1199 
1200 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1201 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1202 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1203 #endif
1204 
1205 	if (inet_csk_ack_scheduled(sk)) {
1206 		const struct inet_connection_sock *icsk = inet_csk(sk);
1207 		   /* Delayed ACKs frequently hit locked sockets during bulk
1208 		    * receive. */
1209 		if (icsk->icsk_ack.blocked ||
1210 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1211 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1212 		    /*
1213 		     * If this read emptied read buffer, we send ACK, if
1214 		     * connection is not bidirectional, user drained
1215 		     * receive buffer and there was a small segment
1216 		     * in queue.
1217 		     */
1218 		    (copied > 0 &&
1219 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1220 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1221 		       !icsk->icsk_ack.pingpong)) &&
1222 		      !atomic_read(&sk->sk_rmem_alloc)))
1223 			time_to_ack = 1;
1224 	}
1225 
1226 	/* We send an ACK if we can now advertise a non-zero window
1227 	 * which has been raised "significantly".
1228 	 *
1229 	 * Even if window raised up to infinity, do not send window open ACK
1230 	 * in states, where we will not receive more. It is useless.
1231 	 */
1232 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1233 		__u32 rcv_window_now = tcp_receive_window(tp);
1234 
1235 		/* Optimize, __tcp_select_window() is not cheap. */
1236 		if (2*rcv_window_now <= tp->window_clamp) {
1237 			__u32 new_window = __tcp_select_window(sk);
1238 
1239 			/* Send ACK now, if this read freed lots of space
1240 			 * in our buffer. Certainly, new_window is new window.
1241 			 * We can advertise it now, if it is not less than current one.
1242 			 * "Lots" means "at least twice" here.
1243 			 */
1244 			if (new_window && new_window >= 2 * rcv_window_now)
1245 				time_to_ack = 1;
1246 		}
1247 	}
1248 	if (time_to_ack)
1249 		tcp_send_ack(sk);
1250 }
1251 
1252 static void tcp_prequeue_process(struct sock *sk)
1253 {
1254 	struct sk_buff *skb;
1255 	struct tcp_sock *tp = tcp_sk(sk);
1256 
1257 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1258 
1259 	/* RX process wants to run with disabled BHs, though it is not
1260 	 * necessary */
1261 	local_bh_disable();
1262 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1263 		sk_backlog_rcv(sk, skb);
1264 	local_bh_enable();
1265 
1266 	/* Clear memory counter. */
1267 	tp->ucopy.memory = 0;
1268 }
1269 
1270 #ifdef CONFIG_NET_DMA
1271 static void tcp_service_net_dma(struct sock *sk, bool wait)
1272 {
1273 	dma_cookie_t done, used;
1274 	dma_cookie_t last_issued;
1275 	struct tcp_sock *tp = tcp_sk(sk);
1276 
1277 	if (!tp->ucopy.dma_chan)
1278 		return;
1279 
1280 	last_issued = tp->ucopy.dma_cookie;
1281 	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1282 
1283 	do {
1284 		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1285 					      last_issued, &done,
1286 					      &used) == DMA_SUCCESS) {
1287 			/* Safe to free early-copied skbs now */
1288 			__skb_queue_purge(&sk->sk_async_wait_queue);
1289 			break;
1290 		} else {
1291 			struct sk_buff *skb;
1292 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1293 			       (dma_async_is_complete(skb->dma_cookie, done,
1294 						      used) == DMA_SUCCESS)) {
1295 				__skb_dequeue(&sk->sk_async_wait_queue);
1296 				kfree_skb(skb);
1297 			}
1298 		}
1299 	} while (wait);
1300 }
1301 #endif
1302 
1303 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1304 {
1305 	struct sk_buff *skb;
1306 	u32 offset;
1307 
1308 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1309 		offset = seq - TCP_SKB_CB(skb)->seq;
1310 		if (tcp_hdr(skb)->syn)
1311 			offset--;
1312 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1313 			*off = offset;
1314 			return skb;
1315 		}
1316 	}
1317 	return NULL;
1318 }
1319 
1320 /*
1321  * This routine provides an alternative to tcp_recvmsg() for routines
1322  * that would like to handle copying from skbuffs directly in 'sendfile'
1323  * fashion.
1324  * Note:
1325  *	- It is assumed that the socket was locked by the caller.
1326  *	- The routine does not block.
1327  *	- At present, there is no support for reading OOB data
1328  *	  or for 'peeking' the socket using this routine
1329  *	  (although both would be easy to implement).
1330  */
1331 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1332 		  sk_read_actor_t recv_actor)
1333 {
1334 	struct sk_buff *skb;
1335 	struct tcp_sock *tp = tcp_sk(sk);
1336 	u32 seq = tp->copied_seq;
1337 	u32 offset;
1338 	int copied = 0;
1339 
1340 	if (sk->sk_state == TCP_LISTEN)
1341 		return -ENOTCONN;
1342 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1343 		if (offset < skb->len) {
1344 			int used;
1345 			size_t len;
1346 
1347 			len = skb->len - offset;
1348 			/* Stop reading if we hit a patch of urgent data */
1349 			if (tp->urg_data) {
1350 				u32 urg_offset = tp->urg_seq - seq;
1351 				if (urg_offset < len)
1352 					len = urg_offset;
1353 				if (!len)
1354 					break;
1355 			}
1356 			used = recv_actor(desc, skb, offset, len);
1357 			if (used < 0) {
1358 				if (!copied)
1359 					copied = used;
1360 				break;
1361 			} else if (used <= len) {
1362 				seq += used;
1363 				copied += used;
1364 				offset += used;
1365 			}
1366 			/*
1367 			 * If recv_actor drops the lock (e.g. TCP splice
1368 			 * receive) the skb pointer might be invalid when
1369 			 * getting here: tcp_collapse might have deleted it
1370 			 * while aggregating skbs from the socket queue.
1371 			 */
1372 			skb = tcp_recv_skb(sk, seq-1, &offset);
1373 			if (!skb || (offset+1 != skb->len))
1374 				break;
1375 		}
1376 		if (tcp_hdr(skb)->fin) {
1377 			sk_eat_skb(sk, skb, 0);
1378 			++seq;
1379 			break;
1380 		}
1381 		sk_eat_skb(sk, skb, 0);
1382 		if (!desc->count)
1383 			break;
1384 		tp->copied_seq = seq;
1385 	}
1386 	tp->copied_seq = seq;
1387 
1388 	tcp_rcv_space_adjust(sk);
1389 
1390 	/* Clean up data we have read: This will do ACK frames. */
1391 	if (copied > 0)
1392 		tcp_cleanup_rbuf(sk, copied);
1393 	return copied;
1394 }
1395 EXPORT_SYMBOL(tcp_read_sock);
1396 
1397 /*
1398  *	This routine copies from a sock struct into the user buffer.
1399  *
1400  *	Technical note: in 2.3 we work on _locked_ socket, so that
1401  *	tricks with *seq access order and skb->users are not required.
1402  *	Probably, code can be easily improved even more.
1403  */
1404 
1405 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1406 		size_t len, int nonblock, int flags, int *addr_len)
1407 {
1408 	struct tcp_sock *tp = tcp_sk(sk);
1409 	int copied = 0;
1410 	u32 peek_seq;
1411 	u32 *seq;
1412 	unsigned long used;
1413 	int err;
1414 	int target;		/* Read at least this many bytes */
1415 	long timeo;
1416 	struct task_struct *user_recv = NULL;
1417 	int copied_early = 0;
1418 	struct sk_buff *skb;
1419 	u32 urg_hole = 0;
1420 
1421 	lock_sock(sk);
1422 
1423 	err = -ENOTCONN;
1424 	if (sk->sk_state == TCP_LISTEN)
1425 		goto out;
1426 
1427 	timeo = sock_rcvtimeo(sk, nonblock);
1428 
1429 	/* Urgent data needs to be handled specially. */
1430 	if (flags & MSG_OOB)
1431 		goto recv_urg;
1432 
1433 	seq = &tp->copied_seq;
1434 	if (flags & MSG_PEEK) {
1435 		peek_seq = tp->copied_seq;
1436 		seq = &peek_seq;
1437 	}
1438 
1439 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1440 
1441 #ifdef CONFIG_NET_DMA
1442 	tp->ucopy.dma_chan = NULL;
1443 	preempt_disable();
1444 	skb = skb_peek_tail(&sk->sk_receive_queue);
1445 	{
1446 		int available = 0;
1447 
1448 		if (skb)
1449 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1450 		if ((available < target) &&
1451 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1452 		    !sysctl_tcp_low_latency &&
1453 		    dma_find_channel(DMA_MEMCPY)) {
1454 			preempt_enable_no_resched();
1455 			tp->ucopy.pinned_list =
1456 					dma_pin_iovec_pages(msg->msg_iov, len);
1457 		} else {
1458 			preempt_enable_no_resched();
1459 		}
1460 	}
1461 #endif
1462 
1463 	do {
1464 		u32 offset;
1465 
1466 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1467 		if (tp->urg_data && tp->urg_seq == *seq) {
1468 			if (copied)
1469 				break;
1470 			if (signal_pending(current)) {
1471 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1472 				break;
1473 			}
1474 		}
1475 
1476 		/* Next get a buffer. */
1477 
1478 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1479 			/* Now that we have two receive queues this
1480 			 * shouldn't happen.
