xref: /linux/net/core/flow_dissector.c (revision e5a52fd2b8cdb700b3c07b030e050a49ef3156b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <net/dsa.h>
9 #include <net/dst_metadata.h>
10 #include <net/ip.h>
11 #include <net/ipv6.h>
12 #include <net/gre.h>
13 #include <net/pptp.h>
14 #include <net/tipc.h>
15 #include <linux/igmp.h>
16 #include <linux/icmp.h>
17 #include <linux/sctp.h>
18 #include <linux/dccp.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/if_pppox.h>
21 #include <linux/ppp_defs.h>
22 #include <linux/stddef.h>
23 #include <linux/if_ether.h>
24 #include <linux/mpls.h>
25 #include <linux/tcp.h>
26 #include <net/flow_dissector.h>
27 #include <scsi/fc/fc_fcoe.h>
28 #include <uapi/linux/batadv_packet.h>
29 #include <linux/bpf.h>
30 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
31 #include <net/netfilter/nf_conntrack_core.h>
32 #include <net/netfilter/nf_conntrack_labels.h>
33 #endif
34 #include <linux/bpf-netns.h>
35 
36 static void dissector_set_key(struct flow_dissector *flow_dissector,
37 			      enum flow_dissector_key_id key_id)
38 {
39 	flow_dissector->used_keys |= (1 << key_id);
40 }
41 
42 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
43 			     const struct flow_dissector_key *key,
44 			     unsigned int key_count)
45 {
46 	unsigned int i;
47 
48 	memset(flow_dissector, 0, sizeof(*flow_dissector));
49 
50 	for (i = 0; i < key_count; i++, key++) {
51 		/* User should make sure that every key target offset is withing
52 		 * boundaries of unsigned short.
53 		 */
54 		BUG_ON(key->offset > USHRT_MAX);
55 		BUG_ON(dissector_uses_key(flow_dissector,
56 					  key->key_id));
57 
58 		dissector_set_key(flow_dissector, key->key_id);
59 		flow_dissector->offset[key->key_id] = key->offset;
60 	}
61 
62 	/* Ensure that the dissector always includes control and basic key.
63 	 * That way we are able to avoid handling lack of these in fast path.
64 	 */
65 	BUG_ON(!dissector_uses_key(flow_dissector,
66 				   FLOW_DISSECTOR_KEY_CONTROL));
67 	BUG_ON(!dissector_uses_key(flow_dissector,
68 				   FLOW_DISSECTOR_KEY_BASIC));
69 }
70 EXPORT_SYMBOL(skb_flow_dissector_init);
71 
72 #ifdef CONFIG_BPF_SYSCALL
73 int flow_dissector_bpf_prog_attach_check(struct net *net,
74 					 struct bpf_prog *prog)
75 {
76 	enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
77 
78 	if (net == &init_net) {
79 		/* BPF flow dissector in the root namespace overrides
80 		 * any per-net-namespace one. When attaching to root,
81 		 * make sure we don't have any BPF program attached
82 		 * to the non-root namespaces.
83 		 */
84 		struct net *ns;
85 
86 		for_each_net(ns) {
87 			if (ns == &init_net)
88 				continue;
89 			if (rcu_access_pointer(ns->bpf.run_array[type]))
90 				return -EEXIST;
91 		}
92 	} else {
93 		/* Make sure root flow dissector is not attached
94 		 * when attaching to the non-root namespace.
95 		 */
96 		if (rcu_access_pointer(init_net.bpf.run_array[type]))
97 			return -EEXIST;
98 	}
99 
100 	return 0;
101 }
102 #endif /* CONFIG_BPF_SYSCALL */
103 
104 /**
105  * __skb_flow_get_ports - extract the upper layer ports and return them
106  * @skb: sk_buff to extract the ports from
107  * @thoff: transport header offset
108  * @ip_proto: protocol for which to get port offset
109  * @data: raw buffer pointer to the packet, if NULL use skb->data
110  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
111  *
112  * The function will try to retrieve the ports at offset thoff + poff where poff
113  * is the protocol port offset returned from proto_ports_offset
114  */
115 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
116 			    void *data, int hlen)
117 {
118 	int poff = proto_ports_offset(ip_proto);
119 
120 	if (!data) {
121 		data = skb->data;
122 		hlen = skb_headlen(skb);
123 	}
124 
125 	if (poff >= 0) {
126 		__be32 *ports, _ports;
127 
128 		ports = __skb_header_pointer(skb, thoff + poff,
129 					     sizeof(_ports), data, hlen, &_ports);
130 		if (ports)
131 			return *ports;
132 	}
133 
134 	return 0;
135 }
136 EXPORT_SYMBOL(__skb_flow_get_ports);
137 
138 static bool icmp_has_id(u8 type)
139 {
140 	switch (type) {
141 	case ICMP_ECHO:
142 	case ICMP_ECHOREPLY:
143 	case ICMP_TIMESTAMP:
144 	case ICMP_TIMESTAMPREPLY:
145 	case ICMPV6_ECHO_REQUEST:
146 	case ICMPV6_ECHO_REPLY:
147 		return true;
148 	}
149 
150 	return false;
151 }
152 
153 /**
154  * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
155  * @skb: sk_buff to extract from
156  * @key_icmp: struct flow_dissector_key_icmp to fill
157  * @data: raw buffer pointer to the packet
158  * @thoff: offset to extract at
159  * @hlen: packet header length
160  */
161 void skb_flow_get_icmp_tci(const struct sk_buff *skb,
162 			   struct flow_dissector_key_icmp *key_icmp,
163 			   void *data, int thoff, int hlen)
164 {
165 	struct icmphdr *ih, _ih;
166 
167 	ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
168 	if (!ih)
169 		return;
170 
171 	key_icmp->type = ih->type;
172 	key_icmp->code = ih->code;
173 
174 	/* As we use 0 to signal that the Id field is not present,
175 	 * avoid confusion with packets without such field
176 	 */
177 	if (icmp_has_id(ih->type))
178 		key_icmp->id = ih->un.echo.id ? : 1;
179 	else
180 		key_icmp->id = 0;
181 }
182 EXPORT_SYMBOL(skb_flow_get_icmp_tci);
183 
184 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
185  * using skb_flow_get_icmp_tci().
