xref: /linux/net/ipv4/arp.c (revision e2be04c7f9958dde770eeb8b30e829ca969b37bb)
1 /* linux/net/ipv4/arp.c
2  *
3  * Copyright (C) 1994 by Florian  La Roche
4  *
5  * This module implements the Address Resolution Protocol ARP (RFC 826),
6  * which is used to convert IP addresses (or in the future maybe other
7  * high-level addresses) into a low-level hardware address (like an Ethernet
8  * address).
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Fixes:
16  *		Alan Cox	:	Removed the Ethernet assumptions in
17  *					Florian's code
18  *		Alan Cox	:	Fixed some small errors in the ARP
19  *					logic
20  *		Alan Cox	:	Allow >4K in /proc
21  *		Alan Cox	:	Make ARP add its own protocol entry
22  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
23  *		Stephen Henson	:	Add AX25 support to arp_get_info()
24  *		Alan Cox	:	Drop data when a device is downed.
25  *		Alan Cox	:	Use init_timer().
26  *		Alan Cox	:	Double lock fixes.
27  *		Martin Seine	:	Move the arphdr structure
28  *					to if_arp.h for compatibility.
29  *					with BSD based programs.
30  *		Andrew Tridgell :       Added ARP netmask code and
31  *					re-arranged proxy handling.
32  *		Alan Cox	:	Changed to use notifiers.
33  *		Niibe Yutaka	:	Reply for this device or proxies only.
34  *		Alan Cox	:	Don't proxy across hardware types!
35  *		Jonathan Naylor :	Added support for NET/ROM.
36  *		Mike Shaver     :       RFC1122 checks.
37  *		Jonathan Naylor :	Only lookup the hardware address for
38  *					the correct hardware type.
39  *		Germano Caronni	:	Assorted subtle races.
40  *		Craig Schlenter :	Don't modify permanent entry
41  *					during arp_rcv.
42  *		Russ Nelson	:	Tidied up a few bits.
43  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
44  *					eg intelligent arp probing and
45  *					generation
46  *					of host down events.
47  *		Alan Cox	:	Missing unlock in device events.
48  *		Eckes		:	ARP ioctl control errors.
49  *		Alexey Kuznetsov:	Arp free fix.
50  *		Manuel Rodriguez:	Gratuitous ARP.
51  *              Jonathan Layes  :       Added arpd support through kerneld
52  *                                      message queue (960314)
53  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
54  *		Mike McLagan    :	Routing by source
55  *		Stuart Cheshire	:	Metricom and grat arp fixes
56  *					*** FOR 2.1 clean this up ***
57  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
58  *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
59  *					folded into the mainstream FDDI code.
60  *					Ack spit, Linus how did you allow that
61  *					one in...
62  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
63  *					clean up the APFDDI & gen. FDDI bits.
64  *		Alexey Kuznetsov:	new arp state machine;
65  *					now it is in net/core/neighbour.c.
66  *		Krzysztof Halasa:	Added Frame Relay ARP support.
67  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
68  *		Shmulik Hen:		Split arp_send to arp_create and
69  *					arp_xmit so intermediate drivers like
70  *					bonding can change the skb before
71  *					sending (e.g. insert 8021q tag).
72  *		Harald Welte	:	convert to make use of jenkins hash
73  *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
74  */
75 
76 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77 
78 #include <linux/module.h>
79 #include <linux/types.h>
80 #include <linux/string.h>
81 #include <linux/kernel.h>
82 #include <linux/capability.h>
83 #include <linux/socket.h>
84 #include <linux/sockios.h>
85 #include <linux/errno.h>
86 #include <linux/in.h>
87 #include <linux/mm.h>
88 #include <linux/inet.h>
89 #include <linux/inetdevice.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/fddidevice.h>
93 #include <linux/if_arp.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105 
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #include <net/dst_metadata.h>
117 #include <net/ip_tunnels.h>
118 
119 #include <linux/uaccess.h>
120 
121 #include <linux/netfilter_arp.h>
122 
123 /*
124  *	Interface to generic neighbour cache.