1481 			 */
1482 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1483 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1484 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1485 				 flags))
1486 				break;
1487 
1488 			offset = *seq - TCP_SKB_CB(skb)->seq;
1489 			if (tcp_hdr(skb)->syn)
1490 				offset--;
1491 			if (offset < skb->len)
1492 				goto found_ok_skb;
1493 			if (tcp_hdr(skb)->fin)
1494 				goto found_fin_ok;
1495 			WARN(!(flags & MSG_PEEK),
1496 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1497 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1498 		}
1499 
1500 		/* Well, if we have backlog, try to process it now yet. */
1501 
1502 		if (copied >= target && !sk->sk_backlog.tail)
1503 			break;
1504 
1505 		if (copied) {
1506 			if (sk->sk_err ||
1507 			    sk->sk_state == TCP_CLOSE ||
1508 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1509 			    !timeo ||
1510 			    signal_pending(current))
1511 				break;
1512 		} else {
1513 			if (sock_flag(sk, SOCK_DONE))
1514 				break;
1515 
1516 			if (sk->sk_err) {
1517 				copied = sock_error(sk);
1518 				break;
1519 			}
1520 
1521 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1522 				break;
1523 
1524 			if (sk->sk_state == TCP_CLOSE) {
1525 				if (!sock_flag(sk, SOCK_DONE)) {
1526 					/* This occurs when user tries to read
1527 					 * from never connected socket.
1528 					 */
1529 					copied = -ENOTCONN;
1530 					break;
1531 				}
1532 				break;
1533 			}
1534 
1535 			if (!timeo) {
1536 				copied = -EAGAIN;
1537 				break;
1538 			}
1539 
1540 			if (signal_pending(current)) {
1541 				copied = sock_intr_errno(timeo);
1542 				break;
1543 			}
1544 		}
1545 
1546 		tcp_cleanup_rbuf(sk, copied);
1547 
1548 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1549 			/* Install new reader */
1550 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1551 				user_recv = current;
1552 				tp->ucopy.task = user_recv;
1553 				tp->ucopy.iov = msg->msg_iov;
1554 			}
1555 
1556 			tp->ucopy.len = len;
1557 
1558 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1559 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1560 
1561 			/* Ugly... If prequeue is not empty, we have to
1562 			 * process it before releasing socket, otherwise
1563 			 * order will be broken at second iteration.
1564 			 * More elegant solution is required!!!
1565 			 *
1566 			 * Look: we have the following (pseudo)queues:
1567 			 *
1568 			 * 1. packets in flight
1569 			 * 2. backlog
1570 			 * 3. prequeue
1571 			 * 4. receive_queue
1572 			 *
1573 			 * Each queue can be processed only if the next ones
1574 			 * are empty. At this point we have empty receive_queue.
1575 			 * But prequeue _can_ be not empty after 2nd iteration,
1576 			 * when we jumped to start of loop because backlog
1577 			 * processing added something to receive_queue.
1578 			 * We cannot release_sock(), because backlog contains
1579 			 * packets arrived _after_ prequeued ones.
1580 			 *
1581 			 * Shortly, algorithm is clear --- to process all
1582 			 * the queues in order. We could make it more directly,
1583 			 * requeueing packets from backlog to prequeue, if
1584 			 * is not empty. It is more elegant, but eats cycles,
1585 			 * unfortunately.
1586 			 */
1587 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1588 				goto do_prequeue;
1589 
1590 			/* __ Set realtime policy in scheduler __ */
1591 		}
1592 
1593 #ifdef CONFIG_NET_DMA
1594 		if (tp->ucopy.dma_chan)
1595 			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1596 #endif
1597 		if (copied >= target) {
1598 			/* Do not sleep, just process backlog. */
1599 			release_sock(sk);
1600 			lock_sock(sk);
1601 		} else
1602 			sk_wait_data(sk, &timeo);
1603 
1604 #ifdef CONFIG_NET_DMA
1605 		tcp_service_net_dma(sk, false);  /* Don't block */
1606 		tp->ucopy.wakeup = 0;
1607 #endif
1608 
1609 		if (user_recv) {
1610 			int chunk;
1611 
1612 			/* __ Restore normal policy in scheduler __ */
1613 
1614 			if ((chunk = len - tp->ucopy.len) != 0) {
1615 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1616 				len -= chunk;
1617 				copied += chunk;
1618 			}
1619 
1620 			if (tp->rcv_nxt == tp->copied_seq &&
1621 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1622 do_prequeue:
1623 				tcp_prequeue_process(sk);
1624 
1625 				if ((chunk = len - tp->ucopy.len) != 0) {
1626 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1627 					len -= chunk;
1628 					copied += chunk;
1629 				}
1630 			}
1631 		}
1632 		if ((flags & MSG_PEEK) &&
1633 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1634 			if (net_ratelimit())
1635 				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1636 				       current->comm, task_pid_nr(current));
1637 			peek_seq = tp->copied_seq;
1638 		}
1639 		continue;
1640 
1641 	found_ok_skb:
1642 		/* Ok so how much can we use? */
1643 		used = skb->len - offset;
1644 		if (len < used)
1645 			used = len;
1646 
1647 		/* Do we have urgent data here? */
1648 		if (tp->urg_data) {
1649 			u32 urg_offset = tp->urg_seq - *seq;
1650 			if (urg_offset < used) {
1651 				if (!urg_offset) {
1652 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1653 						++*seq;
1654 						urg_hole++;
1655 						offset++;
1656 						used--;
1657 						if (!used)
1658 							goto skip_copy;
1659 					}
1660 				} else
1661 					used = urg_offset;
1662 			}
1663 		}
1664 
1665 		if (!(flags & MSG_TRUNC)) {
1666 #ifdef CONFIG_NET_DMA
1667 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1668 				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1669 
1670 			if (tp->ucopy.dma_chan) {
1671 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1672 					tp->ucopy.dma_chan, skb, offset,
1673 					msg->msg_iov, used,
1674 					tp->ucopy.pinned_list);
1675 
1676 				if (tp->ucopy.dma_cookie < 0) {
1677 
1678 					printk(KERN_ALERT "dma_cookie < 0\n");
1679 
1680 					/* Exception. Bailout! */
1681 					if (!copied)
1682 						copied = -EFAULT;
1683 					break;
1684 				}
1685 
1686 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1687 
1688 				if ((offset + used) == skb->len)
1689 					copied_early = 1;
1690 
1691 			} else
1692 #endif
1693 			{
1694 				err = skb_copy_datagram_iovec(skb, offset,
1695 						msg->msg_iov, used);
1696 				if (err) {
1697 					/* Exception. Bailout! */
1698 					if (!copied)
1699 						copied = -EFAULT;
1700 					break;
1701 				}
1702 			}
1703 		}
1704 
1705 		*seq += used;
1706 		copied += used;
1707 		len -= used;
1708 
1709 		tcp_rcv_space_adjust(sk);
1710 
1711 skip_copy:
1712 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1713 			tp->urg_data = 0;
1714 			tcp_fast_path_check(sk);
1715 		}
1716 		if (used + offset < skb->len)
1717 			continue;
1718 
1719 		if (tcp_hdr(skb)->fin)
1720 			goto found_fin_ok;
1721 		if (!(flags & MSG_PEEK)) {
1722 			sk_eat_skb(sk, skb, copied_early);
1723 			copied_early = 0;
1724 		}
1725 		continue;
1726 
1727 	found_fin_ok:
1728 		/* Process the FIN. */
1729 		++*seq;
1730 		if (!(flags & MSG_PEEK)) {
1731 			sk_eat_skb(sk, skb, copied_early);
1732 			copied_early = 0;
1733 		}
1734 		break;
1735 	} while (len > 0);
1736 
1737 	if (user_recv) {
1738 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1739 			int chunk;
1740 
1741 			tp->ucopy.len = copied > 0 ? len : 0;
1742 
1743 			tcp_prequeue_process(sk);
1744 
1745 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1746 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1747 				len -= chunk;
1748 				copied += chunk;
1749 			}
1750 		}
1751 
1752 		tp->ucopy.task = NULL;
1753 		tp->ucopy.len = 0;
1754 	}
1755 
1756 #ifdef CONFIG_NET_DMA
1757 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1758 	tp->ucopy.dma_chan = NULL;
1759 
1760 	if (tp->ucopy.pinned_list) {
1761 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1762 		tp->ucopy.pinned_list = NULL;
1763 	}
1764 #endif
1765 
1766 	/* According to UNIX98, msg_name/msg_namelen are ignored
1767 	 * on connected socket. I was just happy when found this 8) --ANK
1768 	 */
1769 
1770 	/* Clean up data we have read: This will do ACK frames. */
1771 	tcp_cleanup_rbuf(sk, copied);
1772 
1773 	release_sock(sk);
1774 	return copied;
1775 
1776 out:
1777 	release_sock(sk);
1778 	return err;
1779 
1780 recv_urg:
1781 	err = tcp_recv_urg(sk, msg, len, flags);
1782 	goto out;
1783 }
1784 EXPORT_SYMBOL(tcp_recvmsg);
1785 
1786 void tcp_set_state(struct sock *sk, int state)
1787 {
1788 	int oldstate = sk->sk_state;
1789 
1790 	switch (state) {
1791 	case TCP_ESTABLISHED:
1792 		if (oldstate != TCP_ESTABLISHED)
1793 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1794 		break;
1795 
1796 	case TCP_CLOSE:
1797 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1798 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1799 
1800 		sk->sk_prot->unhash(sk);
1801 		if (inet_csk(sk)->icsk_bind_hash &&
1802 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1803 			inet_put_port(sk);
1804 		/* fall through */
1805 	default:
1806 		if (oldstate == TCP_ESTABLISHED)
1807 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1808 	}
1809 
1810 	/* Change state AFTER socket is unhashed to avoid closed
1811 	 * socket sitting in hash tables.