186  */
187 static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
188 				    struct flow_dissector *flow_dissector,
189 				    void *target_container,
190 				    void *data, int thoff, int hlen)
191 {
192 	struct flow_dissector_key_icmp *key_icmp;
193 
194 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
195 		return;
196 
197 	key_icmp = skb_flow_dissector_target(flow_dissector,
198 					     FLOW_DISSECTOR_KEY_ICMP,
199 					     target_container);
200 
201 	skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
202 }
203 
204 void skb_flow_dissect_meta(const struct sk_buff *skb,
205 			   struct flow_dissector *flow_dissector,
206 			   void *target_container)
207 {
208 	struct flow_dissector_key_meta *meta;
209 
210 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
211 		return;
212 
213 	meta = skb_flow_dissector_target(flow_dissector,
214 					 FLOW_DISSECTOR_KEY_META,
215 					 target_container);
216 	meta->ingress_ifindex = skb->skb_iif;
217 }
218 EXPORT_SYMBOL(skb_flow_dissect_meta);
219 
220 static void
221 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
222 				   struct flow_dissector *flow_dissector,
223 				   void *target_container)
224 {
225 	struct flow_dissector_key_control *ctrl;
226 
227 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
228 		return;
229 
230 	ctrl = skb_flow_dissector_target(flow_dissector,
231 					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
232 					 target_container);
233 	ctrl->addr_type = type;
234 }
235 
236 void
237 skb_flow_dissect_ct(const struct sk_buff *skb,
238 		    struct flow_dissector *flow_dissector,
239 		    void *target_container,
240 		    u16 *ctinfo_map,
241 		    size_t mapsize)
242 {
243 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
244 	struct flow_dissector_key_ct *key;
245 	enum ip_conntrack_info ctinfo;
246 	struct nf_conn_labels *cl;
247 	struct nf_conn *ct;
248 
249 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
250 		return;
251 
252 	ct = nf_ct_get(skb, &ctinfo);
253 	if (!ct)
254 		return;
255 
256 	key = skb_flow_dissector_target(flow_dissector,
257 					FLOW_DISSECTOR_KEY_CT,
258 					target_container);
259 
260 	if (ctinfo < mapsize)
261 		key->ct_state = ctinfo_map[ctinfo];
262 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
263 	key->ct_zone = ct->zone.id;
264 #endif
265 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
266 	key->ct_mark = ct->mark;
267 #endif
268 
269 	cl = nf_ct_labels_find(ct);
270 	if (cl)
271 		memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
272 #endif /* CONFIG_NF_CONNTRACK */
273 }
274 EXPORT_SYMBOL(skb_flow_dissect_ct);
275 
276 void
277 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
278 			     struct flow_dissector *flow_dissector,
279 			     void *target_container)
280 {
281 	struct ip_tunnel_info *info;
282 	struct ip_tunnel_key *key;
283 
284 	/* A quick check to see if there might be something to do. */
285 	if (!dissector_uses_key(flow_dissector,
286 				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
287 	    !dissector_uses_key(flow_dissector,
288 				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
289 	    !dissector_uses_key(flow_dissector,
290 				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
291 	    !dissector_uses_key(flow_dissector,
292 				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
293 	    !dissector_uses_key(flow_dissector,
294 				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
295 	    !dissector_uses_key(flow_dissector,
296 				FLOW_DISSECTOR_KEY_ENC_IP) &&
297 	    !dissector_uses_key(flow_dissector,
298 				FLOW_DISSECTOR_KEY_ENC_OPTS))
299 		return;
300 
301 	info = skb_tunnel_info(skb);
302 	if (!info)
303 		return;
304 
305 	key = &info->key;
306 
307 	switch (ip_tunnel_info_af(info)) {
308 	case AF_INET:
309 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
310 						   flow_dissector,
311 						   target_container);
312 		if (dissector_uses_key(flow_dissector,
313 				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
314 			struct flow_dissector_key_ipv4_addrs *ipv4;
315 
316 			ipv4 = skb_flow_dissector_target(flow_dissector,
317 							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
318 							 target_container);
319 			ipv4->src = key->u.ipv4.src;
320 			ipv4->dst = key->u.ipv4.dst;
321 		}
322 		break;
323 	case AF_INET6:
324 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
325 						   flow_dissector,
326 						   target_container);
327 		if (dissector_uses_key(flow_dissector,
328 				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
329 			struct flow_dissector_key_ipv6_addrs *ipv6;
330 
331 			ipv6 = skb_flow_dissector_target(flow_dissector,
332 							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
333 							 target_container);
334 			ipv6->src = key->u.ipv6.src;
335 			ipv6->dst = key->u.ipv6.dst;
336 		}
337 		break;
338 	}
339 
340 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
341 		struct flow_dissector_key_keyid *keyid;
342 
343 		keyid = skb_flow_dissector_target(flow_dissector,
344 						  FLOW_DISSECTOR_KEY_ENC_KEYID,
345 						  target_container);
346 		keyid->keyid = tunnel_id_to_key32(key->tun_id);
347 	}
348 
349 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
350 		struct flow_dissector_key_ports *tp;
351 
352 		tp = skb_flow_dissector_target(flow_dissector,
353 					       FLOW_DISSECTOR_KEY_ENC_PORTS,
354 					       target_container);
355 		tp->src = key->tp_src;
356 		tp->dst = key->tp_dst;
357 	}
358 
359 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
360 		struct flow_dissector_key_ip *ip;
361 
362 		ip = skb_flow_dissector_target(flow_dissector,
363 					       FLOW_DISSECTOR_KEY_ENC_IP,
364 					       target_container);
365 		ip->tos = key->tos;
366 		ip->ttl = key->ttl;
367 	}
368 
369 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
370 		struct flow_dissector_key_enc_opts *enc_opt;
371 
372 		enc_opt = skb_flow_dissector_target(flow_dissector,
373 						    FLOW_DISSECTOR_KEY_ENC_OPTS,
374 						    target_container);
375 
376 		if (info->options_len) {
377 			enc_opt->len = info->options_len;
378 			ip_tunnel_info_opts_get(enc_opt->data, info);
379 			enc_opt->dst_opt_type = info->key.tun_flags &
380 						TUNNEL_OPTIONS_PRESENT;
381 		}
382 	}
383 }
384 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
385 
386 static enum flow_dissect_ret
387 __skb_flow_dissect_mpls(const struct sk_buff *skb,
388 			struct flow_dissector *flow_dissector,
389 			void *target_container, void *data, int nhoff, int hlen,
390 			int lse_index, bool *entropy_label)
391 {
392 	struct mpls_label *hdr, _hdr;
393 	u32 entry, label, bos;
394 
395 	if (!dissector_uses_key(flow_dissector,
396 				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
397 	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
398 		return FLOW_DISSECT_RET_OUT_GOOD;
399 
400 	if (lse_index >= FLOW_DIS_MPLS_MAX)
401 		return FLOW_DISSECT_RET_OUT_GOOD;
402 
403 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
404 				   hlen, &_hdr);
405 	if (!hdr)
406 		return FLOW_DISSECT_RET_OUT_BAD;
407 
408 	entry = ntohl(hdr->entry);
409 	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
410 	bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT;
411 
412 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
413 		struct flow_dissector_key_mpls *key_mpls;
