xref: /linux/net/core/filter.c (revision 72503791edffe516848d0f01d377fa9cd0711970)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Author:
5  *     Jay Schulist <jschlst@samba.org>
6  *
7  * Based on the design of:
8  *     - The Berkeley Packet Filter
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Andi Kleen - Fix a few bad bugs and races.
16  * Kris Katterjohn - Added many additional checks in sk_chk_filter()
17  */
18 
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/mm.h>
22 #include <linux/fcntl.h>
23 #include <linux/socket.h>
24 #include <linux/in.h>
25 #include <linux/inet.h>
26 #include <linux/netdevice.h>
27 #include <linux/if_packet.h>
28 #include <linux/gfp.h>
29 #include <net/ip.h>
30 #include <net/protocol.h>
31 #include <net/netlink.h>
32 #include <linux/skbuff.h>
33 #include <net/sock.h>
34 #include <linux/errno.h>
35 #include <linux/timer.h>
36 #include <asm/uaccess.h>
37 #include <asm/unaligned.h>
38 #include <linux/filter.h>
39 #include <linux/reciprocal_div.h>
40 #include <linux/ratelimit.h>
41 #include <linux/seccomp.h>
42 
43 /* No hurry in this branch
44  *
45  * Exported for the bpf jit load helper.
46  */
47 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
48 {
49 	u8 *ptr = NULL;
50 
51 	if (k >= SKF_NET_OFF)
52 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
53 	else if (k >= SKF_LL_OFF)
54 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
55 
56 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
57 		return ptr;
58 	return NULL;
59 }
60 
61 static inline void *load_pointer(const struct sk_buff *skb, int k,
62 				 unsigned int size, void *buffer)
63 {
64 	if (k >= 0)
65 		return skb_header_pointer(skb, k, size, buffer);
66 	return bpf_internal_load_pointer_neg_helper(skb, k, size);
67 }
68 
69 /**
70  *	sk_filter - run a packet through a socket filter
71  *	@sk: sock associated with &sk_buff
72  *	@skb: buffer to filter
73  *
74  * Run the filter code and then cut skb->data to correct size returned by
75  * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
76  * than pkt_len we keep whole skb->data. This is the socket level
77  * wrapper to sk_run_filter. It returns 0 if the packet should
78  * be accepted or -EPERM if the packet should be tossed.
79  *
80  */
81 int sk_filter(struct sock *sk, struct sk_buff *skb)
82 {
83 	int err;
84 	struct sk_filter *filter;
85 
86 	/*
87 	 * If the skb was allocated from pfmemalloc reserves, only
88 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
89 	 * helping free memory
90 	 */
91 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
92 		return -ENOMEM;
93 
94 	err = security_sock_rcv_skb(sk, skb);
95 	if (err)
96 		return err;
97 
98 	rcu_read_lock();
99 	filter = rcu_dereference(sk->sk_filter);
100 	if (filter) {
101 		unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
102 
103 		err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
104 	}
105 	rcu_read_unlock();
106 
107 	return err;
108 }
109 EXPORT_SYMBOL(sk_filter);
110 
111 /**
112  *	sk_run_filter - run a filter on a socket
113  *	@skb: buffer to run the filter on
114  *	@fentry: filter to apply
115  *
116  * Decode and apply filter instructions to the skb->data.
117  * Return length to keep, 0 for none. @skb is the data we are
118  * filtering, @filter is the array of filter instructions.
119  * Because all jumps are guaranteed to be before last instruction,
120  * and last instruction guaranteed to be a RET, we dont need to check
121  * flen. (We used to pass to this function the length of filter)
122  */
123 unsigned int sk_run_filter(const struct sk_buff *skb,
124 			   const struct sock_filter *fentry)
125 {
126 	void *ptr;
127 	u32 A = 0;			/* Accumulator */
128 	u32 X = 0;			/* Index Register */
129 	u32 mem[BPF_MEMWORDS];		/* Scratch Memory Store */
130 	u32 tmp;
131 	int k;
132 
133 	/*
134 	 * Process array of filter instructions.