1812 	 */
1813 	sk->sk_state = state;
1814 
1815 #ifdef STATE_TRACE
1816 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1817 #endif
1818 }
1819 EXPORT_SYMBOL_GPL(tcp_set_state);
1820 
1821 /*
1822  *	State processing on a close. This implements the state shift for
1823  *	sending our FIN frame. Note that we only send a FIN for some
1824  *	states. A shutdown() may have already sent the FIN, or we may be
1825  *	closed.
1826  */
1827 
1828 static const unsigned char new_state[16] = {
1829   /* current state:        new state:      action:	*/
1830   /* (Invalid)		*/ TCP_CLOSE,
1831   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1832   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1833   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1834   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1835   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1836   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1837   /* TCP_CLOSE		*/ TCP_CLOSE,
1838   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1839   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1840   /* TCP_LISTEN		*/ TCP_CLOSE,
1841   /* TCP_CLOSING	*/ TCP_CLOSING,
1842 };
1843 
1844 static int tcp_close_state(struct sock *sk)
1845 {
1846 	int next = (int)new_state[sk->sk_state];
1847 	int ns = next & TCP_STATE_MASK;
1848 
1849 	tcp_set_state(sk, ns);
1850 
1851 	return next & TCP_ACTION_FIN;
1852 }
1853 
1854 /*
1855  *	Shutdown the sending side of a connection. Much like close except
1856  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1857  */
1858 
1859 void tcp_shutdown(struct sock *sk, int how)
1860 {
1861 	/*	We need to grab some memory, and put together a FIN,
1862 	 *	and then put it into the queue to be sent.
1863 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1864 	 */
1865 	if (!(how & SEND_SHUTDOWN))
1866 		return;
1867 
1868 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1869 	if ((1 << sk->sk_state) &
1870 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1871 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1872 		/* Clear out any half completed packets.  FIN if needed. */
1873 		if (tcp_close_state(sk))
1874 			tcp_send_fin(sk);
1875 	}
1876 }
1877 EXPORT_SYMBOL(tcp_shutdown);
1878 
1879 void tcp_close(struct sock *sk, long timeout)
1880 {
1881 	struct sk_buff *skb;
1882 	int data_was_unread = 0;
1883 	int state;
1884 
1885 	lock_sock(sk);
1886 	sk->sk_shutdown = SHUTDOWN_MASK;
1887 
1888 	if (sk->sk_state == TCP_LISTEN) {
1889 		tcp_set_state(sk, TCP_CLOSE);
1890 
1891 		/* Special case. */
1892 		inet_csk_listen_stop(sk);
1893 
1894 		goto adjudge_to_death;
1895 	}
1896 
1897 	/*  We need to flush the recv. buffs.  We do this only on the
1898 	 *  descriptor close, not protocol-sourced closes, because the
1899 	 *  reader process may not have drained the data yet!
1900 	 */
1901 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1902 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1903 			  tcp_hdr(skb)->fin;
1904 		data_was_unread += len;
1905 		__kfree_skb(skb);
1906 	}
1907 
1908 	sk_mem_reclaim(sk);
1909 
1910 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1911 	if (sk->sk_state == TCP_CLOSE)
1912 		goto adjudge_to_death;
1913 
1914 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1915 	 * data was lost. To witness the awful effects of the old behavior of
1916 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1917 	 * GET in an FTP client, suspend the process, wait for the client to
1918 	 * advertise a zero window, then kill -9 the FTP client, wheee...
1919 	 * Note: timeout is always zero in such a case.
1920 	 */
1921 	if (data_was_unread) {
1922 		/* Unread data was tossed, zap the connection. */
1923 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1924 		tcp_set_state(sk, TCP_CLOSE);
1925 		tcp_send_active_reset(sk, sk->sk_allocation);
1926 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1927 		/* Check zero linger _after_ checking for unread data. */
1928 		sk->sk_prot->disconnect(sk, 0);
1929 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1930 	} else if (tcp_close_state(sk)) {
1931 		/* We FIN if the application ate all the data before
1932 		 * zapping the connection.
1933 		 */
1934 
1935 		/* RED-PEN. Formally speaking, we have broken TCP state
1936 		 * machine. State transitions:
1937 		 *
1938 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1939 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1940 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1941 		 *
1942 		 * are legal only when FIN has been sent (i.e. in window),
1943 		 * rather than queued out of window. Purists blame.
1944 		 *
1945 		 * F.e. "RFC state" is ESTABLISHED,
1946 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1947 		 *
1948 		 * The visible declinations are that sometimes
1949 		 * we enter time-wait state, when it is not required really
1950 		 * (harmless), do not send active resets, when they are
1951 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1952 		 * they look as CLOSING or LAST_ACK for Linux)
1953 		 * Probably, I missed some more holelets.
1954 		 * 						--ANK
1955 		 */
1956 		tcp_send_fin(sk);
1957 	}
1958 
1959 	sk_stream_wait_close(sk, timeout);
1960 
1961 adjudge_to_death:
1962 	state = sk->sk_state;
1963 	sock_hold(sk);
1964 	sock_orphan(sk);
1965 
1966 	/* It is the last release_sock in its life. It will remove backlog. */
1967 	release_sock(sk);
1968 
1969 
1970 	/* Now socket is owned by kernel and we acquire BH lock
1971 	   to finish close. No need to check for user refs.
1972 	 */
1973 	local_bh_disable();
1974 	bh_lock_sock(sk);
1975 	WARN_ON(sock_owned_by_user(sk));
1976 
1977 	percpu_counter_inc(sk->sk_prot->orphan_count);
1978 
1979 	/* Have we already been destroyed by a softirq or backlog? */
1980 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1981 		goto out;
1982 
1983 	/*	This is a (useful) BSD violating of the RFC. There is a
1984 	 *	problem with TCP as specified in that the other end could
1985 	 *	keep a socket open forever with no application left this end.
1986 	 *	We use a 3 minute timeout (about the same as BSD) then kill
1987 	 *	our end. If they send after that then tough - BUT: long enough
1988 	 *	that we won't make the old 4*rto = almost no time - whoops
1989 	 *	reset mistake.