125  */
126 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
127 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
128 static int arp_constructor(struct neighbour *neigh);
129 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
130 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
131 static void parp_redo(struct sk_buff *skb);
132 
133 static const struct neigh_ops arp_generic_ops = {
134 	.family =		AF_INET,
135 	.solicit =		arp_solicit,
136 	.error_report =		arp_error_report,
137 	.output =		neigh_resolve_output,
138 	.connected_output =	neigh_connected_output,
139 };
140 
141 static const struct neigh_ops arp_hh_ops = {
142 	.family =		AF_INET,
143 	.solicit =		arp_solicit,
144 	.error_report =		arp_error_report,
145 	.output =		neigh_resolve_output,
146 	.connected_output =	neigh_resolve_output,
147 };
148 
149 static const struct neigh_ops arp_direct_ops = {
150 	.family =		AF_INET,
151 	.output =		neigh_direct_output,
152 	.connected_output =	neigh_direct_output,
153 };
154 
155 struct neigh_table arp_tbl = {
156 	.family		= AF_INET,
157 	.key_len	= 4,
158 	.protocol	= cpu_to_be16(ETH_P_IP),
159 	.hash		= arp_hash,
160 	.key_eq		= arp_key_eq,
161 	.constructor	= arp_constructor,
162 	.proxy_redo	= parp_redo,
163 	.id		= "arp_cache",
164 	.parms		= {
165 		.tbl			= &arp_tbl,
166 		.reachable_time		= 30 * HZ,
167 		.data	= {
168 			[NEIGH_VAR_MCAST_PROBES] = 3,
169 			[NEIGH_VAR_UCAST_PROBES] = 3,
170 			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
171 			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
172 			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
173 			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
174 			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
175 			[NEIGH_VAR_PROXY_QLEN] = 64,
176 			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
177 			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
178 			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
179 		},
180 	},
181 	.gc_interval	= 30 * HZ,
182 	.gc_thresh1	= 128,
183 	.gc_thresh2	= 512,
184 	.gc_thresh3	= 1024,
185 };
186 EXPORT_SYMBOL(arp_tbl);
187 
188 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
189 {
190 	switch (dev->type) {
191 	case ARPHRD_ETHER:
192 	case ARPHRD_FDDI:
193 	case ARPHRD_IEEE802:
194 		ip_eth_mc_map(addr, haddr);
195 		return 0;
196 	case ARPHRD_INFINIBAND:
197 		ip_ib_mc_map(addr, dev->broadcast, haddr);
198 		return 0;
199 	case ARPHRD_IPGRE:
200 		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
201 		return 0;
202 	default:
203 		if (dir) {
204 			memcpy(haddr, dev->broadcast, dev->addr_len);
205 			return 0;
206 		}
207 	}
208 	return -EINVAL;
209 }
210 
211 
212 static u32 arp_hash(const void *pkey,
213 		    const struct net_device *dev,
214 		    __u32 *hash_rnd)
215 {
216 	return arp_hashfn(pkey, dev, hash_rnd);
217 }
218 
219 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
220 {
221 	return neigh_key_eq32(neigh, pkey);
222 }
223 
224 static int arp_constructor(struct neighbour *neigh)
225 {
226 	__be32 addr = *(__be32 *)neigh->primary_key;
227 	struct net_device *dev = neigh->dev;
228 	struct in_device *in_dev;
229 	struct neigh_parms *parms;
230 
231 	rcu_read_lock();
232 	in_dev = __in_dev_get_rcu(dev);
233 	if (!in_dev) {
234 		rcu_read_unlock();
235 		return -EINVAL;
236 	}
237 
238 	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
239 
240 	parms = in_dev->arp_parms;
241 	__neigh_parms_put(neigh->parms);
242 	neigh->parms = neigh_parms_clone(parms);
243 	rcu_read_unlock();
244 
245 	if (!dev->header_ops) {
246 		neigh->nud_state = NUD_NOARP;
247 		neigh->ops = &arp_direct_ops;
248 		neigh->output = neigh_direct_output;
249 	} else {
250 		/* Good devices (checked by reading texts, but only Ethernet is
251 		   tested)
252 
253 		   ARPHRD_ETHER: (ethernet, apfddi)
254 		   ARPHRD_FDDI: (fddi)
255 		   ARPHRD_IEEE802: (tr)
256 		   ARPHRD_METRICOM: (strip)
257 		   ARPHRD_ARCNET:
258 		   etc. etc. etc.
259 
260 		   ARPHRD_IPDDP will also work, if author repairs it.
261 		   I did not it, because this driver does not work even
262 		   in old paradigm.
263 		 */
264 
265 		if (neigh->type == RTN_MULTICAST) {
266 			neigh->nud_state = NUD_NOARP;
267 			arp_mc_map(addr, neigh->ha, dev, 1);
268 		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
269 			neigh->nud_state = NUD_NOARP;
270 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
271 		} else if (neigh->type == RTN_BROADCAST ||
272 			   (dev->flags & IFF_POINTOPOINT)) {
273 			neigh->nud_state = NUD_NOARP;
274 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
275 		}
276 
277 		if (dev->header_ops->cache)
278 			neigh->ops = &arp_hh_ops;
279 		else
280 			neigh->ops = &arp_generic_ops;
281 
282 		if (neigh->nud_state & NUD_VALID)
283 			neigh->output = neigh->ops->connected_output;
284 		else
285 			neigh->output = neigh->ops->output;
286 	}
287 	return 0;
288 }
289 
290 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
291 {
292 	dst_link_failure(skb);
293 	kfree_skb(skb);
294 }
295 
296 /* Create and send an arp packet. */
297 static void arp_send_dst(int type, int ptype, __be32 dest_ip,
298 			 struct net_device *dev, __be32 src_ip,
299 			 const unsigned char *dest_hw,
300 			 const unsigned char *src_hw,
301 			 const unsigned char *target_hw,
302 			 struct dst_entry *dst)
303 {
304 	struct sk_buff *skb;
305 
306 	/* arp on this interface. */
307 	if (dev->flags & IFF_NOARP)
308 		return;
309 
310 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
311 			 dest_hw, src_hw, target_hw);
312 	if (!skb)
313 		return;
314 
315 	skb_dst_set(skb, dst_clone(dst));
316 	arp_xmit(skb);
317 }
318 
319 void arp_send(int type, int ptype, __be32 dest_ip,
320 	      struct net_device *dev, __be32 src_ip,
321 	      const unsigned char *dest_hw, const unsigned char *src_hw,
322 	      const unsigned char *target_hw)
323 {
324 	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
325 		     target_hw, NULL);
326 }
327 EXPORT_SYMBOL(arp_send);
328 
329 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
330 {
331 	__be32 saddr = 0;
332 	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
333 	struct net_device *dev = neigh->dev;
334 	__be32 target = *(__be32 *)neigh->primary_key;