135 	 */
136 	for (;; fentry++) {
137 #if defined(CONFIG_X86_32)
138 #define	K (fentry->k)
139 #else
140 		const u32 K = fentry->k;
141 #endif
142 
143 		switch (fentry->code) {
144 		case BPF_S_ALU_ADD_X:
145 			A += X;
146 			continue;
147 		case BPF_S_ALU_ADD_K:
148 			A += K;
149 			continue;
150 		case BPF_S_ALU_SUB_X:
151 			A -= X;
152 			continue;
153 		case BPF_S_ALU_SUB_K:
154 			A -= K;
155 			continue;
156 		case BPF_S_ALU_MUL_X:
157 			A *= X;
158 			continue;
159 		case BPF_S_ALU_MUL_K:
160 			A *= K;
161 			continue;
162 		case BPF_S_ALU_DIV_X:
163 			if (X == 0)
164 				return 0;
165 			A /= X;
166 			continue;
167 		case BPF_S_ALU_DIV_K:
168 			A = reciprocal_divide(A, K);
169 			continue;
170 		case BPF_S_ALU_MOD_X:
171 			if (X == 0)
172 				return 0;
173 			A %= X;
174 			continue;
175 		case BPF_S_ALU_MOD_K:
176 			A %= K;
177 			continue;
178 		case BPF_S_ALU_AND_X:
179 			A &= X;
180 			continue;
181 		case BPF_S_ALU_AND_K:
182 			A &= K;
183 			continue;
184 		case BPF_S_ALU_OR_X:
185 			A |= X;
186 			continue;
187 		case BPF_S_ALU_OR_K:
188 			A |= K;
189 			continue;
190 		case BPF_S_ANC_ALU_XOR_X:
191 		case BPF_S_ALU_XOR_X:
192 			A ^= X;
193 			continue;
194 		case BPF_S_ALU_XOR_K:
195 			A ^= K;
196 			continue;
197 		case BPF_S_ALU_LSH_X:
198 			A <<= X;
199 			continue;
200 		case BPF_S_ALU_LSH_K:
201 			A <<= K;
202 			continue;
203 		case BPF_S_ALU_RSH_X:
204 			A >>= X;
205 			continue;
206 		case BPF_S_ALU_RSH_K:
207 			A >>= K;
208 			continue;
209 		case BPF_S_ALU_NEG:
210 			A = -A;
211 			continue;
212 		case BPF_S_JMP_JA:
213 			fentry += K;
214 			continue;
215 		case BPF_S_JMP_JGT_K:
216 			fentry += (A > K) ? fentry->jt : fentry->jf;
217 			continue;
218 		case BPF_S_JMP_JGE_K:
219 			fentry += (A >= K) ? fentry->jt : fentry->jf;
220 			continue;
221 		case BPF_S_JMP_JEQ_K:
222 			fentry += (A == K) ? fentry->jt : fentry->jf;
223 			continue;
224 		case BPF_S_JMP_JSET_K:
225 			fentry += (A & K) ? fentry->jt : fentry->jf;
226 			continue;
227 		case BPF_S_JMP_JGT_X:
228 			fentry += (A > X) ? fentry->jt : fentry->jf;
229 			continue;
230 		case BPF_S_JMP_JGE_X:
231 			fentry += (A >= X) ? fentry->jt : fentry->jf;
232 			continue;
233 		case BPF_S_JMP_JEQ_X:
234 			fentry += (A == X) ? fentry->jt : fentry->jf;
235 			continue;
236 		case BPF_S_JMP_JSET_X:
237 			fentry += (A & X) ? fentry->jt : fentry->jf;
238 			continue;
239 		case BPF_S_LD_W_ABS:
240 			k = K;
241 load_w:
242 			ptr = load_pointer(skb, k, 4, &tmp);
243 			if (ptr != NULL) {
244 				A = get_unaligned_be32(ptr);
245 				continue;
246 			}
247 			return 0;
248 		case BPF_S_LD_H_ABS:
249 			k = K;
250 load_h:
251 			ptr = load_pointer(skb, k, 2, &tmp);
252 			if (ptr != NULL) {
253 				A = get_unaligned_be16(ptr);
254 				continue;
255 			}
256 			return 0;
257 		case BPF_S_LD_B_ABS:
258 			k = K;
259 load_b:
260 			ptr = load_pointer(skb, k, 1, &tmp);
261 			if (ptr != NULL) {
262 				A = *(u8 *)ptr;
263 				continue;
264 			}
265 			return 0;
266 		case BPF_S_LD_W_LEN:
267 			A = skb->len;
268 			continue;
269 		case BPF_S_LDX_W_LEN:
270 			X = skb->len;
271 			continue;
272 		case BPF_S_LD_W_IND:
273 			k = X + K;
274 			goto load_w;