1990 	 *
1991 	 *	Nope, it was not mistake. It is really desired behaviour
1992 	 *	f.e. on http servers, when such sockets are useless, but
1993 	 *	consume significant resources. Let's do it with special
1994 	 *	linger2	option.					--ANK
1995 	 */
1996 
1997 	if (sk->sk_state == TCP_FIN_WAIT2) {
1998 		struct tcp_sock *tp = tcp_sk(sk);
1999 		if (tp->linger2 < 0) {
2000 			tcp_set_state(sk, TCP_CLOSE);
2001 			tcp_send_active_reset(sk, GFP_ATOMIC);
2002 			NET_INC_STATS_BH(sock_net(sk),
2003 					LINUX_MIB_TCPABORTONLINGER);
2004 		} else {
2005 			const int tmo = tcp_fin_time(sk);
2006 
2007 			if (tmo > TCP_TIMEWAIT_LEN) {
2008 				inet_csk_reset_keepalive_timer(sk,
2009 						tmo - TCP_TIMEWAIT_LEN);
2010 			} else {
2011 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2012 				goto out;
2013 			}
2014 		}
2015 	}
2016 	if (sk->sk_state != TCP_CLOSE) {
2017 		sk_mem_reclaim(sk);
2018 		if (tcp_too_many_orphans(sk, 0)) {
2019 			if (net_ratelimit())
2020 				printk(KERN_INFO "TCP: too many of orphaned "
2021 				       "sockets\n");
2022 			tcp_set_state(sk, TCP_CLOSE);
2023 			tcp_send_active_reset(sk, GFP_ATOMIC);
2024 			NET_INC_STATS_BH(sock_net(sk),
2025 					LINUX_MIB_TCPABORTONMEMORY);
2026 		}
2027 	}
2028 
2029 	if (sk->sk_state == TCP_CLOSE)
2030 		inet_csk_destroy_sock(sk);
2031 	/* Otherwise, socket is reprieved until protocol close. */
2032 
2033 out:
2034 	bh_unlock_sock(sk);
2035 	local_bh_enable();
2036 	sock_put(sk);
2037 }
2038 EXPORT_SYMBOL(tcp_close);
2039 
2040 /* These states need RST on ABORT according to RFC793 */
2041 
2042 static inline int tcp_need_reset(int state)
2043 {
2044 	return (1 << state) &
2045 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2046 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2047 }
2048 
2049 int tcp_disconnect(struct sock *sk, int flags)
2050 {
2051 	struct inet_sock *inet = inet_sk(sk);
2052 	struct inet_connection_sock *icsk = inet_csk(sk);
2053 	struct tcp_sock *tp = tcp_sk(sk);
2054 	int err = 0;
2055 	int old_state = sk->sk_state;
2056 
2057 	if (old_state != TCP_CLOSE)
2058 		tcp_set_state(sk, TCP_CLOSE);
2059 
2060 	/* ABORT function of RFC793 */
2061 	if (old_state == TCP_LISTEN) {
2062 		inet_csk_listen_stop(sk);
2063 	} else if (tcp_need_reset(old_state) ||
2064 		   (tp->snd_nxt != tp->write_seq &&
2065 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2066 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2067 		 * states
2068 		 */
2069 		tcp_send_active_reset(sk, gfp_any());
2070 		sk->sk_err = ECONNRESET;
2071 	} else if (old_state == TCP_SYN_SENT)
2072 		sk->sk_err = ECONNRESET;
2073 
2074 	tcp_clear_xmit_timers(sk);
2075 	__skb_queue_purge(&sk->sk_receive_queue);
2076 	tcp_write_queue_purge(sk);
2077 	__skb_queue_purge(&tp->out_of_order_queue);
2078 #ifdef CONFIG_NET_DMA
2079 	__skb_queue_purge(&sk->sk_async_wait_queue);
2080 #endif
2081 
2082 	inet->inet_dport = 0;
2083 
2084 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2085 		inet_reset_saddr(sk);
2086 
2087 	sk->sk_shutdown = 0;
2088 	sock_reset_flag(sk, SOCK_DONE);
2089 	tp->srtt = 0;
2090 	if ((tp->write_seq += tp->max_window + 2) == 0)
2091 		tp->write_seq = 1;
2092 	icsk->icsk_backoff = 0;
2093 	tp->snd_cwnd = 2;
2094 	icsk->icsk_probes_out = 0;
2095 	tp->packets_out = 0;
2096 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2097 	tp->snd_cwnd_cnt = 0;
2098 	tp->bytes_acked = 0;
2099 	tp->window_clamp = 0;
2100 	tcp_set_ca_state(sk, TCP_CA_Open);
2101 	tcp_clear_retrans(tp);
2102 	inet_csk_delack_init(sk);
2103 	tcp_init_send_head(sk);
2104 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2105 	__sk_dst_reset(sk);
2106 
2107 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2108 
2109 	sk->sk_error_report(sk);
2110 	return err;
2111 }
2112 EXPORT_SYMBOL(tcp_disconnect);
2113 
2114 /*
2115  *	Socket option code for TCP.
2116  */
2117 static int do_tcp_setsockopt(struct sock *sk, int level,
2118 		int optname, char __user *optval, unsigned int optlen)
2119 {
2120 	struct tcp_sock *tp = tcp_sk(sk);
2121 	struct inet_connection_sock *icsk = inet_csk(sk);
2122 	int val;
2123 	int err = 0;
2124 
2125 	/* These are data/string values, all the others are ints */
2126 	switch (optname) {
2127 	case TCP_CONGESTION: {
2128 		char name[TCP_CA_NAME_MAX];
2129 
2130 		if (optlen < 1)
2131 			return -EINVAL;
2132 
2133 		val = strncpy_from_user(name, optval,
2134 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2135 		if (val < 0)
2136 			return -EFAULT;
2137 		name[val] = 0;
2138 
2139 		lock_sock(sk);
2140 		err = tcp_set_congestion_control(sk, name);
2141 		release_sock(sk);
2142 		return err;
2143 	}
2144 	case TCP_COOKIE_TRANSACTIONS: {
2145 		struct tcp_cookie_transactions ctd;
2146 		struct tcp_cookie_values *cvp = NULL;
2147 
2148 		if (sizeof(ctd) > optlen)
2149 			return -EINVAL;
2150 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2151 			return -EFAULT;
2152 
2153 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2154 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2155 			return -EINVAL;
2156 
2157 		if (ctd.tcpct_cookie_desired == 0) {
2158 			/* default to global value */
2159 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2160 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2161 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2162 			return -EINVAL;
2163 		}
2164 
2165 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2166 			/* Supercedes all other values */
2167 			lock_sock(sk);
2168 			if (tp->cookie_values != NULL) {
2169 				kref_put(&tp->cookie_values->kref,
2170 					 tcp_cookie_values_release);
2171 				tp->cookie_values = NULL;
2172 			}
2173 			tp->rx_opt.cookie_in_always = 0; /* false */
2174 			tp->rx_opt.cookie_out_never = 1; /* true */
2175 			release_sock(sk);
2176 			return err;
2177 		}
2178 
2179 		/* Allocate ancillary memory before locking.
2180 		 */
2181 		if (ctd.tcpct_used > 0 ||
2182 		    (tp->cookie_values == NULL &&
2183 		     (sysctl_tcp_cookie_size > 0 ||
2184 		      ctd.tcpct_cookie_desired > 0 ||
2185 		      ctd.tcpct_s_data_desired > 0))) {
2186 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2187 				      GFP_KERNEL);
2188 			if (cvp == NULL)
2189 				return -ENOMEM;
2190 
2191 			kref_init(&cvp->kref);
2192 		}
2193 		lock_sock(sk);
2194 		tp->rx_opt.cookie_in_always =
2195 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2196 		tp->rx_opt.cookie_out_never = 0; /* false */
2197 
2198 		if (tp->cookie_values != NULL) {
2199 			if (cvp != NULL) {
2200 				/* Changed values are recorded by a changed
2201 				 * pointer, ensuring the cookie will differ,
2202 				 * without separately hashing each value later.
2203 				 */
2204 				kref_put(&tp->cookie_values->kref,
2205 					 tcp_cookie_values_release);
2206 			} else {
2207 				cvp = tp->cookie_values;
2208 			}
2209 		}
2210 
2211 		if (cvp != NULL) {
2212 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2213 
2214 			if (ctd.tcpct_used > 0) {
2215 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2216 				       ctd.tcpct_used);
2217 				cvp->s_data_desired = ctd.tcpct_used;
2218 				cvp->s_data_constant = 1; /* true */
2219 			} else {
2220 				/* No constant payload data. */
2221 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2222 				cvp->s_data_constant = 0; /* false */
2223 			}
2224 
2225 			tp->cookie_values = cvp;
2226 		}
2227 		release_sock(sk);
2228 		return err;
2229 	}
2230 	default:
2231 		/* fallthru */
2232 		break;
2233 	}
2234 
2235 	if (optlen < sizeof(int))
2236 		return -EINVAL;
2237 
2238 	if (get_user(val, (int __user *)optval))
2239 		return -EFAULT;
2240 
2241 	lock_sock(sk);
2242 
2243 	switch (optname) {
2244 	case TCP_MAXSEG:
2245 		/* Values greater than interface MTU won't take effect. However
2246 		 * at the point when this call is done we typically don't yet
2247 		 * know which interface is going to be used */
2248 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2249 			err = -EINVAL;
2250 			break;
2251 		}
2252 		tp->rx_opt.user_mss = val;
2253 		break;
2254 
2255 	case TCP_NODELAY:
2256 		if (val) {
2257 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2258 			 * this option on corked socket is remembered, but
2259 			 * it is not activated until cork is cleared.
2260 			 *
2261 			 * However, when TCP_NODELAY is set we make
2262 			 * an explicit push, which overrides even TCP_CORK
2263 			 * for currently queued segments.