335 	int probes = atomic_read(&neigh->probes);
336 	struct in_device *in_dev;
337 	struct dst_entry *dst = NULL;
338 
339 	rcu_read_lock();
340 	in_dev = __in_dev_get_rcu(dev);
341 	if (!in_dev) {
342 		rcu_read_unlock();
343 		return;
344 	}
345 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
346 	default:
347 	case 0:		/* By default announce any local IP */
348 		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
349 					  ip_hdr(skb)->saddr) == RTN_LOCAL)
350 			saddr = ip_hdr(skb)->saddr;
351 		break;
352 	case 1:		/* Restrict announcements of saddr in same subnet */
353 		if (!skb)
354 			break;
355 		saddr = ip_hdr(skb)->saddr;
356 		if (inet_addr_type_dev_table(dev_net(dev), dev,
357 					     saddr) == RTN_LOCAL) {
358 			/* saddr should be known to target */
359 			if (inet_addr_onlink(in_dev, target, saddr))
360 				break;
361 		}
362 		saddr = 0;
363 		break;
364 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
365 		break;
366 	}
367 	rcu_read_unlock();
368 
369 	if (!saddr)
370 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
371 
372 	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
373 	if (probes < 0) {
374 		if (!(neigh->nud_state & NUD_VALID))
375 			pr_debug("trying to ucast probe in NUD_INVALID\n");
376 		neigh_ha_snapshot(dst_ha, neigh, dev);
377 		dst_hw = dst_ha;
378 	} else {
379 		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
380 		if (probes < 0) {
381 			neigh_app_ns(neigh);
382 			return;
383 		}
384 	}
385 
386 	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
387 		dst = skb_dst(skb);
388 	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
389 		     dst_hw, dev->dev_addr, NULL, dst);
390 }
391 
392 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
393 {
394 	struct net *net = dev_net(in_dev->dev);
395 	int scope;
396 
397 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
398 	case 0:	/* Reply, the tip is already validated */
399 		return 0;
400 	case 1:	/* Reply only if tip is configured on the incoming interface */
401 		sip = 0;
402 		scope = RT_SCOPE_HOST;
403 		break;
404 	case 2:	/*
405 		 * Reply only if tip is configured on the incoming interface
406 		 * and is in same subnet as sip
407 		 */
408 		scope = RT_SCOPE_HOST;
409 		break;
410 	case 3:	/* Do not reply for scope host addresses */
411 		sip = 0;
412 		scope = RT_SCOPE_LINK;
413 		in_dev = NULL;
414 		break;
415 	case 4:	/* Reserved */
416 	case 5:
417 	case 6:
418 	case 7:
419 		return 0;
420 	case 8:	/* Do not reply */
421 		return 1;
422 	default:
423 		return 0;
424 	}
425 	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
426 }
427 
428 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
429 {
430 	struct rtable *rt;
431 	int flag = 0;
432 	/*unsigned long now; */
433 	struct net *net = dev_net(dev);
434 
435 	rt = ip_route_output(net, sip, tip, 0, 0);
436 	if (IS_ERR(rt))
437 		return 1;
438 	if (rt->dst.dev != dev) {
439 		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
440 		flag = 1;
441 	}
442 	ip_rt_put(rt);
443 	return flag;
444 }
445 
446 /*
447  * Check if we can use proxy ARP for this path
448  */
449 static inline int arp_fwd_proxy(struct in_device *in_dev,
450 				struct net_device *dev,	struct rtable *rt)
451 {
452 	struct in_device *out_dev;
453 	int imi, omi = -1;
454 
455 	if (rt->dst.dev == dev)
456 		return 0;
457 
458 	if (!IN_DEV_PROXY_ARP(in_dev))
459 		return 0;
460 	imi = IN_DEV_MEDIUM_ID(in_dev);
461 	if (imi == 0)
462 		return 1;
463 	if (imi == -1)
464 		return 0;
465 
466 	/* place to check for proxy_arp for routes */
467 
468 	out_dev = __in_dev_get_rcu(rt->dst.dev);
469 	if (out_dev)
470 		omi = IN_DEV_MEDIUM_ID(out_dev);
471 
472 	return omi != imi && omi != -1;
473 }
474 
475 /*
476  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
477  *
478  * RFC3069 supports proxy arp replies back to the same interface.  This
479  * is done to support (ethernet) switch features, like RFC 3069, where
480  * the individual ports are not allowed to communicate with each
481  * other, BUT they are allowed to talk to the upstream router.  As
482  * described in RFC 3069, it is possible to allow these hosts to
483  * communicate through the upstream router, by proxy_arp'ing.
484  *
485  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
486  *
487  *  This technology is known by different names:
488  *    In RFC 3069 it is called VLAN Aggregation.
489  *    Cisco and Allied Telesyn call it Private VLAN.
490  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
491  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
492  *
493  */
494 static inline int arp_fwd_pvlan(struct in_device *in_dev,
495 				struct net_device *dev,	struct rtable *rt,
496 				__be32 sip, __be32 tip)
497 {
498 	/* Private VLAN is only concerned about the same ethernet segment */
499 	if (rt->dst.dev != dev)
500 		return 0;
501 
502 	/* Don't reply on self probes (often done by windowz boxes)*/
503 	if (sip == tip)
504 		return 0;
505 
506 	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
507 		return 1;
508 	else
509 		return 0;
510 }
511 
512 /*
513  *	Interface to link layer: send routine and receive handler.
514  */
515 
516 /*
517  *	Create an arp packet. If dest_hw is not set, we create a broadcast
518  *	message.
519  */
520 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
521 			   struct net_device *dev, __be32 src_ip,
522 			   const unsigned char *dest_hw,
523 			   const unsigned char *src_hw,
524 			   const unsigned char *target_hw)
525 {
526 	struct sk_buff *skb;
527 	struct arphdr *arp;
528 	unsigned char *arp_ptr;
529 	int hlen = LL_RESERVED_SPACE(dev);
530 	int tlen = dev->needed_tailroom;
531 
532 	/*
533 	 *	Allocate a buffer
534 	 */
535 
536 	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
537 	if (!skb)
538 		return NULL;
539 
540 	skb_reserve(skb, hlen);
541 	skb_reset_network_header(skb);
542 	arp = skb_put(skb, arp_hdr_len(dev));
543 	skb->dev = dev;
544 	skb->protocol = htons(ETH_P_ARP);
545 	if (!src_hw)
546 		src_hw = dev->dev_addr;
547 	if (!dest_hw)
548 		dest_hw = dev->broadcast;
549 
550 	/*
551 	 *	Fill the device header for the ARP frame
552 	 */
553 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
554 		goto out;
555 
556 	/*
557 	 * Fill out the arp protocol part.