275 		case BPF_S_LD_H_IND:
276 			k = X + K;
277 			goto load_h;
278 		case BPF_S_LD_B_IND:
279 			k = X + K;
280 			goto load_b;
281 		case BPF_S_LDX_B_MSH:
282 			ptr = load_pointer(skb, K, 1, &tmp);
283 			if (ptr != NULL) {
284 				X = (*(u8 *)ptr & 0xf) << 2;
285 				continue;
286 			}
287 			return 0;
288 		case BPF_S_LD_IMM:
289 			A = K;
290 			continue;
291 		case BPF_S_LDX_IMM:
292 			X = K;
293 			continue;
294 		case BPF_S_LD_MEM:
295 			A = mem[K];
296 			continue;
297 		case BPF_S_LDX_MEM:
298 			X = mem[K];
299 			continue;
300 		case BPF_S_MISC_TAX:
301 			X = A;
302 			continue;
303 		case BPF_S_MISC_TXA:
304 			A = X;
305 			continue;
306 		case BPF_S_RET_K:
307 			return K;
308 		case BPF_S_RET_A:
309 			return A;
310 		case BPF_S_ST:
311 			mem[K] = A;
312 			continue;
313 		case BPF_S_STX:
314 			mem[K] = X;
315 			continue;
316 		case BPF_S_ANC_PROTOCOL:
317 			A = ntohs(skb->protocol);
318 			continue;
319 		case BPF_S_ANC_PKTTYPE:
320 			A = skb->pkt_type;
321 			continue;
322 		case BPF_S_ANC_IFINDEX:
323 			if (!skb->dev)
324 				return 0;
325 			A = skb->dev->ifindex;
326 			continue;
327 		case BPF_S_ANC_MARK:
328 			A = skb->mark;
329 			continue;
330 		case BPF_S_ANC_QUEUE:
331 			A = skb->queue_mapping;
332 			continue;
333 		case BPF_S_ANC_HATYPE:
334 			if (!skb->dev)
335 				return 0;
336 			A = skb->dev->type;
337 			continue;
338 		case BPF_S_ANC_RXHASH:
339 			A = skb->rxhash;
340 			continue;
341 		case BPF_S_ANC_CPU:
342 			A = raw_smp_processor_id();
343 			continue;
344 		case BPF_S_ANC_NLATTR: {
345 			struct nlattr *nla;
346 
347 			if (skb_is_nonlinear(skb))
348 				return 0;
349 			if (A > skb->len - sizeof(struct nlattr))
350 				return 0;
351 
352 			nla = nla_find((struct nlattr *)&skb->data[A],
353 				       skb->len - A, X);
354 			if (nla)
355 				A = (void *)nla - (void *)skb->data;
356 			else
357 				A = 0;
358 			continue;
359 		}
360 		case BPF_S_ANC_NLATTR_NEST: {
361 			struct nlattr *nla;
362 
363 			if (skb_is_nonlinear(skb))
364 				return 0;
365 			if (A > skb->len - sizeof(struct nlattr))
366 				return 0;
367 
368 			nla = (struct nlattr *)&skb->data[A];
369 			if (nla->nla_len > A - skb->len)
370 				return 0;
371 
372 			nla = nla_find_nested(nla, X);
373 			if (nla)
374 				A = (void *)nla - (void *)skb->data;
375 			else
376 				A = 0;
377 			continue;
378 		}
379 #ifdef CONFIG_SECCOMP_FILTER
380 		case BPF_S_ANC_SECCOMP_LD_W:
381 			A = seccomp_bpf_load(fentry->k);
382 			continue;
383 #endif
384 		default:
385 			WARN_RATELIMIT(1, "Unknown code:%u jt:%u tf:%u k:%u\n",
386 				       fentry->code, fentry->jt,
387 				       fentry->jf, fentry->k);
388 			return 0;
389 		}
390 	}
391 
392 	return 0;
393 }
394 EXPORT_SYMBOL(sk_run_filter);
395 
396 /*
397  * Security :
398  * A BPF program is able to use 16 cells of memory to store intermediate
399  * values (check u32 mem[BPF_MEMWORDS] in sk_run_filter())
400  * As we dont want to clear mem[] array for each packet going through
401  * sk_run_filter(), we check that filter loaded by user never try to read
402  * a cell if not previously written, and we check all branches to be sure
403  * a malicious user doesn't try to abuse us.
