xref: /linux/net/core/filter.c (revision 06ed6aa56ffac9241e03a24649e8d048f8f1b10c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <net/sch_generic.h>
51 #include <net/cls_cgroup.h>
52 #include <net/dst_metadata.h>
53 #include <net/dst.h>
54 #include <net/sock_reuseport.h>
55 #include <net/busy_poll.h>
56 #include <net/tcp.h>
57 #include <net/xfrm.h>
58 #include <net/udp.h>
59 #include <linux/bpf_trace.h>
60 #include <net/xdp_sock.h>
61 #include <linux/inetdevice.h>
62 #include <net/inet_hashtables.h>
63 #include <net/inet6_hashtables.h>
64 #include <net/ip_fib.h>
65 #include <net/nexthop.h>
66 #include <net/flow.h>
67 #include <net/arp.h>
68 #include <net/ipv6.h>
69 #include <net/net_namespace.h>
70 #include <linux/seg6_local.h>
71 #include <net/seg6.h>
72 #include <net/seg6_local.h>
73 #include <net/lwtunnel.h>
74 #include <net/ipv6_stubs.h>
75 #include <net/bpf_sk_storage.h>
76 
77 /**
78  *	sk_filter_trim_cap - run a packet through a socket filter
79  *	@sk: sock associated with &sk_buff
80  *	@skb: buffer to filter
81  *	@cap: limit on how short the eBPF program may trim the packet
82  *
83  * Run the eBPF program and then cut skb->data to correct size returned by
84  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
85  * than pkt_len we keep whole skb->data. This is the socket level
86  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
87  * be accepted or -EPERM if the packet should be tossed.
88  *
89  */
90 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
91 {
92 	int err;
93 	struct sk_filter *filter;
94 
95 	/*
96 	 * If the skb was allocated from pfmemalloc reserves, only
97 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
98 	 * helping free memory
99 	 */
100 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
101 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
102 		return -ENOMEM;
103 	}
104 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
105 	if (err)
106 		return err;
107 
108 	err = security_sock_rcv_skb(sk, skb);
109 	if (err)
110 		return err;
111 
112 	rcu_read_lock();
113 	filter = rcu_dereference(sk->sk_filter);
114 	if (filter) {
115 		struct sock *save_sk = skb->sk;
116 		unsigned int pkt_len;
117 
118 		skb->sk = sk;
119 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
120 		skb->sk = save_sk;
121 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
122 	}
123 	rcu_read_unlock();
124 
125 	return err;
126 }
127 EXPORT_SYMBOL(sk_filter_trim_cap);
128 
129 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
130 {
131 	return skb_get_poff(skb);
132 }
133 
134 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
135 {
136 	struct nlattr *nla;
137 
138 	if (skb_is_nonlinear(skb))
139 		return 0;
140 
141 	if (skb->len < sizeof(struct nlattr))
142 		return 0;
143 
144 	if (a > skb->len - sizeof(struct nlattr))
145 		return 0;
146 
147 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
148 	if (nla)
149 		return (void *) nla - (void *) skb->data;
150 
151 	return 0;
152 }
153 
154 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
155 {
156 	struct nlattr *nla;
157 
158 	if (skb_is_nonlinear(skb))
159 		return 0;
160 
161 	if (skb->len < sizeof(struct nlattr))
162 		return 0;
163 
164 	if (a > skb->len - sizeof(struct nlattr))
165 		return 0;
166 
167 	nla = (struct nlattr *) &skb->data[a];
168 	if (nla->nla_len > skb->len - a)
169 		return 0;
170 
171 	nla = nla_find_nested(nla, x);
172 	if (nla)
173 		return (void *) nla - (void *) skb->data;
174 
175 	return 0;
176 }
177 
178 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
179 	   data, int, headlen, int, offset)
180 {
181 	u8 tmp, *ptr;
182 	const int len = sizeof(tmp);
183 
184 	if (offset >= 0) {
185 		if (headlen - offset >= len)
186 			return *(u8 *)(data + offset);
187 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
188 			return tmp;
189 	} else {
190 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
191 		if (likely(ptr))
192 			return *(u8 *)ptr;
193 	}
194 
195 	return -EFAULT;
196 }
197 
198 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
199 	   int, offset)
200 {
201 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
202 					 offset);
203 }
204 
205 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
206 	   data, int, headlen, int, offset)
207 {
208 	u16 tmp, *ptr;
209 	const int len = sizeof(tmp);
210 
211 	if (offset >= 0) {
212 		if (headlen - offset >= len)
213 			return get_unaligned_be16(data + offset);
214 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
215 			return be16_to_cpu(tmp);
216 	} else {
217 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
218 		if (likely(ptr))
219 			return get_unaligned_be16(ptr);
220 	}
221 
222 	return -EFAULT;
223 }
224 
225 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
226 	   int, offset)
227 {
228 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
229 					  offset);
230 }
231 
232 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
233 	   data, int, headlen, int, offset)
234 {
235 	u32 tmp, *ptr;
236 	const int len = sizeof(tmp);
237 
238 	if (likely(offset >= 0)) {
239 		if (headlen - offset >= len)
240 			return get_unaligned_be32(data + offset);
241 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
242 			return be32_to_cpu(tmp);
243 	} else {
244 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
245 		if (likely(ptr))
246 			return get_unaligned_be32(ptr);
247 	}
248 
249 	return -EFAULT;
250 }
251 
252 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
253 	   int, offset)
254 {
255 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
256 					  offset);
257 }
258 
259 BPF_CALL_0(bpf_get_raw_cpu_id)
260 {
261 	return raw_smp_processor_id();
262 }
263 
264 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
265 	.func		= bpf_get_raw_cpu_id,
266 	.gpl_only	= false,
267 	.ret_type	= RET_INTEGER,
268 };
269 
270 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
271 			      struct bpf_insn *insn_buf)
272 {
273 	struct bpf_insn *insn = insn_buf;
274 
275 	switch (skb_field) {
276 	case SKF_AD_MARK:
277 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
278 
279 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
280 				      offsetof(struct sk_buff, mark));
281 		break;
282 
283 	case SKF_AD_PKTTYPE:
284 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
285 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
286 #ifdef __BIG_ENDIAN_BITFIELD
287 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
288 #endif
289 		break;
290 
291 	case SKF_AD_QUEUE:
292 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
293 
294 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
295 				      offsetof(struct sk_buff, queue_mapping));
296 		break;
297 
298 	case SKF_AD_VLAN_TAG:
299 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
300 
301 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
302 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
303 				      offsetof(struct sk_buff, vlan_tci));
304 		break;
305 	case SKF_AD_VLAN_TAG_PRESENT:
306 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
307 		if (PKT_VLAN_PRESENT_BIT)
308 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
309 		if (PKT_VLAN_PRESENT_BIT < 7)
310 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
311 		break;
312 	}
313 
314 	return insn - insn_buf;
315 }
316 
317 static bool convert_bpf_extensions(struct sock_filter *fp,
318 				   struct bpf_insn **insnp)
319 {
320 	struct bpf_insn *insn = *insnp;
321 	u32 cnt;
322 
323 	switch (fp->k) {
324 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
325 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
326 
327 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
328 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
329 				      offsetof(struct sk_buff, protocol));
330 		/* A = ntohs(A) [emitting a nop or swap16] */
331 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
332 		break;
333 
334 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
335 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
336 		insn += cnt - 1;
337 		break;
338 
339 	case SKF_AD_OFF + SKF_AD_IFINDEX:
340 	case SKF_AD_OFF + SKF_AD_HATYPE:
341 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
342 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
343 
344 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
345 				      BPF_REG_TMP, BPF_REG_CTX,
346 				      offsetof(struct sk_buff, dev));
347 		/* if (tmp != 0) goto pc + 1 */
348 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
349 		*insn++ = BPF_EXIT_INSN();
350 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
351 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
352 					    offsetof(struct net_device, ifindex));
353 		else
354 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
355 					    offsetof(struct net_device, type));
356 		break;
357 
358 	case SKF_AD_OFF + SKF_AD_MARK:
359 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
360 		insn += cnt - 1;
361 		break;
362 
363 	case SKF_AD_OFF + SKF_AD_RXHASH:
364 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
365 
366 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
367 				    offsetof(struct sk_buff, hash));
368 		break;
369 
370 	case SKF_AD_OFF + SKF_AD_QUEUE:
371 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
372 		insn += cnt - 1;
373 		break;
374 
375 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
376 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
377 					 BPF_REG_A, BPF_REG_CTX, insn);
378 		insn += cnt - 1;
379 		break;
380 
381 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
382 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
383 					 BPF_REG_A, BPF_REG_CTX, insn);
384 		insn += cnt - 1;
385 		break;
386 
387 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
388 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
389 
390 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
391 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
392 				      offsetof(struct sk_buff, vlan_proto));
393 		/* A = ntohs(A) [emitting a nop or swap16] */
394 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
395 		break;
396 
397 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
398 	case SKF_AD_OFF + SKF_AD_NLATTR:
399 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
400 	case SKF_AD_OFF + SKF_AD_CPU:
401 	case SKF_AD_OFF + SKF_AD_RANDOM:
402 		/* arg1 = CTX */
403 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
404 		/* arg2 = A */
405 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
406 		/* arg3 = X */
407 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
408 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
409 		switch (fp->k) {
410 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
411 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
412 			break;
413 		case SKF_AD_OFF + SKF_AD_NLATTR:
414 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
415 			break;
416 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
417 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
418 			break;
419 		case SKF_AD_OFF + SKF_AD_CPU:
420 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
421 			break;
422 		case SKF_AD_OFF + SKF_AD_RANDOM:
423 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
424 			bpf_user_rnd_init_once();
425 			break;
426 		}
427 		break;
428 
429 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
430 		/* A ^= X */
431 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
432 		break;
433 
434 	default:
435 		/* This is just a dummy call to avoid letting the compiler
436 		 * evict __bpf_call_base() as an optimization. Placed here
437 		 * where no-one bothers.
438 		 */
439 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
440 		return false;
441 	}
442 
443 	*insnp = insn;
444 	return true;
445 }
446 
447 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
448 {
449 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
450 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
451 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
452 		      BPF_SIZE(fp->code) == BPF_W;
453 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
454 	const int ip_align = NET_IP_ALIGN;
455 	struct bpf_insn *insn = *insnp;
456 	int offset = fp->k;
457 
458 	if (!indirect &&
459 	    ((unaligned_ok && offset >= 0) ||
460 	     (!unaligned_ok && offset >= 0 &&
461 	      offset + ip_align >= 0 &&
462 	      offset + ip_align % size == 0))) {
463 		bool ldx_off_ok = offset <= S16_MAX;
464 
465 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
466 		if (offset)
467 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
468 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
469 				      size, 2 + endian + (!ldx_off_ok * 2));
470 		if (ldx_off_ok) {
471 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
472 					      BPF_REG_D, offset);
473 		} else {
474 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
475 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
476 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
477 					      BPF_REG_TMP, 0);
478 		}
479 		if (endian)
480 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
481 		*insn++ = BPF_JMP_A(8);
482 	}
483 
484 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
485 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
486 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
487 	if (!indirect) {
488 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
489 	} else {
490 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
491 		if (fp->k)
492 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
493 	}
494 
495 	switch (BPF_SIZE(fp->code)) {
496 	case BPF_B:
497 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
498 		break;
499 	case BPF_H:
500 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
501 		break;
502 	case BPF_W:
503 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
504 		break;
505 	default:
506 		return false;
507 	}
508 
509 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
510 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
511 	*insn   = BPF_EXIT_INSN();
512 
513 	*insnp = insn;
514 	return true;
515 }
516 
517 /**
518  *	bpf_convert_filter - convert filter program
519  *	@prog: the user passed filter program
520  *	@len: the length of the user passed filter program
521  *	@new_prog: allocated 'struct bpf_prog' or NULL
522  *	@new_len: pointer to store length of converted program
523  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
524  *
525  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
526  * style extended BPF (eBPF).
527  * Conversion workflow:
528  *
529  * 1) First pass for calculating the new program length:
530  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
531  *
532  * 2) 2nd pass to remap in two passes: 1st pass finds new
533  *    jump offsets, 2nd pass remapping:
534  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
535  */
536 static int bpf_convert_filter(struct sock_filter *prog, int len,
537 			      struct bpf_prog *new_prog, int *new_len,
538 			      bool *seen_ld_abs)
539 {
540 	int new_flen = 0, pass = 0, target, i, stack_off;
541 	struct bpf_insn *new_insn, *first_insn = NULL;
542 	struct sock_filter *fp;
543 	int *addrs = NULL;
544 	u8 bpf_src;
545 
546 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
547 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
548 
549 	if (len <= 0 || len > BPF_MAXINSNS)
550 		return -EINVAL;
551 
552 	if (new_prog) {
553 		first_insn = new_prog->insnsi;
554 		addrs = kcalloc(len, sizeof(*addrs),
555 				GFP_KERNEL | __GFP_NOWARN);
556 		if (!addrs)
557 			return -ENOMEM;
558 	}
559 
560 do_pass:
561 	new_insn = first_insn;
562 	fp = prog;
563 
564 	/* Classic BPF related prologue emission. */
565 	if (new_prog) {
566 		/* Classic BPF expects A and X to be reset first. These need
567 		 * to be guaranteed to be the first two instructions.
568 		 */
569 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
570 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
571 
572 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
573 		 * In eBPF case it's done by the compiler, here we need to
574 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
575 		 */
576 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
577 		if (*seen_ld_abs) {
578 			/* For packet access in classic BPF, cache skb->data
579 			 * in callee-saved BPF R8 and skb->len - skb->data_len
580 			 * (headlen) in BPF R9. Since classic BPF is read-only
581 			 * on CTX, we only need to cache it once.
582 			 */
583 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
584 						  BPF_REG_D, BPF_REG_CTX,
585 						  offsetof(struct sk_buff, data));
586 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
587 						  offsetof(struct sk_buff, len));
588 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
589 						  offsetof(struct sk_buff, data_len));
590 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
591 		}
592 	} else {
593 		new_insn += 3;
594 	}
595 
596 	for (i = 0; i < len; fp++, i++) {
597 		struct bpf_insn tmp_insns[32] = { };
598 		struct bpf_insn *insn = tmp_insns;
599 
600 		if (addrs)
601 			addrs[i] = new_insn - first_insn;
602 
603 		switch (fp->code) {
604 		/* All arithmetic insns and skb loads map as-is. */
605 		case BPF_ALU | BPF_ADD | BPF_X:
606 		case BPF_ALU | BPF_ADD | BPF_K:
607 		case BPF_ALU | BPF_SUB | BPF_X:
608 		case BPF_ALU | BPF_SUB | BPF_K:
609 		case BPF_ALU | BPF_AND | BPF_X:
610 		case BPF_ALU | BPF_AND | BPF_K:
611 		case BPF_ALU | BPF_OR | BPF_X:
612 		case BPF_ALU | BPF_OR | BPF_K:
613 		case BPF_ALU | BPF_LSH | BPF_X:
614 		case BPF_ALU | BPF_LSH | BPF_K:
615 		case BPF_ALU | BPF_RSH | BPF_X:
616 		case BPF_ALU | BPF_RSH | BPF_K:
617 		case BPF_ALU | BPF_XOR | BPF_X:
618 		case BPF_ALU | BPF_XOR | BPF_K:
619 		case BPF_ALU | BPF_MUL | BPF_X:
620 		case BPF_ALU | BPF_MUL | BPF_K:
621 		case BPF_ALU | BPF_DIV | BPF_X:
622 		case BPF_ALU | BPF_DIV | BPF_K:
623 		case BPF_ALU | BPF_MOD | BPF_X:
624 		case BPF_ALU | BPF_MOD | BPF_K:
625 		case BPF_ALU | BPF_NEG:
626 		case BPF_LD | BPF_ABS | BPF_W:
627 		case BPF_LD | BPF_ABS | BPF_H:
628 		case BPF_LD | BPF_ABS | BPF_B:
629 		case BPF_LD | BPF_IND | BPF_W:
630 		case BPF_LD | BPF_IND | BPF_H:
631 		case BPF_LD | BPF_IND | BPF_B:
632 			/* Check for overloaded BPF extension and
633 			 * directly convert it if found, otherwise
634 			 * just move on with mapping.
635 			 */
636 			if (BPF_CLASS(fp->code) == BPF_LD &&
637 			    BPF_MODE(fp->code) == BPF_ABS &&
638 			    convert_bpf_extensions(fp, &insn))
639 				break;
640 			if (BPF_CLASS(fp->code) == BPF_LD &&
641 			    convert_bpf_ld_abs(fp, &insn)) {
642 				*seen_ld_abs = true;
643 				break;
644 			}
645 
646 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
647 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
648 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
649 				/* Error with exception code on div/mod by 0.
650 				 * For cBPF programs, this was always return 0.
651 				 */
652 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
653 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
654 				*insn++ = BPF_EXIT_INSN();
655 			}
656 
657 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
658 			break;
659 
660 		/* Jump transformation cannot use BPF block macros
661 		 * everywhere as offset calculation and target updates
662 		 * require a bit more work than the rest, i.e. jump
663 		 * opcodes map as-is, but offsets need adjustment.
664 		 */
665 
666 #define BPF_EMIT_JMP							\
667 	do {								\
668 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
669 		s32 off;						\
670 									\
671 		if (target >= len || target < 0)			\
672 			goto err;					\
673 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
674 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
675 		off -= insn - tmp_insns;				\
676 		/* Reject anything not fitting into insn->off. */	\
677 		if (off < off_min || off > off_max)			\
678 			goto err;					\
679 		insn->off = off;					\
680 	} while (0)
681 
682 		case BPF_JMP | BPF_JA:
683 			target = i + fp->k + 1;
684 			insn->code = fp->code;
685 			BPF_EMIT_JMP;
686 			break;
687 
688 		case BPF_JMP | BPF_JEQ | BPF_K:
689 		case BPF_JMP | BPF_JEQ | BPF_X:
690 		case BPF_JMP | BPF_JSET | BPF_K:
691 		case BPF_JMP | BPF_JSET | BPF_X:
692 		case BPF_JMP | BPF_JGT | BPF_K:
693 		case BPF_JMP | BPF_JGT | BPF_X:
694 		case BPF_JMP | BPF_JGE | BPF_K:
695 		case BPF_JMP | BPF_JGE | BPF_X:
696 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
697 				/* BPF immediates are signed, zero extend
698 				 * immediate into tmp register and use it
699 				 * in compare insn.
700 				 */
701 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
702 
703 				insn->dst_reg = BPF_REG_A;
704 				insn->src_reg = BPF_REG_TMP;
705 				bpf_src = BPF_X;
706 			} else {
707 				insn->dst_reg = BPF_REG_A;
708 				insn->imm = fp->k;
709 				bpf_src = BPF_SRC(fp->code);
710 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
711 			}
712 
713 			/* Common case where 'jump_false' is next insn. */
714 			if (fp->jf == 0) {
715 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
716 				target = i + fp->jt + 1;
717 				BPF_EMIT_JMP;
718 				break;
719 			}
720 
721 			/* Convert some jumps when 'jump_true' is next insn. */
722 			if (fp->jt == 0) {
723 				switch (BPF_OP(fp->code)) {
724 				case BPF_JEQ:
725 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
726 					break;
727 				case BPF_JGT:
728 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
729 					break;
730 				case BPF_JGE:
731 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
732 					break;
733 				default:
734 					goto jmp_rest;
735 				}
736 
737 				target = i + fp->jf + 1;
738 				BPF_EMIT_JMP;
739 				break;
740 			}
741 jmp_rest:
742 			/* Other jumps are mapped into two insns: Jxx and JA. */
743 			target = i + fp->jt + 1;
744 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
745 			BPF_EMIT_JMP;
746 			insn++;
747 
748 			insn->code = BPF_JMP | BPF_JA;
749 			target = i + fp->jf + 1;
750 			BPF_EMIT_JMP;
751 			break;
752 
753 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
754 		case BPF_LDX | BPF_MSH | BPF_B: {
755 			struct sock_filter tmp = {
756 				.code	= BPF_LD | BPF_ABS | BPF_B,
757 				.k	= fp->k,
758 			};
759 
760 			*seen_ld_abs = true;
761 
762 			/* X = A */
763 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
764 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
765 			convert_bpf_ld_abs(&tmp, &insn);
766 			insn++;
767 			/* A &= 0xf */
768 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
769 			/* A <<= 2 */
770 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
771 			/* tmp = X */
772 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
773 			/* X = A */
774 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
775 			/* A = tmp */
776 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
777 			break;
778 		}
779 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
780 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
781 		 */
782 		case BPF_RET | BPF_A:
783 		case BPF_RET | BPF_K:
784 			if (BPF_RVAL(fp->code) == BPF_K)
785 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
786 							0, fp->k);
787 			*insn = BPF_EXIT_INSN();
788 			break;
789 
790 		/* Store to stack. */
791 		case BPF_ST:
792 		case BPF_STX:
793 			stack_off = fp->k * 4  + 4;
794 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
795 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
796 					    -stack_off);
797 			/* check_load_and_stores() verifies that classic BPF can
798 			 * load from stack only after write, so tracking
799 			 * stack_depth for ST|STX insns is enough
800 			 */
801 			if (new_prog && new_prog->aux->stack_depth < stack_off)
802 				new_prog->aux->stack_depth = stack_off;
803 			break;
804 
805 		/* Load from stack. */
806 		case BPF_LD | BPF_MEM:
807 		case BPF_LDX | BPF_MEM:
808 			stack_off = fp->k * 4  + 4;
809 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
810 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
811 					    -stack_off);
812 			break;
813 
814 		/* A = K or X = K */
815 		case BPF_LD | BPF_IMM:
816 		case BPF_LDX | BPF_IMM:
817 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
818 					      BPF_REG_A : BPF_REG_X, fp->k);
819 			break;
820 
821 		/* X = A */
822 		case BPF_MISC | BPF_TAX:
823 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824 			break;
825 
826 		/* A = X */
827 		case BPF_MISC | BPF_TXA:
828 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
829 			break;
830 
831 		/* A = skb->len or X = skb->len */
832 		case BPF_LD | BPF_W | BPF_LEN:
833 		case BPF_LDX | BPF_W | BPF_LEN:
834 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
835 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
836 					    offsetof(struct sk_buff, len));
837 			break;
838 
839 		/* Access seccomp_data fields. */
840 		case BPF_LDX | BPF_ABS | BPF_W:
841 			/* A = *(u32 *) (ctx + K) */
842 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
843 			break;
844 
845 		/* Unknown instruction. */
846 		default:
847 			goto err;
848 		}
849 
850 		insn++;
851 		if (new_prog)
852 			memcpy(new_insn, tmp_insns,
853 			       sizeof(*insn) * (insn - tmp_insns));
854 		new_insn += insn - tmp_insns;
855 	}
856 
857 	if (!new_prog) {
858 		/* Only calculating new length. */
859 		*new_len = new_insn - first_insn;
860 		if (*seen_ld_abs)
861 			*new_len += 4; /* Prologue bits. */
862 		return 0;
863 	}
864 
865 	pass++;
866 	if (new_flen != new_insn - first_insn) {
867 		new_flen = new_insn - first_insn;
868 		if (pass > 2)
869 			goto err;
870 		goto do_pass;
871 	}
872 
873 	kfree(addrs);
874 	BUG_ON(*new_len != new_flen);
875 	return 0;
876 err:
877 	kfree(addrs);
878 	return -EINVAL;
879 }
880 
881 /* Security:
882  *
883  * As we dont want to clear mem[] array for each packet going through
884  * __bpf_prog_run(), we check that filter loaded by user never try to read
885  * a cell if not previously written, and we check all branches to be sure
886  * a malicious user doesn't try to abuse us.
887  */
888 static int check_load_and_stores(const struct sock_filter *filter, int flen)
889 {
890 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
891 	int pc, ret = 0;
892 
893 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
894 
895 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
896 	if (!masks)
897 		return -ENOMEM;
898 
899 	memset(masks, 0xff, flen * sizeof(*masks));
900 
901 	for (pc = 0; pc < flen; pc++) {
902 		memvalid &= masks[pc];
903 
904 		switch (filter[pc].code) {
905 		case BPF_ST:
906 		case BPF_STX:
907 			memvalid |= (1 << filter[pc].k);
908 			break;
909 		case BPF_LD | BPF_MEM:
910 		case BPF_LDX | BPF_MEM:
911 			if (!(memvalid & (1 << filter[pc].k))) {
912 				ret = -EINVAL;
913 				goto error;
914 			}
915 			break;
916 		case BPF_JMP | BPF_JA:
917 			/* A jump must set masks on target */
918 			masks[pc + 1 + filter[pc].k] &= memvalid;
919 			memvalid = ~0;
920 			break;
921 		case BPF_JMP | BPF_JEQ | BPF_K:
922 		case BPF_JMP | BPF_JEQ | BPF_X:
923 		case BPF_JMP | BPF_JGE | BPF_K:
924 		case BPF_JMP | BPF_JGE | BPF_X:
925 		case BPF_JMP | BPF_JGT | BPF_K:
926 		case BPF_JMP | BPF_JGT | BPF_X:
927 		case BPF_JMP | BPF_JSET | BPF_K:
928 		case BPF_JMP | BPF_JSET | BPF_X:
929 			/* A jump must set masks on targets */
930 			masks[pc + 1 + filter[pc].jt] &= memvalid;
931 			masks[pc + 1 + filter[pc].jf] &= memvalid;
932 			memvalid = ~0;
933 			break;
934 		}
935 	}
936 error:
937 	kfree(masks);
938 	return ret;
939 }
940 
941 static bool chk_code_allowed(u16 code_to_probe)
942 {
943 	static const bool codes[] = {
944 		/* 32 bit ALU operations */
945 		[BPF_ALU | BPF_ADD | BPF_K] = true,
946 		[BPF_ALU | BPF_ADD | BPF_X] = true,
947 		[BPF_ALU | BPF_SUB | BPF_K] = true,
948 		[BPF_ALU | BPF_SUB | BPF_X] = true,
949 		[BPF_ALU | BPF_MUL | BPF_K] = true,
950 		[BPF_ALU | BPF_MUL | BPF_X] = true,
951 		[BPF_ALU | BPF_DIV | BPF_K] = true,
952 		[BPF_ALU | BPF_DIV | BPF_X] = true,
953 		[BPF_ALU | BPF_MOD | BPF_K] = true,
954 		[BPF_ALU | BPF_MOD | BPF_X] = true,
955 		[BPF_ALU | BPF_AND | BPF_K] = true,
956 		[BPF_ALU | BPF_AND | BPF_X] = true,
957 		[BPF_ALU | BPF_OR | BPF_K] = true,
958 		[BPF_ALU | BPF_OR | BPF_X] = true,
959 		[BPF_ALU | BPF_XOR | BPF_K] = true,
960 		[BPF_ALU | BPF_XOR | BPF_X] = true,
961 		[BPF_ALU | BPF_LSH | BPF_K] = true,
962 		[BPF_ALU | BPF_LSH | BPF_X] = true,
963 		[BPF_ALU | BPF_RSH | BPF_K] = true,
964 		[BPF_ALU | BPF_RSH | BPF_X] = true,
965 		[BPF_ALU | BPF_NEG] = true,
966 		/* Load instructions */
967 		[BPF_LD | BPF_W | BPF_ABS] = true,
968 		[BPF_LD | BPF_H | BPF_ABS] = true,
969 		[BPF_LD | BPF_B | BPF_ABS] = true,
970 		[BPF_LD | BPF_W | BPF_LEN] = true,
971 		[BPF_LD | BPF_W | BPF_IND] = true,
972 		[BPF_LD | BPF_H | BPF_IND] = true,
973 		[BPF_LD | BPF_B | BPF_IND] = true,
974 		[BPF_LD | BPF_IMM] = true,
975 		[BPF_LD | BPF_MEM] = true,
976 		[BPF_LDX | BPF_W | BPF_LEN] = true,
977 		[BPF_LDX | BPF_B | BPF_MSH] = true,
978 		[BPF_LDX | BPF_IMM] = true,
979 		[BPF_LDX | BPF_MEM] = true,
980 		/* Store instructions */
981 		[BPF_ST] = true,
982 		[BPF_STX] = true,
983 		/* Misc instructions */
984 		[BPF_MISC | BPF_TAX] = true,
985 		[BPF_MISC | BPF_TXA] = true,
986 		/* Return instructions */
987 		[BPF_RET | BPF_K] = true,
988 		[BPF_RET | BPF_A] = true,
989 		/* Jump instructions */
990 		[BPF_JMP | BPF_JA] = true,
991 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
992 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
993 		[BPF_JMP | BPF_JGE | BPF_K] = true,
994 		[BPF_JMP | BPF_JGE | BPF_X] = true,
995 		[BPF_JMP | BPF_JGT | BPF_K] = true,
996 		[BPF_JMP | BPF_JGT | BPF_X] = true,
997 		[BPF_JMP | BPF_JSET | BPF_K] = true,
998 		[BPF_JMP | BPF_JSET | BPF_X] = true,
999 	};
1000 
1001 	if (code_to_probe >= ARRAY_SIZE(codes))
1002 		return false;
1003 
1004 	return codes[code_to_probe];
1005 }
1006 
1007 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1008 				unsigned int flen)
1009 {
1010 	if (filter == NULL)
1011 		return false;
1012 	if (flen == 0 || flen > BPF_MAXINSNS)
1013 		return false;
1014 
1015 	return true;
1016 }
1017 
1018 /**
1019  *	bpf_check_classic - verify socket filter code
1020  *	@filter: filter to verify
1021  *	@flen: length of filter
1022  *
1023  * Check the user's filter code. If we let some ugly
1024  * filter code slip through kaboom! The filter must contain
1025  * no references or jumps that are out of range, no illegal
1026  * instructions, and must end with a RET instruction.
1027  *
1028  * All jumps are forward as they are not signed.
1029  *
1030  * Returns 0 if the rule set is legal or -EINVAL if not.
1031  */
1032 static int bpf_check_classic(const struct sock_filter *filter,
1033 			     unsigned int flen)
1034 {
1035 	bool anc_found;
1036 	int pc;
1037 
1038 	/* Check the filter code now */
1039 	for (pc = 0; pc < flen; pc++) {
1040 		const struct sock_filter *ftest = &filter[pc];
1041 
1042 		/* May we actually operate on this code? */
1043 		if (!chk_code_allowed(ftest->code))
1044 			return -EINVAL;
1045 
1046 		/* Some instructions need special checks */
1047 		switch (ftest->code) {
1048 		case BPF_ALU | BPF_DIV | BPF_K:
1049 		case BPF_ALU | BPF_MOD | BPF_K:
1050 			/* Check for division by zero */
1051 			if (ftest->k == 0)
1052 				return -EINVAL;
1053 			break;
1054 		case BPF_ALU | BPF_LSH | BPF_K:
1055 		case BPF_ALU | BPF_RSH | BPF_K:
1056 			if (ftest->k >= 32)
1057 				return -EINVAL;
1058 			break;
1059 		case BPF_LD | BPF_MEM:
1060 		case BPF_LDX | BPF_MEM:
1061 		case BPF_ST:
1062 		case BPF_STX:
1063 			/* Check for invalid memory addresses */
1064 			if (ftest->k >= BPF_MEMWORDS)
1065 				return -EINVAL;
1066 			break;
1067 		case BPF_JMP | BPF_JA:
1068 			/* Note, the large ftest->k might cause loops.
1069 			 * Compare this with conditional jumps below,
1070 			 * where offsets are limited. --ANK (981016)
1071 			 */
1072 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1073 				return -EINVAL;
1074 			break;
1075 		case BPF_JMP | BPF_JEQ | BPF_K:
1076 		case BPF_JMP | BPF_JEQ | BPF_X:
1077 		case BPF_JMP | BPF_JGE | BPF_K:
1078 		case BPF_JMP | BPF_JGE | BPF_X:
1079 		case BPF_JMP | BPF_JGT | BPF_K:
1080 		case BPF_JMP | BPF_JGT | BPF_X:
1081 		case BPF_JMP | BPF_JSET | BPF_K:
1082 		case BPF_JMP | BPF_JSET | BPF_X:
1083 			/* Both conditionals must be safe */
1084 			if (pc + ftest->jt + 1 >= flen ||
1085 			    pc + ftest->jf + 1 >= flen)
1086 				return -EINVAL;
1087 			break;
1088 		case BPF_LD | BPF_W | BPF_ABS:
1089 		case BPF_LD | BPF_H | BPF_ABS:
1090 		case BPF_LD | BPF_B | BPF_ABS:
1091 			anc_found = false;
1092 			if (bpf_anc_helper(ftest) & BPF_ANC)
1093 				anc_found = true;
1094 			/* Ancillary operation unknown or unsupported */
1095 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1096 				return -EINVAL;
1097 		}
1098 	}
1099 
1100 	/* Last instruction must be a RET code */
1101 	switch (filter[flen - 1].code) {
1102 	case BPF_RET | BPF_K:
1103 	case BPF_RET | BPF_A:
1104 		return check_load_and_stores(filter, flen);
1105 	}
1106 
1107 	return -EINVAL;
1108 }
1109 
1110 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1111 				      const struct sock_fprog *fprog)
1112 {
1113 	unsigned int fsize = bpf_classic_proglen(fprog);
1114 	struct sock_fprog_kern *fkprog;
1115 
1116 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1117 	if (!fp->orig_prog)
1118 		return -ENOMEM;
1119 
1120 	fkprog = fp->orig_prog;
1121 	fkprog->len = fprog->len;
1122 
1123 	fkprog->filter = kmemdup(fp->insns, fsize,
1124 				 GFP_KERNEL | __GFP_NOWARN);
1125 	if (!fkprog->filter) {
1126 		kfree(fp->orig_prog);
1127 		return -ENOMEM;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 static void bpf_release_orig_filter(struct bpf_prog *fp)
1134 {
1135 	struct sock_fprog_kern *fprog = fp->orig_prog;
1136 
1137 	if (fprog) {
1138 		kfree(fprog->filter);
1139 		kfree(fprog);
1140 	}
1141 }
1142 
1143 static void __bpf_prog_release(struct bpf_prog *prog)
1144 {
1145 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1146 		bpf_prog_put(prog);
1147 	} else {
1148 		bpf_release_orig_filter(prog);
1149 		bpf_prog_free(prog);
1150 	}
1151 }
1152 
1153 static void __sk_filter_release(struct sk_filter *fp)
1154 {
1155 	__bpf_prog_release(fp->prog);
1156 	kfree(fp);
1157 }
1158 
1159 /**
1160  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1161  *	@rcu: rcu_head that contains the sk_filter to free
1162  */
1163 static void sk_filter_release_rcu(struct rcu_head *rcu)
1164 {
1165 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1166 
1167 	__sk_filter_release(fp);
1168 }
1169 
1170 /**
1171  *	sk_filter_release - release a socket filter
1172  *	@fp: filter to remove
1173  *
1174  *	Remove a filter from a socket and release its resources.
1175  */
1176 static void sk_filter_release(struct sk_filter *fp)
1177 {
1178 	if (refcount_dec_and_test(&fp->refcnt))
1179 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1180 }
1181 
1182 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1183 {
1184 	u32 filter_size = bpf_prog_size(fp->prog->len);
1185 
1186 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1187 	sk_filter_release(fp);
1188 }
1189 
1190 /* try to charge the socket memory if there is space available
1191  * return true on success
1192  */
1193 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1194 {
1195 	u32 filter_size = bpf_prog_size(fp->prog->len);
1196 
1197 	/* same check as in sock_kmalloc() */
1198 	if (filter_size <= sysctl_optmem_max &&
1199 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1200 		atomic_add(filter_size, &sk->sk_omem_alloc);
1201 		return true;
1202 	}
1203 	return false;
1204 }
1205 
1206 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1207 {
1208 	if (!refcount_inc_not_zero(&fp->refcnt))
1209 		return false;
1210 
1211 	if (!__sk_filter_charge(sk, fp)) {
1212 		sk_filter_release(fp);
1213 		return false;
1214 	}
1215 	return true;
1216 }
1217 
1218 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1219 {
1220 	struct sock_filter *old_prog;
1221 	struct bpf_prog *old_fp;
1222 	int err, new_len, old_len = fp->len;
1223 	bool seen_ld_abs = false;
1224 
1225 	/* We are free to overwrite insns et al right here as it
1226 	 * won't be used at this point in time anymore internally
1227 	 * after the migration to the internal BPF instruction
1228 	 * representation.