558 	 *
559 	 * The arp hardware type should match the device type, except for FDDI,
560 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
561 	 */
562 	/*
563 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
564 	 *	DIX code for the protocol. Make these device structure fields.
565 	 */
566 	switch (dev->type) {
567 	default:
568 		arp->ar_hrd = htons(dev->type);
569 		arp->ar_pro = htons(ETH_P_IP);
570 		break;
571 
572 #if IS_ENABLED(CONFIG_AX25)
573 	case ARPHRD_AX25:
574 		arp->ar_hrd = htons(ARPHRD_AX25);
575 		arp->ar_pro = htons(AX25_P_IP);
576 		break;
577 
578 #if IS_ENABLED(CONFIG_NETROM)
579 	case ARPHRD_NETROM:
580 		arp->ar_hrd = htons(ARPHRD_NETROM);
581 		arp->ar_pro = htons(AX25_P_IP);
582 		break;
583 #endif
584 #endif
585 
586 #if IS_ENABLED(CONFIG_FDDI)
587 	case ARPHRD_FDDI:
588 		arp->ar_hrd = htons(ARPHRD_ETHER);
589 		arp->ar_pro = htons(ETH_P_IP);
590 		break;
591 #endif
592 	}
593 
594 	arp->ar_hln = dev->addr_len;
595 	arp->ar_pln = 4;
596 	arp->ar_op = htons(type);
597 
598 	arp_ptr = (unsigned char *)(arp + 1);
599 
600 	memcpy(arp_ptr, src_hw, dev->addr_len);
601 	arp_ptr += dev->addr_len;
602 	memcpy(arp_ptr, &src_ip, 4);
603 	arp_ptr += 4;
604 
605 	switch (dev->type) {
606 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
607 	case ARPHRD_IEEE1394:
608 		break;
609 #endif
610 	default:
611 		if (target_hw)
612 			memcpy(arp_ptr, target_hw, dev->addr_len);
613 		else
614 			memset(arp_ptr, 0, dev->addr_len);
615 		arp_ptr += dev->addr_len;
616 	}
617 	memcpy(arp_ptr, &dest_ip, 4);
618 
619 	return skb;
620 
621 out:
622 	kfree_skb(skb);
623 	return NULL;
624 }
625 EXPORT_SYMBOL(arp_create);
626 
627 static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
628 {
629 	return dev_queue_xmit(skb);
630 }
631 
632 /*
633  *	Send an arp packet.
634  */
635 void arp_xmit(struct sk_buff *skb)
636 {
637 	/* Send it off, maybe filter it using firewalling first.  */
638 	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
639 		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
640 		arp_xmit_finish);
641 }
642 EXPORT_SYMBOL(arp_xmit);
643 
644 static bool arp_is_garp(struct net *net, struct net_device *dev,
645 			int *addr_type, __be16 ar_op,
646 			__be32 sip, __be32 tip,
647 			unsigned char *sha, unsigned char *tha)
648 {
649 	bool is_garp = tip == sip;
650 
651 	/* Gratuitous ARP _replies_ also require target hwaddr to be
652 	 * the same as source.
653 	 */
654 	if (is_garp && ar_op == htons(ARPOP_REPLY))
655 		is_garp =
656 			/* IPv4 over IEEE 1394 doesn't provide target
657 			 * hardware address field in its ARP payload.
658 			 */
659 			tha &&
660 			!memcmp(tha, sha, dev->addr_len);
661 
662 	if (is_garp) {
663 		*addr_type = inet_addr_type_dev_table(net, dev, sip);
664 		if (*addr_type != RTN_UNICAST)
665 			is_garp = false;
666 	}
667 	return is_garp;
668 }
669 
670 /*
671  *	Process an arp request.
672  */
673 
674 static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
675 {
676 	struct net_device *dev = skb->dev;
677 	struct in_device *in_dev = __in_dev_get_rcu(dev);
678 	struct arphdr *arp;
679 	unsigned char *arp_ptr;
680 	struct rtable *rt;
681 	unsigned char *sha;
682 	unsigned char *tha = NULL;
683 	__be32 sip, tip;
684 	u16 dev_type = dev->type;
685 	int addr_type;
686 	struct neighbour *n;
687 	struct dst_entry *reply_dst = NULL;
688 	bool is_garp = false;
689 
690 	/* arp_rcv below verifies the ARP header and verifies the device
691 	 * is ARP'able.
