xref: /linux/mm/vmscan.c (revision 307797159ac25fe5a2048bf5c6a5718298edca57)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63 
64 struct scan_control {
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	/*
69 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 	 * are scanned.
71 	 */
72 	nodemask_t	*nodemask;
73 
74 	/*
75 	 * The memory cgroup that hit its limit and as a result is the
76 	 * primary target of this reclaim invocation.
77 	 */
78 	struct mem_cgroup *target_mem_cgroup;
79 
80 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
81 	unsigned int may_writepage:1;
82 
83 	/* Can mapped pages be reclaimed? */
84 	unsigned int may_unmap:1;
85 
86 	/* Can pages be swapped as part of reclaim? */
87 	unsigned int may_swap:1;
88 
89 	/*
90 	 * Cgroups are not reclaimed below their configured memory.low,
91 	 * unless we threaten to OOM. If any cgroups are skipped due to
92 	 * memory.low and nothing was reclaimed, go back for memory.low.
93 	 */
94 	unsigned int memcg_low_reclaim:1;
95 	unsigned int memcg_low_skipped:1;
96 
97 	unsigned int hibernation_mode:1;
98 
99 	/* One of the zones is ready for compaction */
100 	unsigned int compaction_ready:1;
101 
102 	/* Allocation order */
103 	s8 order;
104 
105 	/* Scan (total_size >> priority) pages at once */
106 	s8 priority;
107 
108 	/* The highest zone to isolate pages for reclaim from */
109 	s8 reclaim_idx;
110 
111 	/* This context's GFP mask */
112 	gfp_t gfp_mask;
113 
114 	/* Incremented by the number of inactive pages that were scanned */
115 	unsigned long nr_scanned;
116 
117 	/* Number of pages freed so far during a call to shrink_zones() */
118 	unsigned long nr_reclaimed;
119 
120 	struct {
121 		unsigned int dirty;
122 		unsigned int unqueued_dirty;
123 		unsigned int congested;
124 		unsigned int writeback;
125 		unsigned int immediate;
126 		unsigned int file_taken;
127 		unsigned int taken;
128 	} nr;
129 };
130 
131 #ifdef ARCH_HAS_PREFETCH
132 #define prefetch_prev_lru_page(_page, _base, _field)			\
133 	do {								\
134 		if ((_page)->lru.prev != _base) {			\
135 			struct page *prev;				\
136 									\
137 			prev = lru_to_page(&(_page->lru));		\
138 			prefetch(&prev->_field);			\
139 		}							\
140 	} while (0)
141 #else
142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143 #endif
144 
145 #ifdef ARCH_HAS_PREFETCHW
146 #define prefetchw_prev_lru_page(_page, _base, _field)			\
147 	do {								\
148 		if ((_page)->lru.prev != _base) {			\
149 			struct page *prev;				\
150 									\
151 			prev = lru_to_page(&(_page->lru));		\
152 			prefetchw(&prev->_field);			\
153 		}							\
154 	} while (0)
155 #else
156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157 #endif
158 
159 /*
160  * From 0 .. 100.  Higher means more swappy.
161  */
162 int vm_swappiness = 60;
163 /*
164  * The total number of pages which are beyond the high watermark within all
165  * zones.
166  */
167 unsigned long vm_total_pages;
168 
169 static LIST_HEAD(shrinker_list);
170 static DECLARE_RWSEM(shrinker_rwsem);
171 
172 #ifdef CONFIG_MEMCG_KMEM
173 
174 /*
175  * We allow subsystems to populate their shrinker-related
176  * LRU lists before register_shrinker_prepared() is called
177  * for the shrinker, since we don't want to impose
178  * restrictions on their internal registration order.
179  * In this case shrink_slab_memcg() may find corresponding
180  * bit is set in the shrinkers map.
181  *
182  * This value is used by the function to detect registering
183  * shrinkers and to skip do_shrink_slab() calls for them.
184  */
185 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
186 
187 static DEFINE_IDR(shrinker_idr);
188 static int shrinker_nr_max;
189 
190 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
191 {
192 	int id, ret = -ENOMEM;
193 
194 	down_write(&shrinker_rwsem);
195 	/* This may call shrinker, so it must use down_read_trylock() */
196 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
197 	if (id < 0)
198 		goto unlock;
199 
200 	if (id >= shrinker_nr_max) {
201 		if (memcg_expand_shrinker_maps(id)) {
202 			idr_remove(&shrinker_idr, id);
203 			goto unlock;
204 		}
205 
206 		shrinker_nr_max = id + 1;
207 	}
208 	shrinker->id = id;
209 	ret = 0;
210 unlock:
211 	up_write(&shrinker_rwsem);
212 	return ret;
213 }
214 
215 static void unregister_memcg_shrinker(struct shrinker *shrinker)
216 {
217 	int id = shrinker->id;
218 
219 	BUG_ON(id < 0);
220 
221 	down_write(&shrinker_rwsem);
222 	idr_remove(&shrinker_idr, id);
223 	up_write(&shrinker_rwsem);
224 }
225 #else /* CONFIG_MEMCG_KMEM */
226 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
227 {
228 	return 0;
229 }
230 
231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
232 {
233 }
234 #endif /* CONFIG_MEMCG_KMEM */
235 
236 #ifdef CONFIG_MEMCG
237 static bool global_reclaim(struct scan_control *sc)
238 {
239 	return !sc->target_mem_cgroup;
240 }
241 
242 /**
243  * sane_reclaim - is the usual dirty throttling mechanism operational?
244  * @sc: scan_control in question
245  *
246  * The normal page dirty throttling mechanism in balance_dirty_pages() is
247  * completely broken with the legacy memcg and direct stalling in
248  * shrink_page_list() is used for throttling instead, which lacks all the
249  * niceties such as fairness, adaptive pausing, bandwidth proportional
250  * allocation and configurability.
251  *
252  * This function tests whether the vmscan currently in progress can assume
253  * that the normal dirty throttling mechanism is operational.
254  */
255 static bool sane_reclaim(struct scan_control *sc)
256 {
257 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
258 
259 	if (!memcg)
260 		return true;
261 #ifdef CONFIG_CGROUP_WRITEBACK
262 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
263 		return true;
264 #endif
265 	return false;
266 }
267 
268 static void set_memcg_congestion(pg_data_t *pgdat,
269 				struct mem_cgroup *memcg,
270 				bool congested)
271 {
272 	struct mem_cgroup_per_node *mn;
273 
274 	if (!memcg)
275 		return;
276 
277 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
278 	WRITE_ONCE(mn->congested, congested);
279 }
280 
281 static bool memcg_congested(pg_data_t *pgdat,
282 			struct mem_cgroup *memcg)
283 {
284 	struct mem_cgroup_per_node *mn;
285 
286 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
287 	return READ_ONCE(mn->congested);
288 
289 }
290 #else
291 static bool global_reclaim(struct scan_control *sc)
292 {
293 	return true;
294 }
295 
296 static bool sane_reclaim(struct scan_control *sc)
297 {
298 	return true;
299 }
300 
301 static inline void set_memcg_congestion(struct pglist_data *pgdat,
302 				struct mem_cgroup *memcg, bool congested)
303 {
304 }
305 
306 static inline bool memcg_congested(struct pglist_data *pgdat,
307 			struct mem_cgroup *memcg)
308 {
309 	return false;
310 
311 }
312 #endif
313 
314 /*
315  * This misses isolated pages which are not accounted for to save counters.
316  * As the data only determines if reclaim or compaction continues, it is
317  * not expected that isolated pages will be a dominating factor.
318  */
319 unsigned long zone_reclaimable_pages(struct zone *zone)
320 {
321 	unsigned long nr;
322 
323 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
324 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
325 	if (get_nr_swap_pages() > 0)
326 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
327 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
328 
329 	return nr;
330 }
331 
332 /**
333  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
334  * @lruvec: lru vector
335  * @lru: lru to use
336  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
337  */
338 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
339 {
340 	unsigned long lru_size;
341 	int zid;
342 
343 	if (!mem_cgroup_disabled())
344 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
345 	else
346 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
347 
348 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
349 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
350 		unsigned long size;
351 
352 		if (!managed_zone(zone))
353 			continue;
354 
355 		if (!mem_cgroup_disabled())
356 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
357 		else
358 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
359 				       NR_ZONE_LRU_BASE + lru);
360 		lru_size -= min(size, lru_size);
361 	}
362 
363 	return lru_size;
364 
365 }
366 
367 /*
368  * Add a shrinker callback to be called from the vm.