1229 	 */
1230 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1231 		     sizeof(struct bpf_insn));
1232 
1233 	/* Conversion cannot happen on overlapping memory areas,
1234 	 * so we need to keep the user BPF around until the 2nd
1235 	 * pass. At this time, the user BPF is stored in fp->insns.
1236 	 */
1237 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1238 			   GFP_KERNEL | __GFP_NOWARN);
1239 	if (!old_prog) {
1240 		err = -ENOMEM;
1241 		goto out_err;
1242 	}
1243 
1244 	/* 1st pass: calculate the new program length. */
1245 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1246 				 &seen_ld_abs);
1247 	if (err)
1248 		goto out_err_free;
1249 
1250 	/* Expand fp for appending the new filter representation. */
1251 	old_fp = fp;
1252 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1253 	if (!fp) {
1254 		/* The old_fp is still around in case we couldn't
1255 		 * allocate new memory, so uncharge on that one.
1256 		 */
1257 		fp = old_fp;
1258 		err = -ENOMEM;
1259 		goto out_err_free;
1260 	}
1261 
1262 	fp->len = new_len;
1263 
1264 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1265 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1266 				 &seen_ld_abs);
1267 	if (err)
1268 		/* 2nd bpf_convert_filter() can fail only if it fails
1269 		 * to allocate memory, remapping must succeed. Note,
1270 		 * that at this time old_fp has already been released
1271 		 * by krealloc().
1272 		 */
1273 		goto out_err_free;
1274 
1275 	fp = bpf_prog_select_runtime(fp, &err);
1276 	if (err)
1277 		goto out_err_free;
1278 
1279 	kfree(old_prog);
1280 	return fp;
1281 
1282 out_err_free:
1283 	kfree(old_prog);
1284 out_err:
1285 	__bpf_prog_release(fp);
1286 	return ERR_PTR(err);
1287 }
1288 
1289 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1290 					   bpf_aux_classic_check_t trans)
1291 {
1292 	int err;
1293 
1294 	fp->bpf_func = NULL;
1295 	fp->jited = 0;
1296 
1297 	err = bpf_check_classic(fp->insns, fp->len);
1298 	if (err) {
1299 		__bpf_prog_release(fp);
1300 		return ERR_PTR(err);
1301 	}
1302 
1303 	/* There might be additional checks and transformations
1304 	 * needed on classic filters, f.e. in case of seccomp.
1305 	 */
1306 	if (trans) {
1307 		err = trans(fp->insns, fp->len);
1308 		if (err) {
1309 			__bpf_prog_release(fp);
1310 			return ERR_PTR(err);
1311 		}
1312 	}
1313 
1314 	/* Probe if we can JIT compile the filter and if so, do
1315 	 * the compilation of the filter.
1316 	 */
1317 	bpf_jit_compile(fp);
1318 
1319 	/* JIT compiler couldn't process this filter, so do the
1320 	 * internal BPF translation for the optimized interpreter.
1321 	 */
1322 	if (!fp->jited)
1323 		fp = bpf_migrate_filter(fp);
1324 
1325 	return fp;
1326 }
1327 
1328 /**
1329  *	bpf_prog_create - create an unattached filter
1330  *	@pfp: the unattached filter that is created
1331  *	@fprog: the filter program
1332  *
1333  * Create a filter independent of any socket. We first run some
1334  * sanity checks on it to make sure it does not explode on us later.
1335  * If an error occurs or there is insufficient memory for the filter
1336  * a negative errno code is returned. On success the return is zero.
1337  */
1338 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1339 {
1340 	unsigned int fsize = bpf_classic_proglen(fprog);
1341 	struct bpf_prog *fp;
1342 
1343 	/* Make sure new filter is there and in the right amounts. */
1344 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1345 		return -EINVAL;
1346 
1347 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1348 	if (!fp)
1349 		return -ENOMEM;
1350 
1351 	memcpy(fp->insns, fprog->filter, fsize);
1352 
1353 	fp->len = fprog->len;
1354 	/* Since unattached filters are not copied back to user
1355 	 * space through sk_get_filter(), we do not need to hold
1356 	 * a copy here, and can spare us the work.
1357 	 */
1358 	fp->orig_prog = NULL;
1359 
1360 	/* bpf_prepare_filter() already takes care of freeing
1361 	 * memory in case something goes wrong.
1362 	 */
1363 	fp = bpf_prepare_filter(fp, NULL);
1364 	if (IS_ERR(fp))
1365 		return PTR_ERR(fp);
1366 
1367 	*pfp = fp;
1368 	return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(bpf_prog_create);
1371 
1372 /**
1373  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1374  *	@pfp: the unattached filter that is created
1375  *	@fprog: the filter program
1376  *	@trans: post-classic verifier transformation handler
1377  *	@save_orig: save classic BPF program
1378  *
1379  * This function effectively does the same as bpf_prog_create(), only
1380  * that it builds up its insns buffer from user space provided buffer.
1381  * It also allows for passing a bpf_aux_classic_check_t handler.
1382  */
1383 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1384 			      bpf_aux_classic_check_t trans, bool save_orig)
1385 {
1386 	unsigned int fsize = bpf_classic_proglen(fprog);
1387 	struct bpf_prog *fp;
1388 	int err;
1389 
1390 	/* Make sure new filter is there and in the right amounts. */
1391 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1392 		return -EINVAL;
1393 
1394 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1395 	if (!fp)
1396 		return -ENOMEM;
1397 
1398 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1399 		__bpf_prog_free(fp);
1400 		return -EFAULT;
1401 	}
1402 
1403 	fp->len = fprog->len;
1404 	fp->orig_prog = NULL;
1405 
1406 	if (save_orig) {
1407 		err = bpf_prog_store_orig_filter(fp, fprog);
1408 		if (err) {
1409 			__bpf_prog_free(fp);
1410 			return -ENOMEM;
1411 		}
1412 	}
1413 
1414 	/* bpf_prepare_filter() already takes care of freeing
1415 	 * memory in case something goes wrong.
1416 	 */
1417 	fp = bpf_prepare_filter(fp, trans);
1418 	if (IS_ERR(fp))
1419 		return PTR_ERR(fp);
1420 
1421 	*pfp = fp;
1422 	return 0;
1423 }
1424 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1425 
1426 void bpf_prog_destroy(struct bpf_prog *fp)
1427 {
1428 	__bpf_prog_release(fp);
1429 }
1430 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1431 
1432 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1433 {
1434 	struct sk_filter *fp, *old_fp;
1435 
1436 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1437 	if (!fp)
1438 		return -ENOMEM;
1439 
1440 	fp->prog = prog;
1441 
1442 	if (!__sk_filter_charge(sk, fp)) {
1443 		kfree(fp);
1444 		return -ENOMEM;
1445 	}
1446 	refcount_set(&fp->refcnt, 1);
1447 
1448 	old_fp = rcu_dereference_protected(sk->sk_filter,
1449 					   lockdep_sock_is_held(sk));
1450 	rcu_assign_pointer(sk->sk_filter, fp);
1451 
1452 	if (old_fp)
1453 		sk_filter_uncharge(sk, old_fp);
1454 
1455 	return 0;
1456 }
1457 
1458 static
1459 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1460 {
1461 	unsigned int fsize = bpf_classic_proglen(fprog);
1462 	struct bpf_prog *prog;
1463 	int err;
1464 
1465 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1466 		return ERR_PTR(-EPERM);
1467 
1468 	/* Make sure new filter is there and in the right amounts. */
1469 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1470 		return ERR_PTR(-EINVAL);
1471 
1472 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1473 	if (!prog)
1474 		return ERR_PTR(-ENOMEM);
1475 
1476 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1477 		__bpf_prog_free(prog);
1478 		return ERR_PTR(-EFAULT);
1479 	}
1480 
1481 	prog->len = fprog->len;
1482 
1483 	err = bpf_prog_store_orig_filter(prog, fprog);
1484 	if (err) {
1485 		__bpf_prog_free(prog);
1486 		return ERR_PTR(-ENOMEM);
1487 	}
1488 
1489 	/* bpf_prepare_filter() already takes care of freeing
1490 	 * memory in case something goes wrong.
1491 	 */
1492 	return bpf_prepare_filter(prog, NULL);
1493 }
1494 
1495 /**
1496  *	sk_attach_filter - attach a socket filter
1497  *	@fprog: the filter program
1498  *	@sk: the socket to use
1499  *
1500  * Attach the user's filter code. We first run some sanity checks on
1501  * it to make sure it does not explode on us later. If an error
1502  * occurs or there is insufficient memory for the filter a negative
1503  * errno code is returned. On success the return is zero.
1504  */
1505 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1506 {
1507 	struct bpf_prog *prog = __get_filter(fprog, sk);
1508 	int err;
1509 
1510 	if (IS_ERR(prog))
1511 		return PTR_ERR(prog);
1512 
1513 	err = __sk_attach_prog(prog, sk);
1514 	if (err < 0) {
1515 		__bpf_prog_release(prog);
1516 		return err;
1517 	}
1518 
1519 	return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(sk_attach_filter);
1522 
1523 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1524 {
1525 	struct bpf_prog *prog = __get_filter(fprog, sk);
1526 	int err;
1527 
1528 	if (IS_ERR(prog))
1529 		return PTR_ERR(prog);
1530 
1531 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1532 		err = -ENOMEM;
1533 	else
1534 		err = reuseport_attach_prog(sk, prog);
1535 
1536 	if (err)
1537 		__bpf_prog_release(prog);
1538 
1539 	return err;
1540 }
1541 
1542 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1543 {
1544 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1545 		return ERR_PTR(-EPERM);
1546 
1547 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1548 }
1549 
1550 int sk_attach_bpf(u32 ufd, struct sock *sk)
1551 {
1552 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1553 	int err;
1554 
1555 	if (IS_ERR(prog))
1556 		return PTR_ERR(prog);
1557 
1558 	err = __sk_attach_prog(prog, sk);
1559 	if (err < 0) {
1560 		bpf_prog_put(prog);
1561 		return err;
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1568 {
1569 	struct bpf_prog *prog;
1570 	int err;
1571 
1572 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1573 		return -EPERM;
1574 
1575 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1576 	if (PTR_ERR(prog) == -EINVAL)
1577 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1578 	if (IS_ERR(prog))
1579 		return PTR_ERR(prog);
1580 
1581 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1582 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1583 		 * bpf prog (e.g. sockmap).  It depends on the
1584 		 * limitation imposed by bpf_prog_load().
1585 		 * Hence, sysctl_optmem_max is not checked.
1586 		 */
1587 		if ((sk->sk_type != SOCK_STREAM &&
1588 		     sk->sk_type != SOCK_DGRAM) ||
1589 		    (sk->sk_protocol != IPPROTO_UDP &&
1590 		     sk->sk_protocol != IPPROTO_TCP) ||
1591 		    (sk->sk_family != AF_INET &&
1592 		     sk->sk_family != AF_INET6)) {
1593 			err = -ENOTSUPP;
1594 			goto err_prog_put;
1595 		}
1596 	} else {
1597 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1598 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1599 			err = -ENOMEM;
1600 			goto err_prog_put;
1601 		}
1602 	}
1603 
1604 	err = reuseport_attach_prog(sk, prog);
1605 err_prog_put:
1606 	if (err)
1607 		bpf_prog_put(prog);
1608 
1609 	return err;
1610 }
1611 
1612 void sk_reuseport_prog_free(struct bpf_prog *prog)
1613 {
1614 	if (!prog)
1615 		return;
1616 
1617 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1618 		bpf_prog_put(prog);
1619 	else
1620 		bpf_prog_destroy(prog);
1621 }
1622 
1623 struct bpf_scratchpad {
1624 	union {
1625 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1626 		u8     buff[MAX_BPF_STACK];
1627 	};
1628 };
1629 
1630 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1631 
1632 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1633 					  unsigned int write_len)
1634 {
1635 	return skb_ensure_writable(skb, write_len);
1636 }
1637 
1638 static inline int bpf_try_make_writable(struct sk_buff *skb,
1639 					unsigned int write_len)
1640 {
1641 	int err = __bpf_try_make_writable(skb, write_len);
1642 
1643 	bpf_compute_data_pointers(skb);
1644 	return err;
1645 }
1646 
1647 static int bpf_try_make_head_writable(struct sk_buff *skb)
1648 {
1649 	return bpf_try_make_writable(skb, skb_headlen(skb));
1650 }
1651 
1652 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1653 {
1654 	if (skb_at_tc_ingress(skb))
1655 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1656 }
1657 
1658 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1659 {
1660 	if (skb_at_tc_ingress(skb))
1661 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1662 }
1663 
1664 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1665 	   const void *, from, u32, len, u64, flags)
1666 {
1667 	void *ptr;
1668 
1669 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1670 		return -EINVAL;
1671 	if (unlikely(offset > 0xffff))
1672 		return -EFAULT;
1673 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1674 		return -EFAULT;
1675 
1676 	ptr = skb->data + offset;
1677 	if (flags & BPF_F_RECOMPUTE_CSUM)
1678 		__skb_postpull_rcsum(skb, ptr, len, offset);
1679 
1680 	memcpy(ptr, from, len);
1681 
1682 	if (flags & BPF_F_RECOMPUTE_CSUM)
1683 		__skb_postpush_rcsum(skb, ptr, len, offset);
1684 	if (flags & BPF_F_INVALIDATE_HASH)
1685 		skb_clear_hash(skb);
1686 
1687 	return 0;
1688 }
1689 
1690 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1691 	.func		= bpf_skb_store_bytes,
1692 	.gpl_only	= false,
1693 	.ret_type	= RET_INTEGER,
1694 	.arg1_type	= ARG_PTR_TO_CTX,
1695 	.arg2_type	= ARG_ANYTHING,
1696 	.arg3_type	= ARG_PTR_TO_MEM,
1697 	.arg4_type	= ARG_CONST_SIZE,
1698 	.arg5_type	= ARG_ANYTHING,
1699 };
1700 
1701 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1702 	   void *, to, u32, len)
1703 {
1704 	void *ptr;
1705 
1706 	if (unlikely(offset > 0xffff))
1707 		goto err_clear;
1708 
1709 	ptr = skb_header_pointer(skb, offset, len, to);
1710 	if (unlikely(!ptr))
1711 		goto err_clear;
1712 	if (ptr != to)
1713 		memcpy(to, ptr, len);
1714 
1715 	return 0;
1716 err_clear:
1717 	memset(to, 0, len);
1718 	return -EFAULT;
1719 }
1720 
1721 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1722 	.func		= bpf_skb_load_bytes,
1723 	.gpl_only	= false,
1724 	.ret_type	= RET_INTEGER,
1725 	.arg1_type	= ARG_PTR_TO_CTX,
1726 	.arg2_type	= ARG_ANYTHING,
1727 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1728 	.arg4_type	= ARG_CONST_SIZE,
1729 };
1730 
1731 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1732 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1733 	   void *, to, u32, len)
1734 {
1735 	void *ptr;
1736 
1737 	if (unlikely(offset > 0xffff))
1738 		goto err_clear;
1739 
1740 	if (unlikely(!ctx->skb))
1741 		goto err_clear;
1742 
1743 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1744 	if (unlikely(!ptr))
1745 		goto err_clear;
1746 	if (ptr != to)
1747 		memcpy(to, ptr, len);
1748 
1749 	return 0;
1750 err_clear:
1751 	memset(to, 0, len);
1752 	return -EFAULT;
1753 }
1754 
1755 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1756 	.func		= bpf_flow_dissector_load_bytes,
1757 	.gpl_only	= false,
1758 	.ret_type	= RET_INTEGER,
1759 	.arg1_type	= ARG_PTR_TO_CTX,
1760 	.arg2_type	= ARG_ANYTHING,
1761 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1762 	.arg4_type	= ARG_CONST_SIZE,
1763 };
1764 
1765 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1766 	   u32, offset, void *, to, u32, len, u32, start_header)
1767 {
1768 	u8 *end = skb_tail_pointer(skb);
1769 	u8 *net = skb_network_header(skb);
1770 	u8 *mac = skb_mac_header(skb);
1771 	u8 *ptr;
1772 
1773 	if (unlikely(offset > 0xffff || len > (end - mac)))
1774 		goto err_clear;
1775 
1776 	switch (start_header) {
1777 	case BPF_HDR_START_MAC:
1778 		ptr = mac + offset;
1779 		break;
1780 	case BPF_HDR_START_NET:
1781 		ptr = net + offset;
1782 		break;
1783 	default:
1784 		goto err_clear;
1785 	}
1786 
1787 	if (likely(ptr >= mac && ptr + len <= end)) {
1788 		memcpy(to, ptr, len);
1789 		return 0;
1790 	}
1791 
1792 err_clear:
1793 	memset(to, 0, len);
1794 	return -EFAULT;
1795 }
1796 
1797 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1798 	.func		= bpf_skb_load_bytes_relative,
1799 	.gpl_only	= false,
1800 	.ret_type	= RET_INTEGER,
1801 	.arg1_type	= ARG_PTR_TO_CTX,
1802 	.arg2_type	= ARG_ANYTHING,
1803 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1804 	.arg4_type	= ARG_CONST_SIZE,
1805 	.arg5_type	= ARG_ANYTHING,
1806 };
1807 
1808 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1809 {
1810 	/* Idea is the following: should the needed direct read/write
1811 	 * test fail during runtime, we can pull in more data and redo
1812 	 * again, since implicitly, we invalidate previous checks here.
1813 	 *
1814 	 * Or, since we know how much we need to make read/writeable,
1815 	 * this can be done once at the program beginning for direct
1816 	 * access case. By this we overcome limitations of only current
1817 	 * headroom being accessible.
1818 	 */
1819 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1820 }
1821 
1822 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1823 	.func		= bpf_skb_pull_data,
1824 	.gpl_only	= false,
1825 	.ret_type	= RET_INTEGER,
1826 	.arg1_type	= ARG_PTR_TO_CTX,
1827 	.arg2_type	= ARG_ANYTHING,
1828 };
1829 
1830 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1831 {
1832 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1833 }
1834 
1835 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1836 	.func		= bpf_sk_fullsock,
1837 	.gpl_only	= false,
1838 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1839 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1840 };
1841 
1842 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1843 					   unsigned int write_len)
1844 {
1845 	int err = __bpf_try_make_writable(skb, write_len);
1846 
1847 	bpf_compute_data_end_sk_skb(skb);
1848 	return err;
1849 }
1850 
1851 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1852 {
1853 	/* Idea is the following: should the needed direct read/write
1854 	 * test fail during runtime, we can pull in more data and redo
1855 	 * again, since implicitly, we invalidate previous checks here.
1856 	 *
1857 	 * Or, since we know how much we need to make read/writeable,
1858 	 * this can be done once at the program beginning for direct
1859 	 * access case. By this we overcome limitations of only current
1860 	 * headroom being accessible.
1861 	 */
1862 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1863 }
1864 
1865 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1866 	.func		= sk_skb_pull_data,
1867 	.gpl_only	= false,
1868 	.ret_type	= RET_INTEGER,
1869 	.arg1_type	= ARG_PTR_TO_CTX,
1870 	.arg2_type	= ARG_ANYTHING,
1871 };
1872 
1873 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1874 	   u64, from, u64, to, u64, flags)
1875 {
1876 	__sum16 *ptr;
1877 
1878 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1879 		return -EINVAL;
1880 	if (unlikely(offset > 0xffff || offset & 1))
1881 		return -EFAULT;
1882 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1883 		return -EFAULT;
1884 
1885 	ptr = (__sum16 *)(skb->data + offset);
1886 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1887 	case 0:
1888 		if (unlikely(from != 0))
1889 			return -EINVAL;
1890 
1891 		csum_replace_by_diff(ptr, to);
1892 		break;
1893 	case 2:
1894 		csum_replace2(ptr, from, to);
1895 		break;
1896 	case 4:
1897 		csum_replace4(ptr, from, to);
1898 		break;
1899 	default:
1900 		return -EINVAL;
1901 	}
1902 
1903 	return 0;
1904 }
1905 
1906 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1907 	.func		= bpf_l3_csum_replace,
1908 	.gpl_only	= false,
1909 	.ret_type	= RET_INTEGER,
1910 	.arg1_type	= ARG_PTR_TO_CTX,
1911 	.arg2_type	= ARG_ANYTHING,
1912 	.arg3_type	= ARG_ANYTHING,
1913 	.arg4_type	= ARG_ANYTHING,
1914 	.arg5_type	= ARG_ANYTHING,
1915 };
1916 
1917 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1918 	   u64, from, u64, to, u64, flags)
1919 {
1920 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1921 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1922 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1923 	__sum16 *ptr;
1924 
1925 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1926 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1927 		return -EINVAL;
1928 	if (unlikely(offset > 0xffff || offset & 1))
1929 		return -EFAULT;
1930 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1931 		return -EFAULT;
1932 
1933 	ptr = (__sum16 *)(skb->data + offset);
1934 	if (is_mmzero && !do_mforce && !*ptr)
1935 		return 0;
1936 
1937 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1938 	case 0:
1939 		if (unlikely(from != 0))
1940 			return -EINVAL;
1941 
1942 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1943 		break;
1944 	case 2:
1945 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1946 		break;
1947 	case 4:
1948 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1949 		break;
1950 	default:
1951 		return -EINVAL;
1952 	}
1953 
1954 	if (is_mmzero && !*ptr)
1955 		*ptr = CSUM_MANGLED_0;
1956 	return 0;
1957 }
1958 
1959 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1960 	.func		= bpf_l4_csum_replace,
1961 	.gpl_only	= false,
1962 	.ret_type	= RET_INTEGER,
1963 	.arg1_type	= ARG_PTR_TO_CTX,
1964 	.arg2_type	= ARG_ANYTHING,
1965 	.arg3_type	= ARG_ANYTHING,
1966 	.arg4_type	= ARG_ANYTHING,
1967 	.arg5_type	= ARG_ANYTHING,
1968 };
1969 
1970 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1971 	   __be32 *, to, u32, to_size, __wsum, seed)
1972 {
1973 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1974 	u32 diff_size = from_size + to_size;
1975 	int i, j = 0;
1976 
1977 	/* This is quite flexible, some examples:
1978 	 *
1979 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1980 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1981 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1982 	 *
1983 	 * Even for diffing, from_size and to_size don't need to be equal.
1984 	 */
1985 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1986 		     diff_size > sizeof(sp->diff)))
1987 		return -EINVAL;
1988 
1989 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1990 		sp->diff[j] = ~from[i];
1991 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1992 		sp->diff[j] = to[i];
1993 
1994 	return csum_partial(sp->diff, diff_size, seed);
1995 }
1996 
1997 static const struct bpf_func_proto bpf_csum_diff_proto = {
1998 	.func		= bpf_csum_diff,
1999 	.gpl_only	= false,
2000 	.pkt_access	= true,
2001 	.ret_type	= RET_INTEGER,
2002 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
2003 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2004 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
2005 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2006 	.arg5_type	= ARG_ANYTHING,
2007 };
2008 
2009 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2010 {
2011 	/* The interface is to be used in combination with bpf_csum_diff()
2012 	 * for direct packet writes. csum rotation for alignment as well
2013 	 * as emulating csum_sub() can be done from the eBPF program.
2014 	 */
2015 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2016 		return (skb->csum = csum_add(skb->csum, csum));
2017 
2018 	return -ENOTSUPP;
2019 }
2020 
2021 static const struct bpf_func_proto bpf_csum_update_proto = {
2022 	.func		= bpf_csum_update,
2023 	.gpl_only	= false,
2024 	.ret_type	= RET_INTEGER,
2025 	.arg1_type	= ARG_PTR_TO_CTX,
2026 	.arg2_type	= ARG_ANYTHING,
2027 };
2028 
2029 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2030 {
2031 	return dev_forward_skb(dev, skb);
2032 }
2033 
2034 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2035 				      struct sk_buff *skb)
2036 {
2037 	int ret = ____dev_forward_skb(dev, skb);
2038 
2039 	if (likely(!ret)) {
2040 		skb->dev = dev;
2041 		ret = netif_rx(skb);
2042 	}
2043 
2044 	return ret;
2045 }
2046 
2047 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2048 {
2049 	int ret;
2050 
2051 	if (dev_xmit_recursion()) {
2052 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2053 		kfree_skb(skb);
2054 		return -ENETDOWN;
2055 	}
2056 
2057 	skb->dev = dev;
2058 	skb->tstamp = 0;
2059 
2060 	dev_xmit_recursion_inc();
2061 	ret = dev_queue_xmit(skb);
2062 	dev_xmit_recursion_dec();
2063 
2064 	return ret;
2065 }
2066 
2067 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2068 				 u32 flags)
2069 {
2070 	unsigned int mlen = skb_network_offset(skb);
2071 
2072 	if (mlen) {
2073 		__skb_pull(skb, mlen);
2074 
2075 		/* At ingress, the mac header has already been pulled once.
2076 		 * At egress, skb_pospull_rcsum has to be done in case that
2077 		 * the skb is originated from ingress (i.e. a forwarded skb)
2078 		 * to ensure that rcsum starts at net header.
2079 		 */
2080 		if (!skb_at_tc_ingress(skb))
2081 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2082 	}
2083 	skb_pop_mac_header(skb);
2084 	skb_reset_mac_len(skb);
2085 	return flags & BPF_F_INGRESS ?
2086 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2087 }
2088 
2089 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2090 				 u32 flags)
2091 {
2092 	/* Verify that a link layer header is carried */
2093 	if (unlikely(skb->mac_header >= skb->network_header)) {
2094 		kfree_skb(skb);
2095 		return -ERANGE;
2096 	}
2097 
2098 	bpf_push_mac_rcsum(skb);
2099 	return flags & BPF_F_INGRESS ?
2100 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2101 }
2102 
2103 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2104 			  u32 flags)
2105 {
2106 	if (dev_is_mac_header_xmit(dev))
2107 		return __bpf_redirect_common(skb, dev, flags);
2108 	else
2109 		return __bpf_redirect_no_mac(skb, dev, flags);
2110 }
2111 
2112 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2113 {
2114 	struct net_device *dev;
2115 	struct sk_buff *clone;
2116 	int ret;
2117 
2118 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2119 		return -EINVAL;
2120 
2121 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2122 	if (unlikely(!dev))
2123 		return -EINVAL;
2124 
2125 	clone = skb_clone(skb, GFP_ATOMIC);
2126 	if (unlikely(!clone))
2127 		return -ENOMEM;
2128 
2129 	/* For direct write, we need to keep the invariant that the skbs
2130 	 * we're dealing with need to be uncloned. Should uncloning fail
2131 	 * here, we need to free the just generated clone to unclone once
2132 	 * again.
2133 	 */
2134 	ret = bpf_try_make_head_writable(skb);
2135 	if (unlikely(ret)) {
2136 		kfree_skb(clone);
2137 		return -ENOMEM;
2138 	}
2139 
2140 	return __bpf_redirect(clone, dev, flags);
2141 }
2142 
2143 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2144 	.func           = bpf_clone_redirect,
2145 	.gpl_only       = false,
2146 	.ret_type       = RET_INTEGER,
2147 	.arg1_type      = ARG_PTR_TO_CTX,
2148 	.arg2_type      = ARG_ANYTHING,
2149 	.arg3_type      = ARG_ANYTHING,
2150 };
2151 
2152 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2153 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2154 
2155 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2156 {
2157 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2158 
2159 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2160 		return TC_ACT_SHOT;
2161 
2162 	ri->flags = flags;
2163 	ri->tgt_index = ifindex;
2164 
2165 	return TC_ACT_REDIRECT;
2166 }
2167 
2168 int skb_do_redirect(struct sk_buff *skb)
2169 {
2170 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2171 	struct net_device *dev;
2172 
2173 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->tgt_index);
2174 	ri->tgt_index = 0;
2175 	if (unlikely(!dev)) {
2176 		kfree_skb(skb);
2177 		return -EINVAL;
2178 	}
2179 
2180 	return __bpf_redirect(skb, dev, ri->flags);
2181 }
2182 
2183 static const struct bpf_func_proto bpf_redirect_proto = {
2184 	.func           = bpf_redirect,
2185 	.gpl_only       = false,
2186 	.ret_type       = RET_INTEGER,
2187 	.arg1_type      = ARG_ANYTHING,
2188 	.arg2_type      = ARG_ANYTHING,
2189 };
2190 
2191 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2192 {
2193 	msg->apply_bytes = bytes;
2194 	return 0;
2195 }
2196 
2197 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2198 	.func           = bpf_msg_apply_bytes,
2199 	.gpl_only       = false,
2200 	.ret_type       = RET_INTEGER,
2201 	.arg1_type	= ARG_PTR_TO_CTX,
2202 	.arg2_type      = ARG_ANYTHING,
2203 };
2204 
2205 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2206 {
2207 	msg->cork_bytes = bytes;
2208 	return 0;
2209 }
2210 
2211 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2212 	.func           = bpf_msg_cork_bytes,
2213 	.gpl_only       = false,
2214 	.ret_type       = RET_INTEGER,
2215 	.arg1_type	= ARG_PTR_TO_CTX,
2216 	.arg2_type      = ARG_ANYTHING,
2217 };
2218 
2219 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2220 	   u32, end, u64, flags)
2221 {
2222 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2223 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2224 	struct scatterlist *sge;
2225 	u8 *raw, *to, *from;
2226 	struct page *page;
2227 
2228 	if (unlikely(flags || end <= start))
2229 		return -EINVAL;
2230 
2231 	/* First find the starting scatterlist element */
2232 	i = msg->sg.start;
2233 	do {
2234 		offset += len;
2235 		len = sk_msg_elem(msg, i)->length;
2236 		if (start < offset + len)
2237 			break;
2238 		sk_msg_iter_var_next(i);
2239 	} while (i != msg->sg.end);
2240 
2241 	if (unlikely(start >= offset + len))
2242 		return -EINVAL;
2243 
2244 	first_sge = i;
2245 	/* The start may point into the sg element so we need to also
2246 	 * account for the headroom.
2247 	 */
2248 	bytes_sg_total = start - offset + bytes;
2249 	if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2250 		goto out;
2251 
2252 	/* At this point we need to linearize multiple scatterlist
2253 	 * elements or a single shared page. Either way we need to
2254 	 * copy into a linear buffer exclusively owned by BPF. Then
2255 	 * place the buffer in the scatterlist and fixup the original
2256 	 * entries by removing the entries now in the linear buffer
2257 	 * and shifting the remaining entries. For now we do not try
2258 	 * to copy partial entries to avoid complexity of running out
2259 	 * of sg_entry slots. The downside is reading a single byte
2260 	 * will copy the entire sg entry.
2261 	 */
2262 	do {
2263 		copy += sk_msg_elem(msg, i)->length;
2264 		sk_msg_iter_var_next(i);
2265 		if (bytes_sg_total <= copy)
2266 			break;
2267 	} while (i != msg->sg.end);
2268 	last_sge = i;
2269 
2270 	if (unlikely(bytes_sg_total > copy))
2271 		return -EINVAL;
2272 
2273 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2274 			   get_order(copy));
2275 	if (unlikely(!page))
2276 		return -ENOMEM;
2277 
2278 	raw = page_address(page);
2279 	i = first_sge;
2280 	do {
2281 		sge = sk_msg_elem(msg, i);
2282 		from = sg_virt(sge);
2283 		len = sge->length;
2284 		to = raw + poffset;
2285 
2286 		memcpy(to, from, len);
2287 		poffset += len;
2288 		sge->length = 0;
2289 		put_page(sg_page(sge));
2290 
2291 		sk_msg_iter_var_next(i);
2292 	} while (i != last_sge);
2293 
2294 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2295 
2296 	/* To repair sg ring we need to shift entries. If we only
2297 	 * had a single entry though we can just replace it and
2298 	 * be done. Otherwise walk the ring and shift the entries.
2299 	 */
2300 	WARN_ON_ONCE(last_sge == first_sge);
2301 	shift = last_sge > first_sge ?
2302 		last_sge - first_sge - 1 :
2303 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2304 	if (!shift)
2305 		goto out;
2306 
2307 	i = first_sge;
2308 	sk_msg_iter_var_next(i);
2309 	do {
2310 		u32 move_from;
2311 
2312 		if (i + shift >= NR_MSG_FRAG_IDS)
2313 			move_from = i + shift - NR_MSG_FRAG_IDS;
2314 		else
2315 			move_from = i + shift;
2316 		if (move_from == msg->sg.end)
2317 			break;
2318 
2319 		msg->sg.data[i] = msg->sg.data[move_from];
2320 		msg->sg.data[move_from].length = 0;
2321 		msg->sg.data[move_from].page_link = 0;
2322 		msg->sg.data[move_from].offset = 0;
2323 		sk_msg_iter_var_next(i);
2324 	} while (1);
2325 
2326 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2327 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2328 		      msg->sg.end - shift;
2329 out:
2330 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2331 	msg->data_end = msg->data + bytes;
2332 	return 0;
2333 }
2334 
2335 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2336 	.func		= bpf_msg_pull_data,
2337 	.gpl_only	= false,
2338 	.ret_type	= RET_INTEGER,
2339 	.arg1_type	= ARG_PTR_TO_CTX,
2340 	.arg2_type	= ARG_ANYTHING,
2341 	.arg3_type	= ARG_ANYTHING,
2342 	.arg4_type	= ARG_ANYTHING,
2343 };
2344 
2345 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2346 	   u32, len, u64, flags)
2347 {
2348 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2349 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2350 	u8 *raw, *to, *from;
2351 	struct page *page;
2352 
2353 	if (unlikely(flags))
2354 		return -EINVAL;
2355 
2356 	/* First find the starting scatterlist element */
2357 	i = msg->sg.start;
2358 	do {
2359 		offset += l;
2360 		l = sk_msg_elem(msg, i)->length;
2361 
2362 		if (start < offset + l)
2363 			break;
2364 		sk_msg_iter_var_next(i);
2365 	} while (i != msg->sg.end);
2366 
2367 	if (start >= offset + l)
2368 		return -EINVAL;
2369 
2370 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2371 
2372 	/* If no space available will fallback to copy, we need at
2373 	 * least one scatterlist elem available to push data into
2374 	 * when start aligns to the beginning of an element or two
2375 	 * when it falls inside an element. We handle the start equals
2376 	 * offset case because its the common case for inserting a
2377 	 * header.