404  */
405 static int check_load_and_stores(struct sock_filter *filter, int flen)
406 {
407 	u16 *masks, memvalid = 0; /* one bit per cell, 16 cells */
408 	int pc, ret = 0;
409 
410 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
411 	masks = kmalloc(flen * sizeof(*masks), GFP_KERNEL);
412 	if (!masks)
413 		return -ENOMEM;
414 	memset(masks, 0xff, flen * sizeof(*masks));
415 
416 	for (pc = 0; pc < flen; pc++) {
417 		memvalid &= masks[pc];
418 
419 		switch (filter[pc].code) {
420 		case BPF_S_ST:
421 		case BPF_S_STX:
422 			memvalid |= (1 << filter[pc].k);
423 			break;
424 		case BPF_S_LD_MEM:
425 		case BPF_S_LDX_MEM:
426 			if (!(memvalid & (1 << filter[pc].k))) {
427 				ret = -EINVAL;
428 				goto error;
429 			}
430 			break;
431 		case BPF_S_JMP_JA:
432 			/* a jump must set masks on target */
433 			masks[pc + 1 + filter[pc].k] &= memvalid;
434 			memvalid = ~0;
435 			break;
436 		case BPF_S_JMP_JEQ_K:
437 		case BPF_S_JMP_JEQ_X:
438 		case BPF_S_JMP_JGE_K:
439 		case BPF_S_JMP_JGE_X:
440 		case BPF_S_JMP_JGT_K:
441 		case BPF_S_JMP_JGT_X:
442 		case BPF_S_JMP_JSET_X:
443 		case BPF_S_JMP_JSET_K:
444 			/* a jump must set masks on targets */
445 			masks[pc + 1 + filter[pc].jt] &= memvalid;
446 			masks[pc + 1 + filter[pc].jf] &= memvalid;
447 			memvalid = ~0;
448 			break;
449 		}
450 	}
451 error:
452 	kfree(masks);
453 	return ret;
454 }
455 
456 /**
457  *	sk_chk_filter - verify socket filter code
458  *	@filter: filter to verify
459  *	@flen: length of filter
460  *
461  * Check the user's filter code. If we let some ugly
462  * filter code slip through kaboom! The filter must contain
463  * no references or jumps that are out of range, no illegal
464  * instructions, and must end with a RET instruction.
465  *
466  * All jumps are forward as they are not signed.
467  *
468  * Returns 0 if the rule set is legal or -EINVAL if not.
469  */
470 int sk_chk_filter(struct sock_filter *filter, unsigned int flen)
471 {
472 	/*
473 	 * Valid instructions are initialized to non-0.
474 	 * Invalid instructions are initialized to 0.