369  */
370 int prealloc_shrinker(struct shrinker *shrinker)
371 {
372 	size_t size = sizeof(*shrinker->nr_deferred);
373 
374 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
375 		size *= nr_node_ids;
376 
377 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
378 	if (!shrinker->nr_deferred)
379 		return -ENOMEM;
380 
381 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
382 		if (prealloc_memcg_shrinker(shrinker))
383 			goto free_deferred;
384 	}
385 
386 	return 0;
387 
388 free_deferred:
389 	kfree(shrinker->nr_deferred);
390 	shrinker->nr_deferred = NULL;
391 	return -ENOMEM;
392 }
393 
394 void free_prealloced_shrinker(struct shrinker *shrinker)
395 {
396 	if (!shrinker->nr_deferred)
397 		return;
398 
399 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
400 		unregister_memcg_shrinker(shrinker);
401 
402 	kfree(shrinker->nr_deferred);
403 	shrinker->nr_deferred = NULL;
404 }
405 
406 void register_shrinker_prepared(struct shrinker *shrinker)
407 {
408 	down_write(&shrinker_rwsem);
409 	list_add_tail(&shrinker->list, &shrinker_list);
410 #ifdef CONFIG_MEMCG_KMEM
411 	idr_replace(&shrinker_idr, shrinker, shrinker->id);
412 #endif
413 	up_write(&shrinker_rwsem);
414 }
415 
416 int register_shrinker(struct shrinker *shrinker)
417 {
418 	int err = prealloc_shrinker(shrinker);
419 
420 	if (err)
421 		return err;
422 	register_shrinker_prepared(shrinker);
423 	return 0;
424 }
425 EXPORT_SYMBOL(register_shrinker);
426 
427 /*
428  * Remove one
429  */
430 void unregister_shrinker(struct shrinker *shrinker)
431 {
432 	if (!shrinker->nr_deferred)
433 		return;
434 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
435 		unregister_memcg_shrinker(shrinker);
436 	down_write(&shrinker_rwsem);
437 	list_del(&shrinker->list);
438 	up_write(&shrinker_rwsem);
439 	kfree(shrinker->nr_deferred);
440 	shrinker->nr_deferred = NULL;
441 }
442 EXPORT_SYMBOL(unregister_shrinker);
443 
444 #define SHRINK_BATCH 128
445 
446 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
447 				    struct shrinker *shrinker, int priority)
448 {
449 	unsigned long freed = 0;
450 	unsigned long long delta;
451 	long total_scan;
452 	long freeable;
453 	long nr;
454 	long new_nr;
455 	int nid = shrinkctl->nid;
456 	long batch_size = shrinker->batch ? shrinker->batch
457 					  : SHRINK_BATCH;
458 	long scanned = 0, next_deferred;
459 
460 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
461 		nid = 0;
462 
463 	freeable = shrinker->count_objects(shrinker, shrinkctl);
464 	if (freeable == 0 || freeable == SHRINK_EMPTY)
465 		return freeable;
466 
467 	/*
468 	 * copy the current shrinker scan count into a local variable
469 	 * and zero it so that other concurrent shrinker invocations
470 	 * don't also do this scanning work.
471 	 */
472 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
473 
474 	total_scan = nr;
475 	delta = freeable >> priority;
476 	delta *= 4;
477 	do_div(delta, shrinker->seeks);
478 	total_scan += delta;
479 	if (total_scan < 0) {
480 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
481 		       shrinker->scan_objects, total_scan);
482 		total_scan = freeable;
483 		next_deferred = nr;
484 	} else
485 		next_deferred = total_scan;
486 
487 	/*
488 	 * We need to avoid excessive windup on filesystem shrinkers
489 	 * due to large numbers of GFP_NOFS allocations causing the
490 	 * shrinkers to return -1 all the time. This results in a large
491 	 * nr being built up so when a shrink that can do some work
492 	 * comes along it empties the entire cache due to nr >>>
493 	 * freeable. This is bad for sustaining a working set in
494 	 * memory.
495 	 *
496 	 * Hence only allow the shrinker to scan the entire cache when
497 	 * a large delta change is calculated directly.
498 	 */
499 	if (delta < freeable / 4)
500 		total_scan = min(total_scan, freeable / 2);
501 
502 	/*
503 	 * Avoid risking looping forever due to too large nr value:
504 	 * never try to free more than twice the estimate number of
505 	 * freeable entries.
506 	 */
507 	if (total_scan > freeable * 2)
508 		total_scan = freeable * 2;
509 
510 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
511 				   freeable, delta, total_scan, priority);
512 
513 	/*
514 	 * Normally, we should not scan less than batch_size objects in one
515 	 * pass to avoid too frequent shrinker calls, but if the slab has less
516 	 * than batch_size objects in total and we are really tight on memory,
517 	 * we will try to reclaim all available objects, otherwise we can end
518 	 * up failing allocations although there are plenty of reclaimable
519 	 * objects spread over several slabs with usage less than the
520 	 * batch_size.
521 	 *
522 	 * We detect the "tight on memory" situations by looking at the total
523 	 * number of objects we want to scan (total_scan). If it is greater
524 	 * than the total number of objects on slab (freeable), we must be
525 	 * scanning at high prio and therefore should try to reclaim as much as
526 	 * possible.
527 	 */
528 	while (total_scan >= batch_size ||
529 	       total_scan >= freeable) {
530 		unsigned long ret;
531 		unsigned long nr_to_scan = min(batch_size, total_scan);
532 
533 		shrinkctl->nr_to_scan = nr_to_scan;
534 		shrinkctl->nr_scanned = nr_to_scan;
535 		ret = shrinker->scan_objects(shrinker, shrinkctl);
536 		if (ret == SHRINK_STOP)
537 			break;
538 		freed += ret;
539 
540 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
541 		total_scan -= shrinkctl->nr_scanned;
542 		scanned += shrinkctl->nr_scanned;
543 
544 		cond_resched();
545 	}
546 
547 	if (next_deferred >= scanned)
548 		next_deferred -= scanned;
549 	else
550 		next_deferred = 0;
551 	/*
552 	 * move the unused scan count back into the shrinker in a
553 	 * manner that handles concurrent updates. If we exhausted the
554 	 * scan, there is no need to do an update.
555 	 */
556 	if (next_deferred > 0)
557 		new_nr = atomic_long_add_return(next_deferred,
558 						&shrinker->nr_deferred[nid]);
559 	else
560 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
561 
562 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
563 	return freed;
564 }
565 
566 #ifdef CONFIG_MEMCG_KMEM
567 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
568 			struct mem_cgroup *memcg, int priority)
569 {
570 	struct memcg_shrinker_map *map;
571 	unsigned long freed = 0;
572 	int ret, i;
573 
574 	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
575 		return 0;
576 
577 	if (!down_read_trylock(&shrinker_rwsem))
578 		return 0;
579 
580 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
581 					true);
582 	if (unlikely(!map))
583 		goto unlock;
584 
585 	for_each_set_bit(i, map->map, shrinker_nr_max) {
586 		struct shrink_control sc = {
587 			.gfp_mask = gfp_mask,
588 			.nid = nid,
589 			.memcg = memcg,
590 		};
591 		struct shrinker *shrinker;
592 
593 		shrinker = idr_find(&shrinker_idr, i);
594 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
595 			if (!shrinker)
596 				clear_bit(i, map->map);
597 			continue;
598 		}
599 
600 		ret = do_shrink_slab(&sc, shrinker, priority);
601 		if (ret == SHRINK_EMPTY) {
602 			clear_bit(i, map->map);
603 			/*
604 			 * After the shrinker reported that it had no objects to
605 			 * free, but before we cleared the corresponding bit in
606 			 * the memcg shrinker map, a new object might have been
607 			 * added. To make sure, we have the bit set in this
608 			 * case, we invoke the shrinker one more time and reset
609 			 * the bit if it reports that it is not empty anymore.
610 			 * The memory barrier here pairs with the barrier in
611 			 * memcg_set_shrinker_bit():
612 			 *
613 			 * list_lru_add()     shrink_slab_memcg()
614 			 *   list_add_tail()    clear_bit()
615 			 *   <MB>               <MB>
616 			 *   set_bit()          do_shrink_slab()
617 			 */
618 			smp_mb__after_atomic();
619 			ret = do_shrink_slab(&sc, shrinker, priority);
620 			if (ret == SHRINK_EMPTY)
621 				ret = 0;
622 			else
623 				memcg_set_shrinker_bit(memcg, nid, i);
624 		}
625 		freed += ret;
626 
627 		if (rwsem_is_contended(&shrinker_rwsem)) {
628 			freed = freed ? : 1;
629 			break;
630 		}
631 	}
632 unlock:
633 	up_read(&shrinker_rwsem);
634 	return freed;
635 }
636 #else /* CONFIG_MEMCG_KMEM */
637 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
638 			struct mem_cgroup *memcg, int priority)
639 {
640 	return 0;
641 }
642 #endif /* CONFIG_MEMCG_KMEM */
643 
644 /**
645  * shrink_slab - shrink slab caches
646  * @gfp_mask: allocation context
647  * @nid: node whose slab caches to target
648  * @memcg: memory cgroup whose slab caches to target
649  * @priority: the reclaim priority
650  *
651  * Call the shrink functions to age shrinkable caches.