2378 	 */
2379 	if (!space || (space == 1 && start != offset))
2380 		copy = msg->sg.data[i].length;
2381 
2382 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2383 			   get_order(copy + len));
2384 	if (unlikely(!page))
2385 		return -ENOMEM;
2386 
2387 	if (copy) {
2388 		int front, back;
2389 
2390 		raw = page_address(page);
2391 
2392 		psge = sk_msg_elem(msg, i);
2393 		front = start - offset;
2394 		back = psge->length - front;
2395 		from = sg_virt(psge);
2396 
2397 		if (front)
2398 			memcpy(raw, from, front);
2399 
2400 		if (back) {
2401 			from += front;
2402 			to = raw + front + len;
2403 
2404 			memcpy(to, from, back);
2405 		}
2406 
2407 		put_page(sg_page(psge));
2408 	} else if (start - offset) {
2409 		psge = sk_msg_elem(msg, i);
2410 		rsge = sk_msg_elem_cpy(msg, i);
2411 
2412 		psge->length = start - offset;
2413 		rsge.length -= psge->length;
2414 		rsge.offset += start;
2415 
2416 		sk_msg_iter_var_next(i);
2417 		sg_unmark_end(psge);
2418 		sg_unmark_end(&rsge);
2419 		sk_msg_iter_next(msg, end);
2420 	}
2421 
2422 	/* Slot(s) to place newly allocated data */
2423 	new = i;
2424 
2425 	/* Shift one or two slots as needed */
2426 	if (!copy) {
2427 		sge = sk_msg_elem_cpy(msg, i);
2428 
2429 		sk_msg_iter_var_next(i);
2430 		sg_unmark_end(&sge);
2431 		sk_msg_iter_next(msg, end);
2432 
2433 		nsge = sk_msg_elem_cpy(msg, i);
2434 		if (rsge.length) {
2435 			sk_msg_iter_var_next(i);
2436 			nnsge = sk_msg_elem_cpy(msg, i);
2437 		}
2438 
2439 		while (i != msg->sg.end) {
2440 			msg->sg.data[i] = sge;
2441 			sge = nsge;
2442 			sk_msg_iter_var_next(i);
2443 			if (rsge.length) {
2444 				nsge = nnsge;
2445 				nnsge = sk_msg_elem_cpy(msg, i);
2446 			} else {
2447 				nsge = sk_msg_elem_cpy(msg, i);
2448 			}
2449 		}
2450 	}
2451 
2452 	/* Place newly allocated data buffer */
2453 	sk_mem_charge(msg->sk, len);
2454 	msg->sg.size += len;
2455 	__clear_bit(new, &msg->sg.copy);
2456 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2457 	if (rsge.length) {
2458 		get_page(sg_page(&rsge));
2459 		sk_msg_iter_var_next(new);
2460 		msg->sg.data[new] = rsge;
2461 	}
2462 
2463 	sk_msg_compute_data_pointers(msg);
2464 	return 0;
2465 }
2466 
2467 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2468 	.func		= bpf_msg_push_data,
2469 	.gpl_only	= false,
2470 	.ret_type	= RET_INTEGER,
2471 	.arg1_type	= ARG_PTR_TO_CTX,
2472 	.arg2_type	= ARG_ANYTHING,
2473 	.arg3_type	= ARG_ANYTHING,
2474 	.arg4_type	= ARG_ANYTHING,
2475 };
2476 
2477 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2478 {
2479 	int prev;
2480 
2481 	do {
2482 		prev = i;
2483 		sk_msg_iter_var_next(i);
2484 		msg->sg.data[prev] = msg->sg.data[i];
2485 	} while (i != msg->sg.end);
2486 
2487 	sk_msg_iter_prev(msg, end);
2488 }
2489 
2490 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2491 {
2492 	struct scatterlist tmp, sge;
2493 
2494 	sk_msg_iter_next(msg, end);
2495 	sge = sk_msg_elem_cpy(msg, i);
2496 	sk_msg_iter_var_next(i);
2497 	tmp = sk_msg_elem_cpy(msg, i);
2498 
2499 	while (i != msg->sg.end) {
2500 		msg->sg.data[i] = sge;
2501 		sk_msg_iter_var_next(i);
2502 		sge = tmp;
2503 		tmp = sk_msg_elem_cpy(msg, i);
2504 	}
2505 }
2506 
2507 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2508 	   u32, len, u64, flags)
2509 {
2510 	u32 i = 0, l = 0, space, offset = 0;
2511 	u64 last = start + len;
2512 	int pop;
2513 
2514 	if (unlikely(flags))
2515 		return -EINVAL;
2516 
2517 	/* First find the starting scatterlist element */
2518 	i = msg->sg.start;
2519 	do {
2520 		offset += l;
2521 		l = sk_msg_elem(msg, i)->length;
2522 
2523 		if (start < offset + l)
2524 			break;
2525 		sk_msg_iter_var_next(i);
2526 	} while (i != msg->sg.end);
2527 
2528 	/* Bounds checks: start and pop must be inside message */
2529 	if (start >= offset + l || last >= msg->sg.size)
2530 		return -EINVAL;
2531 
2532 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2533 
2534 	pop = len;
2535 	/* --------------| offset
2536 	 * -| start      |-------- len -------|
2537 	 *
2538 	 *  |----- a ----|-------- pop -------|----- b ----|
2539 	 *  |______________________________________________| length
2540 	 *
2541 	 *
2542 	 * a:   region at front of scatter element to save
2543 	 * b:   region at back of scatter element to save when length > A + pop
2544 	 * pop: region to pop from element, same as input 'pop' here will be
2545 	 *      decremented below per iteration.
2546 	 *
2547 	 * Two top-level cases to handle when start != offset, first B is non
2548 	 * zero and second B is zero corresponding to when a pop includes more
2549 	 * than one element.
2550 	 *
2551 	 * Then if B is non-zero AND there is no space allocate space and
2552 	 * compact A, B regions into page. If there is space shift ring to
2553 	 * the rigth free'ing the next element in ring to place B, leaving
2554 	 * A untouched except to reduce length.
2555 	 */
2556 	if (start != offset) {
2557 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2558 		int a = start;
2559 		int b = sge->length - pop - a;
2560 
2561 		sk_msg_iter_var_next(i);
2562 
2563 		if (pop < sge->length - a) {
2564 			if (space) {
2565 				sge->length = a;
2566 				sk_msg_shift_right(msg, i);
2567 				nsge = sk_msg_elem(msg, i);
2568 				get_page(sg_page(sge));
2569 				sg_set_page(nsge,
2570 					    sg_page(sge),
2571 					    b, sge->offset + pop + a);
2572 			} else {
2573 				struct page *page, *orig;
2574 				u8 *to, *from;
2575 
2576 				page = alloc_pages(__GFP_NOWARN |
2577 						   __GFP_COMP   | GFP_ATOMIC,
2578 						   get_order(a + b));
2579 				if (unlikely(!page))
2580 					return -ENOMEM;
2581 
2582 				sge->length = a;
2583 				orig = sg_page(sge);
2584 				from = sg_virt(sge);
2585 				to = page_address(page);
2586 				memcpy(to, from, a);
2587 				memcpy(to + a, from + a + pop, b);
2588 				sg_set_page(sge, page, a + b, 0);
2589 				put_page(orig);
2590 			}
2591 			pop = 0;
2592 		} else if (pop >= sge->length - a) {
2593 			pop -= (sge->length - a);
2594 			sge->length = a;
2595 		}
2596 	}
2597 
2598 	/* From above the current layout _must_ be as follows,
2599 	 *
2600 	 * -| offset
2601 	 * -| start
2602 	 *
2603 	 *  |---- pop ---|---------------- b ------------|
2604 	 *  |____________________________________________| length
2605 	 *
2606 	 * Offset and start of the current msg elem are equal because in the
2607 	 * previous case we handled offset != start and either consumed the
2608 	 * entire element and advanced to the next element OR pop == 0.
2609 	 *
2610 	 * Two cases to handle here are first pop is less than the length
2611 	 * leaving some remainder b above. Simply adjust the element's layout
2612 	 * in this case. Or pop >= length of the element so that b = 0. In this
2613 	 * case advance to next element decrementing pop.
2614 	 */
2615 	while (pop) {
2616 		struct scatterlist *sge = sk_msg_elem(msg, i);
2617 
2618 		if (pop < sge->length) {
2619 			sge->length -= pop;
2620 			sge->offset += pop;
2621 			pop = 0;
2622 		} else {
2623 			pop -= sge->length;
2624 			sk_msg_shift_left(msg, i);
2625 		}
2626 		sk_msg_iter_var_next(i);
2627 	}
2628 
2629 	sk_mem_uncharge(msg->sk, len - pop);
2630 	msg->sg.size -= (len - pop);
2631 	sk_msg_compute_data_pointers(msg);
2632 	return 0;
2633 }
2634 
2635 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2636 	.func		= bpf_msg_pop_data,
2637 	.gpl_only	= false,
2638 	.ret_type	= RET_INTEGER,
2639 	.arg1_type	= ARG_PTR_TO_CTX,
2640 	.arg2_type	= ARG_ANYTHING,
2641 	.arg3_type	= ARG_ANYTHING,
2642 	.arg4_type	= ARG_ANYTHING,
2643 };
2644 
2645 #ifdef CONFIG_CGROUP_NET_CLASSID
2646 BPF_CALL_0(bpf_get_cgroup_classid_curr)
2647 {
2648 	return __task_get_classid(current);
2649 }
2650 
2651 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
2652 	.func		= bpf_get_cgroup_classid_curr,
2653 	.gpl_only	= false,
2654 	.ret_type	= RET_INTEGER,
2655 };
2656 #endif
2657 
2658 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2659 {
2660 	return task_get_classid(skb);
2661 }
2662 
2663 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2664 	.func           = bpf_get_cgroup_classid,
2665 	.gpl_only       = false,
2666 	.ret_type       = RET_INTEGER,
2667 	.arg1_type      = ARG_PTR_TO_CTX,
2668 };
2669 
2670 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2671 {
2672 	return dst_tclassid(skb);
2673 }
2674 
2675 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2676 	.func           = bpf_get_route_realm,
2677 	.gpl_only       = false,
2678 	.ret_type       = RET_INTEGER,
2679 	.arg1_type      = ARG_PTR_TO_CTX,
2680 };
2681 
2682 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2683 {
2684 	/* If skb_clear_hash() was called due to mangling, we can
2685 	 * trigger SW recalculation here. Later access to hash
2686 	 * can then use the inline skb->hash via context directly
2687 	 * instead of calling this helper again.
2688 	 */
2689 	return skb_get_hash(skb);
2690 }
2691 
2692 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2693 	.func		= bpf_get_hash_recalc,
2694 	.gpl_only	= false,
2695 	.ret_type	= RET_INTEGER,
2696 	.arg1_type	= ARG_PTR_TO_CTX,
2697 };
2698 
2699 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2700 {
2701 	/* After all direct packet write, this can be used once for
2702 	 * triggering a lazy recalc on next skb_get_hash() invocation.
2703 	 */
2704 	skb_clear_hash(skb);
2705 	return 0;
2706 }
2707 
2708 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2709 	.func		= bpf_set_hash_invalid,
2710 	.gpl_only	= false,
2711 	.ret_type	= RET_INTEGER,
2712 	.arg1_type	= ARG_PTR_TO_CTX,
2713 };
2714 
2715 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2716 {
2717 	/* Set user specified hash as L4(+), so that it gets returned
2718 	 * on skb_get_hash() call unless BPF prog later on triggers a
2719 	 * skb_clear_hash().
2720 	 */
2721 	__skb_set_sw_hash(skb, hash, true);
2722 	return 0;
2723 }
2724 
2725 static const struct bpf_func_proto bpf_set_hash_proto = {
2726 	.func		= bpf_set_hash,
2727 	.gpl_only	= false,
2728 	.ret_type	= RET_INTEGER,
2729 	.arg1_type	= ARG_PTR_TO_CTX,
2730 	.arg2_type	= ARG_ANYTHING,
2731 };
2732 
2733 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2734 	   u16, vlan_tci)
2735 {
2736 	int ret;
2737 
2738 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2739 		     vlan_proto != htons(ETH_P_8021AD)))
2740 		vlan_proto = htons(ETH_P_8021Q);
2741 
2742 	bpf_push_mac_rcsum(skb);
2743 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2744 	bpf_pull_mac_rcsum(skb);
2745 
2746 	bpf_compute_data_pointers(skb);
2747 	return ret;
2748 }
2749 
2750 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2751 	.func           = bpf_skb_vlan_push,
2752 	.gpl_only       = false,
2753 	.ret_type       = RET_INTEGER,
2754 	.arg1_type      = ARG_PTR_TO_CTX,
2755 	.arg2_type      = ARG_ANYTHING,
2756 	.arg3_type      = ARG_ANYTHING,
2757 };
2758 
2759 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2760 {
2761 	int ret;
2762 
2763 	bpf_push_mac_rcsum(skb);
2764 	ret = skb_vlan_pop(skb);
2765 	bpf_pull_mac_rcsum(skb);
2766 
2767 	bpf_compute_data_pointers(skb);
2768 	return ret;
2769 }
2770 
2771 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2772 	.func           = bpf_skb_vlan_pop,
2773 	.gpl_only       = false,
2774 	.ret_type       = RET_INTEGER,
2775 	.arg1_type      = ARG_PTR_TO_CTX,
2776 };
2777 
2778 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2779 {
2780 	/* Caller already did skb_cow() with len as headroom,
2781 	 * so no need to do it here.
2782 	 */
2783 	skb_push(skb, len);
2784 	memmove(skb->data, skb->data + len, off);
2785 	memset(skb->data + off, 0, len);
2786 
2787 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
2788 	 * needed here as it does not change the skb->csum
2789 	 * result for checksum complete when summing over
2790 	 * zeroed blocks.
2791 	 */
2792 	return 0;
2793 }
2794 
2795 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2796 {
2797 	/* skb_ensure_writable() is not needed here, as we're
2798 	 * already working on an uncloned skb.
2799 	 */
2800 	if (unlikely(!pskb_may_pull(skb, off + len)))
2801 		return -ENOMEM;
2802 
2803 	skb_postpull_rcsum(skb, skb->data + off, len);
2804 	memmove(skb->data + len, skb->data, off);
2805 	__skb_pull(skb, len);
2806 
2807 	return 0;
2808 }
2809 
2810 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2811 {
2812 	bool trans_same = skb->transport_header == skb->network_header;
2813 	int ret;
2814 
2815 	/* There's no need for __skb_push()/__skb_pull() pair to
2816 	 * get to the start of the mac header as we're guaranteed
2817 	 * to always start from here under eBPF.
2818 	 */
2819 	ret = bpf_skb_generic_push(skb, off, len);
2820 	if (likely(!ret)) {
2821 		skb->mac_header -= len;
2822 		skb->network_header -= len;
2823 		if (trans_same)
2824 			skb->transport_header = skb->network_header;
2825 	}
2826 
2827 	return ret;
2828 }
2829 
2830 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2831 {
2832 	bool trans_same = skb->transport_header == skb->network_header;
2833 	int ret;
2834 
2835 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
2836 	ret = bpf_skb_generic_pop(skb, off, len);
2837 	if (likely(!ret)) {
2838 		skb->mac_header += len;
2839 		skb->network_header += len;
2840 		if (trans_same)
2841 			skb->transport_header = skb->network_header;
2842 	}
2843 
2844 	return ret;
2845 }
2846 
2847 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2848 {
2849 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2850 	u32 off = skb_mac_header_len(skb);
2851 	int ret;
2852 
2853 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2854 		return -ENOTSUPP;
2855 
2856 	ret = skb_cow(skb, len_diff);
2857 	if (unlikely(ret < 0))
2858 		return ret;
2859 
2860 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2861 	if (unlikely(ret < 0))
2862 		return ret;
2863 
2864 	if (skb_is_gso(skb)) {
2865 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2866 
2867 		/* SKB_GSO_TCPV4 needs to be changed into
2868 		 * SKB_GSO_TCPV6.
2869 		 */
2870 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
2871 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
2872 			shinfo->gso_type |=  SKB_GSO_TCPV6;
2873 		}
2874 
2875 		/* Due to IPv6 header, MSS needs to be downgraded. */
2876 		skb_decrease_gso_size(shinfo, len_diff);
2877 		/* Header must be checked, and gso_segs recomputed. */
2878 		shinfo->gso_type |= SKB_GSO_DODGY;
2879 		shinfo->gso_segs = 0;
2880 	}
2881 
2882 	skb->protocol = htons(ETH_P_IPV6);
2883 	skb_clear_hash(skb);
2884 
2885 	return 0;
2886 }
2887 
2888 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2889 {
2890 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2891 	u32 off = skb_mac_header_len(skb);
2892 	int ret;
2893 
2894 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2895 		return -ENOTSUPP;
2896 
2897 	ret = skb_unclone(skb, GFP_ATOMIC);
2898 	if (unlikely(ret < 0))
2899 		return ret;
2900 
2901 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2902 	if (unlikely(ret < 0))
2903 		return ret;
2904 
2905 	if (skb_is_gso(skb)) {
2906 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2907 
2908 		/* SKB_GSO_TCPV6 needs to be changed into
2909 		 * SKB_GSO_TCPV4.
2910 		 */
2911 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
2912 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
2913 			shinfo->gso_type |=  SKB_GSO_TCPV4;
2914 		}
2915 
2916 		/* Due to IPv4 header, MSS can be upgraded. */
2917 		skb_increase_gso_size(shinfo, len_diff);
2918 		/* Header must be checked, and gso_segs recomputed. */
2919 		shinfo->gso_type |= SKB_GSO_DODGY;
2920 		shinfo->gso_segs = 0;
2921 	}
2922 
2923 	skb->protocol = htons(ETH_P_IP);
2924 	skb_clear_hash(skb);
2925 
2926 	return 0;
2927 }
2928 
2929 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2930 {
2931 	__be16 from_proto = skb->protocol;
2932 
2933 	if (from_proto == htons(ETH_P_IP) &&
2934 	      to_proto == htons(ETH_P_IPV6))
2935 		return bpf_skb_proto_4_to_6(skb);
2936 
2937 	if (from_proto == htons(ETH_P_IPV6) &&
2938 	      to_proto == htons(ETH_P_IP))
2939 		return bpf_skb_proto_6_to_4(skb);
2940 
2941 	return -ENOTSUPP;
2942 }
2943 
2944 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2945 	   u64, flags)
2946 {
2947 	int ret;
2948 
2949 	if (unlikely(flags))
2950 		return -EINVAL;
2951 
2952 	/* General idea is that this helper does the basic groundwork
2953 	 * needed for changing the protocol, and eBPF program fills the
2954 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2955 	 * and other helpers, rather than passing a raw buffer here.
2956 	 *
2957 	 * The rationale is to keep this minimal and without a need to
2958 	 * deal with raw packet data. F.e. even if we would pass buffers
2959 	 * here, the program still needs to call the bpf_lX_csum_replace()
2960 	 * helpers anyway. Plus, this way we keep also separation of
2961 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
2962 	 * care of stores.
2963 	 *
2964 	 * Currently, additional options and extension header space are
2965 	 * not supported, but flags register is reserved so we can adapt
2966 	 * that. For offloads, we mark packet as dodgy, so that headers
2967 	 * need to be verified first.
2968 	 */
2969 	ret = bpf_skb_proto_xlat(skb, proto);
2970 	bpf_compute_data_pointers(skb);
2971 	return ret;
2972 }
2973 
2974 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2975 	.func		= bpf_skb_change_proto,
2976 	.gpl_only	= false,
2977 	.ret_type	= RET_INTEGER,
2978 	.arg1_type	= ARG_PTR_TO_CTX,
2979 	.arg2_type	= ARG_ANYTHING,
2980 	.arg3_type	= ARG_ANYTHING,
2981 };
2982 
2983 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2984 {
2985 	/* We only allow a restricted subset to be changed for now. */
2986 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2987 		     !skb_pkt_type_ok(pkt_type)))
2988 		return -EINVAL;
2989 
2990 	skb->pkt_type = pkt_type;
2991 	return 0;
2992 }
2993 
2994 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2995 	.func		= bpf_skb_change_type,
2996 	.gpl_only	= false,
2997 	.ret_type	= RET_INTEGER,
2998 	.arg1_type	= ARG_PTR_TO_CTX,
2999 	.arg2_type	= ARG_ANYTHING,
3000 };
3001 
3002 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3003 {
3004 	switch (skb->protocol) {
3005 	case htons(ETH_P_IP):
3006 		return sizeof(struct iphdr);
3007 	case htons(ETH_P_IPV6):
3008 		return sizeof(struct ipv6hdr);
3009 	default:
3010 		return ~0U;
3011 	}
3012 }
3013 
3014 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3015 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3016 
3017 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3018 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3019 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3020 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3021 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3022 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3023 
3024 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3025 			    u64 flags)
3026 {
3027 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3028 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3029 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3030 	unsigned int gso_type = SKB_GSO_DODGY;
3031 	int ret;
3032 
3033 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3034 		/* udp gso_size delineates datagrams, only allow if fixed */
3035 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3036 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3037 			return -ENOTSUPP;
3038 	}
3039 
3040 	ret = skb_cow_head(skb, len_diff);
3041 	if (unlikely(ret < 0))
3042 		return ret;
3043 
3044 	if (encap) {
3045 		if (skb->protocol != htons(ETH_P_IP) &&
3046 		    skb->protocol != htons(ETH_P_IPV6))
3047 			return -ENOTSUPP;
3048 
3049 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3050 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3051 			return -EINVAL;
3052 
3053 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3054 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3055 			return -EINVAL;
3056 
3057 		if (skb->encapsulation)
3058 			return -EALREADY;
3059 
3060 		mac_len = skb->network_header - skb->mac_header;
3061 		inner_net = skb->network_header;
3062 		if (inner_mac_len > len_diff)
3063 			return -EINVAL;
3064 		inner_trans = skb->transport_header;
3065 	}
3066 
3067 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3068 	if (unlikely(ret < 0))
3069 		return ret;
3070 
3071 	if (encap) {
3072 		skb->inner_mac_header = inner_net - inner_mac_len;
3073 		skb->inner_network_header = inner_net;
3074 		skb->inner_transport_header = inner_trans;
3075 		skb_set_inner_protocol(skb, skb->protocol);
3076 
3077 		skb->encapsulation = 1;
3078 		skb_set_network_header(skb, mac_len);
3079 
3080 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3081 			gso_type |= SKB_GSO_UDP_TUNNEL;
3082 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3083 			gso_type |= SKB_GSO_GRE;
3084 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3085 			gso_type |= SKB_GSO_IPXIP6;
3086 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3087 			gso_type |= SKB_GSO_IPXIP4;
3088 
3089 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3090 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3091 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3092 					sizeof(struct ipv6hdr) :
3093 					sizeof(struct iphdr);
3094 
3095 			skb_set_transport_header(skb, mac_len + nh_len);
3096 		}
3097 
3098 		/* Match skb->protocol to new outer l3 protocol */
3099 		if (skb->protocol == htons(ETH_P_IP) &&
3100 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3101 			skb->protocol = htons(ETH_P_IPV6);
3102 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3103 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3104 			skb->protocol = htons(ETH_P_IP);
3105 	}
3106 
3107 	if (skb_is_gso(skb)) {
3108 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3109 
3110 		/* Due to header grow, MSS needs to be downgraded. */
3111 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3112 			skb_decrease_gso_size(shinfo, len_diff);
3113 
3114 		/* Header must be checked, and gso_segs recomputed. */
3115 		shinfo->gso_type |= gso_type;
3116 		shinfo->gso_segs = 0;
3117 	}
3118 
3119 	return 0;
3120 }
3121 
3122 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3123 			      u64 flags)
3124 {
3125 	int ret;
3126 
3127 	if (flags & ~BPF_F_ADJ_ROOM_FIXED_GSO)
3128 		return -EINVAL;
3129 
3130 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3131 		/* udp gso_size delineates datagrams, only allow if fixed */
3132 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3133 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3134 			return -ENOTSUPP;
3135 	}
3136 
3137 	ret = skb_unclone(skb, GFP_ATOMIC);
3138 	if (unlikely(ret < 0))
3139 		return ret;
3140 
3141 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3142 	if (unlikely(ret < 0))
3143 		return ret;
3144 
3145 	if (skb_is_gso(skb)) {
3146 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3147 
3148 		/* Due to header shrink, MSS can be upgraded. */
3149 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3150 			skb_increase_gso_size(shinfo, len_diff);
3151 
3152 		/* Header must be checked, and gso_segs recomputed. */
3153 		shinfo->gso_type |= SKB_GSO_DODGY;
3154 		shinfo->gso_segs = 0;
3155 	}
3156 
3157 	return 0;
3158 }
3159 
3160 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3161 {
3162 	return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3163 			  SKB_MAX_ALLOC;
3164 }
3165 
3166 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3167 	   u32, mode, u64, flags)
3168 {
3169 	u32 len_cur, len_diff_abs = abs(len_diff);
3170 	u32 len_min = bpf_skb_net_base_len(skb);
3171 	u32 len_max = __bpf_skb_max_len(skb);
3172 	__be16 proto = skb->protocol;
3173 	bool shrink = len_diff < 0;
3174 	u32 off;
3175 	int ret;
3176 
3177 	if (unlikely(flags & ~BPF_F_ADJ_ROOM_MASK))
3178 		return -EINVAL;
3179 	if (unlikely(len_diff_abs > 0xfffU))
3180 		return -EFAULT;
3181 	if (unlikely(proto != htons(ETH_P_IP) &&
3182 		     proto != htons(ETH_P_IPV6)))
3183 		return -ENOTSUPP;
3184 
3185 	off = skb_mac_header_len(skb);
3186 	switch (mode) {
3187 	case BPF_ADJ_ROOM_NET:
3188 		off += bpf_skb_net_base_len(skb);
3189 		break;
3190 	case BPF_ADJ_ROOM_MAC:
3191 		break;
3192 	default:
3193 		return -ENOTSUPP;
3194 	}
3195 
3196 	len_cur = skb->len - skb_network_offset(skb);
3197 	if ((shrink && (len_diff_abs >= len_cur ||
3198 			len_cur - len_diff_abs < len_min)) ||
3199 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3200 			 !skb_is_gso(skb))))
3201 		return -ENOTSUPP;
3202 
3203 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3204 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3205 
3206 	bpf_compute_data_pointers(skb);
3207 	return ret;
3208 }
3209 
3210 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3211 	.func		= bpf_skb_adjust_room,
3212 	.gpl_only	= false,
3213 	.ret_type	= RET_INTEGER,
3214 	.arg1_type	= ARG_PTR_TO_CTX,
3215 	.arg2_type	= ARG_ANYTHING,
3216 	.arg3_type	= ARG_ANYTHING,
3217 	.arg4_type	= ARG_ANYTHING,
3218 };
3219 
3220 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3221 {
3222 	u32 min_len = skb_network_offset(skb);
3223 
3224 	if (skb_transport_header_was_set(skb))
3225 		min_len = skb_transport_offset(skb);
3226 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3227 		min_len = skb_checksum_start_offset(skb) +
3228 			  skb->csum_offset + sizeof(__sum16);
3229 	return min_len;
3230 }
3231 
3232 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3233 {
3234 	unsigned int old_len = skb->len;
3235 	int ret;
3236 
3237 	ret = __skb_grow_rcsum(skb, new_len);
3238 	if (!ret)
3239 		memset(skb->data + old_len, 0, new_len - old_len);
3240 	return ret;
3241 }
3242 
3243 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3244 {
3245 	return __skb_trim_rcsum(skb, new_len);
3246 }
3247 
3248 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3249 					u64 flags)
3250 {
3251 	u32 max_len = __bpf_skb_max_len(skb);
3252 	u32 min_len = __bpf_skb_min_len(skb);
3253 	int ret;
3254 
3255 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3256 		return -EINVAL;
3257 	if (skb->encapsulation)
3258 		return -ENOTSUPP;
3259 
3260 	/* The basic idea of this helper is that it's performing the
3261 	 * needed work to either grow or trim an skb, and eBPF program
3262 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3263 	 * bpf_lX_csum_replace() and others rather than passing a raw
3264 	 * buffer here. This one is a slow path helper and intended
3265 	 * for replies with control messages.
3266 	 *
3267 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3268 	 * minimal and without protocol specifics so that we are able
3269 	 * to separate concerns as in bpf_skb_store_bytes() should only
3270 	 * be the one responsible for writing buffers.
3271 	 *
3272 	 * It's really expected to be a slow path operation here for
3273 	 * control message replies, so we're implicitly linearizing,
3274 	 * uncloning and drop offloads from the skb by this.
3275 	 */
3276 	ret = __bpf_try_make_writable(skb, skb->len);
3277 	if (!ret) {
3278 		if (new_len > skb->len)
3279 			ret = bpf_skb_grow_rcsum(skb, new_len);
3280 		else if (new_len < skb->len)
3281 			ret = bpf_skb_trim_rcsum(skb, new_len);
3282 		if (!ret && skb_is_gso(skb))
3283 			skb_gso_reset(skb);
3284 	}
3285 	return ret;
3286 }
3287 
3288 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3289 	   u64, flags)
3290 {
3291 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3292 
3293 	bpf_compute_data_pointers(skb);
3294 	return ret;
3295 }
3296 
3297 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3298 	.func		= bpf_skb_change_tail,
3299 	.gpl_only	= false,
3300 	.ret_type	= RET_INTEGER,
3301 	.arg1_type	= ARG_PTR_TO_CTX,
3302 	.arg2_type	= ARG_ANYTHING,
3303 	.arg3_type	= ARG_ANYTHING,
3304 };
3305 
3306 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3307 	   u64, flags)
3308 {
3309 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3310 
3311 	bpf_compute_data_end_sk_skb(skb);
3312 	return ret;
3313 }
3314 
3315 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3316 	.func		= sk_skb_change_tail,
3317 	.gpl_only	= false,
3318 	.ret_type	= RET_INTEGER,
3319 	.arg1_type	= ARG_PTR_TO_CTX,
3320 	.arg2_type	= ARG_ANYTHING,
3321 	.arg3_type	= ARG_ANYTHING,
3322 };
3323 
3324 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3325 					u64 flags)
3326 {
3327 	u32 max_len = __bpf_skb_max_len(skb);
3328 	u32 new_len = skb->len + head_room;
3329 	int ret;
3330 
3331 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3332 		     new_len < skb->len))
3333 		return -EINVAL;
3334 
3335 	ret = skb_cow(skb, head_room);
3336 	if (likely(!ret)) {
3337 		/* Idea for this helper is that we currently only
3338 		 * allow to expand on mac header. This means that
3339 		 * skb->protocol network header, etc, stay as is.
3340 		 * Compared to bpf_skb_change_tail(), we're more
3341 		 * flexible due to not needing to linearize or
3342 		 * reset GSO. Intention for this helper is to be
3343 		 * used by an L3 skb that needs to push mac header
3344 		 * for redirection into L2 device.
3345 		 */
3346 		__skb_push(skb, head_room);
3347 		memset(skb->data, 0, head_room);
3348 		skb_reset_mac_header(skb);
3349 	}
3350 
3351 	return ret;
3352 }
3353 
3354 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3355 	   u64, flags)
3356 {
3357 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3358 
3359 	bpf_compute_data_pointers(skb);
3360 	return ret;
3361 }
3362 
3363 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3364 	.func		= bpf_skb_change_head,
3365 	.gpl_only	= false,
3366 	.ret_type	= RET_INTEGER,
3367 	.arg1_type	= ARG_PTR_TO_CTX,
3368 	.arg2_type	= ARG_ANYTHING,
3369 	.arg3_type	= ARG_ANYTHING,
3370 };
3371 
3372 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3373 	   u64, flags)
3374 {
3375 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3376 
3377 	bpf_compute_data_end_sk_skb(skb);
3378 	return ret;
3379 }
3380 
3381 static const struct bpf_func_proto sk_skb_change_head_proto = {
3382 	.func		= sk_skb_change_head,
3383 	.gpl_only	= false,
3384 	.ret_type	= RET_INTEGER,
3385 	.arg1_type	= ARG_PTR_TO_CTX,
3386 	.arg2_type	= ARG_ANYTHING,
3387 	.arg3_type	= ARG_ANYTHING,
3388 };
3389 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3390 {
3391 	return xdp_data_meta_unsupported(xdp) ? 0 :
3392 	       xdp->data - xdp->data_meta;
3393 }
3394 
3395 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3396 {
3397 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3398 	unsigned long metalen = xdp_get_metalen(xdp);
3399 	void *data_start = xdp_frame_end + metalen;
3400 	void *data = xdp->data + offset;
3401 
3402 	if (unlikely(data < data_start ||
3403 		     data > xdp->data_end - ETH_HLEN))
3404 		return -EINVAL;
3405 
3406 	if (metalen)
3407 		memmove(xdp->data_meta + offset,
3408 			xdp->data_meta, metalen);
3409 	xdp->data_meta += offset;
3410 	xdp->data = data;
3411 
3412 	return 0;
3413 }
3414 
3415 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3416 	.func		= bpf_xdp_adjust_head,
3417 	.gpl_only	= false,
3418 	.ret_type	= RET_INTEGER,
3419 	.arg1_type	= ARG_PTR_TO_CTX,
3420 	.arg2_type	= ARG_ANYTHING,
3421 };
3422 
3423 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3424 {
3425 	void *data_end = xdp->data_end + offset;
3426 
3427 	/* only shrinking is allowed for now. */
3428 	if (unlikely(offset >= 0))
3429 		return -EINVAL;
3430 
3431 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3432 		return -EINVAL;
3433 
3434 	xdp->data_end = data_end;
3435 
3436 	return 0;
3437 }
3438 
3439 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3440 	.func		= bpf_xdp_adjust_tail,
3441 	.gpl_only	= false,
3442 	.ret_type	= RET_INTEGER,
3443 	.arg1_type	= ARG_PTR_TO_CTX,
3444 	.arg2_type	= ARG_ANYTHING,
3445 };
3446 
3447 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3448 {
3449 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3450 	void *meta = xdp->data_meta + offset;
3451 	unsigned long metalen = xdp->data - meta;
3452 
3453 	if (xdp_data_meta_unsupported(xdp))
3454 		return -ENOTSUPP;
3455 	if (unlikely(meta < xdp_frame_end ||
3456 		     meta > xdp->data))
3457 		return -EINVAL;
3458 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3459 		     (metalen > 32)))
3460 		return -EACCES;
3461 
3462 	xdp->data_meta = meta;
3463 
3464 	return 0;
3465 }
3466 
3467 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3468 	.func		= bpf_xdp_adjust_meta,
3469 	.gpl_only	= false,
3470 	.ret_type	= RET_INTEGER,
3471 	.arg1_type	= ARG_PTR_TO_CTX,
3472 	.arg2_type	= ARG_ANYTHING,
3473 };
3474 
3475 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3476 			    struct bpf_map *map, struct xdp_buff *xdp)
3477 {
3478 	switch (map->map_type) {
3479 	case BPF_MAP_TYPE_DEVMAP:
3480 	case BPF_MAP_TYPE_DEVMAP_HASH:
3481 		return dev_map_enqueue(fwd, xdp, dev_rx);
3482 	case BPF_MAP_TYPE_CPUMAP:
3483 		return cpu_map_enqueue(fwd, xdp, dev_rx);
3484 	case BPF_MAP_TYPE_XSKMAP:
3485 		return __xsk_map_redirect(fwd, xdp);
3486 	default:
3487 		return -EBADRQC;
3488 	}
3489 	return 0;
3490 }
3491 
3492 void xdp_do_flush(void)
3493 {
3494 	__dev_flush();
3495 	__cpu_map_flush();
3496 	__xsk_map_flush();
3497 }
3498 EXPORT_SYMBOL_GPL(xdp_do_flush);
3499 
3500 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3501 {
3502 	switch (map->map_type) {
3503 	case BPF_MAP_TYPE_DEVMAP:
3504 		return __dev_map_lookup_elem(map, index);
3505 	case BPF_MAP_TYPE_DEVMAP_HASH:
3506 		return __dev_map_hash_lookup_elem(map, index);
3507 	case BPF_MAP_TYPE_CPUMAP:
3508 		return __cpu_map_lookup_elem(map, index);
3509 	case BPF_MAP_TYPE_XSKMAP:
3510 		return __xsk_map_lookup_elem(map, index);
3511 	default:
3512 		return NULL;
3513 	}
3514 }
3515 
3516 void bpf_clear_redirect_map(struct bpf_map *map)
3517 {
3518 	struct bpf_redirect_info *ri;
3519 	int cpu;
3520 
3521 	for_each_possible_cpu(cpu) {
3522 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3523 		/* Avoid polluting remote cacheline due to writes if
3524 		 * not needed. Once we pass this test, we need the
3525 		 * cmpxchg() to make sure it hasn't been changed in
3526 		 * the meantime by remote CPU.