475 	 */
476 	static const u8 codes[] = {
477 		[BPF_ALU|BPF_ADD|BPF_K]  = BPF_S_ALU_ADD_K,
478 		[BPF_ALU|BPF_ADD|BPF_X]  = BPF_S_ALU_ADD_X,
479 		[BPF_ALU|BPF_SUB|BPF_K]  = BPF_S_ALU_SUB_K,
480 		[BPF_ALU|BPF_SUB|BPF_X]  = BPF_S_ALU_SUB_X,
481 		[BPF_ALU|BPF_MUL|BPF_K]  = BPF_S_ALU_MUL_K,
482 		[BPF_ALU|BPF_MUL|BPF_X]  = BPF_S_ALU_MUL_X,
483 		[BPF_ALU|BPF_DIV|BPF_X]  = BPF_S_ALU_DIV_X,
484 		[BPF_ALU|BPF_MOD|BPF_K]  = BPF_S_ALU_MOD_K,
485 		[BPF_ALU|BPF_MOD|BPF_X]  = BPF_S_ALU_MOD_X,
486 		[BPF_ALU|BPF_AND|BPF_K]  = BPF_S_ALU_AND_K,
487 		[BPF_ALU|BPF_AND|BPF_X]  = BPF_S_ALU_AND_X,
488 		[BPF_ALU|BPF_OR|BPF_K]   = BPF_S_ALU_OR_K,
489 		[BPF_ALU|BPF_OR|BPF_X]   = BPF_S_ALU_OR_X,
490 		[BPF_ALU|BPF_XOR|BPF_K]  = BPF_S_ALU_XOR_K,
491 		[BPF_ALU|BPF_XOR|BPF_X]  = BPF_S_ALU_XOR_X,
492 		[BPF_ALU|BPF_LSH|BPF_K]  = BPF_S_ALU_LSH_K,
493 		[BPF_ALU|BPF_LSH|BPF_X]  = BPF_S_ALU_LSH_X,
494 		[BPF_ALU|BPF_RSH|BPF_K]  = BPF_S_ALU_RSH_K,
495 		[BPF_ALU|BPF_RSH|BPF_X]  = BPF_S_ALU_RSH_X,
496 		[BPF_ALU|BPF_NEG]        = BPF_S_ALU_NEG,
497 		[BPF_LD|BPF_W|BPF_ABS]   = BPF_S_LD_W_ABS,
498 		[BPF_LD|BPF_H|BPF_ABS]   = BPF_S_LD_H_ABS,
499 		[BPF_LD|BPF_B|BPF_ABS]   = BPF_S_LD_B_ABS,
500 		[BPF_LD|BPF_W|BPF_LEN]   = BPF_S_LD_W_LEN,
501 		[BPF_LD|BPF_W|BPF_IND]   = BPF_S_LD_W_IND,
502 		[BPF_LD|BPF_H|BPF_IND]   = BPF_S_LD_H_IND,
503 		[BPF_LD|BPF_B|BPF_IND]   = BPF_S_LD_B_IND,
504 		[BPF_LD|BPF_IMM]         = BPF_S_LD_IMM,
505 		[BPF_LDX|BPF_W|BPF_LEN]  = BPF_S_LDX_W_LEN,
506 		[BPF_LDX|BPF_B|BPF_MSH]  = BPF_S_LDX_B_MSH,
507 		[BPF_LDX|BPF_IMM]        = BPF_S_LDX_IMM,
508 		[BPF_MISC|BPF_TAX]       = BPF_S_MISC_TAX,
509 		[BPF_MISC|BPF_TXA]       = BPF_S_MISC_TXA,
510 		[BPF_RET|BPF_K]          = BPF_S_RET_K,
511 		[BPF_RET|BPF_A]          = BPF_S_RET_A,
512 		[BPF_ALU|BPF_DIV|BPF_K]  = BPF_S_ALU_DIV_K,
513 		[BPF_LD|BPF_MEM]         = BPF_S_LD_MEM,
514 		[BPF_LDX|BPF_MEM]        = BPF_S_LDX_MEM,
515 		[BPF_ST]                 = BPF_S_ST,
516 		[BPF_STX]                = BPF_S_STX,
517 		[BPF_JMP|BPF_JA]         = BPF_S_JMP_JA,
518 		[BPF_JMP|BPF_JEQ|BPF_K]  = BPF_S_JMP_JEQ_K,
519 		[BPF_JMP|BPF_JEQ|BPF_X]  = BPF_S_JMP_JEQ_X,
520 		[BPF_JMP|BPF_JGE|BPF_K]  = BPF_S_JMP_JGE_K,
521 		[BPF_JMP|BPF_JGE|BPF_X]  = BPF_S_JMP_JGE_X,
522 		[BPF_JMP|BPF_JGT|BPF_K]  = BPF_S_JMP_JGT_K,
523 		[BPF_JMP|BPF_JGT|BPF_X]  = BPF_S_JMP_JGT_X,
524 		[BPF_JMP|BPF_JSET|BPF_K] = BPF_S_JMP_JSET_K,
525 		[BPF_JMP|BPF_JSET|BPF_X] = BPF_S_JMP_JSET_X,
526 	};
527 	int pc;
528 
529 	if (flen == 0 || flen > BPF_MAXINSNS)
530 		return -EINVAL;
531 
532 	/* check the filter code now */
533 	for (pc = 0; pc < flen; pc++) {
534 		struct sock_filter *ftest = &filter[pc];
535 		u16 code = ftest->code;
536 
537 		if (code >= ARRAY_SIZE(codes))
538 			return -EINVAL;
539 		code = codes[code];
540 		if (!code)
541 			return -EINVAL;
542 		/* Some instructions need special checks */
543 		switch (code) {
544 		case BPF_S_ALU_DIV_K:
545 			/* check for division by zero */
546 			if (ftest->k == 0)
547 				return -EINVAL;
548 			ftest->k = reciprocal_value(ftest->k);
549 			break;
550 		case BPF_S_ALU_MOD_K:
551 			/* check for division by zero */
552 			if (ftest->k == 0)
553 				return -EINVAL;
554 			break;
555 		case BPF_S_LD_MEM:
556 		case BPF_S_LDX_MEM:
557 		case BPF_S_ST:
558 		case BPF_S_STX:
559 			/* check for invalid memory addresses */
560 			if (ftest->k >= BPF_MEMWORDS)
561 				return -EINVAL;
562 			break;
563 		case BPF_S_JMP_JA:
564 			/*
565 			 * Note, the large ftest->k might cause loops.
566 			 * Compare this with conditional jumps below,
567 			 * where offsets are limited. --ANK (981016)
568 			 */
569 			if (ftest->k >= (unsigned int)(flen-pc-1))
570 				return -EINVAL;
571 			break;
572 		case BPF_S_JMP_JEQ_K:
573 		case BPF_S_JMP_JEQ_X:
574 		case BPF_S_JMP_JGE_K:
575 		case BPF_S_JMP_JGE_X:
576 		case BPF_S_JMP_JGT_K:
577 		case BPF_S_JMP_JGT_X:
578 		case BPF_S_JMP_JSET_X:
579 		case BPF_S_JMP_JSET_K:
580 			/* for conditionals both must be safe */
581 			if (pc + ftest->jt + 1 >= flen ||
582 			    pc + ftest->jf + 1 >= flen)
583 				return -EINVAL;
584 			break;
585 		case BPF_S_LD_W_ABS:
586 		case BPF_S_LD_H_ABS:
587 		case BPF_S_LD_B_ABS:
588 #define ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE:	\
589 				code = BPF_S_ANC_##CODE;	\
590 				break
591 			switch (ftest->k) {
592 			ANCILLARY(PROTOCOL);
593 			ANCILLARY(PKTTYPE);
594 			ANCILLARY(IFINDEX);
595 			ANCILLARY(NLATTR);
596 			ANCILLARY(NLATTR_NEST);
597 			ANCILLARY(MARK);
598 			ANCILLARY(QUEUE);
599 			ANCILLARY(HATYPE);
600 			ANCILLARY(RXHASH);
601 			ANCILLARY(CPU);
602 			ANCILLARY(ALU_XOR_X);
603 			}
604 		}
605 		ftest->code = code;
606 	}
607 
608 	/* last instruction must be a RET code */
609 	switch (filter[flen - 1].code) {
610 	case BPF_S_RET_K:
611 	case BPF_S_RET_A:
612 		return check_load_and_stores(filter, flen);
613 	}
614 	return -EINVAL;
615 }
616 EXPORT_SYMBOL(sk_chk_filter);
617 
618 /**
619  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
620  *	@rcu: rcu_head that contains the sk_filter to free
621  */
622 void sk_filter_release_rcu(struct rcu_head *rcu)
623 {
624 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
625 
626 	bpf_jit_free(fp);
627 	kfree(fp);
628 }
629 EXPORT_SYMBOL(sk_filter_release_rcu);
630 
631 static int __sk_prepare_filter(struct sk_filter *fp)
632 {
633 	int err;
634 
635 	fp->bpf_func = sk_run_filter;
636 
637 	err = sk_chk_filter(fp->insns, fp->len);
638 	if (err)
639 		return err;
640 
641 	bpf_jit_compile(fp);
642 	return 0;
643 }
644 
645 /**
646  *	sk_unattached_filter_create - create an unattached filter
647  *	@fprog: the filter program
648  *	@pfp: the unattached filter that is created
649  *
650  * Create a filter independent of any socket. We first run some
651  * sanity checks on it to make sure it does not explode on us later.