652  *
653  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
654  * unaware shrinkers will receive a node id of 0 instead.
655  *
656  * @memcg specifies the memory cgroup to target. Unaware shrinkers
657  * are called only if it is the root cgroup.
658  *
659  * @priority is sc->priority, we take the number of objects and >> by priority
660  * in order to get the scan target.
661  *
662  * Returns the number of reclaimed slab objects.
663  */
664 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
665 				 struct mem_cgroup *memcg,
666 				 int priority)
667 {
668 	struct shrinker *shrinker;
669 	unsigned long freed = 0;
670 	int ret;
671 
672 	if (!mem_cgroup_is_root(memcg))
673 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
674 
675 	if (!down_read_trylock(&shrinker_rwsem))
676 		goto out;
677 
678 	list_for_each_entry(shrinker, &shrinker_list, list) {
679 		struct shrink_control sc = {
680 			.gfp_mask = gfp_mask,
681 			.nid = nid,
682 			.memcg = memcg,
683 		};
684 
685 		ret = do_shrink_slab(&sc, shrinker, priority);
686 		if (ret == SHRINK_EMPTY)
687 			ret = 0;
688 		freed += ret;
689 		/*
690 		 * Bail out if someone want to register a new shrinker to
691 		 * prevent the regsitration from being stalled for long periods
692 		 * by parallel ongoing shrinking.
693 		 */
694 		if (rwsem_is_contended(&shrinker_rwsem)) {
695 			freed = freed ? : 1;
696 			break;
697 		}
698 	}
699 
700 	up_read(&shrinker_rwsem);
701 out:
702 	cond_resched();
703 	return freed;
704 }
705 
706 void drop_slab_node(int nid)
707 {
708 	unsigned long freed;
709 
710 	do {
711 		struct mem_cgroup *memcg = NULL;
712 
713 		freed = 0;
714 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
715 		do {
716 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
717 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
718 	} while (freed > 10);
719 }
720 
721 void drop_slab(void)
722 {
723 	int nid;
724 
725 	for_each_online_node(nid)
726 		drop_slab_node(nid);
727 }
728 
729 static inline int is_page_cache_freeable(struct page *page)
730 {
731 	/*
732 	 * A freeable page cache page is referenced only by the caller
733 	 * that isolated the page, the page cache radix tree and
734 	 * optional buffer heads at page->private.
735 	 */
736 	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
737 		HPAGE_PMD_NR : 1;
738 	return page_count(page) - page_has_private(page) == 1 + radix_pins;
739 }
740 
741 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
742 {
743 	if (current->flags & PF_SWAPWRITE)
744 		return 1;
745 	if (!inode_write_congested(inode))
746 		return 1;
747 	if (inode_to_bdi(inode) == current->backing_dev_info)
748 		return 1;
749 	return 0;
750 }
751 
752 /*
753  * We detected a synchronous write error writing a page out.  Probably
754  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
755  * fsync(), msync() or close().
756  *
757  * The tricky part is that after writepage we cannot touch the mapping: nothing
758  * prevents it from being freed up.  But we have a ref on the page and once
759  * that page is locked, the mapping is pinned.
760  *
761  * We're allowed to run sleeping lock_page() here because we know the caller has
762  * __GFP_FS.
763  */
764 static void handle_write_error(struct address_space *mapping,
765 				struct page *page, int error)
766 {
767 	lock_page(page);
768 	if (page_mapping(page) == mapping)
769 		mapping_set_error(mapping, error);
770 	unlock_page(page);
771 }
772 
773 /* possible outcome of pageout() */
774 typedef enum {
775 	/* failed to write page out, page is locked */
776 	PAGE_KEEP,
777 	/* move page to the active list, page is locked */
778 	PAGE_ACTIVATE,
779 	/* page has been sent to the disk successfully, page is unlocked */
780 	PAGE_SUCCESS,
781 	/* page is clean and locked */
782 	PAGE_CLEAN,
783 } pageout_t;
784 
785 /*
786  * pageout is called by shrink_page_list() for each dirty page.
787  * Calls ->writepage().
788  */
789 static pageout_t pageout(struct page *page, struct address_space *mapping,
790 			 struct scan_control *sc)
791 {
792 	/*
793 	 * If the page is dirty, only perform writeback if that write
794 	 * will be non-blocking.  To prevent this allocation from being
795 	 * stalled by pagecache activity.  But note that there may be
796 	 * stalls if we need to run get_block().  We could test
797 	 * PagePrivate for that.
798 	 *
799 	 * If this process is currently in __generic_file_write_iter() against
800 	 * this page's queue, we can perform writeback even if that
801 	 * will block.
802 	 *
803 	 * If the page is swapcache, write it back even if that would
804 	 * block, for some throttling. This happens by accident, because
805 	 * swap_backing_dev_info is bust: it doesn't reflect the
806 	 * congestion state of the swapdevs.  Easy to fix, if needed.
807 	 */
808 	if (!is_page_cache_freeable(page))
809 		return PAGE_KEEP;
810 	if (!mapping) {
811 		/*
812 		 * Some data journaling orphaned pages can have
813 		 * page->mapping == NULL while being dirty with clean buffers.
814 		 */
815 		if (page_has_private(page)) {
816 			if (try_to_free_buffers(page)) {
817 				ClearPageDirty(page);
818 				pr_info("%s: orphaned page\n", __func__);
819 				return PAGE_CLEAN;
820 			}
821 		}
822 		return PAGE_KEEP;
823 	}
824 	if (mapping->a_ops->writepage == NULL)
825 		return PAGE_ACTIVATE;
826 	if (!may_write_to_inode(mapping->host, sc))
827 		return PAGE_KEEP;
828 
829 	if (clear_page_dirty_for_io(page)) {
830 		int res;
831 		struct writeback_control wbc = {
832 			.sync_mode = WB_SYNC_NONE,
833 			.nr_to_write = SWAP_CLUSTER_MAX,
834 			.range_start = 0,
835 			.range_end = LLONG_MAX,
836 			.for_reclaim = 1,
837 		};
838 
839 		SetPageReclaim(page);
840 		res = mapping->a_ops->writepage(page, &wbc);
841 		if (res < 0)
842 			handle_write_error(mapping, page, res);
843 		if (res == AOP_WRITEPAGE_ACTIVATE) {
844 			ClearPageReclaim(page);
845 			return PAGE_ACTIVATE;
846 		}
847 
848 		if (!PageWriteback(page)) {
849 			/* synchronous write or broken a_ops? */
850 			ClearPageReclaim(page);
851 		}
852 		trace_mm_vmscan_writepage(page);
853 		inc_node_page_state(page, NR_VMSCAN_WRITE);
854 		return PAGE_SUCCESS;
855 	}
856 
857 	return PAGE_CLEAN;
858 }
859 
860 /*
861  * Same as remove_mapping, but if the page is removed from the mapping, it
862  * gets returned with a refcount of 0.
863  */
864 static int __remove_mapping(struct address_space *mapping, struct page *page,
865 			    bool reclaimed)
866 {
867 	unsigned long flags;
868 	int refcount;
869 
870 	BUG_ON(!PageLocked(page));
871 	BUG_ON(mapping != page_mapping(page));
872 
873 	xa_lock_irqsave(&mapping->i_pages, flags);
874 	/*
875 	 * The non racy check for a busy page.
876 	 *
877 	 * Must be careful with the order of the tests. When someone has
878 	 * a ref to the page, it may be possible that they dirty it then
879 	 * drop the reference. So if PageDirty is tested before page_count
880 	 * here, then the following race may occur:
881 	 *
882 	 * get_user_pages(&page);
883 	 * [user mapping goes away]
884 	 * write_to(page);
885 	 *				!PageDirty(page)    [good]
886 	 * SetPageDirty(page);
887 	 * put_page(page);
888 	 *				!page_count(page)   [good, discard it]
889 	 *
890 	 * [oops, our write_to data is lost]
891 	 *
892 	 * Reversing the order of the tests ensures such a situation cannot
893 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
894 	 * load is not satisfied before that of page->_refcount.
895 	 *
896 	 * Note that if SetPageDirty is always performed via set_page_dirty,
897 	 * and thus under the i_pages lock, then this ordering is not required.
898 	 */
899 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
900 		refcount = 1 + HPAGE_PMD_NR;
901 	else
902 		refcount = 2;
903 	if (!page_ref_freeze(page, refcount))
904 		goto cannot_free;
905 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
906 	if (unlikely(PageDirty(page))) {
907 		page_ref_unfreeze(page, refcount);
908 		goto cannot_free;
909 	}
910 
911 	if (PageSwapCache(page)) {
912 		swp_entry_t swap = { .val = page_private(page) };
913 		mem_cgroup_swapout(page, swap);
914 		__delete_from_swap_cache(page);
915 		xa_unlock_irqrestore(&mapping->i_pages, flags);
916 		put_swap_page(page, swap);
917 	} else {
918 		void (*freepage)(struct page *);
919 		void *shadow = NULL;
920 
921 		freepage = mapping->a_ops->freepage;
922 		/*
923 		 * Remember a shadow entry for reclaimed file cache in
924 		 * order to detect refaults, thus thrashing, later on.