414 		struct flow_dissector_mpls_lse *lse;
415 
416 		key_mpls = skb_flow_dissector_target(flow_dissector,
417 						     FLOW_DISSECTOR_KEY_MPLS,
418 						     target_container);
419 		lse = &key_mpls->ls[lse_index];
420 
421 		lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
422 		lse->mpls_bos = bos;
423 		lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT;
424 		lse->mpls_label = label;
425 		dissector_set_mpls_lse(key_mpls, lse_index);
426 	}
427 
428 	if (*entropy_label &&
429 	    dissector_uses_key(flow_dissector,
430 			       FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
431 		struct flow_dissector_key_keyid *key_keyid;
432 
433 		key_keyid = skb_flow_dissector_target(flow_dissector,
434 						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
435 						      target_container);
436 		key_keyid->keyid = cpu_to_be32(label);
437 	}
438 
439 	*entropy_label = label == MPLS_LABEL_ENTROPY;
440 
441 	return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN;
442 }
443 
444 static enum flow_dissect_ret
445 __skb_flow_dissect_arp(const struct sk_buff *skb,
446 		       struct flow_dissector *flow_dissector,
447 		       void *target_container, void *data, int nhoff, int hlen)
448 {
449 	struct flow_dissector_key_arp *key_arp;
450 	struct {
451 		unsigned char ar_sha[ETH_ALEN];
452 		unsigned char ar_sip[4];
453 		unsigned char ar_tha[ETH_ALEN];
454 		unsigned char ar_tip[4];
455 	} *arp_eth, _arp_eth;
456 	const struct arphdr *arp;
457 	struct arphdr _arp;
458 
459 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
460 		return FLOW_DISSECT_RET_OUT_GOOD;
461 
462 	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
463 				   hlen, &_arp);
464 	if (!arp)
465 		return FLOW_DISSECT_RET_OUT_BAD;
466 
467 	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
468 	    arp->ar_pro != htons(ETH_P_IP) ||
469 	    arp->ar_hln != ETH_ALEN ||
470 	    arp->ar_pln != 4 ||
471 	    (arp->ar_op != htons(ARPOP_REPLY) &&
472 	     arp->ar_op != htons(ARPOP_REQUEST)))
473 		return FLOW_DISSECT_RET_OUT_BAD;
474 
475 	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
476 				       sizeof(_arp_eth), data,
477 				       hlen, &_arp_eth);
478 	if (!arp_eth)
479 		return FLOW_DISSECT_RET_OUT_BAD;
480 
481 	key_arp = skb_flow_dissector_target(flow_dissector,
482 					    FLOW_DISSECTOR_KEY_ARP,
483 					    target_container);
484 
485 	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
486 	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
487 
488 	/* Only store the lower byte of the opcode;
489 	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
490 	 */
491 	key_arp->op = ntohs(arp->ar_op) & 0xff;
492 
493 	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
494 	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
495 
496 	return FLOW_DISSECT_RET_OUT_GOOD;
497 }
498 
499 static enum flow_dissect_ret
500 __skb_flow_dissect_gre(const struct sk_buff *skb,
501 		       struct flow_dissector_key_control *key_control,
502 		       struct flow_dissector *flow_dissector,
503 		       void *target_container, void *data,
504 		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
505 		       unsigned int flags)
506 {
507 	struct flow_dissector_key_keyid *key_keyid;
508 	struct gre_base_hdr *hdr, _hdr;
509 	int offset = 0;
510 	u16 gre_ver;
511 
512 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
513 				   data, *p_hlen, &_hdr);
514 	if (!hdr)
515 		return FLOW_DISSECT_RET_OUT_BAD;
516 
517 	/* Only look inside GRE without routing */
518 	if (hdr->flags & GRE_ROUTING)
519 		return FLOW_DISSECT_RET_OUT_GOOD;
520 
521 	/* Only look inside GRE for version 0 and 1 */
522 	gre_ver = ntohs(hdr->flags & GRE_VERSION);
523 	if (gre_ver > 1)
524 		return FLOW_DISSECT_RET_OUT_GOOD;
525 
526 	*p_proto = hdr->protocol;
527 	if (gre_ver) {
528 		/* Version1 must be PPTP, and check the flags */
529 		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
530 			return FLOW_DISSECT_RET_OUT_GOOD;
531 	}
532 
533 	offset += sizeof(struct gre_base_hdr);
534 
535 	if (hdr->flags & GRE_CSUM)
536 		offset += sizeof_field(struct gre_full_hdr, csum) +
537 			  sizeof_field(struct gre_full_hdr, reserved1);
538 
539 	if (hdr->flags & GRE_KEY) {
540 		const __be32 *keyid;
541 		__be32 _keyid;
542 
543 		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
544 					     sizeof(_keyid),
545 					     data, *p_hlen, &_keyid);
546 		if (!keyid)
547 			return FLOW_DISSECT_RET_OUT_BAD;
548 
549 		if (dissector_uses_key(flow_dissector,
550 				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
551 			key_keyid = skb_flow_dissector_target(flow_dissector,
552 							      FLOW_DISSECTOR_KEY_GRE_KEYID,
553 							      target_container);
554 			if (gre_ver == 0)
555 				key_keyid->keyid = *keyid;
556 			else
557 				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
558 		}
559 		offset += sizeof_field(struct gre_full_hdr, key);
560 	}
561 
562 	if (hdr->flags & GRE_SEQ)
563 		offset += sizeof_field(struct pptp_gre_header, seq);
564 
565 	if (gre_ver == 0) {
566 		if (*p_proto == htons(ETH_P_TEB)) {
567 			const struct ethhdr *eth;
568 			struct ethhdr _eth;
569 
570 			eth = __skb_header_pointer(skb, *p_nhoff + offset,
571 						   sizeof(_eth),
572 						   data, *p_hlen, &_eth);
573 			if (!eth)
574 				return FLOW_DISSECT_RET_OUT_BAD;
575 			*p_proto = eth->h_proto;
576 			offset += sizeof(*eth);
577 
578 			/* Cap headers that we access via pointers at the
579 			 * end of the Ethernet header as our maximum alignment
580 			 * at that point is only 2 bytes.
581 			 */
582 			if (NET_IP_ALIGN)
583 				*p_hlen = *p_nhoff + offset;
584 		}
585 	} else { /* version 1, must be PPTP */
586 		u8 _ppp_hdr[PPP_HDRLEN];
587 		u8 *ppp_hdr;
588 
589 		if (hdr->flags & GRE_ACK)
590 			offset += sizeof_field(struct pptp_gre_header, ack);
591 
592 		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
593 					       sizeof(_ppp_hdr),
594 					       data, *p_hlen, _ppp_hdr);
595 		if (!ppp_hdr)
596 			return FLOW_DISSECT_RET_OUT_BAD;
597 
598 		switch (PPP_PROTOCOL(ppp_hdr)) {
599 		case PPP_IP:
600 			*p_proto = htons(ETH_P_IP);
601 			break;
602 		case PPP_IPV6:
603 			*p_proto = htons(ETH_P_IPV6);
604 			break;
605 		default:
606 			/* Could probably catch some more like MPLS */
607 			break;
608 		}
609 
610 		offset += PPP_HDRLEN;
611 	}
612 
613 	*p_nhoff += offset;
614 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
615 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
616 		return FLOW_DISSECT_RET_OUT_GOOD;
617 
618 	return FLOW_DISSECT_RET_PROTO_AGAIN;
619 }
620 
621 /**
622  * __skb_flow_dissect_batadv() - dissect batman-adv header
623  * @skb: sk_buff to with the batman-adv header
624  * @key_control: flow dissectors control key
625  * @data: raw buffer pointer to the packet, if NULL use skb->data
626  * @p_proto: pointer used to update the protocol to process next
627  * @p_nhoff: pointer used to update inner network header offset
628  * @hlen: packet header length
629  * @flags: any combination of FLOW_DISSECTOR_F_*
630  *
631  * ETH_P_BATMAN packets are tried to be dissected. Only
632  * &struct batadv_unicast packets are actually processed because they contain an
633  * inner ethernet header and are usually followed by actual network header. This
634  * allows the flow dissector to continue processing the packet.