2264 			 */
2265 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2266 			tcp_push_pending_frames(sk);
2267 		} else {
2268 			tp->nonagle &= ~TCP_NAGLE_OFF;
2269 		}
2270 		break;
2271 
2272 	case TCP_THIN_LINEAR_TIMEOUTS:
2273 		if (val < 0 || val > 1)
2274 			err = -EINVAL;
2275 		else
2276 			tp->thin_lto = val;
2277 		break;
2278 
2279 	case TCP_THIN_DUPACK:
2280 		if (val < 0 || val > 1)
2281 			err = -EINVAL;
2282 		else
2283 			tp->thin_dupack = val;
2284 		break;
2285 
2286 	case TCP_CORK:
2287 		/* When set indicates to always queue non-full frames.
2288 		 * Later the user clears this option and we transmit
2289 		 * any pending partial frames in the queue.  This is
2290 		 * meant to be used alongside sendfile() to get properly
2291 		 * filled frames when the user (for example) must write
2292 		 * out headers with a write() call first and then use
2293 		 * sendfile to send out the data parts.
2294 		 *
2295 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2296 		 * stronger than TCP_NODELAY.
2297 		 */
2298 		if (val) {
2299 			tp->nonagle |= TCP_NAGLE_CORK;
2300 		} else {
2301 			tp->nonagle &= ~TCP_NAGLE_CORK;
2302 			if (tp->nonagle&TCP_NAGLE_OFF)
2303 				tp->nonagle |= TCP_NAGLE_PUSH;
2304 			tcp_push_pending_frames(sk);
2305 		}
2306 		break;
2307 
2308 	case TCP_KEEPIDLE:
2309 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2310 			err = -EINVAL;
2311 		else {
2312 			tp->keepalive_time = val * HZ;
2313 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2314 			    !((1 << sk->sk_state) &
2315 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2316 				u32 elapsed = keepalive_time_elapsed(tp);
2317 				if (tp->keepalive_time > elapsed)
2318 					elapsed = tp->keepalive_time - elapsed;
2319 				else
2320 					elapsed = 0;
2321 				inet_csk_reset_keepalive_timer(sk, elapsed);
2322 			}
2323 		}
2324 		break;
2325 	case TCP_KEEPINTVL:
2326 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2327 			err = -EINVAL;
2328 		else
2329 			tp->keepalive_intvl = val * HZ;
2330 		break;
2331 	case TCP_KEEPCNT:
2332 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2333 			err = -EINVAL;
2334 		else
2335 			tp->keepalive_probes = val;
2336 		break;
2337 	case TCP_SYNCNT:
2338 		if (val < 1 || val > MAX_TCP_SYNCNT)
2339 			err = -EINVAL;
2340 		else
2341 			icsk->icsk_syn_retries = val;
2342 		break;
2343 
2344 	case TCP_LINGER2:
2345 		if (val < 0)
2346 			tp->linger2 = -1;
2347 		else if (val > sysctl_tcp_fin_timeout / HZ)
2348 			tp->linger2 = 0;
2349 		else
2350 			tp->linger2 = val * HZ;
2351 		break;
2352 
2353 	case TCP_DEFER_ACCEPT:
2354 		/* Translate value in seconds to number of retransmits */
2355 		icsk->icsk_accept_queue.rskq_defer_accept =
2356 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2357 					TCP_RTO_MAX / HZ);
2358 		break;
2359 
2360 	case TCP_WINDOW_CLAMP:
2361 		if (!val) {
2362 			if (sk->sk_state != TCP_CLOSE) {
2363 				err = -EINVAL;
2364 				break;
2365 			}
2366 			tp->window_clamp = 0;
2367 		} else
2368 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2369 						SOCK_MIN_RCVBUF / 2 : val;
2370 		break;
2371 
2372 	case TCP_QUICKACK:
2373 		if (!val) {
2374 			icsk->icsk_ack.pingpong = 1;
2375 		} else {
2376 			icsk->icsk_ack.pingpong = 0;
2377 			if ((1 << sk->sk_state) &
2378 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2379 			    inet_csk_ack_scheduled(sk)) {
2380 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2381 				tcp_cleanup_rbuf(sk, 1);
2382 				if (!(val & 1))
2383 					icsk->icsk_ack.pingpong = 1;
2384 			}
2385 		}
2386 		break;
2387 
2388 #ifdef CONFIG_TCP_MD5SIG
2389 	case TCP_MD5SIG:
2390 		/* Read the IP->Key mappings from userspace */
2391 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2392 		break;
2393 #endif
2394 	case TCP_USER_TIMEOUT:
2395 		/* Cap the max timeout in ms TCP will retry/retrans
2396 		 * before giving up and aborting (ETIMEDOUT) a connection.
2397 		 */
2398 		icsk->icsk_user_timeout = msecs_to_jiffies(val);
2399 		break;
2400 	default:
2401 		err = -ENOPROTOOPT;
2402 		break;
2403 	}
2404 
2405 	release_sock(sk);
2406 	return err;
2407 }
2408 
2409 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2410 		   unsigned int optlen)
2411 {
2412 	struct inet_connection_sock *icsk = inet_csk(sk);
2413 
2414 	if (level != SOL_TCP)
2415 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2416 						     optval, optlen);
2417 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2418 }
2419 EXPORT_SYMBOL(tcp_setsockopt);
2420 
2421 #ifdef CONFIG_COMPAT
2422 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2423 			  char __user *optval, unsigned int optlen)
2424 {
2425 	if (level != SOL_TCP)
2426 		return inet_csk_compat_setsockopt(sk, level, optname,
2427 						  optval, optlen);
2428 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2429 }
2430 EXPORT_SYMBOL(compat_tcp_setsockopt);
2431 #endif
2432 
2433 /* Return information about state of tcp endpoint in API format. */
2434 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2435 {
2436 	struct tcp_sock *tp = tcp_sk(sk);
2437 	const struct inet_connection_sock *icsk = inet_csk(sk);
2438 	u32 now = tcp_time_stamp;
2439 
2440 	memset(info, 0, sizeof(*info));
2441 
2442 	info->tcpi_state = sk->sk_state;
2443 	info->tcpi_ca_state = icsk->icsk_ca_state;
2444 	info->tcpi_retransmits = icsk->icsk_retransmits;
2445 	info->tcpi_probes = icsk->icsk_probes_out;
2446 	info->tcpi_backoff = icsk->icsk_backoff;
2447 
2448 	if (tp->rx_opt.tstamp_ok)
2449 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2450 	if (tcp_is_sack(tp))
2451 		info->tcpi_options |= TCPI_OPT_SACK;
2452 	if (tp->rx_opt.wscale_ok) {
2453 		info->tcpi_options |= TCPI_OPT_WSCALE;
2454 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2455 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2456 	}
2457 
2458 	if (tp->ecn_flags&TCP_ECN_OK)
2459 		info->tcpi_options |= TCPI_OPT_ECN;
2460 
2461 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2462 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2463 	info->tcpi_snd_mss = tp->mss_cache;
2464 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2465 
2466 	if (sk->sk_state == TCP_LISTEN) {
2467 		info->tcpi_unacked = sk->sk_ack_backlog;
2468 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2469 	} else {
2470 		info->tcpi_unacked = tp->packets_out;
2471 		info->tcpi_sacked = tp->sacked_out;
2472 	}
2473 	info->tcpi_lost = tp->lost_out;
2474 	info->tcpi_retrans = tp->retrans_out;
2475 	info->tcpi_fackets = tp->fackets_out;
2476 
2477 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2478 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2479 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2480 
2481 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2482 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2483 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2484 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2485 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2486 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2487 	info->tcpi_advmss = tp->advmss;
2488 	info->tcpi_reordering = tp->reordering;
2489 
2490 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2491 	info->tcpi_rcv_space = tp->rcvq_space.space;
2492 
2493 	info->tcpi_total_retrans = tp->total_retrans;
2494 }
2495 EXPORT_SYMBOL_GPL(tcp_get_info);
2496 
2497 static int do_tcp_getsockopt(struct sock *sk, int level,
2498 		int optname, char __user *optval, int __user *optlen)
2499 {
2500 	struct inet_connection_sock *icsk = inet_csk(sk);
2501 	struct tcp_sock *tp = tcp_sk(sk);
2502 	int val, len;
2503 
2504 	if (get_user(len, optlen))
2505 		return -EFAULT;
2506 
2507 	len = min_t(unsigned int, len, sizeof(int));
2508 
2509 	if (len < 0)
2510 		return -EINVAL;
2511 
2512 	switch (optname) {
2513 	case TCP_MAXSEG:
2514 		val = tp->mss_cache;
2515 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2516 			val = tp->rx_opt.user_mss;
2517 		break;
2518 	case TCP_NODELAY:
2519 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2520 		break;
2521 	case TCP_CORK:
2522 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2523 		break;
2524 	case TCP_KEEPIDLE:
2525 		val = keepalive_time_when(tp) / HZ;
2526 		break;
2527 	case TCP_KEEPINTVL:
2528 		val = keepalive_intvl_when(tp) / HZ;
2529 		break;
2530 	case TCP_KEEPCNT:
2531 		val = keepalive_probes(tp);
2532 		break;
2533 	case TCP_SYNCNT:
2534 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2535 		break;
2536 	case TCP_LINGER2:
2537 		val = tp->linger2;
2538 		if (val >= 0)
2539 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2540 		break;
2541 	case TCP_DEFER_ACCEPT:
2542 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2543 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2544 		break;
2545 	case TCP_WINDOW_CLAMP:
2546 		val = tp->window_clamp;
2547 		break;
2548 	case TCP_INFO: {
2549 		struct tcp_info info;
2550 
2551 		if (get_user(len, optlen))
2552 			return -EFAULT;
2553 
2554 		tcp_get_info(sk, &info);
2555 
2556 		len = min_t(unsigned int, len, sizeof(info));
2557 		if (put_user(len, optlen))
2558 			return -EFAULT;
2559 		if (copy_to_user(optval, &info, len))
2560 			return -EFAULT;
2561 		return 0;
2562 	}
2563 	case TCP_QUICKACK:
2564 		val = !icsk->icsk_ack.pingpong;
2565 		break;
2566 
2567 	case TCP_CONGESTION:
2568 		if (get_user(len, optlen))
2569 			return -EFAULT;
2570 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2571 		if (put_user(len, optlen))
2572 			return -EFAULT;
2573 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2574 			return -EFAULT;
2575 		return 0;
2576 
2577 	case TCP_COOKIE_TRANSACTIONS: {
2578 		struct tcp_cookie_transactions ctd;
2579 		struct tcp_cookie_values *cvp = tp->cookie_values;
2580 
2581 		if (get_user(len, optlen))
2582 			return -EFAULT;
2583 		if (len < sizeof(ctd))
2584 			return -EINVAL;
2585 
2586 		memset(&ctd, 0, sizeof(ctd));
2587 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2588 				   TCP_COOKIE_IN_ALWAYS : 0)
2589 				| (tp->rx_opt.cookie_out_never ?