925 		 *
926 		 * But don't store shadows in an address space that is
927 		 * already exiting.  This is not just an optizimation,
928 		 * inode reclaim needs to empty out the radix tree or
929 		 * the nodes are lost.  Don't plant shadows behind its
930 		 * back.
931 		 *
932 		 * We also don't store shadows for DAX mappings because the
933 		 * only page cache pages found in these are zero pages
934 		 * covering holes, and because we don't want to mix DAX
935 		 * exceptional entries and shadow exceptional entries in the
936 		 * same address_space.
937 		 */
938 		if (reclaimed && page_is_file_cache(page) &&
939 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
940 			shadow = workingset_eviction(mapping, page);
941 		__delete_from_page_cache(page, shadow);
942 		xa_unlock_irqrestore(&mapping->i_pages, flags);
943 
944 		if (freepage != NULL)
945 			freepage(page);
946 	}
947 
948 	return 1;
949 
950 cannot_free:
951 	xa_unlock_irqrestore(&mapping->i_pages, flags);
952 	return 0;
953 }
954 
955 /*
956  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
957  * someone else has a ref on the page, abort and return 0.  If it was
958  * successfully detached, return 1.  Assumes the caller has a single ref on
959  * this page.
960  */
961 int remove_mapping(struct address_space *mapping, struct page *page)
962 {
963 	if (__remove_mapping(mapping, page, false)) {
964 		/*
965 		 * Unfreezing the refcount with 1 rather than 2 effectively
966 		 * drops the pagecache ref for us without requiring another
967 		 * atomic operation.
968 		 */
969 		page_ref_unfreeze(page, 1);
970 		return 1;
971 	}
972 	return 0;
973 }
974 
975 /**
976  * putback_lru_page - put previously isolated page onto appropriate LRU list
977  * @page: page to be put back to appropriate lru list
978  *
979  * Add previously isolated @page to appropriate LRU list.
980  * Page may still be unevictable for other reasons.
981  *
982  * lru_lock must not be held, interrupts must be enabled.
983  */
984 void putback_lru_page(struct page *page)
985 {
986 	lru_cache_add(page);
987 	put_page(page);		/* drop ref from isolate */
988 }
989 
990 enum page_references {
991 	PAGEREF_RECLAIM,
992 	PAGEREF_RECLAIM_CLEAN,
993 	PAGEREF_KEEP,
994 	PAGEREF_ACTIVATE,
995 };
996 
997 static enum page_references page_check_references(struct page *page,
998 						  struct scan_control *sc)
999 {
1000 	int referenced_ptes, referenced_page;
1001 	unsigned long vm_flags;
1002 
1003 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1004 					  &vm_flags);
1005 	referenced_page = TestClearPageReferenced(page);
1006 
1007 	/*
1008 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1009 	 * move the page to the unevictable list.
1010 	 */
1011 	if (vm_flags & VM_LOCKED)
1012 		return PAGEREF_RECLAIM;
1013 
1014 	if (referenced_ptes) {
1015 		if (PageSwapBacked(page))
1016 			return PAGEREF_ACTIVATE;
1017 		/*
1018 		 * All mapped pages start out with page table
1019 		 * references from the instantiating fault, so we need
1020 		 * to look twice if a mapped file page is used more
1021 		 * than once.
1022 		 *
1023 		 * Mark it and spare it for another trip around the
1024 		 * inactive list.  Another page table reference will
1025 		 * lead to its activation.
1026 		 *
1027 		 * Note: the mark is set for activated pages as well
1028 		 * so that recently deactivated but used pages are
1029 		 * quickly recovered.
1030 		 */
1031 		SetPageReferenced(page);
1032 
1033 		if (referenced_page || referenced_ptes > 1)
1034 			return PAGEREF_ACTIVATE;
1035 
1036 		/*
1037 		 * Activate file-backed executable pages after first usage.
1038 		 */
1039 		if (vm_flags & VM_EXEC)
1040 			return PAGEREF_ACTIVATE;
1041 
1042 		return PAGEREF_KEEP;
1043 	}
1044 
1045 	/* Reclaim if clean, defer dirty pages to writeback */
1046 	if (referenced_page && !PageSwapBacked(page))
1047 		return PAGEREF_RECLAIM_CLEAN;
1048 
1049 	return PAGEREF_RECLAIM;
1050 }
1051 
1052 /* Check if a page is dirty or under writeback */
1053 static void page_check_dirty_writeback(struct page *page,
1054 				       bool *dirty, bool *writeback)
1055 {
1056 	struct address_space *mapping;
1057 
1058 	/*
1059 	 * Anonymous pages are not handled by flushers and must be written
1060 	 * from reclaim context. Do not stall reclaim based on them
1061 	 */
1062 	if (!page_is_file_cache(page) ||
1063 	    (PageAnon(page) && !PageSwapBacked(page))) {
1064 		*dirty = false;
1065 		*writeback = false;
1066 		return;
1067 	}
1068 
1069 	/* By default assume that the page flags are accurate */
1070 	*dirty = PageDirty(page);
1071 	*writeback = PageWriteback(page);
1072 
1073 	/* Verify dirty/writeback state if the filesystem supports it */
1074 	if (!page_has_private(page))
1075 		return;
1076 
1077 	mapping = page_mapping(page);
1078 	if (mapping && mapping->a_ops->is_dirty_writeback)
1079 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1080 }
1081 
1082 /*
1083  * shrink_page_list() returns the number of reclaimed pages
1084  */
1085 static unsigned long shrink_page_list(struct list_head *page_list,
1086 				      struct pglist_data *pgdat,
1087 				      struct scan_control *sc,
1088 				      enum ttu_flags ttu_flags,
1089 				      struct reclaim_stat *stat,
1090 				      bool force_reclaim)
1091 {
1092 	LIST_HEAD(ret_pages);
1093 	LIST_HEAD(free_pages);
1094 	int pgactivate = 0;
1095 	unsigned nr_unqueued_dirty = 0;
1096 	unsigned nr_dirty = 0;
1097 	unsigned nr_congested = 0;
1098 	unsigned nr_reclaimed = 0;
1099 	unsigned nr_writeback = 0;
1100 	unsigned nr_immediate = 0;
1101 	unsigned nr_ref_keep = 0;
1102 	unsigned nr_unmap_fail = 0;
1103 
1104 	cond_resched();
1105 
1106 	while (!list_empty(page_list)) {
1107 		struct address_space *mapping;
1108 		struct page *page;
1109 		int may_enter_fs;
1110 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1111 		bool dirty, writeback;
1112 
1113 		cond_resched();
1114 
1115 		page = lru_to_page(page_list);
1116 		list_del(&page->lru);
1117 
1118 		if (!trylock_page(page))
1119 			goto keep;
1120 
1121 		VM_BUG_ON_PAGE(PageActive(page), page);
1122 
1123 		sc->nr_scanned++;
1124 
1125 		if (unlikely(!page_evictable(page)))
1126 			goto activate_locked;
1127 
1128 		if (!sc->may_unmap && page_mapped(page))
1129 			goto keep_locked;
1130 
1131 		/* Double the slab pressure for mapped and swapcache pages */
1132 		if ((page_mapped(page) || PageSwapCache(page)) &&
1133 		    !(PageAnon(page) && !PageSwapBacked(page)))
1134 			sc->nr_scanned++;
1135 
1136 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1137 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1138 
1139 		/*
1140 		 * The number of dirty pages determines if a node is marked
1141 		 * reclaim_congested which affects wait_iff_congested. kswapd
1142 		 * will stall and start writing pages if the tail of the LRU
1143 		 * is all dirty unqueued pages.
1144 		 */
1145 		page_check_dirty_writeback(page, &dirty, &writeback);
1146 		if (dirty || writeback)
1147 			nr_dirty++;
1148 
1149 		if (dirty && !writeback)
1150 			nr_unqueued_dirty++;
1151 
1152 		/*
1153 		 * Treat this page as congested if the underlying BDI is or if
1154 		 * pages are cycling through the LRU so quickly that the
1155 		 * pages marked for immediate reclaim are making it to the
1156 		 * end of the LRU a second time.
1157 		 */
1158 		mapping = page_mapping(page);
1159 		if (((dirty || writeback) && mapping &&
1160 		     inode_write_congested(mapping->host)) ||
1161 		    (writeback && PageReclaim(page)))
1162 			nr_congested++;
1163 
1164 		/*
1165 		 * If a page at the tail of the LRU is under writeback, there
1166 		 * are three cases to consider.