635  *
636  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
637  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
638  *  otherwise FLOW_DISSECT_RET_OUT_BAD
639  */
640 static enum flow_dissect_ret
641 __skb_flow_dissect_batadv(const struct sk_buff *skb,
642 			  struct flow_dissector_key_control *key_control,
643 			  void *data, __be16 *p_proto, int *p_nhoff, int hlen,
644 			  unsigned int flags)
645 {
646 	struct {
647 		struct batadv_unicast_packet batadv_unicast;
648 		struct ethhdr eth;
649 	} *hdr, _hdr;
650 
651 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
652 				   &_hdr);
653 	if (!hdr)
654 		return FLOW_DISSECT_RET_OUT_BAD;
655 
656 	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
657 		return FLOW_DISSECT_RET_OUT_BAD;
658 
659 	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
660 		return FLOW_DISSECT_RET_OUT_BAD;
661 
662 	*p_proto = hdr->eth.h_proto;
663 	*p_nhoff += sizeof(*hdr);
664 
665 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
666 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
667 		return FLOW_DISSECT_RET_OUT_GOOD;
668 
669 	return FLOW_DISSECT_RET_PROTO_AGAIN;
670 }
671 
672 static void
673 __skb_flow_dissect_tcp(const struct sk_buff *skb,
674 		       struct flow_dissector *flow_dissector,
675 		       void *target_container, void *data, int thoff, int hlen)
676 {
677 	struct flow_dissector_key_tcp *key_tcp;
678 	struct tcphdr *th, _th;
679 
680 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
681 		return;
682 
683 	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
684 	if (!th)
685 		return;
686 
687 	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
688 		return;
689 
690 	key_tcp = skb_flow_dissector_target(flow_dissector,
691 					    FLOW_DISSECTOR_KEY_TCP,
692 					    target_container);
693 	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
694 }
695 
696 static void
697 __skb_flow_dissect_ports(const struct sk_buff *skb,
698 			 struct flow_dissector *flow_dissector,
699 			 void *target_container, void *data, int nhoff,
700 			 u8 ip_proto, int hlen)
701 {
702 	enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
703 	struct flow_dissector_key_ports *key_ports;
704 
705 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
706 		dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
707 	else if (dissector_uses_key(flow_dissector,
708 				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
709 		dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
710 
711 	if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
712 		return;
713 
714 	key_ports = skb_flow_dissector_target(flow_dissector,
715 					      dissector_ports,
716 					      target_container);
717 	key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
718 						data, hlen);
719 }
720 
721 static void
722 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
723 			struct flow_dissector *flow_dissector,
724 			void *target_container, void *data, const struct iphdr *iph)
725 {
726 	struct flow_dissector_key_ip *key_ip;
727 
728 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
729 		return;
730 
731 	key_ip = skb_flow_dissector_target(flow_dissector,
732 					   FLOW_DISSECTOR_KEY_IP,
733 					   target_container);
734 	key_ip->tos = iph->tos;
735 	key_ip->ttl = iph->ttl;
736 }
737 
738 static void
739 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
740 			struct flow_dissector *flow_dissector,
741 			void *target_container, void *data, const struct ipv6hdr *iph)
742 {
743 	struct flow_dissector_key_ip *key_ip;
744 
745 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
746 		return;
747 
748 	key_ip = skb_flow_dissector_target(flow_dissector,
749 					   FLOW_DISSECTOR_KEY_IP,
750 					   target_container);
751 	key_ip->tos = ipv6_get_dsfield(iph);
752 	key_ip->ttl = iph->hop_limit;
753 }
754 
755 /* Maximum number of protocol headers that can be parsed in
756  * __skb_flow_dissect
757  */
758 #define MAX_FLOW_DISSECT_HDRS	15
759 
760 static bool skb_flow_dissect_allowed(int *num_hdrs)
761 {
762 	++*num_hdrs;
763 
764 	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
765 }
766 
767 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
768 				     struct flow_dissector *flow_dissector,
769 				     void *target_container)
770 {
771 	struct flow_dissector_key_ports *key_ports = NULL;
772 	struct flow_dissector_key_control *key_control;
773 	struct flow_dissector_key_basic *key_basic;
774 	struct flow_dissector_key_addrs *key_addrs;
775 	struct flow_dissector_key_tags *key_tags;
776 
777 	key_control = skb_flow_dissector_target(flow_dissector,
778 						FLOW_DISSECTOR_KEY_CONTROL,
779 						target_container);
780 	key_control->thoff = flow_keys->thoff;
781 	if (flow_keys->is_frag)
782 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
783 	if (flow_keys->is_first_frag)
784 		key_control->flags |= FLOW_DIS_FIRST_FRAG;
785 	if (flow_keys->is_encap)
786 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
787 
788 	key_basic = skb_flow_dissector_target(flow_dissector,
789 					      FLOW_DISSECTOR_KEY_BASIC,
790 					      target_container);
791 	key_basic->n_proto = flow_keys->n_proto;
792 	key_basic->ip_proto = flow_keys->ip_proto;
793 
794 	if (flow_keys->addr_proto == ETH_P_IP &&
795 	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
796 		key_addrs = skb_flow_dissector_target(flow_dissector,
797 						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
798 						      target_container);
799 		key_addrs->v4addrs.src = flow_keys->ipv4_src;
800 		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
801 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
802 	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
803 		   dissector_uses_key(flow_dissector,
804 				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
805 		key_addrs = skb_flow_dissector_target(flow_dissector,
806 						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
807 						      target_container);
808 		memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
809 		       sizeof(key_addrs->v6addrs));
810 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
811 	}
812 
813 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
814 		key_ports = skb_flow_dissector_target(flow_dissector,
815 						      FLOW_DISSECTOR_KEY_PORTS,
816 						      target_container);
817 	else if (dissector_uses_key(flow_dissector,
818 				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
819 		key_ports = skb_flow_dissector_target(flow_dissector,
820 						      FLOW_DISSECTOR_KEY_PORTS_RANGE,
821 						      target_container);
822 
823 	if (key_ports) {
824 		key_ports->src = flow_keys->sport;
825 		key_ports->dst = flow_keys->dport;
826 	}
827 
828 	if (dissector_uses_key(flow_dissector,
829 			       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
830 		key_tags = skb_flow_dissector_target(flow_dissector,
831 						     FLOW_DISSECTOR_KEY_FLOW_LABEL,
832 						     target_container);
833 		key_tags->flow_label = ntohl(flow_keys->flow_label);
834 	}
835 }
836 
837 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
838 		      __be16 proto, int nhoff, int hlen, unsigned int flags)
839 {
840 	struct bpf_flow_keys *flow_keys = ctx->flow_keys;
841 	u32 result;
842 
843 	/* Pass parameters to the BPF program */
844 	memset(flow_keys, 0, sizeof(*flow_keys));
845 	flow_keys->n_proto = proto;
846 	flow_keys->nhoff = nhoff;
847 	flow_keys->thoff = flow_keys->nhoff;
848 
849 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
850 		     (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
851 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
852 		     (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
853 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
854 		     (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
855 	flow_keys->flags = flags;
856 
857 	result = bpf_prog_run_pin_on_cpu(prog, ctx);
858 
859 	flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
860 	flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
861 				   flow_keys->nhoff, hlen);
862 
863 	return result == BPF_OK;
864 }
865 
866 /**
867  * __skb_flow_dissect - extract the flow_keys struct and return it
868  * @net: associated network namespace, derived from @skb if NULL
869  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
870  * @flow_dissector: list of keys to dissect
871  * @target_container: target structure to put dissected values into
872  * @data: raw buffer pointer to the packet, if NULL use skb->data
873  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
874  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
875  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
876  * @flags: flags that control the dissection process, e.g.