3527 		 */
3528 		if (unlikely(READ_ONCE(ri->map) == map))
3529 			cmpxchg(&ri->map, map, NULL);
3530 	}
3531 }
3532 
3533 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3534 		    struct bpf_prog *xdp_prog)
3535 {
3536 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3537 	struct bpf_map *map = READ_ONCE(ri->map);
3538 	u32 index = ri->tgt_index;
3539 	void *fwd = ri->tgt_value;
3540 	int err;
3541 
3542 	ri->tgt_index = 0;
3543 	ri->tgt_value = NULL;
3544 	WRITE_ONCE(ri->map, NULL);
3545 
3546 	if (unlikely(!map)) {
3547 		fwd = dev_get_by_index_rcu(dev_net(dev), index);
3548 		if (unlikely(!fwd)) {
3549 			err = -EINVAL;
3550 			goto err;
3551 		}
3552 
3553 		err = dev_xdp_enqueue(fwd, xdp, dev);
3554 	} else {
3555 		err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
3556 	}
3557 
3558 	if (unlikely(err))
3559 		goto err;
3560 
3561 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3562 	return 0;
3563 err:
3564 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3565 	return err;
3566 }
3567 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3568 
3569 static int xdp_do_generic_redirect_map(struct net_device *dev,
3570 				       struct sk_buff *skb,
3571 				       struct xdp_buff *xdp,
3572 				       struct bpf_prog *xdp_prog,
3573 				       struct bpf_map *map)
3574 {
3575 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3576 	u32 index = ri->tgt_index;
3577 	void *fwd = ri->tgt_value;
3578 	int err = 0;
3579 
3580 	ri->tgt_index = 0;
3581 	ri->tgt_value = NULL;
3582 	WRITE_ONCE(ri->map, NULL);
3583 
3584 	if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
3585 	    map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
3586 		struct bpf_dtab_netdev *dst = fwd;
3587 
3588 		err = dev_map_generic_redirect(dst, skb, xdp_prog);
3589 		if (unlikely(err))
3590 			goto err;
3591 	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3592 		struct xdp_sock *xs = fwd;
3593 
3594 		err = xsk_generic_rcv(xs, xdp);
3595 		if (err)
3596 			goto err;
3597 		consume_skb(skb);
3598 	} else {
3599 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3600 		err = -EBADRQC;
3601 		goto err;
3602 	}
3603 
3604 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3605 	return 0;
3606 err:
3607 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3608 	return err;
3609 }
3610 
3611 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3612 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3613 {
3614 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3615 	struct bpf_map *map = READ_ONCE(ri->map);
3616 	u32 index = ri->tgt_index;
3617 	struct net_device *fwd;
3618 	int err = 0;
3619 
3620 	if (map)
3621 		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3622 						   map);
3623 	ri->tgt_index = 0;
3624 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3625 	if (unlikely(!fwd)) {
3626 		err = -EINVAL;
3627 		goto err;
3628 	}
3629 
3630 	err = xdp_ok_fwd_dev(fwd, skb->len);
3631 	if (unlikely(err))
3632 		goto err;
3633 
3634 	skb->dev = fwd;
3635 	_trace_xdp_redirect(dev, xdp_prog, index);
3636 	generic_xdp_tx(skb, xdp_prog);
3637 	return 0;
3638 err:
3639 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3640 	return err;
3641 }
3642 
3643 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3644 {
3645 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3646 
3647 	if (unlikely(flags))
3648 		return XDP_ABORTED;
3649 
3650 	ri->flags = flags;
3651 	ri->tgt_index = ifindex;
3652 	ri->tgt_value = NULL;
3653 	WRITE_ONCE(ri->map, NULL);
3654 
3655 	return XDP_REDIRECT;
3656 }
3657 
3658 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3659 	.func           = bpf_xdp_redirect,
3660 	.gpl_only       = false,
3661 	.ret_type       = RET_INTEGER,
3662 	.arg1_type      = ARG_ANYTHING,
3663 	.arg2_type      = ARG_ANYTHING,
3664 };
3665 
3666 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3667 	   u64, flags)
3668 {
3669 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3670 
3671 	/* Lower bits of the flags are used as return code on lookup failure */
3672 	if (unlikely(flags > XDP_TX))
3673 		return XDP_ABORTED;
3674 
3675 	ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
3676 	if (unlikely(!ri->tgt_value)) {
3677 		/* If the lookup fails we want to clear out the state in the
3678 		 * redirect_info struct completely, so that if an eBPF program
3679 		 * performs multiple lookups, the last one always takes
3680 		 * precedence.
3681 		 */
3682 		WRITE_ONCE(ri->map, NULL);
3683 		return flags;
3684 	}
3685 
3686 	ri->flags = flags;
3687 	ri->tgt_index = ifindex;
3688 	WRITE_ONCE(ri->map, map);
3689 
3690 	return XDP_REDIRECT;
3691 }
3692 
3693 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3694 	.func           = bpf_xdp_redirect_map,
3695 	.gpl_only       = false,
3696 	.ret_type       = RET_INTEGER,
3697 	.arg1_type      = ARG_CONST_MAP_PTR,
3698 	.arg2_type      = ARG_ANYTHING,
3699 	.arg3_type      = ARG_ANYTHING,
3700 };
3701 
3702 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3703 				  unsigned long off, unsigned long len)
3704 {
3705 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3706 
3707 	if (unlikely(!ptr))
3708 		return len;
3709 	if (ptr != dst_buff)
3710 		memcpy(dst_buff, ptr, len);
3711 
3712 	return 0;
3713 }
3714 
3715 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3716 	   u64, flags, void *, meta, u64, meta_size)
3717 {
3718 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3719 
3720 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3721 		return -EINVAL;
3722 	if (unlikely(!skb || skb_size > skb->len))
3723 		return -EFAULT;
3724 
3725 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3726 				bpf_skb_copy);
3727 }
3728 
3729 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3730 	.func		= bpf_skb_event_output,
3731 	.gpl_only	= true,
3732 	.ret_type	= RET_INTEGER,
3733 	.arg1_type	= ARG_PTR_TO_CTX,
3734 	.arg2_type	= ARG_CONST_MAP_PTR,
3735 	.arg3_type	= ARG_ANYTHING,
3736 	.arg4_type	= ARG_PTR_TO_MEM,
3737 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3738 };
3739 
3740 static int bpf_skb_output_btf_ids[5];
3741 const struct bpf_func_proto bpf_skb_output_proto = {
3742 	.func		= bpf_skb_event_output,
3743 	.gpl_only	= true,
3744 	.ret_type	= RET_INTEGER,
3745 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3746 	.arg2_type	= ARG_CONST_MAP_PTR,
3747 	.arg3_type	= ARG_ANYTHING,
3748 	.arg4_type	= ARG_PTR_TO_MEM,
3749 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3750 	.btf_id		= bpf_skb_output_btf_ids,
3751 };
3752 
3753 static unsigned short bpf_tunnel_key_af(u64 flags)
3754 {
3755 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3756 }
3757 
3758 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3759 	   u32, size, u64, flags)
3760 {
3761 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3762 	u8 compat[sizeof(struct bpf_tunnel_key)];
3763 	void *to_orig = to;
3764 	int err;
3765 
3766 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3767 		err = -EINVAL;
3768 		goto err_clear;
3769 	}
3770 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3771 		err = -EPROTO;
3772 		goto err_clear;
3773 	}
3774 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3775 		err = -EINVAL;
3776 		switch (size) {
3777 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3778 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3779 			goto set_compat;
3780 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3781 			/* Fixup deprecated structure layouts here, so we have
3782 			 * a common path later on.
3783 			 */
3784 			if (ip_tunnel_info_af(info) != AF_INET)
3785 				goto err_clear;
3786 set_compat:
3787 			to = (struct bpf_tunnel_key *)compat;
3788 			break;
3789 		default:
3790 			goto err_clear;
3791 		}
3792 	}
3793 
3794 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
3795 	to->tunnel_tos = info->key.tos;
3796 	to->tunnel_ttl = info->key.ttl;
3797 	to->tunnel_ext = 0;
3798 
3799 	if (flags & BPF_F_TUNINFO_IPV6) {
3800 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3801 		       sizeof(to->remote_ipv6));
3802 		to->tunnel_label = be32_to_cpu(info->key.label);
3803 	} else {
3804 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3805 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3806 		to->tunnel_label = 0;
3807 	}
3808 
3809 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3810 		memcpy(to_orig, to, size);
3811 
3812 	return 0;
3813 err_clear:
3814 	memset(to_orig, 0, size);
3815 	return err;
3816 }
3817 
3818 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3819 	.func		= bpf_skb_get_tunnel_key,
3820 	.gpl_only	= false,
3821 	.ret_type	= RET_INTEGER,
3822 	.arg1_type	= ARG_PTR_TO_CTX,
3823 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3824 	.arg3_type	= ARG_CONST_SIZE,
3825 	.arg4_type	= ARG_ANYTHING,
3826 };
3827 
3828 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3829 {
3830 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3831 	int err;
3832 
3833 	if (unlikely(!info ||
3834 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3835 		err = -ENOENT;
3836 		goto err_clear;
3837 	}
3838 	if (unlikely(size < info->options_len)) {
3839 		err = -ENOMEM;
3840 		goto err_clear;
3841 	}
3842 
3843 	ip_tunnel_info_opts_get(to, info);
3844 	if (size > info->options_len)
3845 		memset(to + info->options_len, 0, size - info->options_len);
3846 
3847 	return info->options_len;
3848 err_clear:
3849 	memset(to, 0, size);
3850 	return err;
3851 }
3852 
3853 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3854 	.func		= bpf_skb_get_tunnel_opt,
3855 	.gpl_only	= false,
3856 	.ret_type	= RET_INTEGER,
3857 	.arg1_type	= ARG_PTR_TO_CTX,
3858 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3859 	.arg3_type	= ARG_CONST_SIZE,
3860 };
3861 
3862 static struct metadata_dst __percpu *md_dst;
3863 
3864 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3865 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3866 {
3867 	struct metadata_dst *md = this_cpu_ptr(md_dst);
3868 	u8 compat[sizeof(struct bpf_tunnel_key)];
3869 	struct ip_tunnel_info *info;
3870 
3871 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3872 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3873 		return -EINVAL;
3874 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3875 		switch (size) {
3876 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3877 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3878 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3879 			/* Fixup deprecated structure layouts here, so we have
3880 			 * a common path later on.
3881 			 */
3882 			memcpy(compat, from, size);
3883 			memset(compat + size, 0, sizeof(compat) - size);
3884 			from = (const struct bpf_tunnel_key *) compat;
3885 			break;
3886 		default:
3887 			return -EINVAL;
3888 		}
3889 	}
3890 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3891 		     from->tunnel_ext))
3892 		return -EINVAL;
3893 
3894 	skb_dst_drop(skb);
3895 	dst_hold((struct dst_entry *) md);
3896 	skb_dst_set(skb, (struct dst_entry *) md);
3897 
3898 	info = &md->u.tun_info;
3899 	memset(info, 0, sizeof(*info));
3900 	info->mode = IP_TUNNEL_INFO_TX;
3901 
3902 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3903 	if (flags & BPF_F_DONT_FRAGMENT)
3904 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3905 	if (flags & BPF_F_ZERO_CSUM_TX)
3906 		info->key.tun_flags &= ~TUNNEL_CSUM;
3907 	if (flags & BPF_F_SEQ_NUMBER)
3908 		info->key.tun_flags |= TUNNEL_SEQ;
3909 
3910 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
3911 	info->key.tos = from->tunnel_tos;
3912 	info->key.ttl = from->tunnel_ttl;
3913 
3914 	if (flags & BPF_F_TUNINFO_IPV6) {
3915 		info->mode |= IP_TUNNEL_INFO_IPV6;
3916 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3917 		       sizeof(from->remote_ipv6));
3918 		info->key.label = cpu_to_be32(from->tunnel_label) &
3919 				  IPV6_FLOWLABEL_MASK;
3920 	} else {
3921 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3922 	}
3923 
3924 	return 0;
3925 }
3926 
3927 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3928 	.func		= bpf_skb_set_tunnel_key,
3929 	.gpl_only	= false,
3930 	.ret_type	= RET_INTEGER,
3931 	.arg1_type	= ARG_PTR_TO_CTX,
3932 	.arg2_type	= ARG_PTR_TO_MEM,
3933 	.arg3_type	= ARG_CONST_SIZE,
3934 	.arg4_type	= ARG_ANYTHING,
3935 };
3936 
3937 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3938 	   const u8 *, from, u32, size)
3939 {
3940 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
3941 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
3942 
3943 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3944 		return -EINVAL;
3945 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3946 		return -ENOMEM;
3947 
3948 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
3949 
3950 	return 0;
3951 }
3952 
3953 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3954 	.func		= bpf_skb_set_tunnel_opt,
3955 	.gpl_only	= false,
3956 	.ret_type	= RET_INTEGER,
3957 	.arg1_type	= ARG_PTR_TO_CTX,
3958 	.arg2_type	= ARG_PTR_TO_MEM,
3959 	.arg3_type	= ARG_CONST_SIZE,
3960 };
3961 
3962 static const struct bpf_func_proto *
3963 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3964 {
3965 	if (!md_dst) {
3966 		struct metadata_dst __percpu *tmp;
3967 
3968 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3969 						METADATA_IP_TUNNEL,
3970 						GFP_KERNEL);
3971 		if (!tmp)
3972 			return NULL;
3973 		if (cmpxchg(&md_dst, NULL, tmp))
3974 			metadata_dst_free_percpu(tmp);
3975 	}
3976 
3977 	switch (which) {
3978 	case BPF_FUNC_skb_set_tunnel_key:
3979 		return &bpf_skb_set_tunnel_key_proto;
3980 	case BPF_FUNC_skb_set_tunnel_opt:
3981 		return &bpf_skb_set_tunnel_opt_proto;
3982 	default:
3983 		return NULL;
3984 	}
3985 }
3986 
3987 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3988 	   u32, idx)
3989 {
3990 	struct bpf_array *array = container_of(map, struct bpf_array, map);
3991 	struct cgroup *cgrp;
3992 	struct sock *sk;
3993 
3994 	sk = skb_to_full_sk(skb);
3995 	if (!sk || !sk_fullsock(sk))
3996 		return -ENOENT;
3997 	if (unlikely(idx >= array->map.max_entries))
3998 		return -E2BIG;
3999 
4000 	cgrp = READ_ONCE(array->ptrs[idx]);
4001 	if (unlikely(!cgrp))
4002 		return -EAGAIN;
4003 
4004 	return sk_under_cgroup_hierarchy(sk, cgrp);
4005 }
4006 
4007 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4008 	.func		= bpf_skb_under_cgroup,
4009 	.gpl_only	= false,
4010 	.ret_type	= RET_INTEGER,
4011 	.arg1_type	= ARG_PTR_TO_CTX,
4012 	.arg2_type	= ARG_CONST_MAP_PTR,
4013 	.arg3_type	= ARG_ANYTHING,
4014 };
4015 
4016 #ifdef CONFIG_SOCK_CGROUP_DATA
4017 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4018 {
4019 	struct sock *sk = skb_to_full_sk(skb);
4020 	struct cgroup *cgrp;
4021 
4022 	if (!sk || !sk_fullsock(sk))
4023 		return 0;
4024 
4025 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4026 	return cgroup_id(cgrp);
4027 }
4028 
4029 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4030 	.func           = bpf_skb_cgroup_id,
4031 	.gpl_only       = false,
4032 	.ret_type       = RET_INTEGER,
4033 	.arg1_type      = ARG_PTR_TO_CTX,
4034 };
4035 
4036 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4037 	   ancestor_level)
4038 {
4039 	struct sock *sk = skb_to_full_sk(skb);
4040 	struct cgroup *ancestor;
4041 	struct cgroup *cgrp;
4042 
4043 	if (!sk || !sk_fullsock(sk))
4044 		return 0;
4045 
4046 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4047 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4048 	if (!ancestor)
4049 		return 0;
4050 
4051 	return cgroup_id(ancestor);
4052 }
4053 
4054 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4055 	.func           = bpf_skb_ancestor_cgroup_id,
4056 	.gpl_only       = false,
4057 	.ret_type       = RET_INTEGER,
4058 	.arg1_type      = ARG_PTR_TO_CTX,
4059 	.arg2_type      = ARG_ANYTHING,
4060 };
4061 #endif
4062 
4063 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4064 				  unsigned long off, unsigned long len)
4065 {
4066 	memcpy(dst_buff, src_buff + off, len);
4067 	return 0;
4068 }
4069 
4070 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4071 	   u64, flags, void *, meta, u64, meta_size)
4072 {
4073 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4074 
4075 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4076 		return -EINVAL;
4077 	if (unlikely(!xdp ||
4078 		     xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4079 		return -EFAULT;
4080 
4081 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4082 				xdp_size, bpf_xdp_copy);
4083 }
4084 
4085 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4086 	.func		= bpf_xdp_event_output,
4087 	.gpl_only	= true,
4088 	.ret_type	= RET_INTEGER,
4089 	.arg1_type	= ARG_PTR_TO_CTX,
4090 	.arg2_type	= ARG_CONST_MAP_PTR,
4091 	.arg3_type	= ARG_ANYTHING,
4092 	.arg4_type	= ARG_PTR_TO_MEM,
4093 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4094 };
4095 
4096 static int bpf_xdp_output_btf_ids[5];
4097 const struct bpf_func_proto bpf_xdp_output_proto = {
4098 	.func		= bpf_xdp_event_output,
4099 	.gpl_only	= true,
4100 	.ret_type	= RET_INTEGER,
4101 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4102 	.arg2_type	= ARG_CONST_MAP_PTR,
4103 	.arg3_type	= ARG_ANYTHING,
4104 	.arg4_type	= ARG_PTR_TO_MEM,
4105 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4106 	.btf_id		= bpf_xdp_output_btf_ids,
4107 };
4108 
4109 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4110 {
4111 	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4112 }
4113 
4114 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4115 	.func           = bpf_get_socket_cookie,
4116 	.gpl_only       = false,
4117 	.ret_type       = RET_INTEGER,
4118 	.arg1_type      = ARG_PTR_TO_CTX,
4119 };
4120 
4121 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4122 {
4123 	return sock_gen_cookie(ctx->sk);
4124 }
4125 
4126 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4127 	.func		= bpf_get_socket_cookie_sock_addr,
4128 	.gpl_only	= false,
4129 	.ret_type	= RET_INTEGER,
4130 	.arg1_type	= ARG_PTR_TO_CTX,
4131 };
4132 
4133 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4134 {
4135 	return sock_gen_cookie(ctx);
4136 }
4137 
4138 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4139 	.func		= bpf_get_socket_cookie_sock,
4140 	.gpl_only	= false,
4141 	.ret_type	= RET_INTEGER,
4142 	.arg1_type	= ARG_PTR_TO_CTX,
4143 };
4144 
4145 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4146 {
4147 	return sock_gen_cookie(ctx->sk);
4148 }
4149 
4150 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4151 	.func		= bpf_get_socket_cookie_sock_ops,
4152 	.gpl_only	= false,
4153 	.ret_type	= RET_INTEGER,
4154 	.arg1_type	= ARG_PTR_TO_CTX,
4155 };
4156 
4157 static u64 __bpf_get_netns_cookie(struct sock *sk)
4158 {
4159 #ifdef CONFIG_NET_NS
4160 	return net_gen_cookie(sk ? sk->sk_net.net : &init_net);
4161 #else
4162 	return 0;
4163 #endif
4164 }
4165 
4166 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4167 {
4168 	return __bpf_get_netns_cookie(ctx);
4169 }
4170 
4171 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4172 	.func		= bpf_get_netns_cookie_sock,
4173 	.gpl_only	= false,
4174 	.ret_type	= RET_INTEGER,
4175 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4176 };
4177 
4178 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4179 {
4180 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4181 }
4182 
4183 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4184 	.func		= bpf_get_netns_cookie_sock_addr,
4185 	.gpl_only	= false,
4186 	.ret_type	= RET_INTEGER,
4187 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4188 };
4189 
4190 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4191 {
4192 	struct sock *sk = sk_to_full_sk(skb->sk);
4193 	kuid_t kuid;
4194 
4195 	if (!sk || !sk_fullsock(sk))
4196 		return overflowuid;
4197 	kuid = sock_net_uid(sock_net(sk), sk);
4198 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4199 }
4200 
4201 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4202 	.func           = bpf_get_socket_uid,
4203 	.gpl_only       = false,
4204 	.ret_type       = RET_INTEGER,
4205 	.arg1_type      = ARG_PTR_TO_CTX,
4206 };
4207 
4208 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, u64, flags,
4209 	   void *, data, u64, size)
4210 {
4211 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
4212 		return -EINVAL;
4213 
4214 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
4215 }
4216 
4217 static const struct bpf_func_proto bpf_event_output_data_proto =  {
4218 	.func		= bpf_event_output_data,
4219 	.gpl_only       = true,
4220 	.ret_type       = RET_INTEGER,
4221 	.arg1_type      = ARG_PTR_TO_CTX,
4222 	.arg2_type      = ARG_CONST_MAP_PTR,
4223 	.arg3_type      = ARG_ANYTHING,
4224 	.arg4_type      = ARG_PTR_TO_MEM,
4225 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4226 };
4227 
4228 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4229 	   int, level, int, optname, char *, optval, int, optlen)
4230 {
4231 	struct sock *sk = bpf_sock->sk;
4232 	int ret = 0;
4233 	int val;
4234 
4235 	if (!sk_fullsock(sk))
4236 		return -EINVAL;
4237 
4238 	if (level == SOL_SOCKET) {
4239 		if (optlen != sizeof(int))
4240 			return -EINVAL;
4241 		val = *((int *)optval);
4242 
4243 		/* Only some socketops are supported */
4244 		switch (optname) {
4245 		case SO_RCVBUF:
4246 			val = min_t(u32, val, sysctl_rmem_max);
4247 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4248 			WRITE_ONCE(sk->sk_rcvbuf,
4249 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4250 			break;
4251 		case SO_SNDBUF:
4252 			val = min_t(u32, val, sysctl_wmem_max);
4253 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4254 			WRITE_ONCE(sk->sk_sndbuf,
4255 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4256 			break;
4257 		case SO_MAX_PACING_RATE: /* 32bit version */
4258 			if (val != ~0U)
4259 				cmpxchg(&sk->sk_pacing_status,
4260 					SK_PACING_NONE,
4261 					SK_PACING_NEEDED);
4262 			sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4263 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4264 						 sk->sk_max_pacing_rate);
4265 			break;
4266 		case SO_PRIORITY:
4267 			sk->sk_priority = val;
4268 			break;
4269 		case SO_RCVLOWAT:
4270 			if (val < 0)
4271 				val = INT_MAX;
4272 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4273 			break;
4274 		case SO_MARK:
4275 			if (sk->sk_mark != val) {
4276 				sk->sk_mark = val;
4277 				sk_dst_reset(sk);
4278 			}
4279 			break;
4280 		default:
4281 			ret = -EINVAL;
4282 		}
4283 #ifdef CONFIG_INET
4284 	} else if (level == SOL_IP) {
4285 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4286 			return -EINVAL;
4287 
4288 		val = *((int *)optval);
4289 		/* Only some options are supported */
4290 		switch (optname) {
4291 		case IP_TOS:
4292 			if (val < -1 || val > 0xff) {
4293 				ret = -EINVAL;
4294 			} else {
4295 				struct inet_sock *inet = inet_sk(sk);
4296 
4297 				if (val == -1)
4298 					val = 0;
4299 				inet->tos = val;
4300 			}
4301 			break;
4302 		default:
4303 			ret = -EINVAL;
4304 		}
4305 #if IS_ENABLED(CONFIG_IPV6)
4306 	} else if (level == SOL_IPV6) {
4307 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4308 			return -EINVAL;
4309 
4310 		val = *((int *)optval);
4311 		/* Only some options are supported */
4312 		switch (optname) {
4313 		case IPV6_TCLASS:
4314 			if (val < -1 || val > 0xff) {
4315 				ret = -EINVAL;
4316 			} else {
4317 				struct ipv6_pinfo *np = inet6_sk(sk);
4318 
4319 				if (val == -1)
4320 					val = 0;
4321 				np->tclass = val;
4322 			}
4323 			break;
4324 		default:
4325 			ret = -EINVAL;
4326 		}
4327 #endif
4328 	} else if (level == SOL_TCP &&
4329 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
4330 		if (optname == TCP_CONGESTION) {
4331 			char name[TCP_CA_NAME_MAX];
4332 			bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
4333 
4334 			strncpy(name, optval, min_t(long, optlen,
4335 						    TCP_CA_NAME_MAX-1));
4336 			name[TCP_CA_NAME_MAX-1] = 0;
4337 			ret = tcp_set_congestion_control(sk, name, false,
4338 							 reinit, true);
4339 		} else {
4340 			struct tcp_sock *tp = tcp_sk(sk);
4341 
4342 			if (optlen != sizeof(int))
4343 				return -EINVAL;
4344 
4345 			val = *((int *)optval);
4346 			/* Only some options are supported */
4347 			switch (optname) {
4348 			case TCP_BPF_IW:
4349 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
4350 					ret = -EINVAL;
4351 				else
4352 					tp->snd_cwnd = val;
4353 				break;
4354 			case TCP_BPF_SNDCWND_CLAMP:
4355 				if (val <= 0) {
4356 					ret = -EINVAL;
4357 				} else {
4358 					tp->snd_cwnd_clamp = val;
4359 					tp->snd_ssthresh = val;
4360 				}
4361 				break;
4362 			case TCP_SAVE_SYN:
4363 				if (val < 0 || val > 1)
4364 					ret = -EINVAL;
4365 				else
4366 					tp->save_syn = val;
4367 				break;
4368 			default:
4369 				ret = -EINVAL;
4370 			}
4371 		}
4372 #endif
4373 	} else {
4374 		ret = -EINVAL;
4375 	}
4376 	return ret;
4377 }
4378 
4379 static const struct bpf_func_proto bpf_setsockopt_proto = {
4380 	.func		= bpf_setsockopt,
4381 	.gpl_only	= false,
4382 	.ret_type	= RET_INTEGER,
4383 	.arg1_type	= ARG_PTR_TO_CTX,
4384 	.arg2_type	= ARG_ANYTHING,
4385 	.arg3_type	= ARG_ANYTHING,
4386 	.arg4_type	= ARG_PTR_TO_MEM,
4387 	.arg5_type	= ARG_CONST_SIZE,
4388 };
4389 
4390 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4391 	   int, level, int, optname, char *, optval, int, optlen)
4392 {
4393 	struct sock *sk = bpf_sock->sk;
4394 
4395 	if (!sk_fullsock(sk))
4396 		goto err_clear;
4397 #ifdef CONFIG_INET
4398 	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4399 		struct inet_connection_sock *icsk;
4400 		struct tcp_sock *tp;
4401 
4402 		switch (optname) {
4403 		case TCP_CONGESTION:
4404 			icsk = inet_csk(sk);
4405 
4406 			if (!icsk->icsk_ca_ops || optlen <= 1)
4407 				goto err_clear;
4408 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4409 			optval[optlen - 1] = 0;
4410 			break;
4411 		case TCP_SAVED_SYN:
4412 			tp = tcp_sk(sk);
4413 
4414 			if (optlen <= 0 || !tp->saved_syn ||
4415 			    optlen > tp->saved_syn[0])
4416 				goto err_clear;
4417 			memcpy(optval, tp->saved_syn + 1, optlen);
4418 			break;
4419 		default:
4420 			goto err_clear;
4421 		}
4422 	} else if (level == SOL_IP) {
4423 		struct inet_sock *inet = inet_sk(sk);
4424 
4425 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4426 			goto err_clear;
4427 
4428 		/* Only some options are supported */
4429 		switch (optname) {
4430 		case IP_TOS:
4431 			*((int *)optval) = (int)inet->tos;
4432 			break;
4433 		default:
4434 			goto err_clear;
4435 		}
4436 #if IS_ENABLED(CONFIG_IPV6)
4437 	} else if (level == SOL_IPV6) {
4438 		struct ipv6_pinfo *np = inet6_sk(sk);
4439 
4440 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4441 			goto err_clear;
4442 
4443 		/* Only some options are supported */
4444 		switch (optname) {
4445 		case IPV6_TCLASS:
4446 			*((int *)optval) = (int)np->tclass;
4447 			break;
4448 		default:
4449 			goto err_clear;
4450 		}
4451 #endif
4452 	} else {
4453 		goto err_clear;
4454 	}
4455 	return 0;
4456 #endif
4457 err_clear:
4458 	memset(optval, 0, optlen);
4459 	return -EINVAL;
4460 }
4461 
4462 static const struct bpf_func_proto bpf_getsockopt_proto = {
4463 	.func		= bpf_getsockopt,
4464 	.gpl_only	= false,
4465 	.ret_type	= RET_INTEGER,
4466 	.arg1_type	= ARG_PTR_TO_CTX,
4467 	.arg2_type	= ARG_ANYTHING,
4468 	.arg3_type	= ARG_ANYTHING,
4469 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
4470 	.arg5_type	= ARG_CONST_SIZE,
4471 };
4472 
4473 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4474 	   int, argval)
4475 {
4476 	struct sock *sk = bpf_sock->sk;
4477 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4478 
4479 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4480 		return -EINVAL;
4481 
4482 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4483 
4484 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4485 }
4486 
4487 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4488 	.func		= bpf_sock_ops_cb_flags_set,
4489 	.gpl_only	= false,
4490 	.ret_type	= RET_INTEGER,
4491 	.arg1_type	= ARG_PTR_TO_CTX,
4492 	.arg2_type	= ARG_ANYTHING,
4493 };
4494 
4495 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4496 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4497 
4498 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4499 	   int, addr_len)
4500 {
4501 #ifdef CONFIG_INET
4502 	struct sock *sk = ctx->sk;
4503 	int err;
4504 
4505 	/* Binding to port can be expensive so it's prohibited in the helper.
4506 	 * Only binding to IP is supported.
4507 	 */
4508 	err = -EINVAL;
4509 	if (addr_len < offsetofend(struct sockaddr, sa_family))
4510 		return err;
4511 	if (addr->sa_family == AF_INET) {
4512 		if (addr_len < sizeof(struct sockaddr_in))
4513 			return err;
4514 		if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4515 			return err;
4516 		return __inet_bind(sk, addr, addr_len, true, false);
4517 #if IS_ENABLED(CONFIG_IPV6)
4518 	} else if (addr->sa_family == AF_INET6) {
4519 		if (addr_len < SIN6_LEN_RFC2133)
4520 			return err;
4521 		if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4522 			return err;
4523 		/* ipv6_bpf_stub cannot be NULL, since it's called from
4524 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4525 		 */
4526 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4527 #endif /* CONFIG_IPV6 */
4528 	}
4529 #endif /* CONFIG_INET */
4530 
4531 	return -EAFNOSUPPORT;
4532 }
4533 
4534 static const struct bpf_func_proto bpf_bind_proto = {
4535 	.func		= bpf_bind,
4536 	.gpl_only	= false,
4537 	.ret_type	= RET_INTEGER,
4538 	.arg1_type	= ARG_PTR_TO_CTX,
4539 	.arg2_type	= ARG_PTR_TO_MEM,
4540 	.arg3_type	= ARG_CONST_SIZE,
4541 };
4542 
4543 #ifdef CONFIG_XFRM
4544 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4545 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
4546 {
4547 	const struct sec_path *sp = skb_sec_path(skb);
4548 	const struct xfrm_state *x;
4549 
4550 	if (!sp || unlikely(index >= sp->len || flags))
4551 		goto err_clear;
4552 
4553 	x = sp->xvec[index];
4554 
4555 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4556 		goto err_clear;
4557 
4558 	to->reqid = x->props.reqid;
4559 	to->spi = x->id.spi;
4560 	to->family = x->props.family;
4561 	to->ext = 0;
4562 
4563 	if (to->family == AF_INET6) {
4564 		memcpy(to->remote_ipv6, x->props.saddr.a6,
4565 		       sizeof(to->remote_ipv6));
4566 	} else {
4567 		to->remote_ipv4 = x->props.saddr.a4;
4568 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4569 	}
4570 
4571 	return 0;
4572 err_clear:
4573 	memset(to, 0, size);
4574 	return -EINVAL;
4575 }
4576 
4577 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4578 	.func		= bpf_skb_get_xfrm_state,
4579 	.gpl_only	= false,
4580 	.ret_type	= RET_INTEGER,
4581 	.arg1_type	= ARG_PTR_TO_CTX,
4582 	.arg2_type	= ARG_ANYTHING,
4583 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4584 	.arg4_type	= ARG_CONST_SIZE,
4585 	.arg5_type	= ARG_ANYTHING,
4586 };
4587 #endif
4588 
4589 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4590 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4591 				  const struct neighbour *neigh,
4592 				  const struct net_device *dev)
4593 {
4594 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
4595 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4596 	params->h_vlan_TCI = 0;
4597 	params->h_vlan_proto = 0;
4598 	params->ifindex = dev->ifindex;
4599 
4600 	return 0;
4601 }
4602 #endif
4603 
4604 #if IS_ENABLED(CONFIG_INET)
4605 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4606 			       u32 flags, bool check_mtu)
4607 {
4608 	struct fib_nh_common *nhc;
4609 	struct in_device *in_dev;
4610 	struct neighbour *neigh;
4611 	struct net_device *dev;
4612 	struct fib_result res;
4613 	struct flowi4 fl4;
4614 	int err;
4615 	u32 mtu;
4616 
4617 	dev = dev_get_by_index_rcu(net, params->ifindex);
4618 	if (unlikely(!dev))
4619 		return -ENODEV;
4620 
4621 	/* verify forwarding is enabled on this interface */
4622 	in_dev = __in_dev_get_rcu(dev);
4623 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4624 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4625 
4626 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4627 		fl4.flowi4_iif = 1;
4628 		fl4.flowi4_oif = params->ifindex;
4629 	} else {
4630 		fl4.flowi4_iif = params->ifindex;
4631 		fl4.flowi4_oif = 0;
4632 	}
4633 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4634 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4635 	fl4.flowi4_flags = 0;
4636 
4637 	fl4.flowi4_proto = params->l4_protocol;
4638 	fl4.daddr = params->ipv4_dst;
4639 	fl4.saddr = params->ipv4_src;
4640 	fl4.fl4_sport = params->sport;
4641 	fl4.fl4_dport = params->dport;
4642 
4643 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4644 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4645 		struct fib_table *tb;
4646 
4647 		tb = fib_get_table(net, tbid);
4648 		if (unlikely(!tb))
4649 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4650 
4651 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4652 	} else {
4653 		fl4.flowi4_mark = 0;
4654 		fl4.flowi4_secid = 0;
4655 		fl4.flowi4_tun_key.tun_id = 0;
4656 		fl4.flowi4_uid = sock_net_uid(net, NULL);
4657 
4658 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4659 	}
4660 
4661 	if (err) {
4662 		/* map fib lookup errors to RTN_ type */
4663 		if (err == -EINVAL)
4664 			return BPF_FIB_LKUP_RET_BLACKHOLE;
4665 		if (err == -EHOSTUNREACH)
4666 			return BPF_FIB_LKUP_RET_UNREACHABLE;
4667 		if (err == -EACCES)
4668 			return BPF_FIB_LKUP_RET_PROHIBIT;
4669 
4670 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4671 	}
4672 
4673 	if (res.type != RTN_UNICAST)
4674 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4675 
4676 	if (fib_info_num_path(res.fi) > 1)
4677 		fib_select_path(net, &res, &fl4, NULL);
4678 
4679 	if (check_mtu) {
4680 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4681 		if (params->tot_len > mtu)
4682 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4683 	}
4684 
4685 	nhc = res.nhc;
4686 
4687 	/* do not handle lwt encaps right now */
4688 	if (nhc->nhc_lwtstate)
4689 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4690 
4691 	dev = nhc->nhc_dev;
4692 
4693 	params->rt_metric = res.fi->fib_priority;
4694 
4695 	/* xdp and cls_bpf programs are run in RCU-bh so
4696 	 * rcu_read_lock_bh is not needed here
4697 	 */
4698 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
4699 		if (nhc->nhc_gw_family)
4700 			params->ipv4_dst = nhc->nhc_gw.ipv4;
4701 
4702 		neigh = __ipv4_neigh_lookup_noref(dev,
4703 						 (__force u32)params->ipv4_dst);
4704 	} else {
4705 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
4706 
4707 		params->family = AF_INET6;
4708 		*dst = nhc->nhc_gw.ipv6;
4709 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4710 	}
4711 
4712 	if (!neigh)
4713 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4714 
4715 	return bpf_fib_set_fwd_params(params, neigh, dev);
4716 }
4717 #endif
4718 
4719 #if IS_ENABLED(CONFIG_IPV6)
4720 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4721 			       u32 flags, bool check_mtu)
4722 {
4723 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4724 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4725 	struct fib6_result res = {};
4726 	struct neighbour *neigh;
4727 	struct net_device *dev;
4728 	struct inet6_dev *idev;
4729 	struct flowi6 fl6;
4730 	int strict = 0;
4731 	int oif, err;
4732 	u32 mtu;
4733 
4734 	/* link local addresses are never forwarded */
4735 	if (rt6_need_strict(dst) || rt6_need_strict(src))
4736 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4737 
4738 	dev = dev_get_by_index_rcu(net, params->ifindex);
4739 	if (unlikely(!dev))
4740 		return -ENODEV;
4741 
4742 	idev = __in6_dev_get_safely(dev);
4743 	if (unlikely(!idev || !idev->cnf.forwarding))
4744 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4745 
4746 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4747 		fl6.flowi6_iif = 1;
4748 		oif = fl6.flowi6_oif = params->ifindex;
4749 	} else {
4750 		oif = fl6.flowi6_iif = params->ifindex;
4751 		fl6.flowi6_oif = 0;
4752 		strict = RT6_LOOKUP_F_HAS_SADDR;
4753 	}
4754 	fl6.flowlabel = params->flowinfo;
4755 	fl6.flowi6_scope = 0;
4756 	fl6.flowi6_flags = 0;
4757 	fl6.mp_hash = 0;
4758 
4759 	fl6.flowi6_proto = params->l4_protocol;
4760 	fl6.daddr = *dst;
4761 	fl6.saddr = *src;
4762 	fl6.fl6_sport = params->sport;
4763 	fl6.fl6_dport = params->dport;
4764 
4765 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4766 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4767 		struct fib6_table *tb;
4768 
4769 		tb = ipv6_stub->fib6_get_table(net, tbid);
4770 		if (unlikely(!tb))
4771 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4772 
4773 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
4774 						   strict);
4775 	} else {
4776 		fl6.flowi6_mark = 0;
4777 		fl6.flowi6_secid = 0;
4778 		fl6.flowi6_tun_key.tun_id = 0;
4779 		fl6.flowi6_uid = sock_net_uid(net, NULL);
4780 
4781 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
4782 	}
4783 
4784 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
4785 		     res.f6i == net->ipv6.fib6_null_entry))
4786 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4787 
4788 	switch (res.fib6_type) {
4789 	/* only unicast is forwarded */
4790 	case RTN_UNICAST:
4791 		break;
4792 	case RTN_BLACKHOLE:
4793 		return BPF_FIB_LKUP_RET_BLACKHOLE;
4794 	case RTN_UNREACHABLE:
4795 		return BPF_FIB_LKUP_RET_UNREACHABLE;
4796 	case RTN_PROHIBIT:
4797 		return BPF_FIB_LKUP_RET_PROHIBIT;
4798 	default:
4799 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4800 	}
4801 
4802 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
4803 				    fl6.flowi6_oif != 0, NULL, strict);
4804 
4805 	if (check_mtu) {
4806 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
4807 		if (params->tot_len > mtu)
4808 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4809 	}
4810 
4811 	if (res.nh->fib_nh_lws)
4812 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4813 
4814 	if (res.nh->fib_nh_gw_family)
4815 		*dst = res.nh->fib_nh_gw6;
4816 
4817 	dev = res.nh->fib_nh_dev;
4818 	params->rt_metric = res.f6i->fib6_metric;
4819 
4820 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4821 	 * not needed here.