692 	 */
693 
694 	if (!in_dev)
695 		goto out_free_skb;
696 
697 	arp = arp_hdr(skb);
698 
699 	switch (dev_type) {
700 	default:
701 		if (arp->ar_pro != htons(ETH_P_IP) ||
702 		    htons(dev_type) != arp->ar_hrd)
703 			goto out_free_skb;
704 		break;
705 	case ARPHRD_ETHER:
706 	case ARPHRD_FDDI:
707 	case ARPHRD_IEEE802:
708 		/*
709 		 * ETHERNET, and Fibre Channel (which are IEEE 802
710 		 * devices, according to RFC 2625) devices will accept ARP
711 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
712 		 * This is the case also of FDDI, where the RFC 1390 says that
713 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
714 		 * however, to be more robust, we'll accept both 1 (Ethernet)
715 		 * or 6 (IEEE 802.2)
716 		 */
717 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
718 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
719 		    arp->ar_pro != htons(ETH_P_IP))
720 			goto out_free_skb;
721 		break;
722 	case ARPHRD_AX25:
723 		if (arp->ar_pro != htons(AX25_P_IP) ||
724 		    arp->ar_hrd != htons(ARPHRD_AX25))
725 			goto out_free_skb;
726 		break;
727 	case ARPHRD_NETROM:
728 		if (arp->ar_pro != htons(AX25_P_IP) ||
729 		    arp->ar_hrd != htons(ARPHRD_NETROM))
730 			goto out_free_skb;
731 		break;
732 	}
733 
734 	/* Understand only these message types */
735 
736 	if (arp->ar_op != htons(ARPOP_REPLY) &&
737 	    arp->ar_op != htons(ARPOP_REQUEST))
738 		goto out_free_skb;
739 
740 /*
741  *	Extract fields
742  */
743 	arp_ptr = (unsigned char *)(arp + 1);
744 	sha	= arp_ptr;
745 	arp_ptr += dev->addr_len;
746 	memcpy(&sip, arp_ptr, 4);
747 	arp_ptr += 4;
748 	switch (dev_type) {
749 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
750 	case ARPHRD_IEEE1394:
751 		break;
752 #endif
753 	default:
754 		tha = arp_ptr;
755 		arp_ptr += dev->addr_len;
756 	}
757 	memcpy(&tip, arp_ptr, 4);
758 /*
759  *	Check for bad requests for 127.x.x.x and requests for multicast
760  *	addresses.  If this is one such, delete it.
761  */
762 	if (ipv4_is_multicast(tip) ||
763 	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
764 		goto out_free_skb;
765 
766  /*
767   *	For some 802.11 wireless deployments (and possibly other networks),
768   *	there will be an ARP proxy and gratuitous ARP frames are attacks
769   *	and thus should not be accepted.
770   */
771 	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
772 		goto out_free_skb;
773 
774 /*
775  *     Special case: We must set Frame Relay source Q.922 address
776  */
777 	if (dev_type == ARPHRD_DLCI)
778 		sha = dev->broadcast;
779 
780 /*
781  *  Process entry.  The idea here is we want to send a reply if it is a
782  *  request for us or if it is a request for someone else that we hold
783  *  a proxy for.  We want to add an entry to our cache if it is a reply
784  *  to us or if it is a request for our address.
785  *  (The assumption for this last is that if someone is requesting our
786  *  address, they are probably intending to talk to us, so it saves time
787  *  if we cache their address.  Their address is also probably not in
788  *  our cache, since ours is not in their cache.)
789  *
790  *  Putting this another way, we only care about replies if they are to
791  *  us, in which case we add them to the cache.  For requests, we care
792  *  about those for us and those for our proxies.  We reply to both,
793  *  and in the case of requests for us we add the requester to the arp
794  *  cache.
795  */
796 
797 	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
798 		reply_dst = (struct dst_entry *)
799 			    iptunnel_metadata_reply(skb_metadata_dst(skb),
800 						    GFP_ATOMIC);
801 
802 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
803 	if (sip == 0) {
804 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
805 		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
806 		    !arp_ignore(in_dev, sip, tip))
807 			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
808 				     sha, dev->dev_addr, sha, reply_dst);
809 		goto out_consume_skb;
810 	}
811 
812 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
813 	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
814 
815 		rt = skb_rtable(skb);
816 		addr_type = rt->rt_type;
817 
818 		if (addr_type == RTN_LOCAL) {
819 			int dont_send;
820 
821 			dont_send = arp_ignore(in_dev, sip, tip);
822 			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
823 				dont_send = arp_filter(sip, tip, dev);
824 			if (!dont_send) {
825 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
826 				if (n) {
827 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
828 						     sip, dev, tip, sha,
829 						     dev->dev_addr, sha,
830 						     reply_dst);
831 					neigh_release(n);
832 				}
833 			}
834 			goto out_consume_skb;
835 		} else if (IN_DEV_FORWARD(in_dev)) {
836 			if (addr_type == RTN_UNICAST  &&
837 			    (arp_fwd_proxy(in_dev, dev, rt) ||
838 			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
839 			     (rt->dst.dev != dev &&
840 			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
841 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
842 				if (n)
843 					neigh_release(n);
844 
845 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
846 				    skb->pkt_type == PACKET_HOST ||
847 				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
848 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
849 						     sip, dev, tip, sha,
850 						     dev->dev_addr, sha,
851 						     reply_dst);
852 				} else {
853 					pneigh_enqueue(&arp_tbl,
854 						       in_dev->arp_parms, skb);
855 					goto out_free_dst;
856 				}
857 				goto out_consume_skb;
858 			}
859 		}
860 	}
861 
862 	/* Update our ARP tables */
863 
864 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
865 
866 	addr_type = -1;
867 	if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
868 		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
869 				      sip, tip, sha, tha);
870 	}
871 
872 	if (IN_DEV_ARP_ACCEPT(in_dev)) {
873 		/* Unsolicited ARP is not accepted by default.
874 		   It is possible, that this option should be enabled for some
875 		   devices (strip is candidate)
876 		 */
877 		if (!n &&
878 		    (is_garp ||
879 		     (arp->ar_op == htons(ARPOP_REPLY) &&
880 		      (addr_type == RTN_UNICAST ||
881 		       (addr_type < 0 &&
882 			/* postpone calculation to as late as possible */
883 			inet_addr_type_dev_table(net, dev, sip) ==
884 				RTN_UNICAST)))))
885 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
886 	}
887 
888 	if (n) {
889 		int state = NUD_REACHABLE;
890 		int override;
891 
892 		/* If several different ARP replies follows back-to-back,
893 		   use the FIRST one. It is possible, if several proxy
894 		   agents are active. Taking the first reply prevents
895 		   arp trashing and chooses the fastest router.