1167 		 *
1168 		 * 1) If reclaim is encountering an excessive number of pages
1169 		 *    under writeback and this page is both under writeback and
1170 		 *    PageReclaim then it indicates that pages are being queued
1171 		 *    for IO but are being recycled through the LRU before the
1172 		 *    IO can complete. Waiting on the page itself risks an
1173 		 *    indefinite stall if it is impossible to writeback the
1174 		 *    page due to IO error or disconnected storage so instead
1175 		 *    note that the LRU is being scanned too quickly and the
1176 		 *    caller can stall after page list has been processed.
1177 		 *
1178 		 * 2) Global or new memcg reclaim encounters a page that is
1179 		 *    not marked for immediate reclaim, or the caller does not
1180 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1181 		 *    not to fs). In this case mark the page for immediate
1182 		 *    reclaim and continue scanning.
1183 		 *
1184 		 *    Require may_enter_fs because we would wait on fs, which
1185 		 *    may not have submitted IO yet. And the loop driver might
1186 		 *    enter reclaim, and deadlock if it waits on a page for
1187 		 *    which it is needed to do the write (loop masks off
1188 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1189 		 *    would probably show more reasons.
1190 		 *
1191 		 * 3) Legacy memcg encounters a page that is already marked
1192 		 *    PageReclaim. memcg does not have any dirty pages
1193 		 *    throttling so we could easily OOM just because too many
1194 		 *    pages are in writeback and there is nothing else to
1195 		 *    reclaim. Wait for the writeback to complete.
1196 		 *
1197 		 * In cases 1) and 2) we activate the pages to get them out of
1198 		 * the way while we continue scanning for clean pages on the
1199 		 * inactive list and refilling from the active list. The
1200 		 * observation here is that waiting for disk writes is more
1201 		 * expensive than potentially causing reloads down the line.
1202 		 * Since they're marked for immediate reclaim, they won't put
1203 		 * memory pressure on the cache working set any longer than it
1204 		 * takes to write them to disk.
1205 		 */
1206 		if (PageWriteback(page)) {
1207 			/* Case 1 above */
1208 			if (current_is_kswapd() &&
1209 			    PageReclaim(page) &&
1210 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1211 				nr_immediate++;
1212 				goto activate_locked;
1213 
1214 			/* Case 2 above */
1215 			} else if (sane_reclaim(sc) ||
1216 			    !PageReclaim(page) || !may_enter_fs) {
1217 				/*
1218 				 * This is slightly racy - end_page_writeback()
1219 				 * might have just cleared PageReclaim, then
1220 				 * setting PageReclaim here end up interpreted
1221 				 * as PageReadahead - but that does not matter
1222 				 * enough to care.  What we do want is for this
1223 				 * page to have PageReclaim set next time memcg
1224 				 * reclaim reaches the tests above, so it will
1225 				 * then wait_on_page_writeback() to avoid OOM;
1226 				 * and it's also appropriate in global reclaim.
1227 				 */
1228 				SetPageReclaim(page);
1229 				nr_writeback++;
1230 				goto activate_locked;
1231 
1232 			/* Case 3 above */
1233 			} else {
1234 				unlock_page(page);
1235 				wait_on_page_writeback(page);
1236 				/* then go back and try same page again */
1237 				list_add_tail(&page->lru, page_list);
1238 				continue;
1239 			}
1240 		}
1241 
1242 		if (!force_reclaim)
1243 			references = page_check_references(page, sc);
1244 
1245 		switch (references) {
1246 		case PAGEREF_ACTIVATE:
1247 			goto activate_locked;
1248 		case PAGEREF_KEEP:
1249 			nr_ref_keep++;
1250 			goto keep_locked;
1251 		case PAGEREF_RECLAIM:
1252 		case PAGEREF_RECLAIM_CLEAN:
1253 			; /* try to reclaim the page below */
1254 		}
1255 
1256 		/*
1257 		 * Anonymous process memory has backing store?
1258 		 * Try to allocate it some swap space here.
1259 		 * Lazyfree page could be freed directly
1260 		 */
1261 		if (PageAnon(page) && PageSwapBacked(page)) {
1262 			if (!PageSwapCache(page)) {
1263 				if (!(sc->gfp_mask & __GFP_IO))
1264 					goto keep_locked;
1265 				if (PageTransHuge(page)) {
1266 					/* cannot split THP, skip it */
1267 					if (!can_split_huge_page(page, NULL))
1268 						goto activate_locked;
1269 					/*
1270 					 * Split pages without a PMD map right
1271 					 * away. Chances are some or all of the
1272 					 * tail pages can be freed without IO.
1273 					 */
1274 					if (!compound_mapcount(page) &&
1275 					    split_huge_page_to_list(page,
1276 								    page_list))
1277 						goto activate_locked;
1278 				}
1279 				if (!add_to_swap(page)) {
1280 					if (!PageTransHuge(page))
1281 						goto activate_locked;
1282 					/* Fallback to swap normal pages */
1283 					if (split_huge_page_to_list(page,
1284 								    page_list))
1285 						goto activate_locked;
1286 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1287 					count_vm_event(THP_SWPOUT_FALLBACK);
1288 #endif
1289 					if (!add_to_swap(page))
1290 						goto activate_locked;
1291 				}
1292 
1293 				may_enter_fs = 1;
1294 
1295 				/* Adding to swap updated mapping */
1296 				mapping = page_mapping(page);
1297 			}
1298 		} else if (unlikely(PageTransHuge(page))) {
1299 			/* Split file THP */
1300 			if (split_huge_page_to_list(page, page_list))
1301 				goto keep_locked;
1302 		}
1303 
1304 		/*
1305 		 * The page is mapped into the page tables of one or more
1306 		 * processes. Try to unmap it here.
1307 		 */
1308 		if (page_mapped(page)) {
1309 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1310 
1311 			if (unlikely(PageTransHuge(page)))
1312 				flags |= TTU_SPLIT_HUGE_PMD;
1313 			if (!try_to_unmap(page, flags)) {
1314 				nr_unmap_fail++;
1315 				goto activate_locked;
1316 			}
1317 		}
1318 
1319 		if (PageDirty(page)) {
1320 			/*
1321 			 * Only kswapd can writeback filesystem pages
1322 			 * to avoid risk of stack overflow. But avoid
1323 			 * injecting inefficient single-page IO into
1324 			 * flusher writeback as much as possible: only
1325 			 * write pages when we've encountered many
1326 			 * dirty pages, and when we've already scanned
1327 			 * the rest of the LRU for clean pages and see
1328 			 * the same dirty pages again (PageReclaim).
1329 			 */
1330 			if (page_is_file_cache(page) &&
1331 			    (!current_is_kswapd() || !PageReclaim(page) ||
1332 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1333 				/*
1334 				 * Immediately reclaim when written back.
1335 				 * Similar in principal to deactivate_page()
1336 				 * except we already have the page isolated
1337 				 * and know it's dirty
1338 				 */
1339 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1340 				SetPageReclaim(page);
1341 
1342 				goto activate_locked;
1343 			}
1344 
1345 			if (references == PAGEREF_RECLAIM_CLEAN)
1346 				goto keep_locked;
1347 			if (!may_enter_fs)
1348 				goto keep_locked;
1349 			if (!sc->may_writepage)
1350 				goto keep_locked;
1351 
1352 			/*
1353 			 * Page is dirty. Flush the TLB if a writable entry
1354 			 * potentially exists to avoid CPU writes after IO
1355 			 * starts and then write it out here.
1356 			 */
1357 			try_to_unmap_flush_dirty();
1358 			switch (pageout(page, mapping, sc)) {
1359 			case PAGE_KEEP:
1360 				goto keep_locked;
1361 			case PAGE_ACTIVATE:
1362 				goto activate_locked;
1363 			case PAGE_SUCCESS:
1364 				if (PageWriteback(page))
1365 					goto keep;
1366 				if (PageDirty(page))
1367 					goto keep;
1368 
1369 				/*
1370 				 * A synchronous write - probably a ramdisk.  Go
1371 				 * ahead and try to reclaim the page.
1372 				 */
1373 				if (!trylock_page(page))
1374 					goto keep;
1375 				if (PageDirty(page) || PageWriteback(page))
1376 					goto keep_locked;
1377 				mapping = page_mapping(page);
1378 			case PAGE_CLEAN:
1379 				; /* try to free the page below */
1380 			}
1381 		}
1382 
1383 		/*
1384 		 * If the page has buffers, try to free the buffer mappings
1385 		 * associated with this page. If we succeed we try to free
1386 		 * the page as well.
1387 		 *
1388 		 * We do this even if the page is PageDirty().
1389 		 * try_to_release_page() does not perform I/O, but it is
1390 		 * possible for a page to have PageDirty set, but it is actually
1391 		 * clean (all its buffers are clean).  This happens if the
1392 		 * buffers were written out directly, with submit_bh(). ext3
1393 		 * will do this, as well as the blockdev mapping.