652  * If an error occurs or there is insufficient memory for the filter
653  * a negative errno code is returned. On success the return is zero.
654  */
655 int sk_unattached_filter_create(struct sk_filter **pfp,
656 				struct sock_fprog *fprog)
657 {
658 	struct sk_filter *fp;
659 	unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
660 	int err;
661 
662 	/* Make sure new filter is there and in the right amounts. */
663 	if (fprog->filter == NULL)
664 		return -EINVAL;
665 
666 	fp = kmalloc(fsize + sizeof(*fp), GFP_KERNEL);
667 	if (!fp)
668 		return -ENOMEM;
669 	memcpy(fp->insns, fprog->filter, fsize);
670 
671 	atomic_set(&fp->refcnt, 1);
672 	fp->len = fprog->len;
673 
674 	err = __sk_prepare_filter(fp);
675 	if (err)
676 		goto free_mem;
677 
678 	*pfp = fp;
679 	return 0;
680 free_mem:
681 	kfree(fp);
682 	return err;
683 }
684 EXPORT_SYMBOL_GPL(sk_unattached_filter_create);
685 
686 void sk_unattached_filter_destroy(struct sk_filter *fp)
687 {
688 	sk_filter_release(fp);
689 }
690 EXPORT_SYMBOL_GPL(sk_unattached_filter_destroy);
691 
692 /**
693  *	sk_attach_filter - attach a socket filter
694  *	@fprog: the filter program
695  *	@sk: the socket to use
696  *
697  * Attach the user's filter code. We first run some sanity checks on
698  * it to make sure it does not explode on us later. If an error
699  * occurs or there is insufficient memory for the filter a negative
700  * errno code is returned. On success the return is zero.
701  */
702 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
703 {
704 	struct sk_filter *fp, *old_fp;
705 	unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
706 	int err;
707 
708 	/* Make sure new filter is there and in the right amounts. */
709 	if (fprog->filter == NULL)
710 		return -EINVAL;
711 
712 	fp = sock_kmalloc(sk, fsize+sizeof(*fp), GFP_KERNEL);
713 	if (!fp)
714 		return -ENOMEM;
715 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
716 		sock_kfree_s(sk, fp, fsize+sizeof(*fp));
717 		return -EFAULT;
718 	}
719 
720 	atomic_set(&fp->refcnt, 1);
721 	fp->len = fprog->len;
722 
723 	err = __sk_prepare_filter(fp);
724 	if (err) {
725 		sk_filter_uncharge(sk, fp);
726 		return err;
727 	}
728 
729 	old_fp = rcu_dereference_protected(sk->sk_filter,
730 					   sock_owned_by_user(sk));
731 	rcu_assign_pointer(sk->sk_filter, fp);
732 
733 	if (old_fp)
734 		sk_filter_uncharge(sk, old_fp);
735 	return 0;
736 }
737 EXPORT_SYMBOL_GPL(sk_attach_filter);
738 
739 int sk_detach_filter(struct sock *sk)
740 {
741 	int ret = -ENOENT;
742 	struct sk_filter *filter;
743 
744 	filter = rcu_dereference_protected(sk->sk_filter,
745 					   sock_owned_by_user(sk));
746 	if (filter) {
747 		RCU_INIT_POINTER(sk->sk_filter, NULL);
748 		sk_filter_uncharge(sk, filter);
749 		ret = 0;
750 	}
751 	return ret;
752 }
753 EXPORT_SYMBOL_GPL(sk_detach_filter);
754