896 		 */
897 		override = time_after(jiffies,
898 				      n->updated +
899 				      NEIGH_VAR(n->parms, LOCKTIME)) ||
900 			   is_garp;
901 
902 		/* Broadcast replies and request packets
903 		   do not assert neighbour reachability.
904 		 */
905 		if (arp->ar_op != htons(ARPOP_REPLY) ||
906 		    skb->pkt_type != PACKET_HOST)
907 			state = NUD_STALE;
908 		neigh_update(n, sha, state,
909 			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
910 		neigh_release(n);
911 	}
912 
913 out_consume_skb:
914 	consume_skb(skb);
915 
916 out_free_dst:
917 	dst_release(reply_dst);
918 	return NET_RX_SUCCESS;
919 
920 out_free_skb:
921 	kfree_skb(skb);
922 	return NET_RX_DROP;
923 }
924 
925 static void parp_redo(struct sk_buff *skb)
926 {
927 	arp_process(dev_net(skb->dev), NULL, skb);
928 }
929 
930 
931 /*
932  *	Receive an arp request from the device layer.
933  */
934 
935 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
936 		   struct packet_type *pt, struct net_device *orig_dev)
937 {
938 	const struct arphdr *arp;
939 
940 	/* do not tweak dropwatch on an ARP we will ignore */
941 	if (dev->flags & IFF_NOARP ||
942 	    skb->pkt_type == PACKET_OTHERHOST ||
943 	    skb->pkt_type == PACKET_LOOPBACK)
944 		goto consumeskb;
945 
946 	skb = skb_share_check(skb, GFP_ATOMIC);
947 	if (!skb)
948 		goto out_of_mem;
949 
950 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
951 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
952 		goto freeskb;
953 
954 	arp = arp_hdr(skb);
955 	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
956 		goto freeskb;
957 
958 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
959 
960 	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
961 		       dev_net(dev), NULL, skb, dev, NULL,
962 		       arp_process);
963 
964 consumeskb:
965 	consume_skb(skb);
966 	return NET_RX_SUCCESS;
967 freeskb:
968 	kfree_skb(skb);
969 out_of_mem:
970 	return NET_RX_DROP;
971 }
972 
973 /*
974  *	User level interface (ioctl)
975  */
976 
977 /*
978  *	Set (create) an ARP cache entry.
979  */
980 
981 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
982 {
983 	if (!dev) {
984 		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
985 		return 0;
986 	}
987 	if (__in_dev_get_rtnl(dev)) {
988 		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
989 		return 0;
990 	}
991 	return -ENXIO;
992 }
993 
994 static int arp_req_set_public(struct net *net, struct arpreq *r,
995 		struct net_device *dev)
996 {
997 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
998 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
999 
1000 	if (mask && mask != htonl(0xFFFFFFFF))
1001 		return -EINVAL;
1002 	if (!dev && (r->arp_flags & ATF_COM)) {
1003 		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1004 				      r->arp_ha.sa_data);
1005 		if (!dev)
1006 			return -ENODEV;
1007 	}
1008 	if (mask) {
1009 		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1010 			return -ENOBUFS;
1011 		return 0;
1012 	}
1013 
1014 	return arp_req_set_proxy(net, dev, 1);
1015 }
1016 
1017 static int arp_req_set(struct net *net, struct arpreq *r,
1018 		       struct net_device *dev)
1019 {
1020 	__be32 ip;
1021 	struct neighbour *neigh;
1022 	int err;
1023 
1024 	if (r->arp_flags & ATF_PUBL)
1025 		return arp_req_set_public(net, r, dev);
1026 
1027 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1028 	if (r->arp_flags & ATF_PERM)
1029 		r->arp_flags |= ATF_COM;
1030 	if (!dev) {
1031 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1032 
1033 		if (IS_ERR(rt))
1034 			return PTR_ERR(rt);
1035 		dev = rt->dst.dev;
1036 		ip_rt_put(rt);
1037 		if (!dev)
1038 			return -EINVAL;
1039 	}
1040 	switch (dev->type) {
1041 #if IS_ENABLED(CONFIG_FDDI)
1042 	case ARPHRD_FDDI:
1043 		/*
1044 		 * According to RFC 1390, FDDI devices should accept ARP
1045 		 * hardware types of 1 (Ethernet).  However, to be more
1046 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1047 		 * or 6 (IEEE 802.2).
1048 		 */
1049 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1050 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1051 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1052 			return -EINVAL;
1053 		break;
1054 #endif
1055 	default:
1056 		if (r->arp_ha.sa_family != dev->type)
1057 			return -EINVAL;
1058 		break;
1059 	}
1060 
1061 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1062 	err = PTR_ERR(neigh);
1063 	if (!IS_ERR(neigh)) {
1064 		unsigned int state = NUD_STALE;
1065 		if (r->arp_flags & ATF_PERM)
1066 			state = NUD_PERMANENT;
1067 		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1068 				   r->arp_ha.sa_data : NULL, state,
1069 				   NEIGH_UPDATE_F_OVERRIDE |
1070 				   NEIGH_UPDATE_F_ADMIN, 0);
1071 		neigh_release(neigh);
1072 	}
1073 	return err;
1074 }
1075 
1076 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1077 {
1078 	if (neigh->nud_state&NUD_PERMANENT)
1079 		return ATF_PERM | ATF_COM;
1080 	else if (neigh->nud_state&NUD_VALID)
1081 		return ATF_COM;
1082 	else
1083 		return 0;
1084 }
1085 
1086 /*
1087  *	Get an ARP cache entry.