4822 	 */
4823 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4824 	if (!neigh)
4825 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4826 
4827 	return bpf_fib_set_fwd_params(params, neigh, dev);
4828 }
4829 #endif
4830 
4831 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4832 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
4833 {
4834 	if (plen < sizeof(*params))
4835 		return -EINVAL;
4836 
4837 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4838 		return -EINVAL;
4839 
4840 	switch (params->family) {
4841 #if IS_ENABLED(CONFIG_INET)
4842 	case AF_INET:
4843 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4844 					   flags, true);
4845 #endif
4846 #if IS_ENABLED(CONFIG_IPV6)
4847 	case AF_INET6:
4848 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4849 					   flags, true);
4850 #endif
4851 	}
4852 	return -EAFNOSUPPORT;
4853 }
4854 
4855 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4856 	.func		= bpf_xdp_fib_lookup,
4857 	.gpl_only	= true,
4858 	.ret_type	= RET_INTEGER,
4859 	.arg1_type      = ARG_PTR_TO_CTX,
4860 	.arg2_type      = ARG_PTR_TO_MEM,
4861 	.arg3_type      = ARG_CONST_SIZE,
4862 	.arg4_type	= ARG_ANYTHING,
4863 };
4864 
4865 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4866 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
4867 {
4868 	struct net *net = dev_net(skb->dev);
4869 	int rc = -EAFNOSUPPORT;
4870 
4871 	if (plen < sizeof(*params))
4872 		return -EINVAL;
4873 
4874 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4875 		return -EINVAL;
4876 
4877 	switch (params->family) {
4878 #if IS_ENABLED(CONFIG_INET)
4879 	case AF_INET:
4880 		rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4881 		break;
4882 #endif
4883 #if IS_ENABLED(CONFIG_IPV6)
4884 	case AF_INET6:
4885 		rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4886 		break;
4887 #endif
4888 	}
4889 
4890 	if (!rc) {
4891 		struct net_device *dev;
4892 
4893 		dev = dev_get_by_index_rcu(net, params->ifindex);
4894 		if (!is_skb_forwardable(dev, skb))
4895 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4896 	}
4897 
4898 	return rc;
4899 }
4900 
4901 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4902 	.func		= bpf_skb_fib_lookup,
4903 	.gpl_only	= true,
4904 	.ret_type	= RET_INTEGER,
4905 	.arg1_type      = ARG_PTR_TO_CTX,
4906 	.arg2_type      = ARG_PTR_TO_MEM,
4907 	.arg3_type      = ARG_CONST_SIZE,
4908 	.arg4_type	= ARG_ANYTHING,
4909 };
4910 
4911 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4912 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4913 {
4914 	int err;
4915 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4916 
4917 	if (!seg6_validate_srh(srh, len))
4918 		return -EINVAL;
4919 
4920 	switch (type) {
4921 	case BPF_LWT_ENCAP_SEG6_INLINE:
4922 		if (skb->protocol != htons(ETH_P_IPV6))
4923 			return -EBADMSG;
4924 
4925 		err = seg6_do_srh_inline(skb, srh);
4926 		break;
4927 	case BPF_LWT_ENCAP_SEG6:
4928 		skb_reset_inner_headers(skb);
4929 		skb->encapsulation = 1;
4930 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4931 		break;
4932 	default:
4933 		return -EINVAL;
4934 	}
4935 
4936 	bpf_compute_data_pointers(skb);
4937 	if (err)
4938 		return err;
4939 
4940 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4941 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4942 
4943 	return seg6_lookup_nexthop(skb, NULL, 0);
4944 }
4945 #endif /* CONFIG_IPV6_SEG6_BPF */
4946 
4947 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4948 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
4949 			     bool ingress)
4950 {
4951 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
4952 }
4953 #endif
4954 
4955 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4956 	   u32, len)
4957 {
4958 	switch (type) {
4959 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4960 	case BPF_LWT_ENCAP_SEG6:
4961 	case BPF_LWT_ENCAP_SEG6_INLINE:
4962 		return bpf_push_seg6_encap(skb, type, hdr, len);
4963 #endif
4964 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4965 	case BPF_LWT_ENCAP_IP:
4966 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
4967 #endif
4968 	default:
4969 		return -EINVAL;
4970 	}
4971 }
4972 
4973 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
4974 	   void *, hdr, u32, len)
4975 {
4976 	switch (type) {
4977 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4978 	case BPF_LWT_ENCAP_IP:
4979 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
4980 #endif
4981 	default:
4982 		return -EINVAL;
4983 	}
4984 }
4985 
4986 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
4987 	.func		= bpf_lwt_in_push_encap,
4988 	.gpl_only	= false,
4989 	.ret_type	= RET_INTEGER,
4990 	.arg1_type	= ARG_PTR_TO_CTX,
4991 	.arg2_type	= ARG_ANYTHING,
4992 	.arg3_type	= ARG_PTR_TO_MEM,
4993 	.arg4_type	= ARG_CONST_SIZE
4994 };
4995 
4996 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
4997 	.func		= bpf_lwt_xmit_push_encap,
4998 	.gpl_only	= false,
4999 	.ret_type	= RET_INTEGER,
5000 	.arg1_type	= ARG_PTR_TO_CTX,
5001 	.arg2_type	= ARG_ANYTHING,
5002 	.arg3_type	= ARG_PTR_TO_MEM,
5003 	.arg4_type	= ARG_CONST_SIZE
5004 };
5005 
5006 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5007 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5008 	   const void *, from, u32, len)
5009 {
5010 	struct seg6_bpf_srh_state *srh_state =
5011 		this_cpu_ptr(&seg6_bpf_srh_states);
5012 	struct ipv6_sr_hdr *srh = srh_state->srh;
5013 	void *srh_tlvs, *srh_end, *ptr;
5014 	int srhoff = 0;
5015 
5016 	if (srh == NULL)
5017 		return -EINVAL;
5018 
5019 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5020 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5021 
5022 	ptr = skb->data + offset;
5023 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
5024 		srh_state->valid = false;
5025 	else if (ptr < (void *)&srh->flags ||
5026 		 ptr + len > (void *)&srh->segments)
5027 		return -EFAULT;
5028 
5029 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
5030 		return -EFAULT;
5031 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5032 		return -EINVAL;
5033 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5034 
5035 	memcpy(skb->data + offset, from, len);
5036 	return 0;
5037 }
5038 
5039 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5040 	.func		= bpf_lwt_seg6_store_bytes,
5041 	.gpl_only	= false,
5042 	.ret_type	= RET_INTEGER,
5043 	.arg1_type	= ARG_PTR_TO_CTX,
5044 	.arg2_type	= ARG_ANYTHING,
5045 	.arg3_type	= ARG_PTR_TO_MEM,
5046 	.arg4_type	= ARG_CONST_SIZE
5047 };
5048 
5049 static void bpf_update_srh_state(struct sk_buff *skb)
5050 {
5051 	struct seg6_bpf_srh_state *srh_state =
5052 		this_cpu_ptr(&seg6_bpf_srh_states);
5053 	int srhoff = 0;
5054 
5055 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5056 		srh_state->srh = NULL;
5057 	} else {
5058 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5059 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5060 		srh_state->valid = true;
5061 	}
5062 }
5063 
5064 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5065 	   u32, action, void *, param, u32, param_len)
5066 {
5067 	struct seg6_bpf_srh_state *srh_state =
5068 		this_cpu_ptr(&seg6_bpf_srh_states);
5069 	int hdroff = 0;
5070 	int err;
5071 
5072 	switch (action) {
5073 	case SEG6_LOCAL_ACTION_END_X:
5074 		if (!seg6_bpf_has_valid_srh(skb))
5075 			return -EBADMSG;
5076 		if (param_len != sizeof(struct in6_addr))
5077 			return -EINVAL;
5078 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5079 	case SEG6_LOCAL_ACTION_END_T:
5080 		if (!seg6_bpf_has_valid_srh(skb))
5081 			return -EBADMSG;
5082 		if (param_len != sizeof(int))
5083 			return -EINVAL;
5084 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5085 	case SEG6_LOCAL_ACTION_END_DT6:
5086 		if (!seg6_bpf_has_valid_srh(skb))
5087 			return -EBADMSG;
5088 		if (param_len != sizeof(int))
5089 			return -EINVAL;
5090 
5091 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5092 			return -EBADMSG;
5093 		if (!pskb_pull(skb, hdroff))
5094 			return -EBADMSG;
5095 
5096 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5097 		skb_reset_network_header(skb);
5098 		skb_reset_transport_header(skb);
5099 		skb->encapsulation = 0;
5100 
5101 		bpf_compute_data_pointers(skb);
5102 		bpf_update_srh_state(skb);
5103 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5104 	case SEG6_LOCAL_ACTION_END_B6:
5105 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5106 			return -EBADMSG;
5107 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5108 					  param, param_len);
5109 		if (!err)
5110 			bpf_update_srh_state(skb);
5111 
5112 		return err;
5113 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5114 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5115 			return -EBADMSG;
5116 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5117 					  param, param_len);
5118 		if (!err)
5119 			bpf_update_srh_state(skb);
5120 
5121 		return err;
5122 	default:
5123 		return -EINVAL;
5124 	}
5125 }
5126 
5127 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5128 	.func		= bpf_lwt_seg6_action,
5129 	.gpl_only	= false,
5130 	.ret_type	= RET_INTEGER,
5131 	.arg1_type	= ARG_PTR_TO_CTX,
5132 	.arg2_type	= ARG_ANYTHING,
5133 	.arg3_type	= ARG_PTR_TO_MEM,
5134 	.arg4_type	= ARG_CONST_SIZE
5135 };
5136 
5137 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5138 	   s32, len)
5139 {
5140 	struct seg6_bpf_srh_state *srh_state =
5141 		this_cpu_ptr(&seg6_bpf_srh_states);
5142 	struct ipv6_sr_hdr *srh = srh_state->srh;
5143 	void *srh_end, *srh_tlvs, *ptr;
5144 	struct ipv6hdr *hdr;
5145 	int srhoff = 0;
5146 	int ret;
5147 
5148 	if (unlikely(srh == NULL))
5149 		return -EINVAL;
5150 
5151 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5152 			((srh->first_segment + 1) << 4));
5153 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5154 			srh_state->hdrlen);
5155 	ptr = skb->data + offset;
5156 
5157 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5158 		return -EFAULT;
5159 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5160 		return -EFAULT;
5161 
5162 	if (len > 0) {
5163 		ret = skb_cow_head(skb, len);
5164 		if (unlikely(ret < 0))
5165 			return ret;
5166 
5167 		ret = bpf_skb_net_hdr_push(skb, offset, len);
5168 	} else {
5169 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5170 	}
5171 
5172 	bpf_compute_data_pointers(skb);
5173 	if (unlikely(ret < 0))
5174 		return ret;
5175 
5176 	hdr = (struct ipv6hdr *)skb->data;
5177 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5178 
5179 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5180 		return -EINVAL;
5181 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5182 	srh_state->hdrlen += len;
5183 	srh_state->valid = false;
5184 	return 0;
5185 }
5186 
5187 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5188 	.func		= bpf_lwt_seg6_adjust_srh,
5189 	.gpl_only	= false,
5190 	.ret_type	= RET_INTEGER,
5191 	.arg1_type	= ARG_PTR_TO_CTX,
5192 	.arg2_type	= ARG_ANYTHING,
5193 	.arg3_type	= ARG_ANYTHING,
5194 };
5195 #endif /* CONFIG_IPV6_SEG6_BPF */
5196 
5197 #ifdef CONFIG_INET
5198 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5199 			      int dif, int sdif, u8 family, u8 proto)
5200 {
5201 	bool refcounted = false;
5202 	struct sock *sk = NULL;
5203 
5204 	if (family == AF_INET) {
5205 		__be32 src4 = tuple->ipv4.saddr;
5206 		__be32 dst4 = tuple->ipv4.daddr;
5207 
5208 		if (proto == IPPROTO_TCP)
5209 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5210 					   src4, tuple->ipv4.sport,
5211 					   dst4, tuple->ipv4.dport,
5212 					   dif, sdif, &refcounted);
5213 		else
5214 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5215 					       dst4, tuple->ipv4.dport,
5216 					       dif, sdif, &udp_table, NULL);
5217 #if IS_ENABLED(CONFIG_IPV6)
5218 	} else {
5219 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5220 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5221 
5222 		if (proto == IPPROTO_TCP)
5223 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5224 					    src6, tuple->ipv6.sport,
5225 					    dst6, ntohs(tuple->ipv6.dport),
5226 					    dif, sdif, &refcounted);
5227 		else if (likely(ipv6_bpf_stub))
5228 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5229 							    src6, tuple->ipv6.sport,
5230 							    dst6, tuple->ipv6.dport,
5231 							    dif, sdif,
5232 							    &udp_table, NULL);
5233 #endif
5234 	}
5235 
5236 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5237 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5238 		sk = NULL;
5239 	}
5240 	return sk;
5241 }
5242 
5243 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5244  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5245  * Returns the socket as an 'unsigned long' to simplify the casting in the
5246  * callers to satisfy BPF_CALL declarations.
5247  */
5248 static struct sock *
5249 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5250 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5251 		 u64 flags)
5252 {
5253 	struct sock *sk = NULL;
5254 	u8 family = AF_UNSPEC;
5255 	struct net *net;
5256 	int sdif;
5257 
5258 	if (len == sizeof(tuple->ipv4))
5259 		family = AF_INET;
5260 	else if (len == sizeof(tuple->ipv6))
5261 		family = AF_INET6;
5262 	else
5263 		return NULL;
5264 
5265 	if (unlikely(family == AF_UNSPEC || flags ||
5266 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5267 		goto out;
5268 
5269 	if (family == AF_INET)
5270 		sdif = inet_sdif(skb);
5271 	else
5272 		sdif = inet6_sdif(skb);
5273 
5274 	if ((s32)netns_id < 0) {
5275 		net = caller_net;
5276 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5277 	} else {
5278 		net = get_net_ns_by_id(caller_net, netns_id);
5279 		if (unlikely(!net))
5280 			goto out;
5281 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5282 		put_net(net);
5283 	}
5284 
5285 out:
5286 	return sk;
5287 }
5288 
5289 static struct sock *
5290 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5291 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5292 		u64 flags)
5293 {
5294 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5295 					   ifindex, proto, netns_id, flags);
5296 
5297 	if (sk) {
5298 		sk = sk_to_full_sk(sk);
5299 		if (!sk_fullsock(sk)) {
5300 			sock_gen_put(sk);
5301 			return NULL;
5302 		}
5303 	}
5304 
5305 	return sk;
5306 }
5307 
5308 static struct sock *
5309 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5310 	       u8 proto, u64 netns_id, u64 flags)
5311 {
5312 	struct net *caller_net;
5313 	int ifindex;
5314 
5315 	if (skb->dev) {
5316 		caller_net = dev_net(skb->dev);
5317 		ifindex = skb->dev->ifindex;
5318 	} else {
5319 		caller_net = sock_net(skb->sk);
5320 		ifindex = 0;
5321 	}
5322 
5323 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
5324 				netns_id, flags);
5325 }
5326 
5327 static struct sock *
5328 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5329 	      u8 proto, u64 netns_id, u64 flags)
5330 {
5331 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
5332 					 flags);
5333 
5334 	if (sk) {
5335 		sk = sk_to_full_sk(sk);
5336 		if (!sk_fullsock(sk)) {
5337 			sock_gen_put(sk);
5338 			return NULL;
5339 		}
5340 	}
5341 
5342 	return sk;
5343 }
5344 
5345 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
5346 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5347 {
5348 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
5349 					     netns_id, flags);
5350 }
5351 
5352 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
5353 	.func		= bpf_skc_lookup_tcp,
5354 	.gpl_only	= false,
5355 	.pkt_access	= true,
5356 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
5357 	.arg1_type	= ARG_PTR_TO_CTX,
5358 	.arg2_type	= ARG_PTR_TO_MEM,
5359 	.arg3_type	= ARG_CONST_SIZE,
5360 	.arg4_type	= ARG_ANYTHING,
5361 	.arg5_type	= ARG_ANYTHING,
5362 };
5363 
5364 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5365 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5366 {
5367 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
5368 					    netns_id, flags);
5369 }
5370 
5371 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5372 	.func		= bpf_sk_lookup_tcp,
5373 	.gpl_only	= false,
5374 	.pkt_access	= true,
5375 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5376 	.arg1_type	= ARG_PTR_TO_CTX,
5377 	.arg2_type	= ARG_PTR_TO_MEM,
5378 	.arg3_type	= ARG_CONST_SIZE,
5379 	.arg4_type	= ARG_ANYTHING,
5380 	.arg5_type	= ARG_ANYTHING,
5381 };
5382 
5383 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5384 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5385 {
5386 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
5387 					    netns_id, flags);
5388 }
5389 
5390 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5391 	.func		= bpf_sk_lookup_udp,
5392 	.gpl_only	= false,
5393 	.pkt_access	= true,
5394 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5395 	.arg1_type	= ARG_PTR_TO_CTX,
5396 	.arg2_type	= ARG_PTR_TO_MEM,
5397 	.arg3_type	= ARG_CONST_SIZE,
5398 	.arg4_type	= ARG_ANYTHING,
5399 	.arg5_type	= ARG_ANYTHING,
5400 };
5401 
5402 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5403 {
5404 	if (sk_is_refcounted(sk))
5405 		sock_gen_put(sk);
5406 	return 0;
5407 }
5408 
5409 static const struct bpf_func_proto bpf_sk_release_proto = {
5410 	.func		= bpf_sk_release,
5411 	.gpl_only	= false,
5412 	.ret_type	= RET_INTEGER,
5413 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5414 };
5415 
5416 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5417 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5418 {
5419 	struct net *caller_net = dev_net(ctx->rxq->dev);
5420 	int ifindex = ctx->rxq->dev->ifindex;
5421 
5422 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5423 					      ifindex, IPPROTO_UDP, netns_id,
5424 					      flags);
5425 }
5426 
5427 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5428 	.func           = bpf_xdp_sk_lookup_udp,
5429 	.gpl_only       = false,
5430 	.pkt_access     = true,
5431 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5432 	.arg1_type      = ARG_PTR_TO_CTX,
5433 	.arg2_type      = ARG_PTR_TO_MEM,
5434 	.arg3_type      = ARG_CONST_SIZE,
5435 	.arg4_type      = ARG_ANYTHING,
5436 	.arg5_type      = ARG_ANYTHING,
5437 };
5438 
5439 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
5440 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5441 {
5442 	struct net *caller_net = dev_net(ctx->rxq->dev);
5443 	int ifindex = ctx->rxq->dev->ifindex;
5444 
5445 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
5446 					       ifindex, IPPROTO_TCP, netns_id,
5447 					       flags);
5448 }
5449 
5450 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
5451 	.func           = bpf_xdp_skc_lookup_tcp,
5452 	.gpl_only       = false,
5453 	.pkt_access     = true,
5454 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5455 	.arg1_type      = ARG_PTR_TO_CTX,
5456 	.arg2_type      = ARG_PTR_TO_MEM,
5457 	.arg3_type      = ARG_CONST_SIZE,
5458 	.arg4_type      = ARG_ANYTHING,
5459 	.arg5_type      = ARG_ANYTHING,
5460 };
5461 
5462 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5463 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5464 {
5465 	struct net *caller_net = dev_net(ctx->rxq->dev);
5466 	int ifindex = ctx->rxq->dev->ifindex;
5467 
5468 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5469 					      ifindex, IPPROTO_TCP, netns_id,
5470 					      flags);
5471 }
5472 
5473 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5474 	.func           = bpf_xdp_sk_lookup_tcp,
5475 	.gpl_only       = false,
5476 	.pkt_access     = true,
5477 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5478 	.arg1_type      = ARG_PTR_TO_CTX,
5479 	.arg2_type      = ARG_PTR_TO_MEM,
5480 	.arg3_type      = ARG_CONST_SIZE,
5481 	.arg4_type      = ARG_ANYTHING,
5482 	.arg5_type      = ARG_ANYTHING,
5483 };
5484 
5485 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5486 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5487 {
5488 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
5489 					       sock_net(ctx->sk), 0,
5490 					       IPPROTO_TCP, netns_id, flags);
5491 }
5492 
5493 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
5494 	.func		= bpf_sock_addr_skc_lookup_tcp,
5495 	.gpl_only	= false,
5496 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
5497 	.arg1_type	= ARG_PTR_TO_CTX,
5498 	.arg2_type	= ARG_PTR_TO_MEM,
5499 	.arg3_type	= ARG_CONST_SIZE,
5500 	.arg4_type	= ARG_ANYTHING,
5501 	.arg5_type	= ARG_ANYTHING,
5502 };
5503 
5504 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5505 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5506 {
5507 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5508 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
5509 					      netns_id, flags);
5510 }
5511 
5512 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5513 	.func		= bpf_sock_addr_sk_lookup_tcp,
5514 	.gpl_only	= false,
5515 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5516 	.arg1_type	= ARG_PTR_TO_CTX,
5517 	.arg2_type	= ARG_PTR_TO_MEM,
5518 	.arg3_type	= ARG_CONST_SIZE,
5519 	.arg4_type	= ARG_ANYTHING,
5520 	.arg5_type	= ARG_ANYTHING,
5521 };
5522 
5523 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5524 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5525 {
5526 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5527 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
5528 					      netns_id, flags);
5529 }
5530 
5531 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5532 	.func		= bpf_sock_addr_sk_lookup_udp,
5533 	.gpl_only	= false,
5534 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5535 	.arg1_type	= ARG_PTR_TO_CTX,
5536 	.arg2_type	= ARG_PTR_TO_MEM,
5537 	.arg3_type	= ARG_CONST_SIZE,
5538 	.arg4_type	= ARG_ANYTHING,
5539 	.arg5_type	= ARG_ANYTHING,
5540 };
5541 
5542 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5543 				  struct bpf_insn_access_aux *info)
5544 {
5545 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
5546 					  icsk_retransmits))
5547 		return false;
5548 
5549 	if (off % size != 0)
5550 		return false;
5551 
5552 	switch (off) {
5553 	case offsetof(struct bpf_tcp_sock, bytes_received):
5554 	case offsetof(struct bpf_tcp_sock, bytes_acked):
5555 		return size == sizeof(__u64);
5556 	default:
5557 		return size == sizeof(__u32);
5558 	}
5559 }
5560 
5561 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
5562 				    const struct bpf_insn *si,
5563 				    struct bpf_insn *insn_buf,
5564 				    struct bpf_prog *prog, u32 *target_size)
5565 {
5566 	struct bpf_insn *insn = insn_buf;
5567 
5568 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
5569 	do {								\
5570 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
5571 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
5572 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
5573 				      si->dst_reg, si->src_reg,		\
5574 				      offsetof(struct tcp_sock, FIELD)); \
5575 	} while (0)
5576 
5577 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
5578 	do {								\
5579 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
5580 					  FIELD) >			\
5581 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
5582 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
5583 					struct inet_connection_sock,	\
5584 					FIELD),				\
5585 				      si->dst_reg, si->src_reg,		\
5586 				      offsetof(				\
5587 					struct inet_connection_sock,	\
5588 					FIELD));			\
5589 	} while (0)
5590 
5591 	if (insn > insn_buf)
5592 		return insn - insn_buf;
5593 
5594 	switch (si->off) {
5595 	case offsetof(struct bpf_tcp_sock, rtt_min):
5596 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
5597 			     sizeof(struct minmax));
5598 		BUILD_BUG_ON(sizeof(struct minmax) <
5599 			     sizeof(struct minmax_sample));
5600 
5601 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5602 				      offsetof(struct tcp_sock, rtt_min) +
5603 				      offsetof(struct minmax_sample, v));
5604 		break;
5605 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
5606 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
5607 		break;
5608 	case offsetof(struct bpf_tcp_sock, srtt_us):
5609 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
5610 		break;
5611 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
5612 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
5613 		break;
5614 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
5615 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
5616 		break;
5617 	case offsetof(struct bpf_tcp_sock, snd_nxt):
5618 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
5619 		break;
5620 	case offsetof(struct bpf_tcp_sock, snd_una):
5621 		BPF_TCP_SOCK_GET_COMMON(snd_una);
5622 		break;
5623 	case offsetof(struct bpf_tcp_sock, mss_cache):
5624 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
5625 		break;
5626 	case offsetof(struct bpf_tcp_sock, ecn_flags):
5627 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
5628 		break;
5629 	case offsetof(struct bpf_tcp_sock, rate_delivered):
5630 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
5631 		break;
5632 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
5633 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
5634 		break;
5635 	case offsetof(struct bpf_tcp_sock, packets_out):
5636 		BPF_TCP_SOCK_GET_COMMON(packets_out);
5637 		break;
5638 	case offsetof(struct bpf_tcp_sock, retrans_out):
5639 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
5640 		break;
5641 	case offsetof(struct bpf_tcp_sock, total_retrans):
5642 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
5643 		break;
5644 	case offsetof(struct bpf_tcp_sock, segs_in):
5645 		BPF_TCP_SOCK_GET_COMMON(segs_in);
5646 		break;
5647 	case offsetof(struct bpf_tcp_sock, data_segs_in):
5648 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
5649 		break;
5650 	case offsetof(struct bpf_tcp_sock, segs_out):
5651 		BPF_TCP_SOCK_GET_COMMON(segs_out);
5652 		break;
5653 	case offsetof(struct bpf_tcp_sock, data_segs_out):
5654 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
5655 		break;
5656 	case offsetof(struct bpf_tcp_sock, lost_out):
5657 		BPF_TCP_SOCK_GET_COMMON(lost_out);
5658 		break;
5659 	case offsetof(struct bpf_tcp_sock, sacked_out):
5660 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
5661 		break;
5662 	case offsetof(struct bpf_tcp_sock, bytes_received):
5663 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
5664 		break;
5665 	case offsetof(struct bpf_tcp_sock, bytes_acked):
5666 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
5667 		break;
5668 	case offsetof(struct bpf_tcp_sock, dsack_dups):
5669 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
5670 		break;
5671 	case offsetof(struct bpf_tcp_sock, delivered):
5672 		BPF_TCP_SOCK_GET_COMMON(delivered);
5673 		break;
5674 	case offsetof(struct bpf_tcp_sock, delivered_ce):
5675 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
5676 		break;
5677 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
5678 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
5679 		break;
5680 	}
5681 
5682 	return insn - insn_buf;
5683 }
5684 
5685 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
5686 {
5687 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
5688 		return (unsigned long)sk;
5689 
5690 	return (unsigned long)NULL;
5691 }
5692 
5693 const struct bpf_func_proto bpf_tcp_sock_proto = {
5694 	.func		= bpf_tcp_sock,
5695 	.gpl_only	= false,
5696 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
5697 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5698 };
5699 
5700 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
5701 {
5702 	sk = sk_to_full_sk(sk);
5703 
5704 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
5705 		return (unsigned long)sk;
5706 
5707 	return (unsigned long)NULL;
5708 }
5709 
5710 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
5711 	.func		= bpf_get_listener_sock,
5712 	.gpl_only	= false,
5713 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5714 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5715 };
5716 
5717 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
5718 {
5719 	unsigned int iphdr_len;
5720 
5721 	if (skb->protocol == cpu_to_be16(ETH_P_IP))
5722 		iphdr_len = sizeof(struct iphdr);
5723 	else if (skb->protocol == cpu_to_be16(ETH_P_IPV6))
5724 		iphdr_len = sizeof(struct ipv6hdr);
5725 	else
5726 		return 0;
5727 
5728 	if (skb_headlen(skb) < iphdr_len)
5729 		return 0;
5730 
5731 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
5732 		return 0;
5733 
5734 	return INET_ECN_set_ce(skb);
5735 }
5736 
5737 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5738 				  struct bpf_insn_access_aux *info)
5739 {
5740 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
5741 		return false;
5742 
5743 	if (off % size != 0)
5744 		return false;
5745 
5746 	switch (off) {
5747 	default:
5748 		return size == sizeof(__u32);
5749 	}
5750 }
5751 
5752 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
5753 				    const struct bpf_insn *si,
5754 				    struct bpf_insn *insn_buf,
5755 				    struct bpf_prog *prog, u32 *target_size)
5756 {
5757 	struct bpf_insn *insn = insn_buf;
5758 
5759 #define BPF_XDP_SOCK_GET(FIELD)						\
5760 	do {								\
5761 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
5762 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
5763 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
5764 				      si->dst_reg, si->src_reg,		\
5765 				      offsetof(struct xdp_sock, FIELD)); \
5766 	} while (0)
5767 
5768 	switch (si->off) {
5769 	case offsetof(struct bpf_xdp_sock, queue_id):
5770 		BPF_XDP_SOCK_GET(queue_id);
5771 		break;
5772 	}
5773 
5774 	return insn - insn_buf;
5775 }
5776 
5777 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
5778 	.func           = bpf_skb_ecn_set_ce,
5779 	.gpl_only       = false,
5780 	.ret_type       = RET_INTEGER,
5781 	.arg1_type      = ARG_PTR_TO_CTX,
5782 };
5783 
5784 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5785 	   struct tcphdr *, th, u32, th_len)
5786 {
5787 #ifdef CONFIG_SYN_COOKIES
5788 	u32 cookie;
5789 	int ret;
5790 
5791 	if (unlikely(th_len < sizeof(*th)))
5792 		return -EINVAL;
5793 
5794 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
5795 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5796 		return -EINVAL;
5797 
5798 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5799 		return -EINVAL;
5800 
5801 	if (!th->ack || th->rst || th->syn)
5802 		return -ENOENT;
5803 
5804 	if (tcp_synq_no_recent_overflow(sk))
5805 		return -ENOENT;
5806 
5807 	cookie = ntohl(th->ack_seq) - 1;
5808 
5809 	switch (sk->sk_family) {
5810 	case AF_INET:
5811 		if (unlikely(iph_len < sizeof(struct iphdr)))
5812 			return -EINVAL;
5813 
5814 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
5815 		break;
5816 
5817 #if IS_BUILTIN(CONFIG_IPV6)
5818 	case AF_INET6:
5819 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5820 			return -EINVAL;
5821 
5822 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
5823 		break;
5824 #endif /* CONFIG_IPV6 */
5825 
5826 	default:
5827 		return -EPROTONOSUPPORT;
5828 	}
5829 
5830 	if (ret > 0)
5831 		return 0;
5832 
5833 	return -ENOENT;
5834 #else
5835 	return -ENOTSUPP;
5836 #endif
5837 }
5838 
5839 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
5840 	.func		= bpf_tcp_check_syncookie,
5841 	.gpl_only	= true,
5842 	.pkt_access	= true,
5843 	.ret_type	= RET_INTEGER,
5844 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5845 	.arg2_type	= ARG_PTR_TO_MEM,
5846 	.arg3_type	= ARG_CONST_SIZE,
5847 	.arg4_type	= ARG_PTR_TO_MEM,
5848 	.arg5_type	= ARG_CONST_SIZE,
5849 };
5850 
5851 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5852 	   struct tcphdr *, th, u32, th_len)
5853 {
5854 #ifdef CONFIG_SYN_COOKIES
5855 	u32 cookie;
5856 	u16 mss;
5857 
5858 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
5859 		return -EINVAL;
5860 
5861 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5862 		return -EINVAL;
5863 
5864 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5865 		return -ENOENT;
5866 
5867 	if (!th->syn || th->ack || th->fin || th->rst)
5868 		return -EINVAL;
5869 
5870 	if (unlikely(iph_len < sizeof(struct iphdr)))
5871 		return -EINVAL;
5872 
5873 	/* Both struct iphdr and struct ipv6hdr have the version field at the
5874 	 * same offset so we can cast to the shorter header (struct iphdr).