877  *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
878  *
879  * The function will try to retrieve individual keys into target specified
880  * by flow_dissector from either the skbuff or a raw buffer specified by the
881  * rest parameters.
882  *
883  * Caller must take care of zeroing target container memory.
884  */
885 bool __skb_flow_dissect(const struct net *net,
886 			const struct sk_buff *skb,
887 			struct flow_dissector *flow_dissector,
888 			void *target_container,
889 			void *data, __be16 proto, int nhoff, int hlen,
890 			unsigned int flags)
891 {
892 	struct flow_dissector_key_control *key_control;
893 	struct flow_dissector_key_basic *key_basic;
894 	struct flow_dissector_key_addrs *key_addrs;
895 	struct flow_dissector_key_tags *key_tags;
896 	struct flow_dissector_key_vlan *key_vlan;
897 	enum flow_dissect_ret fdret;
898 	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
899 	bool mpls_el = false;
900 	int mpls_lse = 0;
901 	int num_hdrs = 0;
902 	u8 ip_proto = 0;
903 	bool ret;
904 
905 	if (!data) {
906 		data = skb->data;
907 		proto = skb_vlan_tag_present(skb) ?
908 			 skb->vlan_proto : skb->protocol;
909 		nhoff = skb_network_offset(skb);
910 		hlen = skb_headlen(skb);
911 #if IS_ENABLED(CONFIG_NET_DSA)
912 		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
913 			     proto == htons(ETH_P_XDSA))) {
914 			const struct dsa_device_ops *ops;
915 			int offset = 0;
916 
917 			ops = skb->dev->dsa_ptr->tag_ops;
918 			if (ops->flow_dissect &&
919 			    !ops->flow_dissect(skb, &proto, &offset)) {
920 				hlen -= offset;
921 				nhoff += offset;
922 			}
923 		}
924 #endif
925 	}
926 
927 	/* It is ensured by skb_flow_dissector_init() that control key will
928 	 * be always present.
929 	 */
930 	key_control = skb_flow_dissector_target(flow_dissector,
931 						FLOW_DISSECTOR_KEY_CONTROL,
932 						target_container);
933 
934 	/* It is ensured by skb_flow_dissector_init() that basic key will
935 	 * be always present.
936 	 */
937 	key_basic = skb_flow_dissector_target(flow_dissector,
938 					      FLOW_DISSECTOR_KEY_BASIC,
939 					      target_container);
940 
941 	if (skb) {
942 		if (!net) {
943 			if (skb->dev)
944 				net = dev_net(skb->dev);
945 			else if (skb->sk)
946 				net = sock_net(skb->sk);
947 		}
948 	}
949 
950 	WARN_ON_ONCE(!net);
951 	if (net) {
952 		enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
953 		struct bpf_prog_array *run_array;
954 
955 		rcu_read_lock();
956 		run_array = rcu_dereference(init_net.bpf.run_array[type]);
957 		if (!run_array)
958 			run_array = rcu_dereference(net->bpf.run_array[type]);
959 
960 		if (run_array) {
961 			struct bpf_flow_keys flow_keys;
962 			struct bpf_flow_dissector ctx = {
963 				.flow_keys = &flow_keys,
964 				.data = data,
965 				.data_end = data + hlen,
966 			};
967 			__be16 n_proto = proto;
968 			struct bpf_prog *prog;
969 
970 			if (skb) {
971 				ctx.skb = skb;
972 				/* we can't use 'proto' in the skb case
973 				 * because it might be set to skb->vlan_proto
974 				 * which has been pulled from the data
975 				 */
976 				n_proto = skb->protocol;
977 			}
978 
979 			prog = READ_ONCE(run_array->items[0].prog);
980 			ret = bpf_flow_dissect(prog, &ctx, n_proto, nhoff,
981 					       hlen, flags);
982 			__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
983 						 target_container);
984 			rcu_read_unlock();
985 			return ret;
986 		}
987 		rcu_read_unlock();
988 	}
989 
990 	if (dissector_uses_key(flow_dissector,
991 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
992 		struct ethhdr *eth = eth_hdr(skb);
993 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
994 
995 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
996 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
997 							  target_container);
998 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
999 	}
1000 
1001 proto_again:
1002 	fdret = FLOW_DISSECT_RET_CONTINUE;
1003 
1004 	switch (proto) {
1005 	case htons(ETH_P_IP): {
1006 		const struct iphdr *iph;
1007 		struct iphdr _iph;
1008 
1009 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1010 		if (!iph || iph->ihl < 5) {
1011 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1012 			break;
1013 		}
1014 
1015 		nhoff += iph->ihl * 4;
1016 
1017 		ip_proto = iph->protocol;
1018 
1019 		if (dissector_uses_key(flow_dissector,
1020 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1021 			key_addrs = skb_flow_dissector_target(flow_dissector,
1022 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1023 							      target_container);
1024 
1025 			memcpy(&key_addrs->v4addrs, &iph->saddr,
1026 			       sizeof(key_addrs->v4addrs));
1027 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1028 		}
1029 
1030 		if (ip_is_fragment(iph)) {
1031 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1032 
1033 			if (iph->frag_off & htons(IP_OFFSET)) {
1034 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1035 				break;
1036 			} else {
1037 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
1038 				if (!(flags &
1039 				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
1040 					fdret = FLOW_DISSECT_RET_OUT_GOOD;
1041 					break;
1042 				}
1043 			}
1044 		}
1045 
1046 		__skb_flow_dissect_ipv4(skb, flow_dissector,
1047 					target_container, data, iph);
1048 
1049 		break;
1050 	}
1051 	case htons(ETH_P_IPV6): {
1052 		const struct ipv6hdr *iph;
1053 		struct ipv6hdr _iph;
1054 
1055 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1056 		if (!iph) {
1057 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1058 			break;
1059 		}
1060 
1061 		ip_proto = iph->nexthdr;
1062 		nhoff += sizeof(struct ipv6hdr);
1063 
1064 		if (dissector_uses_key(flow_dissector,
1065 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1066 			key_addrs = skb_flow_dissector_target(flow_dissector,
1067 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1068 							      target_container);
1069 
1070 			memcpy(&key_addrs->v6addrs, &iph->saddr,
1071 			       sizeof(key_addrs->v6addrs));
1072 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1073 		}
1074 
1075 		if ((dissector_uses_key(flow_dissector,
1076 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1077 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1078 		    ip6_flowlabel(iph)) {
1079 			__be32 flow_label = ip6_flowlabel(iph);
1080 
1081 			if (dissector_uses_key(flow_dissector,
1082 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1083 				key_tags = skb_flow_dissector_target(flow_dissector,
1084 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
1085 								     target_container);
1086 				key_tags->flow_label = ntohl(flow_label);
1087 			}
1088 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1089 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1090 				break;
1091 			}
1092 		}
1093 
1094 		__skb_flow_dissect_ipv6(skb, flow_dissector,
1095 					target_container, data, iph);
1096 
1097 		break;
1098 	}
1099 	case htons(ETH_P_8021AD):
1100 	case htons(ETH_P_8021Q): {
1101 		const struct vlan_hdr *vlan = NULL;