1088  */
1089 
1090 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1091 {
1092 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1093 	struct neighbour *neigh;
1094 	int err = -ENXIO;
1095 
1096 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1097 	if (neigh) {
1098 		if (!(neigh->nud_state & NUD_NOARP)) {
1099 			read_lock_bh(&neigh->lock);
1100 			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1101 			r->arp_flags = arp_state_to_flags(neigh);
1102 			read_unlock_bh(&neigh->lock);
1103 			r->arp_ha.sa_family = dev->type;
1104 			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1105 			err = 0;
1106 		}
1107 		neigh_release(neigh);
1108 	}
1109 	return err;
1110 }
1111 
1112 static int arp_invalidate(struct net_device *dev, __be32 ip)
1113 {
1114 	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1115 	int err = -ENXIO;
1116 	struct neigh_table *tbl = &arp_tbl;
1117 
1118 	if (neigh) {
1119 		if (neigh->nud_state & ~NUD_NOARP)
1120 			err = neigh_update(neigh, NULL, NUD_FAILED,
1121 					   NEIGH_UPDATE_F_OVERRIDE|
1122 					   NEIGH_UPDATE_F_ADMIN, 0);
1123 		write_lock_bh(&tbl->lock);
1124 		neigh_release(neigh);
1125 		neigh_remove_one(neigh, tbl);
1126 		write_unlock_bh(&tbl->lock);
1127 	}
1128 
1129 	return err;
1130 }
1131 
1132 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1133 		struct net_device *dev)
1134 {
1135 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1136 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1137 
1138 	if (mask == htonl(0xFFFFFFFF))
1139 		return pneigh_delete(&arp_tbl, net, &ip, dev);
1140 
1141 	if (mask)
1142 		return -EINVAL;
1143 
1144 	return arp_req_set_proxy(net, dev, 0);
1145 }
1146 
1147 static int arp_req_delete(struct net *net, struct arpreq *r,
1148 			  struct net_device *dev)
1149 {
1150 	__be32 ip;
1151 
1152 	if (r->arp_flags & ATF_PUBL)
1153 		return arp_req_delete_public(net, r, dev);
1154 
1155 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1156 	if (!dev) {
1157 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1158 		if (IS_ERR(rt))
1159 			return PTR_ERR(rt);
1160 		dev = rt->dst.dev;
1161 		ip_rt_put(rt);
1162 		if (!dev)
1163 			return -EINVAL;
1164 	}
1165 	return arp_invalidate(dev, ip);
1166 }
1167 
1168 /*
1169  *	Handle an ARP layer I/O control request.
1170  */
1171 
1172 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1173 {
1174 	int err;
1175 	struct arpreq r;
1176 	struct net_device *dev = NULL;
1177 
1178 	switch (cmd) {
1179 	case SIOCDARP:
1180 	case SIOCSARP:
1181 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1182 			return -EPERM;
1183 	case SIOCGARP:
1184 		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1185 		if (err)
1186 			return -EFAULT;
1187 		break;
1188 	default:
1189 		return -EINVAL;
1190 	}
1191 
1192 	if (r.arp_pa.sa_family != AF_INET)
1193 		return -EPFNOSUPPORT;
1194 
1195 	if (!(r.arp_flags & ATF_PUBL) &&
1196 	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1197 		return -EINVAL;
1198 	if (!(r.arp_flags & ATF_NETMASK))
1199 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1200 							   htonl(0xFFFFFFFFUL);
1201 	rtnl_lock();
1202 	if (r.arp_dev[0]) {
1203 		err = -ENODEV;
1204 		dev = __dev_get_by_name(net, r.arp_dev);
1205 		if (!dev)
1206 			goto out;
1207 
1208 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1209 		if (!r.arp_ha.sa_family)
1210 			r.arp_ha.sa_family = dev->type;
1211 		err = -EINVAL;
1212 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1213 			goto out;
1214 	} else if (cmd == SIOCGARP) {
1215 		err = -ENODEV;
1216 		goto out;
1217 	}
1218 
1219 	switch (cmd) {
1220 	case SIOCDARP:
1221 		err = arp_req_delete(net, &r, dev);
1222 		break;
1223 	case SIOCSARP:
1224 		err = arp_req_set(net, &r, dev);
1225 		break;
1226 	case SIOCGARP:
1227 		err = arp_req_get(&r, dev);
1228 		break;
1229 	}
1230 out:
1231 	rtnl_unlock();
1232 	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1233 		err = -EFAULT;
1234 	return err;
1235 }
1236 
1237 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1238 			    void *ptr)
1239 {
1240 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1241 	struct netdev_notifier_change_info *change_info;
1242 
1243 	switch (event) {
1244 	case NETDEV_CHANGEADDR:
1245 		neigh_changeaddr(&arp_tbl, dev);
1246 		rt_cache_flush(dev_net(dev));
1247 		break;
1248 	case NETDEV_CHANGE:
1249 		change_info = ptr;
1250 		if (change_info->flags_changed & IFF_NOARP)
1251 			neigh_changeaddr(&arp_tbl, dev);
1252 		break;
1253 	default:
1254 		break;
1255 	}
1256 
1257 	return NOTIFY_DONE;
1258 }
1259 
1260 static struct notifier_block arp_netdev_notifier = {
1261 	.notifier_call = arp_netdev_event,
1262 };
1263 
1264 /* Note, that it is not on notifier chain.
1265    It is necessary, that this routine was called after route cache will be
1266    flushed.
1267  */
1268 void arp_ifdown(struct net_device *dev)
1269 {
1270 	neigh_ifdown(&arp_tbl, dev);
1271 }
1272 
1273 
1274 /*
1275  *	Called once on startup.