5875 	 */
5876 	switch (((struct iphdr *)iph)->version) {
5877 	case 4:
5878 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
5879 			return -EINVAL;
5880 
5881 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
5882 		break;
5883 
5884 #if IS_BUILTIN(CONFIG_IPV6)
5885 	case 6:
5886 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5887 			return -EINVAL;
5888 
5889 		if (sk->sk_family != AF_INET6)
5890 			return -EINVAL;
5891 
5892 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
5893 		break;
5894 #endif /* CONFIG_IPV6 */
5895 
5896 	default:
5897 		return -EPROTONOSUPPORT;
5898 	}
5899 	if (mss == 0)
5900 		return -ENOENT;
5901 
5902 	return cookie | ((u64)mss << 32);
5903 #else
5904 	return -EOPNOTSUPP;
5905 #endif /* CONFIG_SYN_COOKIES */
5906 }
5907 
5908 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
5909 	.func		= bpf_tcp_gen_syncookie,
5910 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
5911 	.pkt_access	= true,
5912 	.ret_type	= RET_INTEGER,
5913 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5914 	.arg2_type	= ARG_PTR_TO_MEM,
5915 	.arg3_type	= ARG_CONST_SIZE,
5916 	.arg4_type	= ARG_PTR_TO_MEM,
5917 	.arg5_type	= ARG_CONST_SIZE,
5918 };
5919 
5920 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
5921 {
5922 	if (flags != 0)
5923 		return -EINVAL;
5924 	if (!skb_at_tc_ingress(skb))
5925 		return -EOPNOTSUPP;
5926 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
5927 		return -ENETUNREACH;
5928 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
5929 		return -ESOCKTNOSUPPORT;
5930 	if (sk_is_refcounted(sk) &&
5931 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
5932 		return -ENOENT;
5933 
5934 	skb_orphan(skb);
5935 	skb->sk = sk;
5936 	skb->destructor = sock_pfree;
5937 
5938 	return 0;
5939 }
5940 
5941 static const struct bpf_func_proto bpf_sk_assign_proto = {
5942 	.func		= bpf_sk_assign,
5943 	.gpl_only	= false,
5944 	.ret_type	= RET_INTEGER,
5945 	.arg1_type      = ARG_PTR_TO_CTX,
5946 	.arg2_type      = ARG_PTR_TO_SOCK_COMMON,
5947 	.arg3_type	= ARG_ANYTHING,
5948 };
5949 
5950 #endif /* CONFIG_INET */
5951 
5952 bool bpf_helper_changes_pkt_data(void *func)
5953 {
5954 	if (func == bpf_skb_vlan_push ||
5955 	    func == bpf_skb_vlan_pop ||
5956 	    func == bpf_skb_store_bytes ||
5957 	    func == bpf_skb_change_proto ||
5958 	    func == bpf_skb_change_head ||
5959 	    func == sk_skb_change_head ||
5960 	    func == bpf_skb_change_tail ||
5961 	    func == sk_skb_change_tail ||
5962 	    func == bpf_skb_adjust_room ||
5963 	    func == bpf_skb_pull_data ||
5964 	    func == sk_skb_pull_data ||
5965 	    func == bpf_clone_redirect ||
5966 	    func == bpf_l3_csum_replace ||
5967 	    func == bpf_l4_csum_replace ||
5968 	    func == bpf_xdp_adjust_head ||
5969 	    func == bpf_xdp_adjust_meta ||
5970 	    func == bpf_msg_pull_data ||
5971 	    func == bpf_msg_push_data ||
5972 	    func == bpf_msg_pop_data ||
5973 	    func == bpf_xdp_adjust_tail ||
5974 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5975 	    func == bpf_lwt_seg6_store_bytes ||
5976 	    func == bpf_lwt_seg6_adjust_srh ||
5977 	    func == bpf_lwt_seg6_action ||
5978 #endif
5979 	    func == bpf_lwt_in_push_encap ||
5980 	    func == bpf_lwt_xmit_push_encap)
5981 		return true;
5982 
5983 	return false;
5984 }
5985 
5986 const struct bpf_func_proto *
5987 bpf_base_func_proto(enum bpf_func_id func_id)
5988 {
5989 	switch (func_id) {
5990 	case BPF_FUNC_map_lookup_elem:
5991 		return &bpf_map_lookup_elem_proto;
5992 	case BPF_FUNC_map_update_elem:
5993 		return &bpf_map_update_elem_proto;
5994 	case BPF_FUNC_map_delete_elem:
5995 		return &bpf_map_delete_elem_proto;
5996 	case BPF_FUNC_map_push_elem:
5997 		return &bpf_map_push_elem_proto;
5998 	case BPF_FUNC_map_pop_elem:
5999 		return &bpf_map_pop_elem_proto;
6000 	case BPF_FUNC_map_peek_elem:
6001 		return &bpf_map_peek_elem_proto;
6002 	case BPF_FUNC_get_prandom_u32:
6003 		return &bpf_get_prandom_u32_proto;
6004 	case BPF_FUNC_get_smp_processor_id:
6005 		return &bpf_get_raw_smp_processor_id_proto;
6006 	case BPF_FUNC_get_numa_node_id:
6007 		return &bpf_get_numa_node_id_proto;
6008 	case BPF_FUNC_tail_call:
6009 		return &bpf_tail_call_proto;
6010 	case BPF_FUNC_ktime_get_ns:
6011 		return &bpf_ktime_get_ns_proto;
6012 	default:
6013 		break;
6014 	}
6015 
6016 	if (!capable(CAP_SYS_ADMIN))
6017 		return NULL;
6018 
6019 	switch (func_id) {
6020 	case BPF_FUNC_spin_lock:
6021 		return &bpf_spin_lock_proto;
6022 	case BPF_FUNC_spin_unlock:
6023 		return &bpf_spin_unlock_proto;
6024 	case BPF_FUNC_trace_printk:
6025 		return bpf_get_trace_printk_proto();
6026 	case BPF_FUNC_jiffies64:
6027 		return &bpf_jiffies64_proto;
6028 	default:
6029 		return NULL;
6030 	}
6031 }
6032 
6033 static const struct bpf_func_proto *
6034 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6035 {
6036 	switch (func_id) {
6037 	/* inet and inet6 sockets are created in a process
6038 	 * context so there is always a valid uid/gid
6039 	 */
6040 	case BPF_FUNC_get_current_uid_gid:
6041 		return &bpf_get_current_uid_gid_proto;
6042 	case BPF_FUNC_get_local_storage:
6043 		return &bpf_get_local_storage_proto;
6044 	case BPF_FUNC_get_socket_cookie:
6045 		return &bpf_get_socket_cookie_sock_proto;
6046 	case BPF_FUNC_get_netns_cookie:
6047 		return &bpf_get_netns_cookie_sock_proto;
6048 	case BPF_FUNC_perf_event_output:
6049 		return &bpf_event_output_data_proto;
6050 	case BPF_FUNC_get_current_pid_tgid:
6051 		return &bpf_get_current_pid_tgid_proto;
6052 	case BPF_FUNC_get_current_comm:
6053 		return &bpf_get_current_comm_proto;
6054 #ifdef CONFIG_CGROUPS
6055 	case BPF_FUNC_get_current_cgroup_id:
6056 		return &bpf_get_current_cgroup_id_proto;
6057 	case BPF_FUNC_get_current_ancestor_cgroup_id:
6058 		return &bpf_get_current_ancestor_cgroup_id_proto;
6059 #endif
6060 #ifdef CONFIG_CGROUP_NET_CLASSID
6061 	case BPF_FUNC_get_cgroup_classid:
6062 		return &bpf_get_cgroup_classid_curr_proto;
6063 #endif
6064 	default:
6065 		return bpf_base_func_proto(func_id);
6066 	}
6067 }
6068 
6069 static const struct bpf_func_proto *
6070 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6071 {
6072 	switch (func_id) {
6073 	/* inet and inet6 sockets are created in a process
6074 	 * context so there is always a valid uid/gid
6075 	 */
6076 	case BPF_FUNC_get_current_uid_gid:
6077 		return &bpf_get_current_uid_gid_proto;
6078 	case BPF_FUNC_bind:
6079 		switch (prog->expected_attach_type) {
6080 		case BPF_CGROUP_INET4_CONNECT:
6081 		case BPF_CGROUP_INET6_CONNECT:
6082 			return &bpf_bind_proto;
6083 		default:
6084 			return NULL;
6085 		}
6086 	case BPF_FUNC_get_socket_cookie:
6087 		return &bpf_get_socket_cookie_sock_addr_proto;
6088 	case BPF_FUNC_get_netns_cookie:
6089 		return &bpf_get_netns_cookie_sock_addr_proto;
6090 	case BPF_FUNC_get_local_storage:
6091 		return &bpf_get_local_storage_proto;
6092 	case BPF_FUNC_perf_event_output:
6093 		return &bpf_event_output_data_proto;
6094 	case BPF_FUNC_get_current_pid_tgid:
6095 		return &bpf_get_current_pid_tgid_proto;
6096 	case BPF_FUNC_get_current_comm:
6097 		return &bpf_get_current_comm_proto;
6098 #ifdef CONFIG_CGROUPS
6099 	case BPF_FUNC_get_current_cgroup_id:
6100 		return &bpf_get_current_cgroup_id_proto;
6101 	case BPF_FUNC_get_current_ancestor_cgroup_id:
6102 		return &bpf_get_current_ancestor_cgroup_id_proto;
6103 #endif
6104 #ifdef CONFIG_CGROUP_NET_CLASSID
6105 	case BPF_FUNC_get_cgroup_classid:
6106 		return &bpf_get_cgroup_classid_curr_proto;
6107 #endif
6108 #ifdef CONFIG_INET
6109 	case BPF_FUNC_sk_lookup_tcp:
6110 		return &bpf_sock_addr_sk_lookup_tcp_proto;
6111 	case BPF_FUNC_sk_lookup_udp:
6112 		return &bpf_sock_addr_sk_lookup_udp_proto;
6113 	case BPF_FUNC_sk_release:
6114 		return &bpf_sk_release_proto;
6115 	case BPF_FUNC_skc_lookup_tcp:
6116 		return &bpf_sock_addr_skc_lookup_tcp_proto;
6117 #endif /* CONFIG_INET */
6118 	case BPF_FUNC_sk_storage_get:
6119 		return &bpf_sk_storage_get_proto;
6120 	case BPF_FUNC_sk_storage_delete:
6121 		return &bpf_sk_storage_delete_proto;
6122 	default:
6123 		return bpf_base_func_proto(func_id);
6124 	}
6125 }
6126 
6127 static const struct bpf_func_proto *
6128 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6129 {
6130 	switch (func_id) {
6131 	case BPF_FUNC_skb_load_bytes:
6132 		return &bpf_skb_load_bytes_proto;
6133 	case BPF_FUNC_skb_load_bytes_relative:
6134 		return &bpf_skb_load_bytes_relative_proto;
6135 	case BPF_FUNC_get_socket_cookie:
6136 		return &bpf_get_socket_cookie_proto;
6137 	case BPF_FUNC_get_socket_uid:
6138 		return &bpf_get_socket_uid_proto;
6139 	case BPF_FUNC_perf_event_output:
6140 		return &bpf_skb_event_output_proto;
6141 	default:
6142 		return bpf_base_func_proto(func_id);
6143 	}
6144 }
6145 
6146 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
6147 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
6148 
6149 static const struct bpf_func_proto *
6150 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6151 {
6152 	switch (func_id) {
6153 	case BPF_FUNC_get_local_storage:
6154 		return &bpf_get_local_storage_proto;
6155 	case BPF_FUNC_sk_fullsock:
6156 		return &bpf_sk_fullsock_proto;
6157 	case BPF_FUNC_sk_storage_get:
6158 		return &bpf_sk_storage_get_proto;
6159 	case BPF_FUNC_sk_storage_delete:
6160 		return &bpf_sk_storage_delete_proto;
6161 	case BPF_FUNC_perf_event_output:
6162 		return &bpf_skb_event_output_proto;
6163 #ifdef CONFIG_SOCK_CGROUP_DATA
6164 	case BPF_FUNC_skb_cgroup_id:
6165 		return &bpf_skb_cgroup_id_proto;
6166 #endif
6167 #ifdef CONFIG_INET
6168 	case BPF_FUNC_tcp_sock:
6169 		return &bpf_tcp_sock_proto;
6170 	case BPF_FUNC_get_listener_sock:
6171 		return &bpf_get_listener_sock_proto;
6172 	case BPF_FUNC_skb_ecn_set_ce:
6173 		return &bpf_skb_ecn_set_ce_proto;
6174 #endif
6175 	default:
6176 		return sk_filter_func_proto(func_id, prog);
6177 	}
6178 }
6179 
6180 static const struct bpf_func_proto *
6181 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6182 {
6183 	switch (func_id) {
6184 	case BPF_FUNC_skb_store_bytes:
6185 		return &bpf_skb_store_bytes_proto;
6186 	case BPF_FUNC_skb_load_bytes:
6187 		return &bpf_skb_load_bytes_proto;
6188 	case BPF_FUNC_skb_load_bytes_relative:
6189 		return &bpf_skb_load_bytes_relative_proto;
6190 	case BPF_FUNC_skb_pull_data:
6191 		return &bpf_skb_pull_data_proto;
6192 	case BPF_FUNC_csum_diff:
6193 		return &bpf_csum_diff_proto;
6194 	case BPF_FUNC_csum_update:
6195 		return &bpf_csum_update_proto;
6196 	case BPF_FUNC_l3_csum_replace:
6197 		return &bpf_l3_csum_replace_proto;
6198 	case BPF_FUNC_l4_csum_replace:
6199 		return &bpf_l4_csum_replace_proto;
6200 	case BPF_FUNC_clone_redirect:
6201 		return &bpf_clone_redirect_proto;
6202 	case BPF_FUNC_get_cgroup_classid:
6203 		return &bpf_get_cgroup_classid_proto;
6204 	case BPF_FUNC_skb_vlan_push:
6205 		return &bpf_skb_vlan_push_proto;
6206 	case BPF_FUNC_skb_vlan_pop:
6207 		return &bpf_skb_vlan_pop_proto;
6208 	case BPF_FUNC_skb_change_proto:
6209 		return &bpf_skb_change_proto_proto;
6210 	case BPF_FUNC_skb_change_type:
6211 		return &bpf_skb_change_type_proto;
6212 	case BPF_FUNC_skb_adjust_room:
6213 		return &bpf_skb_adjust_room_proto;
6214 	case BPF_FUNC_skb_change_tail:
6215 		return &bpf_skb_change_tail_proto;
6216 	case BPF_FUNC_skb_get_tunnel_key:
6217 		return &bpf_skb_get_tunnel_key_proto;
6218 	case BPF_FUNC_skb_set_tunnel_key:
6219 		return bpf_get_skb_set_tunnel_proto(func_id);
6220 	case BPF_FUNC_skb_get_tunnel_opt:
6221 		return &bpf_skb_get_tunnel_opt_proto;
6222 	case BPF_FUNC_skb_set_tunnel_opt:
6223 		return bpf_get_skb_set_tunnel_proto(func_id);
6224 	case BPF_FUNC_redirect:
6225 		return &bpf_redirect_proto;
6226 	case BPF_FUNC_get_route_realm:
6227 		return &bpf_get_route_realm_proto;
6228 	case BPF_FUNC_get_hash_recalc:
6229 		return &bpf_get_hash_recalc_proto;
6230 	case BPF_FUNC_set_hash_invalid:
6231 		return &bpf_set_hash_invalid_proto;
6232 	case BPF_FUNC_set_hash:
6233 		return &bpf_set_hash_proto;
6234 	case BPF_FUNC_perf_event_output:
6235 		return &bpf_skb_event_output_proto;
6236 	case BPF_FUNC_get_smp_processor_id:
6237 		return &bpf_get_smp_processor_id_proto;
6238 	case BPF_FUNC_skb_under_cgroup:
6239 		return &bpf_skb_under_cgroup_proto;
6240 	case BPF_FUNC_get_socket_cookie:
6241 		return &bpf_get_socket_cookie_proto;
6242 	case BPF_FUNC_get_socket_uid:
6243 		return &bpf_get_socket_uid_proto;
6244 	case BPF_FUNC_fib_lookup:
6245 		return &bpf_skb_fib_lookup_proto;
6246 	case BPF_FUNC_sk_fullsock:
6247 		return &bpf_sk_fullsock_proto;
6248 	case BPF_FUNC_sk_storage_get:
6249 		return &bpf_sk_storage_get_proto;
6250 	case BPF_FUNC_sk_storage_delete:
6251 		return &bpf_sk_storage_delete_proto;
6252 #ifdef CONFIG_XFRM
6253 	case BPF_FUNC_skb_get_xfrm_state:
6254 		return &bpf_skb_get_xfrm_state_proto;
6255 #endif
6256 #ifdef CONFIG_SOCK_CGROUP_DATA
6257 	case BPF_FUNC_skb_cgroup_id:
6258 		return &bpf_skb_cgroup_id_proto;
6259 	case BPF_FUNC_skb_ancestor_cgroup_id:
6260 		return &bpf_skb_ancestor_cgroup_id_proto;
6261 #endif
6262 #ifdef CONFIG_INET
6263 	case BPF_FUNC_sk_lookup_tcp:
6264 		return &bpf_sk_lookup_tcp_proto;
6265 	case BPF_FUNC_sk_lookup_udp:
6266 		return &bpf_sk_lookup_udp_proto;
6267 	case BPF_FUNC_sk_release:
6268 		return &bpf_sk_release_proto;
6269 	case BPF_FUNC_tcp_sock:
6270 		return &bpf_tcp_sock_proto;
6271 	case BPF_FUNC_get_listener_sock:
6272 		return &bpf_get_listener_sock_proto;
6273 	case BPF_FUNC_skc_lookup_tcp:
6274 		return &bpf_skc_lookup_tcp_proto;
6275 	case BPF_FUNC_tcp_check_syncookie:
6276 		return &bpf_tcp_check_syncookie_proto;
6277 	case BPF_FUNC_skb_ecn_set_ce:
6278 		return &bpf_skb_ecn_set_ce_proto;
6279 	case BPF_FUNC_tcp_gen_syncookie:
6280 		return &bpf_tcp_gen_syncookie_proto;
6281 	case BPF_FUNC_sk_assign:
6282 		return &bpf_sk_assign_proto;
6283 #endif
6284 	default:
6285 		return bpf_base_func_proto(func_id);
6286 	}
6287 }
6288 
6289 static const struct bpf_func_proto *
6290 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6291 {
6292 	switch (func_id) {
6293 	case BPF_FUNC_perf_event_output:
6294 		return &bpf_xdp_event_output_proto;
6295 	case BPF_FUNC_get_smp_processor_id:
6296 		return &bpf_get_smp_processor_id_proto;
6297 	case BPF_FUNC_csum_diff:
6298 		return &bpf_csum_diff_proto;
6299 	case BPF_FUNC_xdp_adjust_head:
6300 		return &bpf_xdp_adjust_head_proto;
6301 	case BPF_FUNC_xdp_adjust_meta:
6302 		return &bpf_xdp_adjust_meta_proto;
6303 	case BPF_FUNC_redirect:
6304 		return &bpf_xdp_redirect_proto;
6305 	case BPF_FUNC_redirect_map:
6306 		return &bpf_xdp_redirect_map_proto;
6307 	case BPF_FUNC_xdp_adjust_tail:
6308 		return &bpf_xdp_adjust_tail_proto;
6309 	case BPF_FUNC_fib_lookup:
6310 		return &bpf_xdp_fib_lookup_proto;
6311 #ifdef CONFIG_INET
6312 	case BPF_FUNC_sk_lookup_udp:
6313 		return &bpf_xdp_sk_lookup_udp_proto;
6314 	case BPF_FUNC_sk_lookup_tcp:
6315 		return &bpf_xdp_sk_lookup_tcp_proto;
6316 	case BPF_FUNC_sk_release:
6317 		return &bpf_sk_release_proto;
6318 	case BPF_FUNC_skc_lookup_tcp:
6319 		return &bpf_xdp_skc_lookup_tcp_proto;
6320 	case BPF_FUNC_tcp_check_syncookie:
6321 		return &bpf_tcp_check_syncookie_proto;
6322 	case BPF_FUNC_tcp_gen_syncookie:
6323 		return &bpf_tcp_gen_syncookie_proto;
6324 #endif
6325 	default:
6326 		return bpf_base_func_proto(func_id);
6327 	}
6328 }
6329 
6330 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
6331 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
6332 
6333 static const struct bpf_func_proto *
6334 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6335 {
6336 	switch (func_id) {
6337 	case BPF_FUNC_setsockopt:
6338 		return &bpf_setsockopt_proto;
6339 	case BPF_FUNC_getsockopt:
6340 		return &bpf_getsockopt_proto;
6341 	case BPF_FUNC_sock_ops_cb_flags_set:
6342 		return &bpf_sock_ops_cb_flags_set_proto;
6343 	case BPF_FUNC_sock_map_update:
6344 		return &bpf_sock_map_update_proto;
6345 	case BPF_FUNC_sock_hash_update:
6346 		return &bpf_sock_hash_update_proto;
6347 	case BPF_FUNC_get_socket_cookie:
6348 		return &bpf_get_socket_cookie_sock_ops_proto;
6349 	case BPF_FUNC_get_local_storage:
6350 		return &bpf_get_local_storage_proto;
6351 	case BPF_FUNC_perf_event_output:
6352 		return &bpf_event_output_data_proto;
6353 	case BPF_FUNC_sk_storage_get:
6354 		return &bpf_sk_storage_get_proto;
6355 	case BPF_FUNC_sk_storage_delete:
6356 		return &bpf_sk_storage_delete_proto;
6357 #ifdef CONFIG_INET
6358 	case BPF_FUNC_tcp_sock:
6359 		return &bpf_tcp_sock_proto;
6360 #endif /* CONFIG_INET */
6361 	default:
6362 		return bpf_base_func_proto(func_id);
6363 	}
6364 }
6365 
6366 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
6367 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
6368 
6369 static const struct bpf_func_proto *
6370 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6371 {
6372 	switch (func_id) {
6373 	case BPF_FUNC_msg_redirect_map:
6374 		return &bpf_msg_redirect_map_proto;
6375 	case BPF_FUNC_msg_redirect_hash:
6376 		return &bpf_msg_redirect_hash_proto;
6377 	case BPF_FUNC_msg_apply_bytes:
6378 		return &bpf_msg_apply_bytes_proto;
6379 	case BPF_FUNC_msg_cork_bytes:
6380 		return &bpf_msg_cork_bytes_proto;
6381 	case BPF_FUNC_msg_pull_data:
6382 		return &bpf_msg_pull_data_proto;
6383 	case BPF_FUNC_msg_push_data:
6384 		return &bpf_msg_push_data_proto;
6385 	case BPF_FUNC_msg_pop_data:
6386 		return &bpf_msg_pop_data_proto;
6387 	default:
6388 		return bpf_base_func_proto(func_id);
6389 	}
6390 }
6391 
6392 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
6393 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
6394 
6395 static const struct bpf_func_proto *
6396 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6397 {
6398 	switch (func_id) {
6399 	case BPF_FUNC_skb_store_bytes:
6400 		return &bpf_skb_store_bytes_proto;
6401 	case BPF_FUNC_skb_load_bytes:
6402 		return &bpf_skb_load_bytes_proto;
6403 	case BPF_FUNC_skb_pull_data:
6404 		return &sk_skb_pull_data_proto;
6405 	case BPF_FUNC_skb_change_tail:
6406 		return &sk_skb_change_tail_proto;
6407 	case BPF_FUNC_skb_change_head:
6408 		return &sk_skb_change_head_proto;
6409 	case BPF_FUNC_get_socket_cookie:
6410 		return &bpf_get_socket_cookie_proto;
6411 	case BPF_FUNC_get_socket_uid:
6412 		return &bpf_get_socket_uid_proto;
6413 	case BPF_FUNC_sk_redirect_map:
6414 		return &bpf_sk_redirect_map_proto;
6415 	case BPF_FUNC_sk_redirect_hash:
6416 		return &bpf_sk_redirect_hash_proto;
6417 	case BPF_FUNC_perf_event_output:
6418 		return &bpf_skb_event_output_proto;
6419 #ifdef CONFIG_INET
6420 	case BPF_FUNC_sk_lookup_tcp:
6421 		return &bpf_sk_lookup_tcp_proto;
6422 	case BPF_FUNC_sk_lookup_udp:
6423 		return &bpf_sk_lookup_udp_proto;
6424 	case BPF_FUNC_sk_release:
6425 		return &bpf_sk_release_proto;
6426 	case BPF_FUNC_skc_lookup_tcp:
6427 		return &bpf_skc_lookup_tcp_proto;
6428 #endif
6429 	default:
6430 		return bpf_base_func_proto(func_id);
6431 	}
6432 }
6433 
6434 static const struct bpf_func_proto *
6435 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6436 {
6437 	switch (func_id) {
6438 	case BPF_FUNC_skb_load_bytes:
6439 		return &bpf_flow_dissector_load_bytes_proto;
6440 	default:
6441 		return bpf_base_func_proto(func_id);
6442 	}
6443 }
6444 
6445 static const struct bpf_func_proto *
6446 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6447 {
6448 	switch (func_id) {
6449 	case BPF_FUNC_skb_load_bytes:
6450 		return &bpf_skb_load_bytes_proto;
6451 	case BPF_FUNC_skb_pull_data:
6452 		return &bpf_skb_pull_data_proto;
6453 	case BPF_FUNC_csum_diff:
6454 		return &bpf_csum_diff_proto;
6455 	case BPF_FUNC_get_cgroup_classid:
6456 		return &bpf_get_cgroup_classid_proto;
6457 	case BPF_FUNC_get_route_realm:
6458 		return &bpf_get_route_realm_proto;
6459 	case BPF_FUNC_get_hash_recalc:
6460 		return &bpf_get_hash_recalc_proto;
6461 	case BPF_FUNC_perf_event_output:
6462 		return &bpf_skb_event_output_proto;
6463 	case BPF_FUNC_get_smp_processor_id:
6464 		return &bpf_get_smp_processor_id_proto;
6465 	case BPF_FUNC_skb_under_cgroup:
6466 		return &bpf_skb_under_cgroup_proto;
6467 	default:
6468 		return bpf_base_func_proto(func_id);
6469 	}
6470 }
6471 
6472 static const struct bpf_func_proto *
6473 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6474 {
6475 	switch (func_id) {
6476 	case BPF_FUNC_lwt_push_encap:
6477 		return &bpf_lwt_in_push_encap_proto;
6478 	default:
6479 		return lwt_out_func_proto(func_id, prog);
6480 	}
6481 }
6482 
6483 static const struct bpf_func_proto *
6484 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6485 {
6486 	switch (func_id) {
6487 	case BPF_FUNC_skb_get_tunnel_key:
6488 		return &bpf_skb_get_tunnel_key_proto;
6489 	case BPF_FUNC_skb_set_tunnel_key:
6490 		return bpf_get_skb_set_tunnel_proto(func_id);
6491 	case BPF_FUNC_skb_get_tunnel_opt:
6492 		return &bpf_skb_get_tunnel_opt_proto;
6493 	case BPF_FUNC_skb_set_tunnel_opt:
6494 		return bpf_get_skb_set_tunnel_proto(func_id);
6495 	case BPF_FUNC_redirect:
6496 		return &bpf_redirect_proto;
6497 	case BPF_FUNC_clone_redirect:
6498 		return &bpf_clone_redirect_proto;
6499 	case BPF_FUNC_skb_change_tail:
6500 		return &bpf_skb_change_tail_proto;
6501 	case BPF_FUNC_skb_change_head:
6502 		return &bpf_skb_change_head_proto;
6503 	case BPF_FUNC_skb_store_bytes:
6504 		return &bpf_skb_store_bytes_proto;
6505 	case BPF_FUNC_csum_update:
6506 		return &bpf_csum_update_proto;
6507 	case BPF_FUNC_l3_csum_replace:
6508 		return &bpf_l3_csum_replace_proto;
6509 	case BPF_FUNC_l4_csum_replace:
6510 		return &bpf_l4_csum_replace_proto;
6511 	case BPF_FUNC_set_hash_invalid:
6512 		return &bpf_set_hash_invalid_proto;
6513 	case BPF_FUNC_lwt_push_encap:
6514 		return &bpf_lwt_xmit_push_encap_proto;
6515 	default:
6516 		return lwt_out_func_proto(func_id, prog);
6517 	}
6518 }
6519 
6520 static const struct bpf_func_proto *
6521 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6522 {
6523 	switch (func_id) {
6524 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6525 	case BPF_FUNC_lwt_seg6_store_bytes:
6526 		return &bpf_lwt_seg6_store_bytes_proto;
6527 	case BPF_FUNC_lwt_seg6_action:
6528 		return &bpf_lwt_seg6_action_proto;
6529 	case BPF_FUNC_lwt_seg6_adjust_srh:
6530 		return &bpf_lwt_seg6_adjust_srh_proto;
6531 #endif
6532 	default:
6533 		return lwt_out_func_proto(func_id, prog);
6534 	}
6535 }
6536 
6537 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
6538 				    const struct bpf_prog *prog,
6539 				    struct bpf_insn_access_aux *info)
6540 {
6541 	const int size_default = sizeof(__u32);
6542 
6543 	if (off < 0 || off >= sizeof(struct __sk_buff))
6544 		return false;
6545 
6546 	/* The verifier guarantees that size > 0. */
6547 	if (off % size != 0)
6548 		return false;
6549 
6550 	switch (off) {
6551 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6552 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
6553 			return false;
6554 		break;
6555 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
6556 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
6557 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
6558 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
6559 	case bpf_ctx_range(struct __sk_buff, data):
6560 	case bpf_ctx_range(struct __sk_buff, data_meta):
6561 	case bpf_ctx_range(struct __sk_buff, data_end):
6562 		if (size != size_default)
6563 			return false;
6564 		break;
6565 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6566 		return false;
6567 	case bpf_ctx_range(struct __sk_buff, tstamp):
6568 		if (size != sizeof(__u64))
6569 			return false;
6570 		break;
6571 	case offsetof(struct __sk_buff, sk):
6572 		if (type == BPF_WRITE || size != sizeof(__u64))
6573 			return false;
6574 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
6575 		break;
6576 	default:
6577 		/* Only narrow read access allowed for now. */
6578 		if (type == BPF_WRITE) {
6579 			if (size != size_default)
6580 				return false;
6581 		} else {
6582 			bpf_ctx_record_field_size(info, size_default);
6583 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6584 				return false;
6585 		}
6586 	}
6587 
6588 	return true;
6589 }
6590 
6591 static bool sk_filter_is_valid_access(int off, int size,
6592 				      enum bpf_access_type type,
6593 				      const struct bpf_prog *prog,
6594 				      struct bpf_insn_access_aux *info)
6595 {
6596 	switch (off) {
6597 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6598 	case bpf_ctx_range(struct __sk_buff, data):
6599 	case bpf_ctx_range(struct __sk_buff, data_meta):
6600 	case bpf_ctx_range(struct __sk_buff, data_end):
6601 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6602 	case bpf_ctx_range(struct __sk_buff, tstamp):
6603 	case bpf_ctx_range(struct __sk_buff, wire_len):
6604 		return false;
6605 	}
6606 
6607 	if (type == BPF_WRITE) {
6608 		switch (off) {
6609 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6610 			break;
6611 		default:
6612 			return false;
6613 		}
6614 	}
6615 
6616 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6617 }
6618 
6619 static bool cg_skb_is_valid_access(int off, int size,
6620 				   enum bpf_access_type type,
6621 				   const struct bpf_prog *prog,
6622 				   struct bpf_insn_access_aux *info)
6623 {
6624 	switch (off) {
6625 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6626 	case bpf_ctx_range(struct __sk_buff, data_meta):
6627 	case bpf_ctx_range(struct __sk_buff, wire_len):
6628 		return false;
6629 	case bpf_ctx_range(struct __sk_buff, data):
6630 	case bpf_ctx_range(struct __sk_buff, data_end):
6631 		if (!capable(CAP_SYS_ADMIN))
6632 			return false;
6633 		break;
6634 	}
6635 
6636 	if (type == BPF_WRITE) {
6637 		switch (off) {
6638 		case bpf_ctx_range(struct __sk_buff, mark):
6639 		case bpf_ctx_range(struct __sk_buff, priority):
6640 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6641 			break;
6642 		case bpf_ctx_range(struct __sk_buff, tstamp):
6643 			if (!capable(CAP_SYS_ADMIN))
6644 				return false;
6645 			break;
6646 		default:
6647 			return false;
6648 		}
6649 	}
6650 
6651 	switch (off) {
6652 	case bpf_ctx_range(struct __sk_buff, data):
6653 		info->reg_type = PTR_TO_PACKET;
6654 		break;
6655 	case bpf_ctx_range(struct __sk_buff, data_end):
6656 		info->reg_type = PTR_TO_PACKET_END;
6657 		break;
6658 	}
6659 
6660 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6661 }
6662 
6663 static bool lwt_is_valid_access(int off, int size,
6664 				enum bpf_access_type type,
6665 				const struct bpf_prog *prog,
6666 				struct bpf_insn_access_aux *info)
6667 {
6668 	switch (off) {
6669 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6670 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6671 	case bpf_ctx_range(struct __sk_buff, data_meta):
6672 	case bpf_ctx_range(struct __sk_buff, tstamp):
6673 	case bpf_ctx_range(struct __sk_buff, wire_len):
6674 		return false;
6675 	}
6676 
6677 	if (type == BPF_WRITE) {
6678 		switch (off) {
6679 		case bpf_ctx_range(struct __sk_buff, mark):
6680 		case bpf_ctx_range(struct __sk_buff, priority):
6681 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6682 			break;
6683 		default:
6684 			return false;
6685 		}
6686 	}
6687 
6688 	switch (off) {
6689 	case bpf_ctx_range(struct __sk_buff, data):
6690 		info->reg_type = PTR_TO_PACKET;
6691 		break;
6692 	case bpf_ctx_range(struct __sk_buff, data_end):
6693 		info->reg_type = PTR_TO_PACKET_END;
6694 		break;
6695 	}
6696 
6697 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6698 }
6699 
6700 /* Attach type specific accesses */
6701 static bool __sock_filter_check_attach_type(int off,
6702 					    enum bpf_access_type access_type,
6703 					    enum bpf_attach_type attach_type)
6704 {
6705 	switch (off) {
6706 	case offsetof(struct bpf_sock, bound_dev_if):
6707 	case offsetof(struct bpf_sock, mark):
6708 	case offsetof(struct bpf_sock, priority):
6709 		switch (attach_type) {
6710 		case BPF_CGROUP_INET_SOCK_CREATE:
6711 			goto full_access;
6712 		default:
6713 			return false;
6714 		}
6715 	case bpf_ctx_range(struct bpf_sock, src_ip4):
6716 		switch (attach_type) {
6717 		case BPF_CGROUP_INET4_POST_BIND:
6718 			goto read_only;
6719 		default:
6720 			return false;
6721 		}
6722 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6723 		switch (attach_type) {
6724 		case BPF_CGROUP_INET6_POST_BIND:
6725 			goto read_only;
6726 		default:
6727 			return false;
6728 		}
6729 	case bpf_ctx_range(struct bpf_sock, src_port):
6730 		switch (attach_type) {
6731 		case BPF_CGROUP_INET4_POST_BIND:
6732 		case BPF_CGROUP_INET6_POST_BIND:
6733 			goto read_only;
6734 		default:
6735 			return false;
6736 		}
6737 	}
6738 read_only:
6739 	return access_type == BPF_READ;
6740 full_access:
6741 	return true;
6742 }
6743 
6744 bool bpf_sock_common_is_valid_access(int off, int size,
6745 				     enum bpf_access_type type,
6746 				     struct bpf_insn_access_aux *info)
6747 {
6748 	switch (off) {
6749 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
6750 		return false;
6751 	default:
6752 		return bpf_sock_is_valid_access(off, size, type, info);
6753 	}
6754 }
6755 
6756 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6757 			      struct bpf_insn_access_aux *info)
6758 {
6759 	const int size_default = sizeof(__u32);
6760 
6761 	if (off < 0 || off >= sizeof(struct bpf_sock))
6762 		return false;
6763 	if (off % size != 0)
6764 		return false;
6765 
6766 	switch (off) {
6767 	case offsetof(struct bpf_sock, state):
6768 	case offsetof(struct bpf_sock, family):
6769 	case offsetof(struct bpf_sock, type):
6770 	case offsetof(struct bpf_sock, protocol):
6771 	case offsetof(struct bpf_sock, dst_port):
6772 	case offsetof(struct bpf_sock, src_port):
6773 	case bpf_ctx_range(struct bpf_sock, src_ip4):
6774 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6775 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
6776 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
6777 		bpf_ctx_record_field_size(info, size_default);
6778 		return bpf_ctx_narrow_access_ok(off, size, size_default);
6779 	}
6780 
6781 	return size == size_default;
6782 }
6783 
6784 static bool sock_filter_is_valid_access(int off, int size,
6785 					enum bpf_access_type type,
6786 					const struct bpf_prog *prog,
6787 					struct bpf_insn_access_aux *info)
6788 {
6789 	if (!bpf_sock_is_valid_access(off, size, type, info))
6790 		return false;
6791 	return __sock_filter_check_attach_type(off, type,
6792 					       prog->expected_attach_type);
6793 }
6794 
6795 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
6796 			     const struct bpf_prog *prog)
6797 {
6798 	/* Neither direct read nor direct write requires any preliminary
6799 	 * action.