2590 				   TCP_COOKIE_OUT_NEVER : 0);
2591 
2592 		if (cvp != NULL) {
2593 			ctd.tcpct_flags |= (cvp->s_data_in ?
2594 					    TCP_S_DATA_IN : 0)
2595 					 | (cvp->s_data_out ?
2596 					    TCP_S_DATA_OUT : 0);
2597 
2598 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2599 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2600 
2601 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2602 			       cvp->cookie_pair_size);
2603 			ctd.tcpct_used = cvp->cookie_pair_size;
2604 		}
2605 
2606 		if (put_user(sizeof(ctd), optlen))
2607 			return -EFAULT;
2608 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2609 			return -EFAULT;
2610 		return 0;
2611 	}
2612 	case TCP_THIN_LINEAR_TIMEOUTS:
2613 		val = tp->thin_lto;
2614 		break;
2615 	case TCP_THIN_DUPACK:
2616 		val = tp->thin_dupack;
2617 		break;
2618 
2619 	case TCP_USER_TIMEOUT:
2620 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2621 		break;
2622 	default:
2623 		return -ENOPROTOOPT;
2624 	}
2625 
2626 	if (put_user(len, optlen))
2627 		return -EFAULT;
2628 	if (copy_to_user(optval, &val, len))
2629 		return -EFAULT;
2630 	return 0;
2631 }
2632 
2633 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2634 		   int __user *optlen)
2635 {
2636 	struct inet_connection_sock *icsk = inet_csk(sk);
2637 
2638 	if (level != SOL_TCP)
2639 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2640 						     optval, optlen);
2641 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2642 }
2643 EXPORT_SYMBOL(tcp_getsockopt);
2644 
2645 #ifdef CONFIG_COMPAT
2646 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2647 			  char __user *optval, int __user *optlen)
2648 {
2649 	if (level != SOL_TCP)
2650 		return inet_csk_compat_getsockopt(sk, level, optname,
2651 						  optval, optlen);
2652 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2653 }
2654 EXPORT_SYMBOL(compat_tcp_getsockopt);
2655 #endif
2656 
2657 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, u32 features)
2658 {
2659 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2660 	struct tcphdr *th;
2661 	unsigned thlen;
2662 	unsigned int seq;
2663 	__be32 delta;
2664 	unsigned int oldlen;
2665 	unsigned int mss;
2666 
2667 	if (!pskb_may_pull(skb, sizeof(*th)))
2668 		goto out;
2669 
2670 	th = tcp_hdr(skb);
2671 	thlen = th->doff * 4;
2672 	if (thlen < sizeof(*th))
2673 		goto out;
2674 
2675 	if (!pskb_may_pull(skb, thlen))
2676 		goto out;
2677 
2678 	oldlen = (u16)~skb->len;
2679 	__skb_pull(skb, thlen);
2680 
2681 	mss = skb_shinfo(skb)->gso_size;
2682 	if (unlikely(skb->len <= mss))
2683 		goto out;
2684 
2685 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2686 		/* Packet is from an untrusted source, reset gso_segs. */
2687 		int type = skb_shinfo(skb)->gso_type;
2688 
2689 		if (unlikely(type &
2690 			     ~(SKB_GSO_TCPV4 |
2691 			       SKB_GSO_DODGY |
2692 			       SKB_GSO_TCP_ECN |
2693 			       SKB_GSO_TCPV6 |
2694 			       0) ||
2695 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2696 			goto out;
2697 
2698 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2699 
2700 		segs = NULL;
2701 		goto out;
2702 	}
2703 
2704 	segs = skb_segment(skb, features);
2705 	if (IS_ERR(segs))
2706 		goto out;
2707 
2708 	delta = htonl(oldlen + (thlen + mss));
2709 
2710 	skb = segs;
2711 	th = tcp_hdr(skb);
2712 	seq = ntohl(th->seq);
2713 
2714 	do {
2715 		th->fin = th->psh = 0;
2716 
2717 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2718 				       (__force u32)delta));
2719 		if (skb->ip_summed != CHECKSUM_PARTIAL)
2720 			th->check =
2721 			     csum_fold(csum_partial(skb_transport_header(skb),
2722 						    thlen, skb->csum));
2723 
2724 		seq += mss;
2725 		skb = skb->next;
2726 		th = tcp_hdr(skb);
2727 
2728 		th->seq = htonl(seq);
2729 		th->cwr = 0;
2730 	} while (skb->next);
2731 
2732 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2733 		      skb->data_len);
2734 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2735 				(__force u32)delta));
2736 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2737 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2738 						   thlen, skb->csum));
2739 
2740 out:
2741 	return segs;
2742 }
2743 EXPORT_SYMBOL(tcp_tso_segment);
2744 
2745 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2746 {
2747 	struct sk_buff **pp = NULL;
2748 	struct sk_buff *p;
2749 	struct tcphdr *th;
2750 	struct tcphdr *th2;
2751 	unsigned int len;
2752 	unsigned int thlen;
2753 	__be32 flags;
2754 	unsigned int mss = 1;
2755 	unsigned int hlen;
2756 	unsigned int off;
2757 	int flush = 1;
2758 	int i;
2759 
2760 	off = skb_gro_offset(skb);
2761 	hlen = off + sizeof(*th);
2762 	th = skb_gro_header_fast(skb, off);
2763 	if (skb_gro_header_hard(skb, hlen)) {
2764 		th = skb_gro_header_slow(skb, hlen, off);
2765 		if (unlikely(!th))
2766 			goto out;
2767 	}
2768 
2769 	thlen = th->doff * 4;
2770 	if (thlen < sizeof(*th))
2771 		goto out;
2772 
2773 	hlen = off + thlen;
2774 	if (skb_gro_header_hard(skb, hlen)) {
2775 		th = skb_gro_header_slow(skb, hlen, off);
2776 		if (unlikely(!th))
2777 			goto out;
2778 	}
2779 
2780 	skb_gro_pull(skb, thlen);
2781 
2782 	len = skb_gro_len(skb);
2783 	flags = tcp_flag_word(th);
2784 
2785 	for (; (p = *head); head = &p->next) {
2786 		if (!NAPI_GRO_CB(p)->same_flow)
2787 			continue;
2788 
2789 		th2 = tcp_hdr(p);
2790 
2791 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2792 			NAPI_GRO_CB(p)->same_flow = 0;
2793 			continue;
2794 		}
2795 
2796 		goto found;
2797 	}
2798 
2799 	goto out_check_final;
2800 
2801 found:
2802 	flush = NAPI_GRO_CB(p)->flush;
2803 	flush |= (__force int)(flags & TCP_FLAG_CWR);
2804 	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2805 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2806 	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2807 	for (i = sizeof(*th); i < thlen; i += 4)
2808 		flush |= *(u32 *)((u8 *)th + i) ^
2809 			 *(u32 *)((u8 *)th2 + i);
2810 
2811 	mss = skb_shinfo(p)->gso_size;
2812 
2813 	flush |= (len - 1) >= mss;
2814 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2815 
2816 	if (flush || skb_gro_receive(head, skb)) {
2817 		mss = 1;
2818 		goto out_check_final;
2819 	}
2820 
2821 	p = *head;
2822 	th2 = tcp_hdr(p);
2823 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2824 
2825 out_check_final:
2826 	flush = len < mss;
2827 	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2828 					TCP_FLAG_RST | TCP_FLAG_SYN |
2829 					TCP_FLAG_FIN));
2830 
2831 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2832 		pp = head;
2833 
2834 out:
2835 	NAPI_GRO_CB(skb)->flush |= flush;
2836 
2837 	return pp;
2838 }
2839 EXPORT_SYMBOL(tcp_gro_receive);
2840 
2841 int tcp_gro_complete(struct sk_buff *skb)
2842 {
2843 	struct tcphdr *th = tcp_hdr(skb);