1394 		 * try_to_release_page() will discover that cleanness and will
1395 		 * drop the buffers and mark the page clean - it can be freed.
1396 		 *
1397 		 * Rarely, pages can have buffers and no ->mapping.  These are
1398 		 * the pages which were not successfully invalidated in
1399 		 * truncate_complete_page().  We try to drop those buffers here
1400 		 * and if that worked, and the page is no longer mapped into
1401 		 * process address space (page_count == 1) it can be freed.
1402 		 * Otherwise, leave the page on the LRU so it is swappable.
1403 		 */
1404 		if (page_has_private(page)) {
1405 			if (!try_to_release_page(page, sc->gfp_mask))
1406 				goto activate_locked;
1407 			if (!mapping && page_count(page) == 1) {
1408 				unlock_page(page);
1409 				if (put_page_testzero(page))
1410 					goto free_it;
1411 				else {
1412 					/*
1413 					 * rare race with speculative reference.
1414 					 * the speculative reference will free
1415 					 * this page shortly, so we may
1416 					 * increment nr_reclaimed here (and
1417 					 * leave it off the LRU).
1418 					 */
1419 					nr_reclaimed++;
1420 					continue;
1421 				}
1422 			}
1423 		}
1424 
1425 		if (PageAnon(page) && !PageSwapBacked(page)) {
1426 			/* follow __remove_mapping for reference */
1427 			if (!page_ref_freeze(page, 1))
1428 				goto keep_locked;
1429 			if (PageDirty(page)) {
1430 				page_ref_unfreeze(page, 1);
1431 				goto keep_locked;
1432 			}
1433 
1434 			count_vm_event(PGLAZYFREED);
1435 			count_memcg_page_event(page, PGLAZYFREED);
1436 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1437 			goto keep_locked;
1438 		/*
1439 		 * At this point, we have no other references and there is
1440 		 * no way to pick any more up (removed from LRU, removed
1441 		 * from pagecache). Can use non-atomic bitops now (and
1442 		 * we obviously don't have to worry about waking up a process
1443 		 * waiting on the page lock, because there are no references.
1444 		 */
1445 		__ClearPageLocked(page);
1446 free_it:
1447 		nr_reclaimed++;
1448 
1449 		/*
1450 		 * Is there need to periodically free_page_list? It would
1451 		 * appear not as the counts should be low
1452 		 */
1453 		if (unlikely(PageTransHuge(page))) {
1454 			mem_cgroup_uncharge(page);
1455 			(*get_compound_page_dtor(page))(page);
1456 		} else
1457 			list_add(&page->lru, &free_pages);
1458 		continue;
1459 
1460 activate_locked:
1461 		/* Not a candidate for swapping, so reclaim swap space. */
1462 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1463 						PageMlocked(page)))
1464 			try_to_free_swap(page);
1465 		VM_BUG_ON_PAGE(PageActive(page), page);
1466 		if (!PageMlocked(page)) {
1467 			SetPageActive(page);
1468 			pgactivate++;
1469 			count_memcg_page_event(page, PGACTIVATE);
1470 		}
1471 keep_locked:
1472 		unlock_page(page);
1473 keep:
1474 		list_add(&page->lru, &ret_pages);
1475 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1476 	}
1477 
1478 	mem_cgroup_uncharge_list(&free_pages);
1479 	try_to_unmap_flush();
1480 	free_unref_page_list(&free_pages);
1481 
1482 	list_splice(&ret_pages, page_list);
1483 	count_vm_events(PGACTIVATE, pgactivate);
1484 
1485 	if (stat) {
1486 		stat->nr_dirty = nr_dirty;
1487 		stat->nr_congested = nr_congested;
1488 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1489 		stat->nr_writeback = nr_writeback;
1490 		stat->nr_immediate = nr_immediate;
1491 		stat->nr_activate = pgactivate;
1492 		stat->nr_ref_keep = nr_ref_keep;
1493 		stat->nr_unmap_fail = nr_unmap_fail;
1494 	}
1495 	return nr_reclaimed;
1496 }
1497 
1498 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1499 					    struct list_head *page_list)
1500 {
1501 	struct scan_control sc = {
1502 		.gfp_mask = GFP_KERNEL,
1503 		.priority = DEF_PRIORITY,
1504 		.may_unmap = 1,
1505 	};
1506 	unsigned long ret;
1507 	struct page *page, *next;
1508 	LIST_HEAD(clean_pages);
1509 
1510 	list_for_each_entry_safe(page, next, page_list, lru) {
1511 		if (page_is_file_cache(page) && !PageDirty(page) &&
1512 		    !__PageMovable(page)) {
1513 			ClearPageActive(page);
1514 			list_move(&page->lru, &clean_pages);
1515 		}
1516 	}
1517 
1518 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1519 			TTU_IGNORE_ACCESS, NULL, true);
1520 	list_splice(&clean_pages, page_list);
1521 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1522 	return ret;
1523 }
1524 
1525 /*
1526  * Attempt to remove the specified page from its LRU.  Only take this page
1527  * if it is of the appropriate PageActive status.  Pages which are being
1528  * freed elsewhere are also ignored.
1529  *
1530  * page:	page to consider
1531  * mode:	one of the LRU isolation modes defined above
1532  *
1533  * returns 0 on success, -ve errno on failure.
1534  */
1535 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1536 {
1537 	int ret = -EINVAL;
1538 
1539 	/* Only take pages on the LRU. */
1540 	if (!PageLRU(page))
1541 		return ret;
1542 
1543 	/* Compaction should not handle unevictable pages but CMA can do so */
1544 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1545 		return ret;
1546 
1547 	ret = -EBUSY;
1548 
1549 	/*
1550 	 * To minimise LRU disruption, the caller can indicate that it only
1551 	 * wants to isolate pages it will be able to operate on without
1552 	 * blocking - clean pages for the most part.
1553 	 *
1554 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1555 	 * that it is possible to migrate without blocking
1556 	 */
1557 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1558 		/* All the caller can do on PageWriteback is block */
1559 		if (PageWriteback(page))
1560 			return ret;
1561 
1562 		if (PageDirty(page)) {
1563 			struct address_space *mapping;
1564 			bool migrate_dirty;
1565 
1566 			/*
1567 			 * Only pages without mappings or that have a
1568 			 * ->migratepage callback are possible to migrate
1569 			 * without blocking. However, we can be racing with
1570 			 * truncation so it's necessary to lock the page
1571 			 * to stabilise the mapping as truncation holds
1572 			 * the page lock until after the page is removed
1573 			 * from the page cache.
1574 			 */
1575 			if (!trylock_page(page))
1576 				return ret;
1577 
1578 			mapping = page_mapping(page);
1579 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1580 			unlock_page(page);
1581 			if (!migrate_dirty)
1582 				return ret;
1583 		}
1584 	}
1585 
1586 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1587 		return ret;
1588 
1589 	if (likely(get_page_unless_zero(page))) {
1590 		/*
1591 		 * Be careful not to clear PageLRU until after we're
1592 		 * sure the page is not being freed elsewhere -- the
1593 		 * page release code relies on it.
1594 		 */
1595 		ClearPageLRU(page);
1596 		ret = 0;
1597 	}
1598 
1599 	return ret;
1600 }
1601 
1602 
1603 /*
1604  * Update LRU sizes after isolating pages. The LRU size updates must
1605  * be complete before mem_cgroup_update_lru_size due to a santity check.
1606  */
1607 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1608 			enum lru_list lru, unsigned long *nr_zone_taken)
1609 {
1610 	int zid;
1611 
1612 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1613 		if (!nr_zone_taken[zid])
1614 			continue;
1615 
1616 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1617 #ifdef CONFIG_MEMCG
1618 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1619 #endif
1620 	}
1621 
1622 }
1623 
1624 /*
1625  * zone_lru_lock is heavily contended.  Some of the functions that
1626  * shrink the lists perform better by taking out a batch of pages
1627  * and working on them outside the LRU lock.
1628  *
1629  * For pagecache intensive workloads, this function is the hottest
1630  * spot in the kernel (apart from copy_*_user functions).
1631  *
1632  * Appropriate locks must be held before calling this function.
1633  *
1634  * @nr_to_scan:	The number of eligible pages to look through on the list.
1635  * @lruvec:	The LRU vector to pull pages from.
1636  * @dst:	The temp list to put pages on to.
1637  * @nr_scanned:	The number of pages that were scanned.
1638  * @sc:		The scan_control struct for this reclaim session
1639  * @mode:	One of the LRU isolation modes
1640  * @lru:	LRU list id for isolating
1641  *
1642  * returns how many pages were moved onto *@dst.