6800 	 */
6801 	return 0;
6802 }
6803 
6804 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
6805 				const struct bpf_prog *prog, int drop_verdict)
6806 {
6807 	struct bpf_insn *insn = insn_buf;
6808 
6809 	if (!direct_write)
6810 		return 0;
6811 
6812 	/* if (!skb->cloned)
6813 	 *       goto start;
6814 	 *
6815 	 * (Fast-path, otherwise approximation that we might be
6816 	 *  a clone, do the rest in helper.)
6817 	 */
6818 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
6819 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
6820 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
6821 
6822 	/* ret = bpf_skb_pull_data(skb, 0); */
6823 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
6824 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
6825 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
6826 			       BPF_FUNC_skb_pull_data);
6827 	/* if (!ret)
6828 	 *      goto restore;
6829 	 * return TC_ACT_SHOT;
6830 	 */
6831 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
6832 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
6833 	*insn++ = BPF_EXIT_INSN();
6834 
6835 	/* restore: */
6836 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
6837 	/* start: */
6838 	*insn++ = prog->insnsi[0];
6839 
6840 	return insn - insn_buf;
6841 }
6842 
6843 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
6844 			  struct bpf_insn *insn_buf)
6845 {
6846 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
6847 	struct bpf_insn *insn = insn_buf;
6848 
6849 	/* We're guaranteed here that CTX is in R6. */
6850 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
6851 	if (!indirect) {
6852 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
6853 	} else {
6854 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
6855 		if (orig->imm)
6856 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
6857 	}
6858 
6859 	switch (BPF_SIZE(orig->code)) {
6860 	case BPF_B:
6861 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
6862 		break;
6863 	case BPF_H:
6864 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
6865 		break;
6866 	case BPF_W:
6867 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
6868 		break;
6869 	}
6870 
6871 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
6872 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
6873 	*insn++ = BPF_EXIT_INSN();
6874 
6875 	return insn - insn_buf;
6876 }
6877 
6878 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
6879 			       const struct bpf_prog *prog)
6880 {
6881 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
6882 }
6883 
6884 static bool tc_cls_act_is_valid_access(int off, int size,
6885 				       enum bpf_access_type type,
6886 				       const struct bpf_prog *prog,
6887 				       struct bpf_insn_access_aux *info)
6888 {
6889 	if (type == BPF_WRITE) {
6890 		switch (off) {
6891 		case bpf_ctx_range(struct __sk_buff, mark):
6892 		case bpf_ctx_range(struct __sk_buff, tc_index):
6893 		case bpf_ctx_range(struct __sk_buff, priority):
6894 		case bpf_ctx_range(struct __sk_buff, tc_classid):
6895 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6896 		case bpf_ctx_range(struct __sk_buff, tstamp):
6897 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
6898 			break;
6899 		default:
6900 			return false;
6901 		}
6902 	}
6903 
6904 	switch (off) {
6905 	case bpf_ctx_range(struct __sk_buff, data):
6906 		info->reg_type = PTR_TO_PACKET;
6907 		break;
6908 	case bpf_ctx_range(struct __sk_buff, data_meta):
6909 		info->reg_type = PTR_TO_PACKET_META;
6910 		break;
6911 	case bpf_ctx_range(struct __sk_buff, data_end):
6912 		info->reg_type = PTR_TO_PACKET_END;
6913 		break;
6914 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6915 		return false;
6916 	}
6917 
6918 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6919 }
6920 
6921 static bool __is_valid_xdp_access(int off, int size)
6922 {
6923 	if (off < 0 || off >= sizeof(struct xdp_md))
6924 		return false;
6925 	if (off % size != 0)
6926 		return false;
6927 	if (size != sizeof(__u32))
6928 		return false;
6929 
6930 	return true;
6931 }
6932 
6933 static bool xdp_is_valid_access(int off, int size,
6934 				enum bpf_access_type type,
6935 				const struct bpf_prog *prog,
6936 				struct bpf_insn_access_aux *info)
6937 {
6938 	if (type == BPF_WRITE) {
6939 		if (bpf_prog_is_dev_bound(prog->aux)) {
6940 			switch (off) {
6941 			case offsetof(struct xdp_md, rx_queue_index):
6942 				return __is_valid_xdp_access(off, size);
6943 			}
6944 		}
6945 		return false;
6946 	}
6947 
6948 	switch (off) {
6949 	case offsetof(struct xdp_md, data):
6950 		info->reg_type = PTR_TO_PACKET;
6951 		break;
6952 	case offsetof(struct xdp_md, data_meta):
6953 		info->reg_type = PTR_TO_PACKET_META;
6954 		break;
6955 	case offsetof(struct xdp_md, data_end):
6956 		info->reg_type = PTR_TO_PACKET_END;
6957 		break;
6958 	}
6959 
6960 	return __is_valid_xdp_access(off, size);
6961 }
6962 
6963 void bpf_warn_invalid_xdp_action(u32 act)
6964 {
6965 	const u32 act_max = XDP_REDIRECT;
6966 
6967 	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
6968 		  act > act_max ? "Illegal" : "Driver unsupported",
6969 		  act);
6970 }
6971 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
6972 
6973 static bool sock_addr_is_valid_access(int off, int size,
6974 				      enum bpf_access_type type,
6975 				      const struct bpf_prog *prog,
6976 				      struct bpf_insn_access_aux *info)
6977 {
6978 	const int size_default = sizeof(__u32);
6979 
6980 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
6981 		return false;
6982 	if (off % size != 0)
6983 		return false;
6984 
6985 	/* Disallow access to IPv6 fields from IPv4 contex and vise
6986 	 * versa.
6987 	 */
6988 	switch (off) {
6989 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6990 		switch (prog->expected_attach_type) {
6991 		case BPF_CGROUP_INET4_BIND:
6992 		case BPF_CGROUP_INET4_CONNECT:
6993 		case BPF_CGROUP_UDP4_SENDMSG:
6994 		case BPF_CGROUP_UDP4_RECVMSG:
6995 			break;
6996 		default:
6997 			return false;
6998 		}
6999 		break;
7000 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7001 		switch (prog->expected_attach_type) {
7002 		case BPF_CGROUP_INET6_BIND:
7003 		case BPF_CGROUP_INET6_CONNECT:
7004 		case BPF_CGROUP_UDP6_SENDMSG:
7005 		case BPF_CGROUP_UDP6_RECVMSG:
7006 			break;
7007 		default:
7008 			return false;
7009 		}
7010 		break;
7011 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7012 		switch (prog->expected_attach_type) {
7013 		case BPF_CGROUP_UDP4_SENDMSG:
7014 			break;
7015 		default:
7016 			return false;
7017 		}
7018 		break;
7019 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7020 				msg_src_ip6[3]):
7021 		switch (prog->expected_attach_type) {
7022 		case BPF_CGROUP_UDP6_SENDMSG:
7023 			break;
7024 		default:
7025 			return false;
7026 		}
7027 		break;
7028 	}
7029 
7030 	switch (off) {
7031 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7032 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7033 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7034 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7035 				msg_src_ip6[3]):
7036 		if (type == BPF_READ) {
7037 			bpf_ctx_record_field_size(info, size_default);
7038 
7039 			if (bpf_ctx_wide_access_ok(off, size,
7040 						   struct bpf_sock_addr,
7041 						   user_ip6))
7042 				return true;
7043 
7044 			if (bpf_ctx_wide_access_ok(off, size,
7045 						   struct bpf_sock_addr,
7046 						   msg_src_ip6))
7047 				return true;
7048 
7049 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7050 				return false;
7051 		} else {
7052 			if (bpf_ctx_wide_access_ok(off, size,
7053 						   struct bpf_sock_addr,
7054 						   user_ip6))
7055 				return true;
7056 
7057 			if (bpf_ctx_wide_access_ok(off, size,
7058 						   struct bpf_sock_addr,
7059 						   msg_src_ip6))
7060 				return true;
7061 
7062 			if (size != size_default)
7063 				return false;
7064 		}
7065 		break;
7066 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
7067 		if (size != size_default)
7068 			return false;
7069 		break;
7070 	case offsetof(struct bpf_sock_addr, sk):
7071 		if (type != BPF_READ)
7072 			return false;
7073 		if (size != sizeof(__u64))
7074 			return false;
7075 		info->reg_type = PTR_TO_SOCKET;
7076 		break;
7077 	default:
7078 		if (type == BPF_READ) {
7079 			if (size != size_default)
7080 				return false;
7081 		} else {
7082 			return false;
7083 		}
7084 	}
7085 
7086 	return true;
7087 }
7088 
7089 static bool sock_ops_is_valid_access(int off, int size,
7090 				     enum bpf_access_type type,
7091 				     const struct bpf_prog *prog,
7092 				     struct bpf_insn_access_aux *info)
7093 {
7094 	const int size_default = sizeof(__u32);
7095 
7096 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
7097 		return false;
7098 
7099 	/* The verifier guarantees that size > 0. */
7100 	if (off % size != 0)
7101 		return false;
7102 
7103 	if (type == BPF_WRITE) {
7104 		switch (off) {
7105 		case offsetof(struct bpf_sock_ops, reply):
7106 		case offsetof(struct bpf_sock_ops, sk_txhash):
7107 			if (size != size_default)
7108 				return false;
7109 			break;
7110 		default:
7111 			return false;
7112 		}
7113 	} else {
7114 		switch (off) {
7115 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
7116 					bytes_acked):
7117 			if (size != sizeof(__u64))
7118 				return false;
7119 			break;
7120 		case offsetof(struct bpf_sock_ops, sk):
7121 			if (size != sizeof(__u64))
7122 				return false;
7123 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
7124 			break;
7125 		default:
7126 			if (size != size_default)
7127 				return false;
7128 			break;
7129 		}
7130 	}
7131 
7132 	return true;
7133 }
7134 
7135 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
7136 			   const struct bpf_prog *prog)
7137 {
7138 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
7139 }
7140 
7141 static bool sk_skb_is_valid_access(int off, int size,
7142 				   enum bpf_access_type type,
7143 				   const struct bpf_prog *prog,
7144 				   struct bpf_insn_access_aux *info)
7145 {
7146 	switch (off) {
7147 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7148 	case bpf_ctx_range(struct __sk_buff, data_meta):
7149 	case bpf_ctx_range(struct __sk_buff, tstamp):
7150 	case bpf_ctx_range(struct __sk_buff, wire_len):
7151 		return false;
7152 	}
7153 
7154 	if (type == BPF_WRITE) {
7155 		switch (off) {
7156 		case bpf_ctx_range(struct __sk_buff, tc_index):
7157 		case bpf_ctx_range(struct __sk_buff, priority):
7158 			break;
7159 		default:
7160 			return false;
7161 		}
7162 	}
7163 
7164 	switch (off) {
7165 	case bpf_ctx_range(struct __sk_buff, mark):
7166 		return false;
7167 	case bpf_ctx_range(struct __sk_buff, data):
7168 		info->reg_type = PTR_TO_PACKET;
7169 		break;
7170 	case bpf_ctx_range(struct __sk_buff, data_end):
7171 		info->reg_type = PTR_TO_PACKET_END;
7172 		break;
7173 	}
7174 
7175 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7176 }
7177 
7178 static bool sk_msg_is_valid_access(int off, int size,
7179 				   enum bpf_access_type type,
7180 				   const struct bpf_prog *prog,
7181 				   struct bpf_insn_access_aux *info)
7182 {
7183 	if (type == BPF_WRITE)
7184 		return false;
7185 
7186 	if (off % size != 0)
7187 		return false;
7188 
7189 	switch (off) {
7190 	case offsetof(struct sk_msg_md, data):
7191 		info->reg_type = PTR_TO_PACKET;
7192 		if (size != sizeof(__u64))
7193 			return false;
7194 		break;
7195 	case offsetof(struct sk_msg_md, data_end):
7196 		info->reg_type = PTR_TO_PACKET_END;
7197 		if (size != sizeof(__u64))
7198 			return false;
7199 		break;
7200 	case bpf_ctx_range(struct sk_msg_md, family):
7201 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
7202 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
7203 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
7204 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
7205 	case bpf_ctx_range(struct sk_msg_md, remote_port):
7206 	case bpf_ctx_range(struct sk_msg_md, local_port):
7207 	case bpf_ctx_range(struct sk_msg_md, size):
7208 		if (size != sizeof(__u32))
7209 			return false;
7210 		break;
7211 	default:
7212 		return false;
7213 	}
7214 	return true;
7215 }
7216 
7217 static bool flow_dissector_is_valid_access(int off, int size,
7218 					   enum bpf_access_type type,
7219 					   const struct bpf_prog *prog,
7220 					   struct bpf_insn_access_aux *info)
7221 {
7222 	const int size_default = sizeof(__u32);
7223 
7224 	if (off < 0 || off >= sizeof(struct __sk_buff))
7225 		return false;
7226 
7227 	if (type == BPF_WRITE)
7228 		return false;
7229 
7230 	switch (off) {
7231 	case bpf_ctx_range(struct __sk_buff, data):
7232 		if (size != size_default)
7233 			return false;
7234 		info->reg_type = PTR_TO_PACKET;
7235 		return true;
7236 	case bpf_ctx_range(struct __sk_buff, data_end):
7237 		if (size != size_default)
7238 			return false;
7239 		info->reg_type = PTR_TO_PACKET_END;
7240 		return true;
7241 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7242 		if (size != sizeof(__u64))
7243 			return false;
7244 		info->reg_type = PTR_TO_FLOW_KEYS;
7245 		return true;
7246 	default:
7247 		return false;
7248 	}
7249 }
7250 
7251 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
7252 					     const struct bpf_insn *si,
7253 					     struct bpf_insn *insn_buf,
7254 					     struct bpf_prog *prog,
7255 					     u32 *target_size)
7256 
7257 {
7258 	struct bpf_insn *insn = insn_buf;
7259 
7260 	switch (si->off) {
7261 	case offsetof(struct __sk_buff, data):
7262 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
7263 				      si->dst_reg, si->src_reg,
7264 				      offsetof(struct bpf_flow_dissector, data));
7265 		break;
7266 
7267 	case offsetof(struct __sk_buff, data_end):
7268 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
7269 				      si->dst_reg, si->src_reg,
7270 				      offsetof(struct bpf_flow_dissector, data_end));
7271 		break;
7272 
7273 	case offsetof(struct __sk_buff, flow_keys):
7274 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
7275 				      si->dst_reg, si->src_reg,
7276 				      offsetof(struct bpf_flow_dissector, flow_keys));
7277 		break;
7278 	}
7279 
7280 	return insn - insn_buf;
7281 }
7282 
7283 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
7284 						  struct bpf_insn *insn)
7285 {
7286 	/* si->dst_reg = skb_shinfo(SKB); */
7287 #ifdef NET_SKBUFF_DATA_USES_OFFSET
7288 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7289 			      BPF_REG_AX, si->src_reg,
7290 			      offsetof(struct sk_buff, end));
7291 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
7292 			      si->dst_reg, si->src_reg,
7293 			      offsetof(struct sk_buff, head));
7294 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
7295 #else
7296 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7297 			      si->dst_reg, si->src_reg,
7298 			      offsetof(struct sk_buff, end));
7299 #endif
7300 
7301 	return insn;
7302 }
7303 
7304 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
7305 				  const struct bpf_insn *si,
7306 				  struct bpf_insn *insn_buf,
7307 				  struct bpf_prog *prog, u32 *target_size)
7308 {
7309 	struct bpf_insn *insn = insn_buf;
7310 	int off;
7311 
7312 	switch (si->off) {
7313 	case offsetof(struct __sk_buff, len):
7314 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7315 				      bpf_target_off(struct sk_buff, len, 4,
7316 						     target_size));
7317 		break;
7318 
7319 	case offsetof(struct __sk_buff, protocol):
7320 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7321 				      bpf_target_off(struct sk_buff, protocol, 2,
7322 						     target_size));
7323 		break;
7324 
7325 	case offsetof(struct __sk_buff, vlan_proto):
7326 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7327 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
7328 						     target_size));
7329 		break;
7330 
7331 	case offsetof(struct __sk_buff, priority):
7332 		if (type == BPF_WRITE)
7333 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7334 					      bpf_target_off(struct sk_buff, priority, 4,
7335 							     target_size));
7336 		else
7337 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7338 					      bpf_target_off(struct sk_buff, priority, 4,
7339 							     target_size));
7340 		break;
7341 
7342 	case offsetof(struct __sk_buff, ingress_ifindex):
7343 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7344 				      bpf_target_off(struct sk_buff, skb_iif, 4,
7345 						     target_size));
7346 		break;
7347 
7348 	case offsetof(struct __sk_buff, ifindex):
7349 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7350 				      si->dst_reg, si->src_reg,
7351 				      offsetof(struct sk_buff, dev));
7352 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
7353 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7354 				      bpf_target_off(struct net_device, ifindex, 4,
7355 						     target_size));
7356 		break;
7357 
7358 	case offsetof(struct __sk_buff, hash):
7359 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7360 				      bpf_target_off(struct sk_buff, hash, 4,
7361 						     target_size));
7362 		break;
7363 
7364 	case offsetof(struct __sk_buff, mark):
7365 		if (type == BPF_WRITE)
7366 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7367 					      bpf_target_off(struct sk_buff, mark, 4,
7368 							     target_size));
7369 		else
7370 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7371 					      bpf_target_off(struct sk_buff, mark, 4,
7372 							     target_size));
7373 		break;
7374 
7375 	case offsetof(struct __sk_buff, pkt_type):
7376 		*target_size = 1;
7377 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7378 				      PKT_TYPE_OFFSET());
7379 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
7380 #ifdef __BIG_ENDIAN_BITFIELD
7381 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
7382 #endif
7383 		break;
7384 
7385 	case offsetof(struct __sk_buff, queue_mapping):
7386 		if (type == BPF_WRITE) {
7387 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
7388 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7389 					      bpf_target_off(struct sk_buff,
7390 							     queue_mapping,
7391 							     2, target_size));
7392 		} else {
7393 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7394 					      bpf_target_off(struct sk_buff,
7395 							     queue_mapping,
7396 							     2, target_size));
7397 		}
7398 		break;
7399 
7400 	case offsetof(struct __sk_buff, vlan_present):
7401 		*target_size = 1;
7402 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7403 				      PKT_VLAN_PRESENT_OFFSET());
7404 		if (PKT_VLAN_PRESENT_BIT)
7405 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
7406 		if (PKT_VLAN_PRESENT_BIT < 7)
7407 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
7408 		break;
7409 
7410 	case offsetof(struct __sk_buff, vlan_tci):
7411 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7412 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
7413 						     target_size));
7414 		break;
7415 
7416 	case offsetof(struct __sk_buff, cb[0]) ...
7417 	     offsetofend(struct __sk_buff, cb[4]) - 1:
7418 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
7419 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
7420 			      offsetof(struct qdisc_skb_cb, data)) %
7421 			     sizeof(__u64));
7422 
7423 		prog->cb_access = 1;
7424 		off  = si->off;
7425 		off -= offsetof(struct __sk_buff, cb[0]);
7426 		off += offsetof(struct sk_buff, cb);
7427 		off += offsetof(struct qdisc_skb_cb, data);
7428 		if (type == BPF_WRITE)
7429 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
7430 					      si->src_reg, off);
7431 		else
7432 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
7433 					      si->src_reg, off);
7434 		break;
7435 
7436 	case offsetof(struct __sk_buff, tc_classid):
7437 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
7438 
7439 		off  = si->off;
7440 		off -= offsetof(struct __sk_buff, tc_classid);
7441 		off += offsetof(struct sk_buff, cb);
7442 		off += offsetof(struct qdisc_skb_cb, tc_classid);
7443 		*target_size = 2;
7444 		if (type == BPF_WRITE)
7445 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
7446 					      si->src_reg, off);
7447 		else
7448 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
7449 					      si->src_reg, off);
7450 		break;
7451 
7452 	case offsetof(struct __sk_buff, data):
7453 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
7454 				      si->dst_reg, si->src_reg,
7455 				      offsetof(struct sk_buff, data));
7456 		break;
7457 
7458 	case offsetof(struct __sk_buff, data_meta):
7459 		off  = si->off;
7460 		off -= offsetof(struct __sk_buff, data_meta);
7461 		off += offsetof(struct sk_buff, cb);
7462 		off += offsetof(struct bpf_skb_data_end, data_meta);
7463 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7464 				      si->src_reg, off);
7465 		break;
7466 
7467 	case offsetof(struct __sk_buff, data_end):
7468 		off  = si->off;
7469 		off -= offsetof(struct __sk_buff, data_end);
7470 		off += offsetof(struct sk_buff, cb);
7471 		off += offsetof(struct bpf_skb_data_end, data_end);
7472 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7473 				      si->src_reg, off);
7474 		break;
7475 
7476 	case offsetof(struct __sk_buff, tc_index):
7477 #ifdef CONFIG_NET_SCHED
7478 		if (type == BPF_WRITE)
7479 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7480 					      bpf_target_off(struct sk_buff, tc_index, 2,
7481 							     target_size));
7482 		else
7483 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7484 					      bpf_target_off(struct sk_buff, tc_index, 2,
7485 							     target_size));
7486 #else
7487 		*target_size = 2;
7488 		if (type == BPF_WRITE)
7489 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
7490 		else
7491 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7492 #endif
7493 		break;
7494 
7495 	case offsetof(struct __sk_buff, napi_id):
7496 #if defined(CONFIG_NET_RX_BUSY_POLL)
7497 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7498 				      bpf_target_off(struct sk_buff, napi_id, 4,
7499 						     target_size));
7500 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
7501 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7502 #else
7503 		*target_size = 4;
7504 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7505 #endif
7506 		break;
7507 	case offsetof(struct __sk_buff, family):
7508 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
7509 
7510 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7511 				      si->dst_reg, si->src_reg,
7512 				      offsetof(struct sk_buff, sk));
7513 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7514 				      bpf_target_off(struct sock_common,
7515 						     skc_family,
7516 						     2, target_size));
7517 		break;
7518 	case offsetof(struct __sk_buff, remote_ip4):
7519 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
7520 
7521 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7522 				      si->dst_reg, si->src_reg,
7523 				      offsetof(struct sk_buff, sk));
7524 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7525 				      bpf_target_off(struct sock_common,
7526 						     skc_daddr,
7527 						     4, target_size));
7528 		break;
7529 	case offsetof(struct __sk_buff, local_ip4):
7530 		BUILD_BUG_ON(sizeof_field(struct sock_common,
7531 					  skc_rcv_saddr) != 4);
7532 
7533 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7534 				      si->dst_reg, si->src_reg,
7535 				      offsetof(struct sk_buff, sk));
7536 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7537 				      bpf_target_off(struct sock_common,
7538 						     skc_rcv_saddr,
7539 						     4, target_size));
7540 		break;
7541 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
7542 	     offsetof(struct __sk_buff, remote_ip6[3]):
7543 #if IS_ENABLED(CONFIG_IPV6)
7544 		BUILD_BUG_ON(sizeof_field(struct sock_common,
7545 					  skc_v6_daddr.s6_addr32[0]) != 4);
7546 
7547 		off = si->off;
7548 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
7549 
7550 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7551 				      si->dst_reg, si->src_reg,
7552 				      offsetof(struct sk_buff, sk));
7553 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7554 				      offsetof(struct sock_common,
7555 					       skc_v6_daddr.s6_addr32[0]) +
7556 				      off);
7557 #else
7558 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7559 #endif
7560 		break;
7561 	case offsetof(struct __sk_buff, local_ip6[0]) ...
7562 	     offsetof(struct __sk_buff, local_ip6[3]):
7563 #if IS_ENABLED(CONFIG_IPV6)
7564 		BUILD_BUG_ON(sizeof_field(struct sock_common,
7565 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7566 
7567 		off = si->off;
7568 		off -= offsetof(struct __sk_buff, local_ip6[0]);
7569 
7570 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7571 				      si->dst_reg, si->src_reg,
7572 				      offsetof(struct sk_buff, sk));
7573 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7574 				      offsetof(struct sock_common,
7575 					       skc_v6_rcv_saddr.s6_addr32[0]) +
7576 				      off);
7577 #else
7578 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7579 #endif
7580 		break;
7581 
7582 	case offsetof(struct __sk_buff, remote_port):
7583 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
7584 
7585 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7586 				      si->dst_reg, si->src_reg,
7587 				      offsetof(struct sk_buff, sk));
7588 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7589 				      bpf_target_off(struct sock_common,
7590 						     skc_dport,
7591 						     2, target_size));
7592 #ifndef __BIG_ENDIAN_BITFIELD
7593 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7594 #endif
7595 		break;
7596 
7597 	case offsetof(struct __sk_buff, local_port):
7598 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
7599 
7600 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7601 				      si->dst_reg, si->src_reg,
7602 				      offsetof(struct sk_buff, sk));
7603 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7604 				      bpf_target_off(struct sock_common,
7605 						     skc_num, 2, target_size));
7606 		break;
7607 
7608 	case offsetof(struct __sk_buff, tstamp):
7609 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
7610 
7611 		if (type == BPF_WRITE)
7612 			*insn++ = BPF_STX_MEM(BPF_DW,
7613 					      si->dst_reg, si->src_reg,
7614 					      bpf_target_off(struct sk_buff,
7615 							     tstamp, 8,
7616 							     target_size));
7617 		else
7618 			*insn++ = BPF_LDX_MEM(BPF_DW,
7619 					      si->dst_reg, si->src_reg,
7620 					      bpf_target_off(struct sk_buff,
7621 							     tstamp, 8,
7622 							     target_size));
7623 		break;
7624 
7625 	case offsetof(struct __sk_buff, gso_segs):
7626 		insn = bpf_convert_shinfo_access(si, insn);
7627 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
7628 				      si->dst_reg, si->dst_reg,
7629 				      bpf_target_off(struct skb_shared_info,
7630 						     gso_segs, 2,
7631 						     target_size));
7632 		break;
7633 	case offsetof(struct __sk_buff, gso_size):
7634 		insn = bpf_convert_shinfo_access(si, insn);
7635 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
7636 				      si->dst_reg, si->dst_reg,
7637 				      bpf_target_off(struct skb_shared_info,
7638 						     gso_size, 2,
7639 						     target_size));
7640 		break;
7641 	case offsetof(struct __sk_buff, wire_len):
7642 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
7643 
7644 		off = si->off;
7645 		off -= offsetof(struct __sk_buff, wire_len);
7646 		off += offsetof(struct sk_buff, cb);
7647 		off += offsetof(struct qdisc_skb_cb, pkt_len);
7648 		*target_size = 4;
7649 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
7650 		break;
7651 
7652 	case offsetof(struct __sk_buff, sk):
7653 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7654 				      si->dst_reg, si->src_reg,
7655 				      offsetof(struct sk_buff, sk));
7656 		break;
7657 	}
7658 
7659 	return insn - insn_buf;
7660 }
7661 
7662 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
7663 				const struct bpf_insn *si,
7664 				struct bpf_insn *insn_buf,
7665 				struct bpf_prog *prog, u32 *target_size)
7666 {
7667 	struct bpf_insn *insn = insn_buf;
7668 	int off;
7669 
7670 	switch (si->off) {
7671 	case offsetof(struct bpf_sock, bound_dev_if):
7672 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
7673 
7674 		if (type == BPF_WRITE)
7675 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7676 					offsetof(struct sock, sk_bound_dev_if));
7677 		else
7678 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7679 				      offsetof(struct sock, sk_bound_dev_if));
7680 		break;
7681 
7682 	case offsetof(struct bpf_sock, mark):
7683 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
7684 
7685 		if (type == BPF_WRITE)
7686 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7687 					offsetof(struct sock, sk_mark));
7688 		else
7689 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7690 				      offsetof(struct sock, sk_mark));
7691 		break;
7692 
7693 	case offsetof(struct bpf_sock, priority):
7694 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
7695 
7696 		if (type == BPF_WRITE)
7697 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7698 					offsetof(struct sock, sk_priority));
7699 		else
7700 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7701 				      offsetof(struct sock, sk_priority));
7702 		break;
7703 
7704 	case offsetof(struct bpf_sock, family):
7705 		*insn++ = BPF_LDX_MEM(
7706 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
7707 			si->dst_reg, si->src_reg,
7708 			bpf_target_off(struct sock_common,
7709 				       skc_family,
7710 				       sizeof_field(struct sock_common,
7711 						    skc_family),
7712 				       target_size));
7713 		break;
7714 
7715 	case offsetof(struct bpf_sock, type):
7716 		*insn++ = BPF_LDX_MEM(
7717 			BPF_FIELD_SIZEOF(struct sock, sk_type),
7718 			si->dst_reg, si->src_reg,
7719 			bpf_target_off(struct sock, sk_type,
7720 				       sizeof_field(struct sock, sk_type),
7721 				       target_size));
7722 		break;
7723 
7724 	case offsetof(struct bpf_sock, protocol):
7725 		*insn++ = BPF_LDX_MEM(
7726 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
7727 			si->dst_reg, si->src_reg,
7728 			bpf_target_off(struct sock, sk_protocol,
7729 				       sizeof_field(struct sock, sk_protocol),
7730 				       target_size));
7731 		break;
7732 
7733 	case offsetof(struct bpf_sock, src_ip4):
7734 		*insn++ = BPF_LDX_MEM(
7735 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7736 			bpf_target_off(struct sock_common, skc_rcv_saddr,
7737 				       sizeof_field(struct sock_common,
7738 						    skc_rcv_saddr),
7739 				       target_size));
7740 		break;
7741 
7742 	case offsetof(struct bpf_sock, dst_ip4):
7743 		*insn++ = BPF_LDX_MEM(
7744 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7745 			bpf_target_off(struct sock_common, skc_daddr,
7746 				       sizeof_field(struct sock_common,
7747 						    skc_daddr),
7748 				       target_size));
7749 		break;
7750 
7751 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7752 #if IS_ENABLED(CONFIG_IPV6)
7753 		off = si->off;
7754 		off -= offsetof(struct bpf_sock, src_ip6[0]);
7755 		*insn++ = BPF_LDX_MEM(
7756 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7757 			bpf_target_off(
7758 				struct sock_common,
7759 				skc_v6_rcv_saddr.s6_addr32[0],
7760 				sizeof_field(struct sock_common,
7761 					     skc_v6_rcv_saddr.s6_addr32[0]),
7762 				target_size) + off);
7763 #else
7764 		(void)off;
7765 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7766 #endif
7767 		break;
7768 
7769 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7770 #if IS_ENABLED(CONFIG_IPV6)
7771 		off = si->off;
7772 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
7773 		*insn++ = BPF_LDX_MEM(
7774 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7775 			bpf_target_off(struct sock_common,
7776 				       skc_v6_daddr.s6_addr32[0],
7777 				       sizeof_field(struct sock_common,
7778 						    skc_v6_daddr.s6_addr32[0]),
7779 				       target_size) + off);
7780 #else
7781 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7782 		*target_size = 4;
7783 #endif
7784 		break;
7785 
7786 	case offsetof(struct bpf_sock, src_port):
7787 		*insn++ = BPF_LDX_MEM(
7788 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
7789 			si->dst_reg, si->src_reg,
7790 			bpf_target_off(struct sock_common, skc_num,
7791 				       sizeof_field(struct sock_common,
7792 						    skc_num),
7793 				       target_size));
7794 		break;
7795 
7796 	case offsetof(struct bpf_sock, dst_port):
7797 		*insn++ = BPF_LDX_MEM(
7798 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
7799 			si->dst_reg, si->src_reg,
7800 			bpf_target_off(struct sock_common, skc_dport,
7801 				       sizeof_field(struct sock_common,
7802 						    skc_dport),
7803 				       target_size));
7804 		break;
7805 
7806 	case offsetof(struct bpf_sock, state):
7807 		*insn++ = BPF_LDX_MEM(
7808 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
7809 			si->dst_reg, si->src_reg,
7810 			bpf_target_off(struct sock_common, skc_state,
7811 				       sizeof_field(struct sock_common,
7812 						    skc_state),
7813 				       target_size));
7814 		break;
7815 	}
7816 
7817 	return insn - insn_buf;
7818 }
7819 
7820 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
7821 					 const struct bpf_insn *si,
7822 					 struct bpf_insn *insn_buf,
7823 					 struct bpf_prog *prog, u32 *target_size)
7824 {
7825 	struct bpf_insn *insn = insn_buf;
7826 
7827 	switch (si->off) {
7828 	case offsetof(struct __sk_buff, ifindex):
7829 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7830 				      si->dst_reg, si->src_reg,
7831 				      offsetof(struct sk_buff, dev));
7832 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7833 				      bpf_target_off(struct net_device, ifindex, 4,
7834 						     target_size));
7835 		break;
7836 	default:
7837 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
7838 					      target_size);
7839 	}
7840 
7841 	return insn - insn_buf;
7842 }
7843 
7844 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
7845 				  const struct bpf_insn *si,
7846 				  struct bpf_insn *insn_buf,
7847 				  struct bpf_prog *prog, u32 *target_size)
7848 {
7849 	struct bpf_insn *insn = insn_buf;
7850 
7851 	switch (si->off) {
7852 	case offsetof(struct xdp_md, data):
7853 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
7854 				      si->dst_reg, si->src_reg,
7855 				      offsetof(struct xdp_buff, data));
7856 		break;
7857 	case offsetof(struct xdp_md, data_meta):
7858 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
7859 				      si->dst_reg, si->src_reg,
7860 				      offsetof(struct xdp_buff, data_meta));
7861 		break;
7862 	case offsetof(struct xdp_md, data_end):
7863 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
7864 				      si->dst_reg, si->src_reg,
7865 				      offsetof(struct xdp_buff, data_end));
7866 		break;
7867 	case offsetof(struct xdp_md, ingress_ifindex):
7868 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7869 				      si->dst_reg, si->src_reg,
7870 				      offsetof(struct xdp_buff, rxq));
7871 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
7872 				      si->dst_reg, si->dst_reg,
7873 				      offsetof(struct xdp_rxq_info, dev));
7874 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7875 				      offsetof(struct net_device, ifindex));
7876 		break;
7877 	case offsetof(struct xdp_md, rx_queue_index):
7878 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7879 				      si->dst_reg, si->src_reg,
7880 				      offsetof(struct xdp_buff, rxq));
7881 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7882 				      offsetof(struct xdp_rxq_info,
7883 					       queue_index));
7884 		break;
7885 	}
7886 
7887 	return insn - insn_buf;
7888 }
7889 
7890 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
7891  * context Structure, F is Field in context structure that contains a pointer
7892  * to Nested Structure of type NS that has the field NF.