2844 
2845 	skb->csum_start = skb_transport_header(skb) - skb->head;
2846 	skb->csum_offset = offsetof(struct tcphdr, check);
2847 	skb->ip_summed = CHECKSUM_PARTIAL;
2848 
2849 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2850 
2851 	if (th->cwr)
2852 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2853 
2854 	return 0;
2855 }
2856 EXPORT_SYMBOL(tcp_gro_complete);
2857 
2858 #ifdef CONFIG_TCP_MD5SIG
2859 static unsigned long tcp_md5sig_users;
2860 static struct tcp_md5sig_pool * __percpu *tcp_md5sig_pool;
2861 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2862 
2863 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool * __percpu *pool)
2864 {
2865 	int cpu;
2866 	for_each_possible_cpu(cpu) {
2867 		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2868 		if (p) {
2869 			if (p->md5_desc.tfm)
2870 				crypto_free_hash(p->md5_desc.tfm);
2871 			kfree(p);
2872 		}
2873 	}
2874 	free_percpu(pool);
2875 }
2876 
2877 void tcp_free_md5sig_pool(void)
2878 {
2879 	struct tcp_md5sig_pool * __percpu *pool = NULL;
2880 
2881 	spin_lock_bh(&tcp_md5sig_pool_lock);
2882 	if (--tcp_md5sig_users == 0) {
2883 		pool = tcp_md5sig_pool;
2884 		tcp_md5sig_pool = NULL;
2885 	}
2886 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2887 	if (pool)
2888 		__tcp_free_md5sig_pool(pool);
2889 }
2890 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2891 
2892 static struct tcp_md5sig_pool * __percpu *
2893 __tcp_alloc_md5sig_pool(struct sock *sk)
2894 {
2895 	int cpu;
2896 	struct tcp_md5sig_pool * __percpu *pool;
2897 
2898 	pool = alloc_percpu(struct tcp_md5sig_pool *);
2899 	if (!pool)
2900 		return NULL;
2901 
2902 	for_each_possible_cpu(cpu) {
2903 		struct tcp_md5sig_pool *p;
2904 		struct crypto_hash *hash;
2905 
2906 		p = kzalloc(sizeof(*p), sk->sk_allocation);
2907 		if (!p)
2908 			goto out_free;
2909 		*per_cpu_ptr(pool, cpu) = p;
2910 
2911 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2912 		if (!hash || IS_ERR(hash))
2913 			goto out_free;
2914 
2915 		p->md5_desc.tfm = hash;
2916 	}
2917 	return pool;
2918 out_free:
2919 	__tcp_free_md5sig_pool(pool);
2920 	return NULL;
2921 }
2922 
2923 struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2924 {
2925 	struct tcp_md5sig_pool * __percpu *pool;
2926 	int alloc = 0;
2927 
2928 retry:
2929 	spin_lock_bh(&tcp_md5sig_pool_lock);
2930 	pool = tcp_md5sig_pool;
2931 	if (tcp_md5sig_users++ == 0) {
2932 		alloc = 1;
2933 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2934 	} else if (!pool) {
2935 		tcp_md5sig_users--;
2936 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2937 		cpu_relax();
2938 		goto retry;
2939 	} else
2940 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2941 
2942 	if (alloc) {
2943 		/* we cannot hold spinlock here because this may sleep. */
2944 		struct tcp_md5sig_pool * __percpu *p;
2945 
2946 		p = __tcp_alloc_md5sig_pool(sk);
2947 		spin_lock_bh(&tcp_md5sig_pool_lock);
2948 		if (!p) {
2949 			tcp_md5sig_users--;
2950 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2951 			return NULL;
2952 		}
2953 		pool = tcp_md5sig_pool;
2954 		if (pool) {
2955 			/* oops, it has already been assigned. */
2956 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2957 			__tcp_free_md5sig_pool(p);
2958 		} else {
2959 			tcp_md5sig_pool = pool = p;
2960 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2961 		}
2962 	}
2963 	return pool;
2964 }
2965 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2966 
2967 
2968 /**
2969  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2970  *
2971  *	We use percpu structure, so if we succeed, we exit with preemption
2972  *	and BH disabled, to make sure another thread or softirq handling
2973  *	wont try to get same context.
2974  */
2975 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2976 {
2977 	struct tcp_md5sig_pool * __percpu *p;
2978 
2979 	local_bh_disable();
2980 
2981 	spin_lock(&tcp_md5sig_pool_lock);
2982 	p = tcp_md5sig_pool;
2983 	if (p)
2984 		tcp_md5sig_users++;
2985 	spin_unlock(&tcp_md5sig_pool_lock);
2986 
2987 	if (p)
2988 		return *this_cpu_ptr(p);
2989 
2990 	local_bh_enable();
2991 	return NULL;
2992 }
2993 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2994 
2995 void tcp_put_md5sig_pool(void)
2996 {
2997 	local_bh_enable();
2998 	tcp_free_md5sig_pool();
2999 }
3000 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3001 
3002 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3003 			struct tcphdr *th)
3004 {
3005 	struct scatterlist sg;
3006 	int err;
3007 
3008 	__sum16 old_checksum = th->check;
3009 	th->check = 0;
3010 	/* options aren't included in the hash */
3011 	sg_init_one(&sg, th, sizeof(struct tcphdr));
3012 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
3013 	th->check = old_checksum;
3014 	return err;
3015 }
3016 EXPORT_SYMBOL(tcp_md5_hash_header);
3017 
3018 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3019 			  struct sk_buff *skb, unsigned header_len)
3020 {
3021 	struct scatterlist sg;
3022 	const struct tcphdr *tp = tcp_hdr(skb);
3023 	struct hash_desc *desc = &hp->md5_desc;
3024 	unsigned i;
3025 	const unsigned head_data_len = skb_headlen(skb) > header_len ?
3026 				       skb_headlen(skb) - header_len : 0;
3027 	const struct skb_shared_info *shi = skb_shinfo(skb);
3028 	struct sk_buff *frag_iter;
3029 
3030 	sg_init_table(&sg, 1);
3031 
3032 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3033 	if (crypto_hash_update(desc, &sg, head_data_len))
3034 		return 1;
3035 
3036 	for (i = 0; i < shi->nr_frags; ++i) {
3037 		const struct skb_frag_struct *f = &shi->frags[i];
3038 		sg_set_page(&sg, f->page, f->size, f->page_offset);
3039 		if (crypto_hash_update(desc, &sg, f->size))
3040 			return 1;
3041 	}
3042 
3043 	skb_walk_frags(skb, frag_iter)
3044 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3045 			return 1;
3046 
3047 	return 0;
3048 }
3049 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3050 
3051 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
3052 {
3053 	struct scatterlist sg;
3054 
3055 	sg_init_one(&sg, key->key, key->keylen);
3056 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3057 }
3058 EXPORT_SYMBOL(tcp_md5_hash_key);
3059 
3060 #endif
3061 
3062 /**
3063  * Each Responder maintains up to two secret values concurrently for
3064  * efficient secret rollover.  Each secret value has 4 states:
3065  *
3066  * Generating.  (tcp_secret_generating != tcp_secret_primary)
3067  *    Generates new Responder-Cookies, but not yet used for primary
3068  *    verification.  This is a short-term state, typically lasting only
3069  *    one round trip time (RTT).
3070  *
3071  * Primary.  (tcp_secret_generating == tcp_secret_primary)
3072  *    Used both for generation and primary verification.