1643  */
1644 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1645 		struct lruvec *lruvec, struct list_head *dst,
1646 		unsigned long *nr_scanned, struct scan_control *sc,
1647 		isolate_mode_t mode, enum lru_list lru)
1648 {
1649 	struct list_head *src = &lruvec->lists[lru];
1650 	unsigned long nr_taken = 0;
1651 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1652 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1653 	unsigned long skipped = 0;
1654 	unsigned long scan, total_scan, nr_pages;
1655 	LIST_HEAD(pages_skipped);
1656 
1657 	scan = 0;
1658 	for (total_scan = 0;
1659 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1660 	     total_scan++) {
1661 		struct page *page;
1662 
1663 		page = lru_to_page(src);
1664 		prefetchw_prev_lru_page(page, src, flags);
1665 
1666 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1667 
1668 		if (page_zonenum(page) > sc->reclaim_idx) {
1669 			list_move(&page->lru, &pages_skipped);
1670 			nr_skipped[page_zonenum(page)]++;
1671 			continue;
1672 		}
1673 
1674 		/*
1675 		 * Do not count skipped pages because that makes the function
1676 		 * return with no isolated pages if the LRU mostly contains
1677 		 * ineligible pages.  This causes the VM to not reclaim any
1678 		 * pages, triggering a premature OOM.
1679 		 */
1680 		scan++;
1681 		switch (__isolate_lru_page(page, mode)) {
1682 		case 0:
1683 			nr_pages = hpage_nr_pages(page);
1684 			nr_taken += nr_pages;
1685 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1686 			list_move(&page->lru, dst);
1687 			break;
1688 
1689 		case -EBUSY:
1690 			/* else it is being freed elsewhere */
1691 			list_move(&page->lru, src);
1692 			continue;
1693 
1694 		default:
1695 			BUG();
1696 		}
1697 	}
1698 
1699 	/*
1700 	 * Splice any skipped pages to the start of the LRU list. Note that
1701 	 * this disrupts the LRU order when reclaiming for lower zones but
1702 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1703 	 * scanning would soon rescan the same pages to skip and put the
1704 	 * system at risk of premature OOM.
1705 	 */
1706 	if (!list_empty(&pages_skipped)) {
1707 		int zid;
1708 
1709 		list_splice(&pages_skipped, src);
1710 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1711 			if (!nr_skipped[zid])
1712 				continue;
1713 
1714 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1715 			skipped += nr_skipped[zid];
1716 		}
1717 	}
1718 	*nr_scanned = total_scan;
1719 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1720 				    total_scan, skipped, nr_taken, mode, lru);
1721 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1722 	return nr_taken;
1723 }
1724 
1725 /**
1726  * isolate_lru_page - tries to isolate a page from its LRU list
1727  * @page: page to isolate from its LRU list
1728  *
1729  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1730  * vmstat statistic corresponding to whatever LRU list the page was on.
1731  *
1732  * Returns 0 if the page was removed from an LRU list.
1733  * Returns -EBUSY if the page was not on an LRU list.
1734  *
1735  * The returned page will have PageLRU() cleared.  If it was found on
1736  * the active list, it will have PageActive set.  If it was found on
1737  * the unevictable list, it will have the PageUnevictable bit set. That flag
1738  * may need to be cleared by the caller before letting the page go.
1739  *
1740  * The vmstat statistic corresponding to the list on which the page was
1741  * found will be decremented.
1742  *
1743  * Restrictions:
1744  *
1745  * (1) Must be called with an elevated refcount on the page. This is a
1746  *     fundamentnal difference from isolate_lru_pages (which is called
1747  *     without a stable reference).
1748  * (2) the lru_lock must not be held.
1749  * (3) interrupts must be enabled.
1750  */
1751 int isolate_lru_page(struct page *page)
1752 {
1753 	int ret = -EBUSY;
1754 
1755 	VM_BUG_ON_PAGE(!page_count(page), page);
1756 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1757 
1758 	if (PageLRU(page)) {
1759 		struct zone *zone = page_zone(page);
1760 		struct lruvec *lruvec;
1761 
1762 		spin_lock_irq(zone_lru_lock(zone));
1763 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1764 		if (PageLRU(page)) {
1765 			int lru = page_lru(page);
1766 			get_page(page);
1767 			ClearPageLRU(page);
1768 			del_page_from_lru_list(page, lruvec, lru);
1769 			ret = 0;
1770 		}
1771 		spin_unlock_irq(zone_lru_lock(zone));
1772 	}
1773 	return ret;
1774 }
1775 
1776 /*
1777  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1778  * then get resheduled. When there are massive number of tasks doing page
1779  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1780  * the LRU list will go small and be scanned faster than necessary, leading to
1781  * unnecessary swapping, thrashing and OOM.
1782  */
1783 static int too_many_isolated(struct pglist_data *pgdat, int file,
1784 		struct scan_control *sc)
1785 {
1786 	unsigned long inactive, isolated;
1787 
1788 	if (current_is_kswapd())
1789 		return 0;
1790 
1791 	if (!sane_reclaim(sc))
1792 		return 0;
1793 
1794 	if (file) {
1795 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1796 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1797 	} else {
1798 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1799 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1800 	}
1801 
1802 	/*
1803 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1804 	 * won't get blocked by normal direct-reclaimers, forming a circular
1805 	 * deadlock.
1806 	 */
1807 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1808 		inactive >>= 3;
1809 
1810 	return isolated > inactive;
1811 }
1812 
1813 static noinline_for_stack void
1814 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1815 {
1816 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1817 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1818 	LIST_HEAD(pages_to_free);
1819 
1820 	/*
1821 	 * Put back any unfreeable pages.
1822 	 */
1823 	while (!list_empty(page_list)) {
1824 		struct page *page = lru_to_page(page_list);
1825 		int lru;
1826 
1827 		VM_BUG_ON_PAGE(PageLRU(page), page);
1828 		list_del(&page->lru);
1829 		if (unlikely(!page_evictable(page))) {
1830 			spin_unlock_irq(&pgdat->lru_lock);
1831 			putback_lru_page(page);
1832 			spin_lock_irq(&pgdat->lru_lock);
1833 			continue;
1834 		}
1835 
1836 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1837 
1838 		SetPageLRU(page);
1839 		lru = page_lru(page);
1840 		add_page_to_lru_list(page, lruvec, lru);
1841 
1842 		if (is_active_lru(lru)) {
1843 			int file = is_file_lru(lru);
1844 			int numpages = hpage_nr_pages(page);
1845 			reclaim_stat->recent_rotated[file] += numpages;
1846 		}
1847 		if (put_page_testzero(page)) {
1848 			__ClearPageLRU(page);
1849 			__ClearPageActive(page);
1850 			del_page_from_lru_list(page, lruvec, lru);
1851 
1852 			if (unlikely(PageCompound(page))) {
1853 				spin_unlock_irq(&pgdat->lru_lock);
1854 				mem_cgroup_uncharge(page);
1855 				(*get_compound_page_dtor(page))(page);
1856 				spin_lock_irq(&pgdat->lru_lock);
1857 			} else
1858 				list_add(&page->lru, &pages_to_free);
1859 		}
1860 	}
1861 
1862 	/*
1863 	 * To save our caller's stack, now use input list for pages to free.
1864 	 */
1865 	list_splice(&pages_to_free, page_list);
1866 }
1867 
1868 /*
1869  * If a kernel thread (such as nfsd for loop-back mounts) services
1870  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1871  * In that case we should only throttle if the backing device it is
1872  * writing to is congested.  In other cases it is safe to throttle.
1873  */
1874 static int current_may_throttle(void)
1875 {
1876 	return !(current->flags & PF_LESS_THROTTLE) ||
1877 		current->backing_dev_info == NULL ||
1878 		bdi_write_congested(current->backing_dev_info);
1879 }
1880 
1881 /*
1882  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1883  * of reclaimed pages
1884  */
1885 static noinline_for_stack unsigned long
1886 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1887 		     struct scan_control *sc, enum lru_list lru)
1888 {
1889 	LIST_HEAD(page_list);
1890 	unsigned long nr_scanned;
1891 	unsigned long nr_reclaimed = 0;
1892 	unsigned long nr_taken;
1893 	struct reclaim_stat stat = {};
1894 	isolate_mode_t isolate_mode = 0;
1895 	int file = is_file_lru(lru);
1896 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1897 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1898 	bool stalled = false;
1899 
1900 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1901 		if (stalled)
1902 			return 0;
1903 
1904 		/* wait a bit for the reclaimer. */
1905 		msleep(100);
1906 		stalled = true;
1907 
1908 		/* We are about to die and free our memory. Return now. */
1909 		if (fatal_signal_pending(current))
1910 			return SWAP_CLUSTER_MAX;
1911 	}
1912 
1913 	lru_add_drain();
1914 
1915 	if (!sc->may_unmap)
1916 		isolate_mode |= ISOLATE_UNMAPPED;
1917 
1918 	spin_lock_irq(&pgdat->lru_lock);
1919 
1920 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1921 				     &nr_scanned, sc, isolate_mode, lru);
1922 
1923 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1924 	reclaim_stat->recent_scanned[file] += nr_taken;
1925 
1926 	if (current_is_kswapd()) {
1927 		if (global_reclaim(sc))
1928 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1929 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1930 				   nr_scanned);
1931 	} else {
1932 		if (global_reclaim(sc))
1933 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1934 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1935 				   nr_scanned);
1936 	}
1937 	spin_unlock_irq(&pgdat->lru_lock);
1938 
1939 	if (nr_taken == 0)
1940 		return 0;
1941 
1942 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1943 				&stat, false);
1944 
1945 	spin_lock_irq(&pgdat->lru_lock);
1946 
1947 	if (current_is_kswapd()) {
1948 		if (global_reclaim(sc))
1949 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1950 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1951 				   nr_reclaimed);
1952 	} else {
1953 		if (global_reclaim(sc))
1954 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1955 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1956 				   nr_reclaimed);
1957 	}
1958 
1959 	putback_inactive_pages(lruvec, &page_list);
1960 
1961 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1962 
1963 	spin_unlock_irq(&pgdat->lru_lock);
1964 
1965 	mem_cgroup_uncharge_list(&page_list);
1966 	free_unref_page_list(&page_list);
1967 
1968 	/*
1969 	 * If dirty pages are scanned that are not queued for IO, it
1970 	 * implies that flushers are not doing their job. This can
1971 	 * happen when memory pressure pushes dirty pages to the end of
1972 	 * the LRU before the dirty limits are breached and the dirty
1973 	 * data has expired. It can also happen when the proportion of
1974 	 * dirty pages grows not through writes but through memory
1975 	 * pressure reclaiming all the clean cache. And in some cases,
1976 	 * the flushers simply cannot keep up with the allocation
1977 	 * rate. Nudge the flusher threads in case they are asleep.