1102 		struct vlan_hdr _vlan;
1103 		__be16 saved_vlan_tpid = proto;
1104 
1105 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1106 		    skb && skb_vlan_tag_present(skb)) {
1107 			proto = skb->protocol;
1108 		} else {
1109 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1110 						    data, hlen, &_vlan);
1111 			if (!vlan) {
1112 				fdret = FLOW_DISSECT_RET_OUT_BAD;
1113 				break;
1114 			}
1115 
1116 			proto = vlan->h_vlan_encapsulated_proto;
1117 			nhoff += sizeof(*vlan);
1118 		}
1119 
1120 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1121 			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1122 		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1123 			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1124 		} else {
1125 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1126 			break;
1127 		}
1128 
1129 		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1130 			key_vlan = skb_flow_dissector_target(flow_dissector,
1131 							     dissector_vlan,
1132 							     target_container);
1133 
1134 			if (!vlan) {
1135 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1136 				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1137 			} else {
1138 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1139 					VLAN_VID_MASK;
1140 				key_vlan->vlan_priority =
1141 					(ntohs(vlan->h_vlan_TCI) &
1142 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1143 			}
1144 			key_vlan->vlan_tpid = saved_vlan_tpid;
1145 		}
1146 
1147 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1148 		break;
1149 	}
1150 	case htons(ETH_P_PPP_SES): {
1151 		struct {
1152 			struct pppoe_hdr hdr;
1153 			__be16 proto;
1154 		} *hdr, _hdr;
1155 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1156 		if (!hdr) {
1157 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1158 			break;
1159 		}
1160 
1161 		proto = hdr->proto;
1162 		nhoff += PPPOE_SES_HLEN;
1163 		switch (proto) {
1164 		case htons(PPP_IP):
1165 			proto = htons(ETH_P_IP);
1166 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1167 			break;
1168 		case htons(PPP_IPV6):
1169 			proto = htons(ETH_P_IPV6);
1170 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1171 			break;
1172 		default:
1173 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1174 			break;
1175 		}
1176 		break;
1177 	}
1178 	case htons(ETH_P_TIPC): {
1179 		struct tipc_basic_hdr *hdr, _hdr;
1180 
1181 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1182 					   data, hlen, &_hdr);
1183 		if (!hdr) {
1184 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1185 			break;
1186 		}
1187 
1188 		if (dissector_uses_key(flow_dissector,
1189 				       FLOW_DISSECTOR_KEY_TIPC)) {
1190 			key_addrs = skb_flow_dissector_target(flow_dissector,
1191 							      FLOW_DISSECTOR_KEY_TIPC,
1192 							      target_container);
1193 			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1194 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1195 		}
1196 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1197 		break;
1198 	}
1199 
1200 	case htons(ETH_P_MPLS_UC):
1201 	case htons(ETH_P_MPLS_MC):
1202 		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1203 						target_container, data,
1204 						nhoff, hlen, mpls_lse,
1205 						&mpls_el);
1206 		nhoff += sizeof(struct mpls_label);
1207 		mpls_lse++;
1208 		break;
1209 	case htons(ETH_P_FCOE):
1210 		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1211 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1212 			break;
1213 		}
1214 
1215 		nhoff += FCOE_HEADER_LEN;
1216 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1217 		break;
1218 
1219 	case htons(ETH_P_ARP):
1220 	case htons(ETH_P_RARP):
1221 		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1222 					       target_container, data,
1223 					       nhoff, hlen);
1224 		break;
1225 
1226 	case htons(ETH_P_BATMAN):
1227 		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1228 						  &proto, &nhoff, hlen, flags);
1229 		break;
1230 
1231 	default:
1232 		fdret = FLOW_DISSECT_RET_OUT_BAD;
1233 		break;
1234 	}
1235 
1236 	/* Process result of proto processing */
1237 	switch (fdret) {
1238 	case FLOW_DISSECT_RET_OUT_GOOD:
1239 		goto out_good;
1240 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1241 		if (skb_flow_dissect_allowed(&num_hdrs))
1242 			goto proto_again;
1243 		goto out_good;
1244 	case FLOW_DISSECT_RET_CONTINUE:
1245 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1246 		break;
1247 	case FLOW_DISSECT_RET_OUT_BAD:
1248 	default:
1249 		goto out_bad;
1250 	}
1251 
1252 ip_proto_again:
1253 	fdret = FLOW_DISSECT_RET_CONTINUE;
1254 
1255 	switch (ip_proto) {
1256 	case IPPROTO_GRE:
1257 		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1258 					       target_container, data,
1259 					       &proto, &nhoff, &hlen, flags);
1260 		break;
1261 
1262 	case NEXTHDR_HOP:
1263 	case NEXTHDR_ROUTING:
1264 	case NEXTHDR_DEST: {
1265 		u8 _opthdr[2], *opthdr;
1266 
1267 		if (proto != htons(ETH_P_IPV6))
1268 			break;
1269 
1270 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1271 					      data, hlen, &_opthdr);
1272 		if (!opthdr) {
1273 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1274 			break;
1275 		}
1276 
1277 		ip_proto = opthdr[0];
1278 		nhoff += (opthdr[1] + 1) << 3;
1279 
1280 		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1281 		break;
1282 	}
1283 	case NEXTHDR_FRAGMENT: {
1284 		struct frag_hdr _fh, *fh;
1285 
1286 		if (proto != htons(ETH_P_IPV6))
1287 			break;
1288 
1289 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1290 					  data, hlen, &_fh);
1291 
1292 		if (!fh) {
1293 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1294 			break;
1295 		}
1296 
1297 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1298 
1299 		nhoff += sizeof(_fh);
1300 		ip_proto = fh->nexthdr;
1301 
1302 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1303 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1304 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1305 				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1306 				break;
1307 			}
1308 		}
1309 
1310 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1311 		break;
1312 	}
1313 	case IPPROTO_IPIP:
1314 		proto = htons(ETH_P_IP);
1315 
1316 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1317 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1318 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1319 			break;
1320 		}
1321 
1322 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1323 		break;
1324 
1325 	case IPPROTO_IPV6:
1326 		proto = htons(ETH_P_IPV6);
1327 
1328 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1329 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1330 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1331 			break;
1332 		}
1333 
1334 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1335 		break;
1336 
1337 
1338 	case IPPROTO_MPLS:
1339 		proto = htons(ETH_P_MPLS_UC);
1340 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1341 		break;
1342 
1343 	case IPPROTO_TCP:
1344 		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1345 				       data, nhoff, hlen);
1346 		break;
1347 
1348 	case IPPROTO_ICMP:
1349 	case IPPROTO_ICMPV6:
1350 		__skb_flow_dissect_icmp(skb, flow_dissector, target_container,
1351 					data, nhoff, hlen);
1352 		break;
1353 
1354 	default:
1355 		break;
1356 	}
1357 
1358 	if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
1359 		__skb_flow_dissect_ports(skb, flow_dissector, target_container,
1360 					 data, nhoff, ip_proto, hlen);
1361 
1362 	/* Process result of IP proto processing */
1363 	switch (fdret) {
1364 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1365 		if (skb_flow_dissect_allowed(&num_hdrs))
1366 			goto proto_again;
1367 		break;
1368 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1369 		if (skb_flow_dissect_allowed(&num_hdrs))
1370 			goto ip_proto_again;
1371 		break;
1372 	case FLOW_DISSECT_RET_OUT_GOOD:
1373 	case FLOW_DISSECT_RET_CONTINUE:
1374 		break;
1375 	case FLOW_DISSECT_RET_OUT_BAD:
1376 	default:
1377 		goto out_bad;
1378 	}
1379 
1380 out_good:
1381 	ret = true;
1382 
1383 out:
1384 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1385 	key_basic->n_proto = proto;
1386 	key_basic->ip_proto = ip_proto;
1387 
1388 	return ret;
1389 
1390 out_bad:
1391 	ret = false;
1392 	goto out;
1393 }
1394 EXPORT_SYMBOL(__skb_flow_dissect);
1395 
1396 static siphash_key_t hashrnd __read_mostly;
1397 static __always_inline void __flow_hash_secret_init(void)
1398 {
1399 	net_get_random_once(&hashrnd, sizeof(hashrnd));
1400 }
1401 
1402 static const void *flow_keys_hash_start(const struct flow_keys *flow)
1403 {
1404 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1405 	return &flow->FLOW_KEYS_HASH_START_FIELD;
1406 }
1407 
1408 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1409 {
1410 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1411 
1412 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1413 
1414 	switch (flow->control.addr_type) {
1415 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1416 		diff -= sizeof(flow->addrs.v4addrs);
1417 		break;
1418 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1419 		diff -= sizeof(flow->addrs.v6addrs);
1420 		break;
1421 	case FLOW_DISSECTOR_KEY_TIPC:
1422 		diff -= sizeof(flow->addrs.tipckey);
1423 		break;
1424 	}
1425 	return sizeof(*flow) - diff;
1426 }
1427 
1428 __be32 flow_get_u32_src(const struct flow_keys *flow)
1429 {
1430 	switch (flow->control.addr_type) {
1431 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1432 		return flow->addrs.v4addrs.src;
1433 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1434 		return (__force __be32)ipv6_addr_hash(
1435 			&flow->addrs.v6addrs.src);
1436 	case FLOW_DISSECTOR_KEY_TIPC:
1437 		return flow->addrs.tipckey.key;
1438 	default:
1439 		return 0;
1440 	}
1441 }
1442 EXPORT_SYMBOL(flow_get_u32_src);
1443 
1444 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1445 {
1446 	switch (flow->control.addr_type) {
1447 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1448 		return flow->addrs.v4addrs.dst;
1449 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1450 		return (__force __be32)ipv6_addr_hash(
1451 			&flow->addrs.v6addrs.dst);
1452 	default:
1453 		return 0;
1454 	}
1455 }
1456 EXPORT_SYMBOL(flow_get_u32_dst);
1457 
1458 /* Sort the source and destination IP (and the ports if the IP are the same),
1459  * to have consistent hash within the two directions
1460  */
1461 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1462 {
1463 	int addr_diff, i;
1464 
1465 	switch (keys->control.addr_type) {
1466 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1467 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1468 			    (__force u32)keys->addrs.v4addrs.src;
1469 		if ((addr_diff < 0) ||
1470 		    (addr_diff == 0 &&
1471 		     ((__force u16)keys->ports.dst <
1472 		      (__force u16)keys->ports.src))) {
1473 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1474 			swap(keys->ports.src, keys->ports.dst);
1475 		}
1476 		break;
1477 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1478 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1479 				   &keys->addrs.v6addrs.src,
1480 				   sizeof(keys->addrs.v6addrs.dst));
1481 		if ((addr_diff < 0) ||
1482 		    (addr_diff == 0 &&
1483 		     ((__force u16)keys->ports.dst <
1484 		      (__force u16)keys->ports.src))) {
1485 			for (i = 0; i < 4; i++)
1486 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1487 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1488 			swap(keys->ports.src, keys->ports.dst);
1489 		}
1490 		break;
1491 	}
1492 }
1493 
1494 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1495 					const siphash_key_t *keyval)
1496 {
1497 	u32 hash;
1498 
1499 	__flow_hash_consistentify(keys);
1500 
1501 	hash = siphash(flow_keys_hash_start(keys),
1502 		       flow_keys_hash_length(keys), keyval);
1503 	if (!hash)
1504 		hash = 1;
1505 
1506 	return hash;
1507 }
1508 
1509 u32 flow_hash_from_keys(struct flow_keys *keys)
1510 {
1511 	__flow_hash_secret_init();
1512 	return __flow_hash_from_keys(keys, &hashrnd);
1513 }
1514 EXPORT_SYMBOL(flow_hash_from_keys);
1515 
1516 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1517 				  struct flow_keys *keys,
1518 				  const siphash_key_t *keyval)
1519 {
1520 	skb_flow_dissect_flow_keys(skb, keys,
1521 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1522 
1523 	return __flow_hash_from_keys(keys, keyval);
1524 }
1525 
1526 struct _flow_keys_digest_data {
1527 	__be16	n_proto;
1528 	u8	ip_proto;
1529 	u8	padding;
1530 	__be32	ports;
1531 	__be32	src;
1532 	__be32	dst;
1533 };
1534 
1535 void make_flow_keys_digest(struct flow_keys_digest *digest,
1536 			   const struct flow_keys *flow)
1537 {
1538 	struct _flow_keys_digest_data *data =
1539 	    (struct _flow_keys_digest_data *)digest;
1540 
1541 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1542 
1543 	memset(digest, 0, sizeof(*digest));
1544 
1545 	data->n_proto = flow->basic.n_proto;
1546 	data->ip_proto = flow->basic.ip_proto;
1547 	data->ports = flow->ports.ports;
1548 	data->src = flow->addrs.v4addrs.src;
1549 	data->dst = flow->addrs.v4addrs.dst;
1550 }
1551 EXPORT_SYMBOL(make_flow_keys_digest);
1552 
1553 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1554 
1555 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1556 {
1557 	struct flow_keys keys;
1558 
1559 	__flow_hash_secret_init();
1560 
1561 	memset(&keys, 0, sizeof(keys));
1562 	__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1563 			   &keys, NULL, 0, 0, 0,
1564 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1565 
1566 	return __flow_hash_from_keys(&keys, &hashrnd);
1567 }
1568 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1569 
1570 /**
1571  * __skb_get_hash: calculate a flow hash
1572  * @skb: sk_buff to calculate flow hash from
1573  *
1574  * This function calculates a flow hash based on src/dst addresses
1575  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1576  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1577  * if hash is a canonical 4-tuple hash over transport ports.