1276  */
1277 
1278 static struct packet_type arp_packet_type __read_mostly = {
1279 	.type =	cpu_to_be16(ETH_P_ARP),
1280 	.func =	arp_rcv,
1281 };
1282 
1283 static int arp_proc_init(void);
1284 
1285 void __init arp_init(void)
1286 {
1287 	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1288 
1289 	dev_add_pack(&arp_packet_type);
1290 	arp_proc_init();
1291 #ifdef CONFIG_SYSCTL
1292 	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1293 #endif
1294 	register_netdevice_notifier(&arp_netdev_notifier);
1295 }
1296 
1297 #ifdef CONFIG_PROC_FS
1298 #if IS_ENABLED(CONFIG_AX25)
1299 
1300 /* ------------------------------------------------------------------------ */
1301 /*
1302  *	ax25 -> ASCII conversion
1303  */
1304 static void ax2asc2(ax25_address *a, char *buf)
1305 {
1306 	char c, *s;
1307 	int n;
1308 
1309 	for (n = 0, s = buf; n < 6; n++) {
1310 		c = (a->ax25_call[n] >> 1) & 0x7F;
1311 
1312 		if (c != ' ')
1313 			*s++ = c;
1314 	}
1315 
1316 	*s++ = '-';
1317 	n = (a->ax25_call[6] >> 1) & 0x0F;
1318 	if (n > 9) {
1319 		*s++ = '1';
1320 		n -= 10;
1321 	}
1322 
1323 	*s++ = n + '0';
1324 	*s++ = '\0';
1325 
1326 	if (*buf == '\0' || *buf == '-') {
1327 		buf[0] = '*';
1328 		buf[1] = '\0';
1329 	}
1330 }
1331 #endif /* CONFIG_AX25 */
1332 
1333 #define HBUFFERLEN 30
1334 
1335 static void arp_format_neigh_entry(struct seq_file *seq,
1336 				   struct neighbour *n)
1337 {
1338 	char hbuffer[HBUFFERLEN];
1339 	int k, j;
1340 	char tbuf[16];
1341 	struct net_device *dev = n->dev;
1342 	int hatype = dev->type;
1343 
1344 	read_lock(&n->lock);
1345 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1346 #if IS_ENABLED(CONFIG_AX25)
1347 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1348 		ax2asc2((ax25_address *)n->ha, hbuffer);
1349 	else {
1350 #endif
1351 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1352 		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1353 		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1354 		hbuffer[k++] = ':';
1355 	}
1356 	if (k != 0)
1357 		--k;
1358 	hbuffer[k] = 0;
1359 #if IS_ENABLED(CONFIG_AX25)
1360 	}
1361 #endif
1362 	sprintf(tbuf, "%pI4", n->primary_key);
1363 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1364 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1365 	read_unlock(&n->lock);
1366 }
1367 
1368 static void arp_format_pneigh_entry(struct seq_file *seq,
1369 				    struct pneigh_entry *n)
1370 {
1371 	struct net_device *dev = n->dev;
1372 	int hatype = dev ? dev->type : 0;
1373 	char tbuf[16];
1374 
1375 	sprintf(tbuf, "%pI4", n->key);
1376 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1377 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1378 		   dev ? dev->name : "*");
1379 }
1380 
1381 static int arp_seq_show(struct seq_file *seq, void *v)
1382 {
1383 	if (v == SEQ_START_TOKEN) {
1384 		seq_puts(seq, "IP address       HW type     Flags       "
1385 			      "HW address            Mask     Device\n");
1386 	} else {
1387 		struct neigh_seq_state *state = seq->private;
1388 
1389 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1390 			arp_format_pneigh_entry(seq, v);
1391 		else
1392 			arp_format_neigh_entry(seq, v);
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1399 {
1400 	/* Don't want to confuse "arp -a" w/ magic entries,
1401 	 * so we tell the generic iterator to skip NUD_NOARP.
1402 	 */
1403 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1404 }
1405 
1406 /* ------------------------------------------------------------------------ */
1407 
1408 static const struct seq_operations arp_seq_ops = {
1409 	.start	= arp_seq_start,
1410 	.next	= neigh_seq_next,
1411 	.stop	= neigh_seq_stop,
1412 	.show	= arp_seq_show,
1413 };
1414 
1415 static int arp_seq_open(struct inode *inode, struct file *file)
1416 {
1417 	return seq_open_net(inode, file, &arp_seq_ops,
1418 			    sizeof(struct neigh_seq_state));
1419 }
1420 
1421 static const struct file_operations arp_seq_fops = {
1422 	.owner		= THIS_MODULE,
1423 	.open           = arp_seq_open,
1424 	.read           = seq_read,
1425 	.llseek         = seq_lseek,
1426 	.release	= seq_release_net,
1427 };
1428 
1429 
1430 static int __net_init arp_net_init(struct net *net)
1431 {
1432 	if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1433 		return -ENOMEM;
1434 	return 0;
1435 }
1436 
1437 static void __net_exit arp_net_exit(struct net *net)
1438 {
1439 	remove_proc_entry("arp", net->proc_net);
1440 }
1441 
1442 static struct pernet_operations arp_net_ops = {
1443 	.init = arp_net_init,
1444 	.exit = arp_net_exit,
1445 };
1446 
1447 static int __init arp_proc_init(void)
1448 {
1449 	return register_pernet_subsys(&arp_net_ops);
1450 }
1451 
1452 #else /* CONFIG_PROC_FS */
1453 
1454 static int __init arp_proc_init(void)
1455 {
1456 	return 0;
1457 }
1458 
1459 #endif /* CONFIG_PROC_FS */
1460