7893  *
7894  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
7895  * sure that SIZE is not greater than actual size of S.F.NF.
7896  *
7897  * If offset OFF is provided, the load happens from that offset relative to
7898  * offset of NF.
7899  */
7900 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
7901 	do {								       \
7902 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
7903 				      si->src_reg, offsetof(S, F));	       \
7904 		*insn++ = BPF_LDX_MEM(					       \
7905 			SIZE, si->dst_reg, si->dst_reg,			       \
7906 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
7907 				       target_size)			       \
7908 				+ OFF);					       \
7909 	} while (0)
7910 
7911 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
7912 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
7913 					     BPF_FIELD_SIZEOF(NS, NF), 0)
7914 
7915 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
7916  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
7917  *
7918  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
7919  * "register" since two registers available in convert_ctx_access are not
7920  * enough: we can't override neither SRC, since it contains value to store, nor
7921  * DST since it contains pointer to context that may be used by later
7922  * instructions. But we need a temporary place to save pointer to nested
7923  * structure whose field we want to store to.
7924  */
7925 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
7926 	do {								       \
7927 		int tmp_reg = BPF_REG_9;				       \
7928 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
7929 			--tmp_reg;					       \
7930 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
7931 			--tmp_reg;					       \
7932 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
7933 				      offsetof(S, TF));			       \
7934 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
7935 				      si->dst_reg, offsetof(S, F));	       \
7936 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
7937 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
7938 				       target_size)			       \
7939 				+ OFF);					       \
7940 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
7941 				      offsetof(S, TF));			       \
7942 	} while (0)
7943 
7944 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
7945 						      TF)		       \
7946 	do {								       \
7947 		if (type == BPF_WRITE) {				       \
7948 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
7949 							 OFF, TF);	       \
7950 		} else {						       \
7951 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
7952 				S, NS, F, NF, SIZE, OFF);  \
7953 		}							       \
7954 	} while (0)
7955 
7956 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
7957 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
7958 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
7959 
7960 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
7961 					const struct bpf_insn *si,
7962 					struct bpf_insn *insn_buf,
7963 					struct bpf_prog *prog, u32 *target_size)
7964 {
7965 	struct bpf_insn *insn = insn_buf;
7966 	int off;
7967 
7968 	switch (si->off) {
7969 	case offsetof(struct bpf_sock_addr, user_family):
7970 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7971 					    struct sockaddr, uaddr, sa_family);
7972 		break;
7973 
7974 	case offsetof(struct bpf_sock_addr, user_ip4):
7975 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7976 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
7977 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
7978 		break;
7979 
7980 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7981 		off = si->off;
7982 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
7983 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7984 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
7985 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
7986 			tmp_reg);
7987 		break;
7988 
7989 	case offsetof(struct bpf_sock_addr, user_port):
7990 		/* To get port we need to know sa_family first and then treat
7991 		 * sockaddr as either sockaddr_in or sockaddr_in6.
7992 		 * Though we can simplify since port field has same offset and
7993 		 * size in both structures.
7994 		 * Here we check this invariant and use just one of the
7995 		 * structures if it's true.
7996 		 */
7997 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
7998 			     offsetof(struct sockaddr_in6, sin6_port));
7999 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
8000 			     sizeof_field(struct sockaddr_in6, sin6_port));
8001 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
8002 						     struct sockaddr_in6, uaddr,
8003 						     sin6_port, tmp_reg);
8004 		break;
8005 
8006 	case offsetof(struct bpf_sock_addr, family):
8007 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8008 					    struct sock, sk, sk_family);
8009 		break;
8010 
8011 	case offsetof(struct bpf_sock_addr, type):
8012 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8013 					    struct sock, sk, sk_type);
8014 		break;
8015 
8016 	case offsetof(struct bpf_sock_addr, protocol):
8017 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8018 					    struct sock, sk, sk_protocol);
8019 		break;
8020 
8021 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
8022 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
8023 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8024 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
8025 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
8026 		break;
8027 
8028 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8029 				msg_src_ip6[3]):
8030 		off = si->off;
8031 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
8032 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
8033 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8034 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
8035 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
8036 		break;
8037 	case offsetof(struct bpf_sock_addr, sk):
8038 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
8039 				      si->dst_reg, si->src_reg,
8040 				      offsetof(struct bpf_sock_addr_kern, sk));
8041 		break;
8042 	}
8043 
8044 	return insn - insn_buf;
8045 }
8046 
8047 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
8048 				       const struct bpf_insn *si,
8049 				       struct bpf_insn *insn_buf,
8050 				       struct bpf_prog *prog,
8051 				       u32 *target_size)
8052 {
8053 	struct bpf_insn *insn = insn_buf;
8054 	int off;
8055 
8056 /* Helper macro for adding read access to tcp_sock or sock fields. */
8057 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
8058 	do {								      \
8059 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
8060 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8061 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8062 						struct bpf_sock_ops_kern,     \
8063 						is_fullsock),		      \
8064 				      si->dst_reg, si->src_reg,		      \
8065 				      offsetof(struct bpf_sock_ops_kern,      \
8066 					       is_fullsock));		      \
8067 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);	      \
8068 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8069 						struct bpf_sock_ops_kern, sk),\
8070 				      si->dst_reg, si->src_reg,		      \
8071 				      offsetof(struct bpf_sock_ops_kern, sk));\
8072 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
8073 						       OBJ_FIELD),	      \
8074 				      si->dst_reg, si->dst_reg,		      \
8075 				      offsetof(OBJ, OBJ_FIELD));	      \
8076 	} while (0)
8077 
8078 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
8079 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
8080 
8081 /* Helper macro for adding write access to tcp_sock or sock fields.
8082  * The macro is called with two registers, dst_reg which contains a pointer
8083  * to ctx (context) and src_reg which contains the value that should be
8084  * stored. However, we need an additional register since we cannot overwrite
8085  * dst_reg because it may be used later in the program.
8086  * Instead we "borrow" one of the other register. We first save its value
8087  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
8088  * it at the end of the macro.
8089  */
8090 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
8091 	do {								      \
8092 		int reg = BPF_REG_9;					      \
8093 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
8094 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8095 		if (si->dst_reg == reg || si->src_reg == reg)		      \
8096 			reg--;						      \
8097 		if (si->dst_reg == reg || si->src_reg == reg)		      \
8098 			reg--;						      \
8099 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
8100 				      offsetof(struct bpf_sock_ops_kern,      \
8101 					       temp));			      \
8102 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8103 						struct bpf_sock_ops_kern,     \
8104 						is_fullsock),		      \
8105 				      reg, si->dst_reg,			      \
8106 				      offsetof(struct bpf_sock_ops_kern,      \
8107 					       is_fullsock));		      \
8108 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
8109 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8110 						struct bpf_sock_ops_kern, sk),\
8111 				      reg, si->dst_reg,			      \
8112 				      offsetof(struct bpf_sock_ops_kern, sk));\
8113 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
8114 				      reg, si->src_reg,			      \
8115 				      offsetof(OBJ, OBJ_FIELD));	      \
8116 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
8117 				      offsetof(struct bpf_sock_ops_kern,      \
8118 					       temp));			      \
8119 	} while (0)
8120 
8121 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
8122 	do {								      \
8123 		if (TYPE == BPF_WRITE)					      \
8124 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
8125 		else							      \
8126 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
8127 	} while (0)
8128 
8129 	if (insn > insn_buf)
8130 		return insn - insn_buf;
8131 
8132 	switch (si->off) {
8133 	case offsetof(struct bpf_sock_ops, op) ...
8134 	     offsetof(struct bpf_sock_ops, replylong[3]):
8135 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, op) !=
8136 			     sizeof_field(struct bpf_sock_ops_kern, op));
8137 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
8138 			     sizeof_field(struct bpf_sock_ops_kern, reply));
8139 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
8140 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
8141 		off = si->off;
8142 		off -= offsetof(struct bpf_sock_ops, op);
8143 		off += offsetof(struct bpf_sock_ops_kern, op);
8144 		if (type == BPF_WRITE)
8145 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8146 					      off);
8147 		else
8148 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8149 					      off);
8150 		break;
8151 
8152 	case offsetof(struct bpf_sock_ops, family):
8153 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8154 
8155 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8156 					      struct bpf_sock_ops_kern, sk),
8157 				      si->dst_reg, si->src_reg,
8158 				      offsetof(struct bpf_sock_ops_kern, sk));
8159 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8160 				      offsetof(struct sock_common, skc_family));
8161 		break;
8162 
8163 	case offsetof(struct bpf_sock_ops, remote_ip4):
8164 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8165 
8166 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8167 						struct bpf_sock_ops_kern, sk),
8168 				      si->dst_reg, si->src_reg,
8169 				      offsetof(struct bpf_sock_ops_kern, sk));
8170 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8171 				      offsetof(struct sock_common, skc_daddr));
8172 		break;
8173 
8174 	case offsetof(struct bpf_sock_ops, local_ip4):
8175 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8176 					  skc_rcv_saddr) != 4);
8177 
8178 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8179 					      struct bpf_sock_ops_kern, sk),
8180 				      si->dst_reg, si->src_reg,
8181 				      offsetof(struct bpf_sock_ops_kern, sk));
8182 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8183 				      offsetof(struct sock_common,
8184 					       skc_rcv_saddr));
8185 		break;
8186 
8187 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
8188 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
8189 #if IS_ENABLED(CONFIG_IPV6)
8190 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8191 					  skc_v6_daddr.s6_addr32[0]) != 4);
8192 
8193 		off = si->off;
8194 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
8195 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8196 						struct bpf_sock_ops_kern, sk),
8197 				      si->dst_reg, si->src_reg,
8198 				      offsetof(struct bpf_sock_ops_kern, sk));
8199 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8200 				      offsetof(struct sock_common,
8201 					       skc_v6_daddr.s6_addr32[0]) +
8202 				      off);
8203 #else
8204 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8205 #endif
8206 		break;
8207 
8208 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
8209 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
8210 #if IS_ENABLED(CONFIG_IPV6)
8211 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8212 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8213 
8214 		off = si->off;
8215 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
8216 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8217 						struct bpf_sock_ops_kern, sk),
8218 				      si->dst_reg, si->src_reg,
8219 				      offsetof(struct bpf_sock_ops_kern, sk));
8220 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8221 				      offsetof(struct sock_common,
8222 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8223 				      off);
8224 #else
8225 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8226 #endif
8227 		break;
8228 
8229 	case offsetof(struct bpf_sock_ops, remote_port):
8230 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8231 
8232 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8233 						struct bpf_sock_ops_kern, sk),
8234 				      si->dst_reg, si->src_reg,
8235 				      offsetof(struct bpf_sock_ops_kern, sk));
8236 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8237 				      offsetof(struct sock_common, skc_dport));
8238 #ifndef __BIG_ENDIAN_BITFIELD
8239 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8240 #endif
8241 		break;
8242 
8243 	case offsetof(struct bpf_sock_ops, local_port):
8244 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8245 
8246 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8247 						struct bpf_sock_ops_kern, sk),
8248 				      si->dst_reg, si->src_reg,
8249 				      offsetof(struct bpf_sock_ops_kern, sk));
8250 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8251 				      offsetof(struct sock_common, skc_num));
8252 		break;
8253 
8254 	case offsetof(struct bpf_sock_ops, is_fullsock):
8255 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8256 						struct bpf_sock_ops_kern,
8257 						is_fullsock),
8258 				      si->dst_reg, si->src_reg,
8259 				      offsetof(struct bpf_sock_ops_kern,
8260 					       is_fullsock));
8261 		break;
8262 
8263 	case offsetof(struct bpf_sock_ops, state):
8264 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
8265 
8266 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8267 						struct bpf_sock_ops_kern, sk),
8268 				      si->dst_reg, si->src_reg,
8269 				      offsetof(struct bpf_sock_ops_kern, sk));
8270 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
8271 				      offsetof(struct sock_common, skc_state));
8272 		break;
8273 
8274 	case offsetof(struct bpf_sock_ops, rtt_min):
8275 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
8276 			     sizeof(struct minmax));
8277 		BUILD_BUG_ON(sizeof(struct minmax) <
8278 			     sizeof(struct minmax_sample));
8279 
8280 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8281 						struct bpf_sock_ops_kern, sk),
8282 				      si->dst_reg, si->src_reg,
8283 				      offsetof(struct bpf_sock_ops_kern, sk));
8284 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8285 				      offsetof(struct tcp_sock, rtt_min) +
8286 				      sizeof_field(struct minmax_sample, t));
8287 		break;
8288 
8289 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
8290 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
8291 				   struct tcp_sock);
8292 		break;
8293 
8294 	case offsetof(struct bpf_sock_ops, sk_txhash):
8295 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
8296 					  struct sock, type);
8297 		break;
8298 	case offsetof(struct bpf_sock_ops, snd_cwnd):
8299 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
8300 		break;
8301 	case offsetof(struct bpf_sock_ops, srtt_us):
8302 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
8303 		break;
8304 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
8305 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
8306 		break;
8307 	case offsetof(struct bpf_sock_ops, rcv_nxt):
8308 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
8309 		break;
8310 	case offsetof(struct bpf_sock_ops, snd_nxt):
8311 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
8312 		break;
8313 	case offsetof(struct bpf_sock_ops, snd_una):
8314 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
8315 		break;
8316 	case offsetof(struct bpf_sock_ops, mss_cache):
8317 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
8318 		break;
8319 	case offsetof(struct bpf_sock_ops, ecn_flags):
8320 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
8321 		break;
8322 	case offsetof(struct bpf_sock_ops, rate_delivered):
8323 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
8324 		break;
8325 	case offsetof(struct bpf_sock_ops, rate_interval_us):
8326 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
8327 		break;
8328 	case offsetof(struct bpf_sock_ops, packets_out):
8329 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
8330 		break;
8331 	case offsetof(struct bpf_sock_ops, retrans_out):
8332 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
8333 		break;
8334 	case offsetof(struct bpf_sock_ops, total_retrans):
8335 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
8336 		break;
8337 	case offsetof(struct bpf_sock_ops, segs_in):
8338 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
8339 		break;
8340 	case offsetof(struct bpf_sock_ops, data_segs_in):
8341 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
8342 		break;
8343 	case offsetof(struct bpf_sock_ops, segs_out):
8344 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
8345 		break;
8346 	case offsetof(struct bpf_sock_ops, data_segs_out):
8347 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
8348 		break;
8349 	case offsetof(struct bpf_sock_ops, lost_out):
8350 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
8351 		break;
8352 	case offsetof(struct bpf_sock_ops, sacked_out):
8353 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
8354 		break;
8355 	case offsetof(struct bpf_sock_ops, bytes_received):
8356 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
8357 		break;
8358 	case offsetof(struct bpf_sock_ops, bytes_acked):
8359 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
8360 		break;
8361 	case offsetof(struct bpf_sock_ops, sk):
8362 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8363 						struct bpf_sock_ops_kern,
8364 						is_fullsock),
8365 				      si->dst_reg, si->src_reg,
8366 				      offsetof(struct bpf_sock_ops_kern,
8367 					       is_fullsock));
8368 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8369 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8370 						struct bpf_sock_ops_kern, sk),
8371 				      si->dst_reg, si->src_reg,
8372 				      offsetof(struct bpf_sock_ops_kern, sk));
8373 		break;
8374 	}
8375 	return insn - insn_buf;
8376 }
8377 
8378 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
8379 				     const struct bpf_insn *si,
8380 				     struct bpf_insn *insn_buf,
8381 				     struct bpf_prog *prog, u32 *target_size)
8382 {
8383 	struct bpf_insn *insn = insn_buf;
8384 	int off;
8385 
8386 	switch (si->off) {
8387 	case offsetof(struct __sk_buff, data_end):
8388 		off  = si->off;
8389 		off -= offsetof(struct __sk_buff, data_end);
8390 		off += offsetof(struct sk_buff, cb);
8391 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
8392 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8393 				      si->src_reg, off);
8394 		break;
8395 	default:
8396 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
8397 					      target_size);
8398 	}
8399 
8400 	return insn - insn_buf;
8401 }
8402 
8403 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
8404 				     const struct bpf_insn *si,
8405 				     struct bpf_insn *insn_buf,
8406 				     struct bpf_prog *prog, u32 *target_size)
8407 {
8408 	struct bpf_insn *insn = insn_buf;
8409 #if IS_ENABLED(CONFIG_IPV6)
8410 	int off;
8411 #endif
8412 
8413 	/* convert ctx uses the fact sg element is first in struct */
8414 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
8415 
8416 	switch (si->off) {
8417 	case offsetof(struct sk_msg_md, data):
8418 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
8419 				      si->dst_reg, si->src_reg,
8420 				      offsetof(struct sk_msg, data));
8421 		break;
8422 	case offsetof(struct sk_msg_md, data_end):
8423 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
8424 				      si->dst_reg, si->src_reg,
8425 				      offsetof(struct sk_msg, data_end));
8426 		break;
8427 	case offsetof(struct sk_msg_md, family):
8428 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8429 
8430 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8431 					      struct sk_msg, sk),
8432 				      si->dst_reg, si->src_reg,
8433 				      offsetof(struct sk_msg, sk));
8434 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8435 				      offsetof(struct sock_common, skc_family));
8436 		break;
8437 
8438 	case offsetof(struct sk_msg_md, remote_ip4):
8439 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8440 
8441 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8442 						struct sk_msg, sk),
8443 				      si->dst_reg, si->src_reg,
8444 				      offsetof(struct sk_msg, sk));
8445 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8446 				      offsetof(struct sock_common, skc_daddr));
8447 		break;
8448 
8449 	case offsetof(struct sk_msg_md, local_ip4):
8450 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8451 					  skc_rcv_saddr) != 4);
8452 
8453 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8454 					      struct sk_msg, sk),
8455 				      si->dst_reg, si->src_reg,
8456 				      offsetof(struct sk_msg, sk));
8457 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8458 				      offsetof(struct sock_common,
8459 					       skc_rcv_saddr));
8460 		break;
8461 
8462 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
8463 	     offsetof(struct sk_msg_md, remote_ip6[3]):
8464 #if IS_ENABLED(CONFIG_IPV6)
8465 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8466 					  skc_v6_daddr.s6_addr32[0]) != 4);
8467 
8468 		off = si->off;
8469 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
8470 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8471 						struct sk_msg, sk),
8472 				      si->dst_reg, si->src_reg,
8473 				      offsetof(struct sk_msg, sk));
8474 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8475 				      offsetof(struct sock_common,
8476 					       skc_v6_daddr.s6_addr32[0]) +
8477 				      off);
8478 #else
8479 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8480 #endif
8481 		break;
8482 
8483 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
8484 	     offsetof(struct sk_msg_md, local_ip6[3]):
8485 #if IS_ENABLED(CONFIG_IPV6)
8486 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8487 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8488 
8489 		off = si->off;
8490 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
8491 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8492 						struct sk_msg, sk),
8493 				      si->dst_reg, si->src_reg,
8494 				      offsetof(struct sk_msg, sk));
8495 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8496 				      offsetof(struct sock_common,
8497 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8498 				      off);
8499 #else
8500 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8501 #endif
8502 		break;
8503 
8504 	case offsetof(struct sk_msg_md, remote_port):
8505 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8506 
8507 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8508 						struct sk_msg, sk),
8509 				      si->dst_reg, si->src_reg,
8510 				      offsetof(struct sk_msg, sk));
8511 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8512 				      offsetof(struct sock_common, skc_dport));
8513 #ifndef __BIG_ENDIAN_BITFIELD
8514 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8515 #endif
8516 		break;
8517 
8518 	case offsetof(struct sk_msg_md, local_port):
8519 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8520 
8521 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8522 						struct sk_msg, sk),
8523 				      si->dst_reg, si->src_reg,
8524 				      offsetof(struct sk_msg, sk));
8525 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8526 				      offsetof(struct sock_common, skc_num));
8527 		break;
8528 
8529 	case offsetof(struct sk_msg_md, size):
8530 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
8531 				      si->dst_reg, si->src_reg,
8532 				      offsetof(struct sk_msg_sg, size));
8533 		break;
8534 	}
8535 
8536 	return insn - insn_buf;
8537 }
8538 
8539 const struct bpf_verifier_ops sk_filter_verifier_ops = {
8540 	.get_func_proto		= sk_filter_func_proto,
8541 	.is_valid_access	= sk_filter_is_valid_access,
8542 	.convert_ctx_access	= bpf_convert_ctx_access,
8543 	.gen_ld_abs		= bpf_gen_ld_abs,
8544 };
8545 
8546 const struct bpf_prog_ops sk_filter_prog_ops = {
8547 	.test_run		= bpf_prog_test_run_skb,
8548 };
8549 
8550 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
8551 	.get_func_proto		= tc_cls_act_func_proto,
8552 	.is_valid_access	= tc_cls_act_is_valid_access,
8553 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
8554 	.gen_prologue		= tc_cls_act_prologue,
8555 	.gen_ld_abs		= bpf_gen_ld_abs,
8556 };
8557 
8558 const struct bpf_prog_ops tc_cls_act_prog_ops = {
8559 	.test_run		= bpf_prog_test_run_skb,
8560 };
8561 
8562 const struct bpf_verifier_ops xdp_verifier_ops = {
8563 	.get_func_proto		= xdp_func_proto,
8564 	.is_valid_access	= xdp_is_valid_access,
8565 	.convert_ctx_access	= xdp_convert_ctx_access,
8566 	.gen_prologue		= bpf_noop_prologue,
8567 };
8568 
8569 const struct bpf_prog_ops xdp_prog_ops = {
8570 	.test_run		= bpf_prog_test_run_xdp,
8571 };
8572 
8573 const struct bpf_verifier_ops cg_skb_verifier_ops = {
8574 	.get_func_proto		= cg_skb_func_proto,
8575 	.is_valid_access	= cg_skb_is_valid_access,
8576 	.convert_ctx_access	= bpf_convert_ctx_access,
8577 };
8578 
8579 const struct bpf_prog_ops cg_skb_prog_ops = {
8580 	.test_run		= bpf_prog_test_run_skb,
8581 };
8582 
8583 const struct bpf_verifier_ops lwt_in_verifier_ops = {
8584 	.get_func_proto		= lwt_in_func_proto,
8585 	.is_valid_access	= lwt_is_valid_access,
8586 	.convert_ctx_access	= bpf_convert_ctx_access,
8587 };
8588 
8589 const struct bpf_prog_ops lwt_in_prog_ops = {
8590 	.test_run		= bpf_prog_test_run_skb,
8591 };
8592 
8593 const struct bpf_verifier_ops lwt_out_verifier_ops = {
8594 	.get_func_proto		= lwt_out_func_proto,
8595 	.is_valid_access	= lwt_is_valid_access,
8596 	.convert_ctx_access	= bpf_convert_ctx_access,
8597 };
8598 
8599 const struct bpf_prog_ops lwt_out_prog_ops = {
8600 	.test_run		= bpf_prog_test_run_skb,
8601 };
8602 
8603 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
8604 	.get_func_proto		= lwt_xmit_func_proto,
8605 	.is_valid_access	= lwt_is_valid_access,
8606 	.convert_ctx_access	= bpf_convert_ctx_access,
8607 	.gen_prologue		= tc_cls_act_prologue,
8608 };
8609 
8610 const struct bpf_prog_ops lwt_xmit_prog_ops = {
8611 	.test_run		= bpf_prog_test_run_skb,
8612 };
8613 
8614 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
8615 	.get_func_proto		= lwt_seg6local_func_proto,
8616 	.is_valid_access	= lwt_is_valid_access,
8617 	.convert_ctx_access	= bpf_convert_ctx_access,
8618 };
8619 
8620 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
8621 	.test_run		= bpf_prog_test_run_skb,
8622 };
8623 
8624 const struct bpf_verifier_ops cg_sock_verifier_ops = {
8625 	.get_func_proto		= sock_filter_func_proto,
8626 	.is_valid_access	= sock_filter_is_valid_access,
8627 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
8628 };
8629 
8630 const struct bpf_prog_ops cg_sock_prog_ops = {
8631 };
8632 
8633 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
8634 	.get_func_proto		= sock_addr_func_proto,
8635 	.is_valid_access	= sock_addr_is_valid_access,
8636 	.convert_ctx_access	= sock_addr_convert_ctx_access,
8637 };
8638 
8639 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
8640 };
8641 
8642 const struct bpf_verifier_ops sock_ops_verifier_ops = {
8643 	.get_func_proto		= sock_ops_func_proto,
8644 	.is_valid_access	= sock_ops_is_valid_access,
8645 	.convert_ctx_access	= sock_ops_convert_ctx_access,
8646 };
8647 
8648 const struct bpf_prog_ops sock_ops_prog_ops = {
8649 };
8650 
8651 const struct bpf_verifier_ops sk_skb_verifier_ops = {
8652 	.get_func_proto		= sk_skb_func_proto,
8653 	.is_valid_access	= sk_skb_is_valid_access,
8654 	.convert_ctx_access	= sk_skb_convert_ctx_access,
8655 	.gen_prologue		= sk_skb_prologue,
8656 };
8657 
8658 const struct bpf_prog_ops sk_skb_prog_ops = {
8659 };
8660 
8661 const struct bpf_verifier_ops sk_msg_verifier_ops = {
8662 	.get_func_proto		= sk_msg_func_proto,
8663 	.is_valid_access	= sk_msg_is_valid_access,
8664 	.convert_ctx_access	= sk_msg_convert_ctx_access,
8665 	.gen_prologue		= bpf_noop_prologue,
8666 };
8667 
8668 const struct bpf_prog_ops sk_msg_prog_ops = {
8669 };
8670 
8671 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
8672 	.get_func_proto		= flow_dissector_func_proto,
8673 	.is_valid_access	= flow_dissector_is_valid_access,
8674 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
8675 };
8676 
8677 const struct bpf_prog_ops flow_dissector_prog_ops = {
8678 	.test_run		= bpf_prog_test_run_flow_dissector,
8679 };
8680 
8681 int sk_detach_filter(struct sock *sk)
8682 {
8683 	int ret = -ENOENT;
8684 	struct sk_filter *filter;
8685 
8686 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
8687 		return -EPERM;
8688 
8689 	filter = rcu_dereference_protected(sk->sk_filter,
8690 					   lockdep_sock_is_held(sk));
8691 	if (filter) {
8692 		RCU_INIT_POINTER(sk->sk_filter, NULL);
8693 		sk_filter_uncharge(sk, filter);
8694 		ret = 0;
8695 	}
8696 
8697 	return ret;
8698 }
8699 EXPORT_SYMBOL_GPL(sk_detach_filter);
8700 
8701 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
8702 		  unsigned int len)
8703 {
8704 	struct sock_fprog_kern *fprog;
8705 	struct sk_filter *filter;
8706 	int ret = 0;
8707 
8708 	lock_sock(sk);
8709 	filter = rcu_dereference_protected(sk->sk_filter,
8710 					   lockdep_sock_is_held(sk));
8711 	if (!filter)
8712 		goto out;
8713 
8714 	/* We're copying the filter that has been originally attached,
8715 	 * so no conversion/decode needed anymore. eBPF programs that
8716 	 * have no original program cannot be dumped through this.
8717 	 */
8718 	ret = -EACCES;
8719 	fprog = filter->prog->orig_prog;
8720 	if (!fprog)
8721 		goto out;
8722 
8723 	ret = fprog->len;
8724 	if (!len)
8725 		/* User space only enquires number of filter blocks. */
8726 		goto out;
8727 
8728 	ret = -EINVAL;
8729 	if (len < fprog->len)
8730 		goto out;
8731 
8732 	ret = -EFAULT;
8733 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
8734 		goto out;
8735 
8736 	/* Instead of bytes, the API requests to return the number
8737 	 * of filter blocks.
8738 	 */
8739 	ret = fprog->len;
8740 out:
8741 	release_sock(sk);
8742 	return ret;
8743 }
8744 
8745 #ifdef CONFIG_INET
8746 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
8747 				    struct sock_reuseport *reuse,
8748 				    struct sock *sk, struct sk_buff *skb,
8749 				    u32 hash)
8750 {
8751 	reuse_kern->skb = skb;
8752 	reuse_kern->sk = sk;
8753 	reuse_kern->selected_sk = NULL;
8754 	reuse_kern->data_end = skb->data + skb_headlen(skb);
8755 	reuse_kern->hash = hash;
8756 	reuse_kern->reuseport_id = reuse->reuseport_id;
8757 	reuse_kern->bind_inany = reuse->bind_inany;
8758 }
8759 
8760 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
8761 				  struct bpf_prog *prog, struct sk_buff *skb,
8762 				  u32 hash)
8763 {
8764 	struct sk_reuseport_kern reuse_kern;
8765 	enum sk_action action;
8766 
8767 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
8768 	action = BPF_PROG_RUN(prog, &reuse_kern);
8769 
8770 	if (action == SK_PASS)
8771 		return reuse_kern.selected_sk;
8772 	else
8773 		return ERR_PTR(-ECONNREFUSED);
8774 }
8775 
8776 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
8777 	   struct bpf_map *, map, void *, key, u32, flags)
8778 {
8779 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
8780 	struct sock_reuseport *reuse;
8781 	struct sock *selected_sk;
8782 
8783 	selected_sk = map->ops->map_lookup_elem(map, key);
8784 	if (!selected_sk)
8785 		return -ENOENT;
8786 
8787 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
8788 	if (!reuse) {
8789 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
8790 		 * The only (!reuse) case here is - the sk has already been
8791 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
8792 		 *
8793 		 * Other maps (e.g. sock_map) do not provide this guarantee and
8794 		 * the sk may never be in the reuseport group to begin with.
8795 		 */
8796 		return is_sockarray ? -ENOENT : -EINVAL;
8797 	}
8798 
8799 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
8800 		struct sock *sk = reuse_kern->sk;
8801 
8802 		if (sk->sk_protocol != selected_sk->sk_protocol)
8803 			return -EPROTOTYPE;
8804 		else if (sk->sk_family != selected_sk->sk_family)
8805 			return -EAFNOSUPPORT;
8806 
8807 		/* Catch all. Likely bound to a different sockaddr. */
8808 		return -EBADFD;
8809 	}
8810 
8811 	reuse_kern->selected_sk = selected_sk;
8812 
8813 	return 0;
8814 }
8815 
8816 static const struct bpf_func_proto sk_select_reuseport_proto = {
8817 	.func           = sk_select_reuseport,
8818 	.gpl_only       = false,
8819 	.ret_type       = RET_INTEGER,
8820 	.arg1_type	= ARG_PTR_TO_CTX,
8821 	.arg2_type      = ARG_CONST_MAP_PTR,
8822 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
8823 	.arg4_type	= ARG_ANYTHING,
8824 };
8825 
8826 BPF_CALL_4(sk_reuseport_load_bytes,
8827 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8828 	   void *, to, u32, len)
8829 {
8830 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
8831 }
8832 
8833 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
8834 	.func		= sk_reuseport_load_bytes,
8835 	.gpl_only	= false,
8836 	.ret_type	= RET_INTEGER,
8837 	.arg1_type	= ARG_PTR_TO_CTX,
8838 	.arg2_type	= ARG_ANYTHING,
8839 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
8840 	.arg4_type	= ARG_CONST_SIZE,
8841 };
8842 
8843 BPF_CALL_5(sk_reuseport_load_bytes_relative,
8844 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8845 	   void *, to, u32, len, u32, start_header)
8846 {
8847 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
8848 					       len, start_header);
8849 }
8850 
8851 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
8852 	.func		= sk_reuseport_load_bytes_relative,
8853 	.gpl_only	= false,
8854 	.ret_type	= RET_INTEGER,
8855 	.arg1_type	= ARG_PTR_TO_CTX,
8856 	.arg2_type	= ARG_ANYTHING,
8857 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
8858 	.arg4_type	= ARG_CONST_SIZE,
8859 	.arg5_type	= ARG_ANYTHING,
8860 };
8861 
8862 static const struct bpf_func_proto *
8863 sk_reuseport_func_proto(enum bpf_func_id func_id,
8864 			const struct bpf_prog *prog)
8865 {
8866 	switch (func_id) {
8867 	case BPF_FUNC_sk_select_reuseport:
8868 		return &sk_select_reuseport_proto;
8869 	case BPF_FUNC_skb_load_bytes:
8870 		return &sk_reuseport_load_bytes_proto;
8871 	case BPF_FUNC_skb_load_bytes_relative:
8872 		return &sk_reuseport_load_bytes_relative_proto;
8873 	default:
8874 		return bpf_base_func_proto(func_id);
8875 	}
8876 }
8877 
8878 static bool
8879 sk_reuseport_is_valid_access(int off, int size,
8880 			     enum bpf_access_type type,
8881 			     const struct bpf_prog *prog,
8882 			     struct bpf_insn_access_aux *info)
8883 {
8884 	const u32 size_default = sizeof(__u32);
8885 
8886 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
8887 	    off % size || type != BPF_READ)
8888 		return false;
8889 
8890 	switch (off) {
8891 	case offsetof(struct sk_reuseport_md, data):
8892 		info->reg_type = PTR_TO_PACKET;
8893 		return size == sizeof(__u64);
8894 
8895 	case offsetof(struct sk_reuseport_md, data_end):
8896 		info->reg_type = PTR_TO_PACKET_END;
8897 		return size == sizeof(__u64);
8898 
8899 	case offsetof(struct sk_reuseport_md, hash):
8900 		return size == size_default;
8901 
8902 	/* Fields that allow narrowing */
8903 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
8904 		if (size < sizeof_field(struct sk_buff, protocol))
8905 			return false;
8906 		/* fall through */
8907 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
8908 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
8909 	case bpf_ctx_range(struct sk_reuseport_md, len):
8910 		bpf_ctx_record_field_size(info, size_default);
8911 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8912 
8913 	default:
8914 		return false;
8915 	}
8916 }
8917 
8918 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
8919 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
8920 			      si->dst_reg, si->src_reg,			\
8921 			      bpf_target_off(struct sk_reuseport_kern, F, \
8922 					     sizeof_field(struct sk_reuseport_kern, F), \
8923 					     target_size));		\
8924 	})
8925 
8926 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
8927 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
8928 				    struct sk_buff,			\
8929 				    skb,				\
8930 				    SKB_FIELD)
8931 
8932 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
8933 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
8934 				    struct sock,			\
8935 				    sk,					\
8936 				    SK_FIELD)
8937 
8938 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
8939 					   const struct bpf_insn *si,
8940 					   struct bpf_insn *insn_buf,
8941 					   struct bpf_prog *prog,
8942 					   u32 *target_size)
8943 {
8944 	struct bpf_insn *insn = insn_buf;
8945 
8946 	switch (si->off) {
8947 	case offsetof(struct sk_reuseport_md, data):
8948 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
8949 		break;
8950 
8951 	case offsetof(struct sk_reuseport_md, len):
8952 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
8953 		break;
8954 
8955 	case offsetof(struct sk_reuseport_md, eth_protocol):
8956 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
8957 		break;
8958 
8959 	case offsetof(struct sk_reuseport_md, ip_protocol):
8960 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
8961 		break;
8962 
8963 	case offsetof(struct sk_reuseport_md, data_end):
8964 		SK_REUSEPORT_LOAD_FIELD(data_end);
8965 		break;
8966 
8967 	case offsetof(struct sk_reuseport_md, hash):
8968 		SK_REUSEPORT_LOAD_FIELD(hash);
8969 		break;
8970 
8971 	case offsetof(struct sk_reuseport_md, bind_inany):
8972 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
8973 		break;
8974 	}
8975 
8976 	return insn - insn_buf;
8977 }
8978 
8979 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
8980 	.get_func_proto		= sk_reuseport_func_proto,
8981 	.is_valid_access	= sk_reuseport_is_valid_access,
8982 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
8983 };
8984 
8985 const struct bpf_prog_ops sk_reuseport_prog_ops = {
8986 };
8987 #endif /* CONFIG_INET */
8988 
8989 DEFINE_BPF_DISPATCHER(xdp)
8990 
8991 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
8992 {
8993 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
8994 }
8995