1578  */
1579 void __skb_get_hash(struct sk_buff *skb)
1580 {
1581 	struct flow_keys keys;
1582 	u32 hash;
1583 
1584 	__flow_hash_secret_init();
1585 
1586 	hash = ___skb_get_hash(skb, &keys, &hashrnd);
1587 
1588 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1589 }
1590 EXPORT_SYMBOL(__skb_get_hash);
1591 
1592 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1593 			   const siphash_key_t *perturb)
1594 {
1595 	struct flow_keys keys;
1596 
1597 	return ___skb_get_hash(skb, &keys, perturb);
1598 }
1599 EXPORT_SYMBOL(skb_get_hash_perturb);
1600 
1601 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1602 		   const struct flow_keys_basic *keys, int hlen)
1603 {
1604 	u32 poff = keys->control.thoff;
1605 
1606 	/* skip L4 headers for fragments after the first */
1607 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1608 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1609 		return poff;
1610 
1611 	switch (keys->basic.ip_proto) {
1612 	case IPPROTO_TCP: {
1613 		/* access doff as u8 to avoid unaligned access */
1614 		const u8 *doff;
1615 		u8 _doff;
1616 
1617 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1618 					    data, hlen, &_doff);
1619 		if (!doff)
1620 			return poff;
1621 
1622 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1623 		break;
1624 	}
1625 	case IPPROTO_UDP:
1626 	case IPPROTO_UDPLITE:
1627 		poff += sizeof(struct udphdr);
1628 		break;
1629 	/* For the rest, we do not really care about header
1630 	 * extensions at this point for now.
1631 	 */
1632 	case IPPROTO_ICMP:
1633 		poff += sizeof(struct icmphdr);
1634 		break;
1635 	case IPPROTO_ICMPV6:
1636 		poff += sizeof(struct icmp6hdr);
1637 		break;
1638 	case IPPROTO_IGMP:
1639 		poff += sizeof(struct igmphdr);
1640 		break;
1641 	case IPPROTO_DCCP:
1642 		poff += sizeof(struct dccp_hdr);
1643 		break;
1644 	case IPPROTO_SCTP:
1645 		poff += sizeof(struct sctphdr);
1646 		break;
1647 	}
1648 
1649 	return poff;
1650 }
1651 
1652 /**
1653  * skb_get_poff - get the offset to the payload
1654  * @skb: sk_buff to get the payload offset from
1655  *
1656  * The function will get the offset to the payload as far as it could
1657  * be dissected.  The main user is currently BPF, so that we can dynamically
1658  * truncate packets without needing to push actual payload to the user
1659  * space and can analyze headers only, instead.
1660  */
1661 u32 skb_get_poff(const struct sk_buff *skb)
1662 {
1663 	struct flow_keys_basic keys;
1664 
1665 	if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1666 					      NULL, 0, 0, 0, 0))
1667 		return 0;
1668 
1669 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1670 }
1671 
1672 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1673 {
1674 	memset(keys, 0, sizeof(*keys));
1675 
1676 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1677 	    sizeof(keys->addrs.v6addrs.src));
1678 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1679 	    sizeof(keys->addrs.v6addrs.dst));
1680 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1681 	keys->ports.src = fl6->fl6_sport;
1682 	keys->ports.dst = fl6->fl6_dport;
1683 	keys->keyid.keyid = fl6->fl6_gre_key;
1684 	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1685 	keys->basic.ip_proto = fl6->flowi6_proto;
1686 
1687 	return flow_hash_from_keys(keys);
1688 }
1689 EXPORT_SYMBOL(__get_hash_from_flowi6);
1690 
1691 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1692 	{
1693 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1694 		.offset = offsetof(struct flow_keys, control),
1695 	},
1696 	{
1697 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1698 		.offset = offsetof(struct flow_keys, basic),
1699 	},
1700 	{
1701 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1702 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1703 	},
1704 	{
1705 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1706 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1707 	},
1708 	{
1709 		.key_id = FLOW_DISSECTOR_KEY_TIPC,
1710 		.offset = offsetof(struct flow_keys, addrs.tipckey),
1711 	},
1712 	{
1713 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1714 		.offset = offsetof(struct flow_keys, ports),
1715 	},
1716 	{
1717 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1718 		.offset = offsetof(struct flow_keys, vlan),
1719 	},
1720 	{
1721 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1722 		.offset = offsetof(struct flow_keys, tags),
1723 	},
1724 	{
1725 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1726 		.offset = offsetof(struct flow_keys, keyid),
1727 	},
1728 };
1729 
1730 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1731 	{
1732 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1733 		.offset = offsetof(struct flow_keys, control),
1734 	},
1735 	{
1736 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1737 		.offset = offsetof(struct flow_keys, basic),
1738 	},
1739 	{
1740 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1741 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1742 	},
1743 	{
1744 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1745 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1746 	},
1747 	{
1748 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1749 		.offset = offsetof(struct flow_keys, ports),
1750 	},
1751 };
1752 
1753 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1754 	{
1755 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1756 		.offset = offsetof(struct flow_keys, control),
1757 	},
1758 	{
1759 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1760 		.offset = offsetof(struct flow_keys, basic),
1761 	},
1762 };
1763 
1764 struct flow_dissector flow_keys_dissector __read_mostly;
1765 EXPORT_SYMBOL(flow_keys_dissector);
1766 
1767 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1768 EXPORT_SYMBOL(flow_keys_basic_dissector);
1769 
1770 static int __init init_default_flow_dissectors(void)
1771 {
1772 	skb_flow_dissector_init(&flow_keys_dissector,
1773 				flow_keys_dissector_keys,
1774 				ARRAY_SIZE(flow_keys_dissector_keys));
1775 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1776 				flow_keys_dissector_symmetric_keys,
1777 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1778 	skb_flow_dissector_init(&flow_keys_basic_dissector,
1779 				flow_keys_basic_dissector_keys,
1780 				ARRAY_SIZE(flow_keys_basic_dissector_keys));
1781 	return 0;
1782 }
1783 core_initcall(init_default_flow_dissectors);
1784