3073  *
3074  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3075  *    Used for verification, until the first failure that can be
3076  *    verified by the newer Generating secret.  At that time, this
3077  *    cookie's state is changed to Secondary, and the Generating
3078  *    cookie's state is changed to Primary.  This is a short-term state,
3079  *    typically lasting only one round trip time (RTT).
3080  *
3081  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3082  *    Used for secondary verification, after primary verification
3083  *    failures.  This state lasts no more than twice the Maximum Segment
3084  *    Lifetime (2MSL).  Then, the secret is discarded.
3085  */
3086 struct tcp_cookie_secret {
3087 	/* The secret is divided into two parts.  The digest part is the
3088 	 * equivalent of previously hashing a secret and saving the state,
3089 	 * and serves as an initialization vector (IV).  The message part
3090 	 * serves as the trailing secret.
3091 	 */
3092 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3093 	unsigned long			expires;
3094 };
3095 
3096 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3097 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3098 #define TCP_SECRET_LIFE (HZ * 600)
3099 
3100 static struct tcp_cookie_secret tcp_secret_one;
3101 static struct tcp_cookie_secret tcp_secret_two;
3102 
3103 /* Essentially a circular list, without dynamic allocation. */
3104 static struct tcp_cookie_secret *tcp_secret_generating;
3105 static struct tcp_cookie_secret *tcp_secret_primary;
3106 static struct tcp_cookie_secret *tcp_secret_retiring;
3107 static struct tcp_cookie_secret *tcp_secret_secondary;
3108 
3109 static DEFINE_SPINLOCK(tcp_secret_locker);
3110 
3111 /* Select a pseudo-random word in the cookie workspace.
3112  */
3113 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3114 {
3115 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3116 }
3117 
3118 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3119  * Called in softirq context.
3120  * Returns: 0 for success.
3121  */
3122 int tcp_cookie_generator(u32 *bakery)
3123 {
3124 	unsigned long jiffy = jiffies;
3125 
3126 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3127 		spin_lock_bh(&tcp_secret_locker);
3128 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3129 			/* refreshed by another */
3130 			memcpy(bakery,
3131 			       &tcp_secret_generating->secrets[0],
3132 			       COOKIE_WORKSPACE_WORDS);
3133 		} else {
3134 			/* still needs refreshing */
3135 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3136 
3137 			/* The first time, paranoia assumes that the
3138 			 * randomization function isn't as strong.  But,
3139 			 * this secret initialization is delayed until
3140 			 * the last possible moment (packet arrival).
3141 			 * Although that time is observable, it is
3142 			 * unpredictably variable.  Mash in the most
3143 			 * volatile clock bits available, and expire the
3144 			 * secret extra quickly.
3145 			 */
3146 			if (unlikely(tcp_secret_primary->expires ==
3147 				     tcp_secret_secondary->expires)) {
3148 				struct timespec tv;
3149 
3150 				getnstimeofday(&tv);
3151 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3152 					(u32)tv.tv_nsec;
3153 
3154 				tcp_secret_secondary->expires = jiffy
3155 					+ TCP_SECRET_1MSL
3156 					+ (0x0f & tcp_cookie_work(bakery, 0));
3157 			} else {
3158 				tcp_secret_secondary->expires = jiffy
3159 					+ TCP_SECRET_LIFE
3160 					+ (0xff & tcp_cookie_work(bakery, 1));
3161 				tcp_secret_primary->expires = jiffy
3162 					+ TCP_SECRET_2MSL
3163 					+ (0x1f & tcp_cookie_work(bakery, 2));
3164 			}
3165 			memcpy(&tcp_secret_secondary->secrets[0],
3166 			       bakery, COOKIE_WORKSPACE_WORDS);
3167 
3168 			rcu_assign_pointer(tcp_secret_generating,
3169 					   tcp_secret_secondary);
3170 			rcu_assign_pointer(tcp_secret_retiring,
3171 					   tcp_secret_primary);
3172 			/*
3173 			 * Neither call_rcu() nor synchronize_rcu() needed.
3174 			 * Retiring data is not freed.  It is replaced after
3175 			 * further (locked) pointer updates, and a quiet time
3176 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3177 			 */
3178 		}
3179 		spin_unlock_bh(&tcp_secret_locker);
3180 	} else {
3181 		rcu_read_lock_bh();
3182 		memcpy(bakery,
3183 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3184 		       COOKIE_WORKSPACE_WORDS);
3185 		rcu_read_unlock_bh();
3186 	}
3187 	return 0;
3188 }
3189 EXPORT_SYMBOL(tcp_cookie_generator);
3190 
3191 void tcp_done(struct sock *sk)
3192 {
3193 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3194 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3195 
3196 	tcp_set_state(sk, TCP_CLOSE);
3197 	tcp_clear_xmit_timers(sk);
3198 
3199 	sk->sk_shutdown = SHUTDOWN_MASK;
3200 
3201 	if (!sock_flag(sk, SOCK_DEAD))
3202 		sk->sk_state_change(sk);
3203 	else
3204 		inet_csk_destroy_sock(sk);
3205 }
3206 EXPORT_SYMBOL_GPL(tcp_done);
3207 
3208 extern struct tcp_congestion_ops tcp_reno;
3209 
3210 static __initdata unsigned long thash_entries;
3211 static int __init set_thash_entries(char *str)
3212 {
3213 	if (!str)
3214 		return 0;
3215 	thash_entries = simple_strtoul(str, &str, 0);
3216 	return 1;
3217 }
3218 __setup("thash_entries=", set_thash_entries);
3219 
3220 void __init tcp_init(void)
3221 {
3222 	struct sk_buff *skb = NULL;
3223 	unsigned long limit;
3224 	int i, max_share, cnt;
3225 	unsigned long jiffy = jiffies;
3226 
3227 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3228 
3229 	percpu_counter_init(&tcp_sockets_allocated, 0);
3230 	percpu_counter_init(&tcp_orphan_count, 0);
3231 	tcp_hashinfo.bind_bucket_cachep =
3232 		kmem_cache_create("tcp_bind_bucket",
3233 				  sizeof(struct inet_bind_bucket), 0,
3234 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3235 
3236 	/* Size and allocate the main established and bind bucket
3237 	 * hash tables.
3238 	 *
3239 	 * The methodology is similar to that of the buffer cache.
3240 	 */
3241 	tcp_hashinfo.ehash =
3242 		alloc_large_system_hash("TCP established",
3243 					sizeof(struct inet_ehash_bucket),
3244 					thash_entries,
3245 					(totalram_pages >= 128 * 1024) ?
3246 					13 : 15,
3247 					0,
3248 					NULL,
3249 					&tcp_hashinfo.ehash_mask,
3250 					thash_entries ? 0 : 512 * 1024);
3251 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3252 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3253 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3254 	}
3255 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3256 		panic("TCP: failed to alloc ehash_locks");
3257 	tcp_hashinfo.bhash =
3258 		alloc_large_system_hash("TCP bind",
3259 					sizeof(struct inet_bind_hashbucket),
3260 					tcp_hashinfo.ehash_mask + 1,
3261 					(totalram_pages >= 128 * 1024) ?
3262 					13 : 15,
3263 					0,
3264 					&tcp_hashinfo.bhash_size,
3265 					NULL,
3266 					64 * 1024);
3267 	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
3268 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3269 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3270 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3271 	}
3272 
3273 
3274 	cnt = tcp_hashinfo.ehash_mask + 1;
3275 
3276 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3277 	sysctl_tcp_max_orphans = cnt / 2;
3278 	sysctl_max_syn_backlog = max(128, cnt / 256);
3279 
3280 	limit = nr_free_buffer_pages() / 8;
3281 	limit = max(limit, 128UL);
3282 	sysctl_tcp_mem[0] = limit / 4 * 3;
3283 	sysctl_tcp_mem[1] = limit;
3284 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3285 
3286 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3287 	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
3288 	max_share = min(4UL*1024*1024, limit);
3289 
3290 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3291 	sysctl_tcp_wmem[1] = 16*1024;
3292 	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3293 
3294 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3295 	sysctl_tcp_rmem[1] = 87380;
3296 	sysctl_tcp_rmem[2] = max(87380, max_share);
3297 
3298 	printk(KERN_INFO "TCP: Hash tables configured "
3299 	       "(established %u bind %u)\n",
3300 	       tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3301 
3302 	tcp_register_congestion_control(&tcp_reno);
3303 
3304 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3305 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3306 	tcp_secret_one.expires = jiffy; /* past due */
3307 	tcp_secret_two.expires = jiffy; /* past due */
3308 	tcp_secret_generating = &tcp_secret_one;
3309 	tcp_secret_primary = &tcp_secret_one;
3310 	tcp_secret_retiring = &tcp_secret_two;
3311 	tcp_secret_secondary = &tcp_secret_two;
3312 }
3313