1978 	 */
1979 	if (stat.nr_unqueued_dirty == nr_taken)
1980 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1981 
1982 	sc->nr.dirty += stat.nr_dirty;
1983 	sc->nr.congested += stat.nr_congested;
1984 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1985 	sc->nr.writeback += stat.nr_writeback;
1986 	sc->nr.immediate += stat.nr_immediate;
1987 	sc->nr.taken += nr_taken;
1988 	if (file)
1989 		sc->nr.file_taken += nr_taken;
1990 
1991 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1992 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1993 	return nr_reclaimed;
1994 }
1995 
1996 /*
1997  * This moves pages from the active list to the inactive list.
1998  *
1999  * We move them the other way if the page is referenced by one or more
2000  * processes, from rmap.
2001  *
2002  * If the pages are mostly unmapped, the processing is fast and it is
2003  * appropriate to hold zone_lru_lock across the whole operation.  But if
2004  * the pages are mapped, the processing is slow (page_referenced()) so we
2005  * should drop zone_lru_lock around each page.  It's impossible to balance
2006  * this, so instead we remove the pages from the LRU while processing them.
2007  * It is safe to rely on PG_active against the non-LRU pages in here because
2008  * nobody will play with that bit on a non-LRU page.
2009  *
2010  * The downside is that we have to touch page->_refcount against each page.
2011  * But we had to alter page->flags anyway.
2012  *
2013  * Returns the number of pages moved to the given lru.
2014  */
2015 
2016 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2017 				     struct list_head *list,
2018 				     struct list_head *pages_to_free,
2019 				     enum lru_list lru)
2020 {
2021 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2022 	struct page *page;
2023 	int nr_pages;
2024 	int nr_moved = 0;
2025 
2026 	while (!list_empty(list)) {
2027 		page = lru_to_page(list);
2028 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2029 
2030 		VM_BUG_ON_PAGE(PageLRU(page), page);
2031 		SetPageLRU(page);
2032 
2033 		nr_pages = hpage_nr_pages(page);
2034 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2035 		list_move(&page->lru, &lruvec->lists[lru]);
2036 
2037 		if (put_page_testzero(page)) {
2038 			__ClearPageLRU(page);
2039 			__ClearPageActive(page);
2040 			del_page_from_lru_list(page, lruvec, lru);
2041 
2042 			if (unlikely(PageCompound(page))) {
2043 				spin_unlock_irq(&pgdat->lru_lock);
2044 				mem_cgroup_uncharge(page);
2045 				(*get_compound_page_dtor(page))(page);
2046 				spin_lock_irq(&pgdat->lru_lock);
2047 			} else
2048 				list_add(&page->lru, pages_to_free);
2049 		} else {
2050 			nr_moved += nr_pages;
2051 		}
2052 	}
2053 
2054 	if (!is_active_lru(lru)) {
2055 		__count_vm_events(PGDEACTIVATE, nr_moved);
2056 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2057 				   nr_moved);
2058 	}
2059 
2060 	return nr_moved;
2061 }
2062 
2063 static void shrink_active_list(unsigned long nr_to_scan,
2064 			       struct lruvec *lruvec,
2065 			       struct scan_control *sc,
2066 			       enum lru_list lru)
2067 {
2068 	unsigned long nr_taken;
2069 	unsigned long nr_scanned;
2070 	unsigned long vm_flags;
2071 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2072 	LIST_HEAD(l_active);
2073 	LIST_HEAD(l_inactive);
2074 	struct page *page;
2075 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2076 	unsigned nr_deactivate, nr_activate;
2077 	unsigned nr_rotated = 0;
2078 	isolate_mode_t isolate_mode = 0;
2079 	int file = is_file_lru(lru);
2080 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2081 
2082 	lru_add_drain();
2083 
2084 	if (!sc->may_unmap)
2085 		isolate_mode |= ISOLATE_UNMAPPED;
2086 
2087 	spin_lock_irq(&pgdat->lru_lock);
2088 
2089 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2090 				     &nr_scanned, sc, isolate_mode, lru);
2091 
2092 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2093 	reclaim_stat->recent_scanned[file] += nr_taken;
2094 
2095 	__count_vm_events(PGREFILL, nr_scanned);
2096 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2097 
2098 	spin_unlock_irq(&pgdat->lru_lock);
2099 
2100 	while (!list_empty(&l_hold)) {
2101 		cond_resched();
2102 		page = lru_to_page(&l_hold);
2103 		list_del(&page->lru);
2104 
2105 		if (unlikely(!page_evictable(page))) {
2106 			putback_lru_page(page);
2107 			continue;
2108 		}
2109 
2110 		if (unlikely(buffer_heads_over_limit)) {
2111 			if (page_has_private(page) && trylock_page(page)) {
2112 				if (page_has_private(page))
2113 					try_to_release_page(page, 0);
2114 				unlock_page(page);
2115 			}
2116 		}
2117 
2118 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2119 				    &vm_flags)) {
2120 			nr_rotated += hpage_nr_pages(page);
2121 			/*
2122 			 * Identify referenced, file-backed active pages and
2123 			 * give them one more trip around the active list. So
2124 			 * that executable code get better chances to stay in
2125 			 * memory under moderate memory pressure.  Anon pages
2126 			 * are not likely to be evicted by use-once streaming
2127 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2128 			 * so we ignore them here.
2129 			 */
2130 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2131 				list_add(&page->lru, &l_active);
2132 				continue;
2133 			}
2134 		}
2135 
2136 		ClearPageActive(page);	/* we are de-activating */
2137 		list_add(&page->lru, &l_inactive);
2138 	}
2139 
2140 	/*
2141 	 * Move pages back to the lru list.
2142 	 */
2143 	spin_lock_irq(&pgdat->lru_lock);
2144 	/*
2145 	 * Count referenced pages from currently used mappings as rotated,
2146 	 * even though only some of them are actually re-activated.  This
2147 	 * helps balance scan pressure between file and anonymous pages in
2148 	 * get_scan_count.
2149 	 */
2150 	reclaim_stat->recent_rotated[file] += nr_rotated;
2151 
2152 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2153 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2154 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2155 	spin_unlock_irq(&pgdat->lru_lock);
2156 
2157 	mem_cgroup_uncharge_list(&l_hold);
2158 	free_unref_page_list(&l_hold);
2159 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2160 			nr_deactivate, nr_rotated, sc->priority, file);
2161 }
2162 
2163 /*
2164  * The inactive anon list should be small enough that the VM never has
2165  * to do too much work.
2166  *
2167  * The inactive file list should be small enough to leave most memory
2168  * to the established workingset on the scan-resistant active list,
2169  * but large enough to avoid thrashing the aggregate readahead window.
2170  *
2171  * Both inactive lists should also be large enough that each inactive
2172  * page has a chance to be referenced again before it is reclaimed.
2173  *
2174  * If that fails and refaulting is observed, the inactive list grows.
2175  *
2176  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2177  * on this LRU, maintained by the pageout code. An inactive_ratio
2178  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2179  *
2180  * total     target    max
2181  * memory    ratio     inactive
2182  * -------------------------------------
2183  *   10MB       1         5MB
2184  *  100MB       1        50MB
2185  *    1GB       3       250MB
2186  *   10GB      10       0.9GB
2187  *  100GB      31         3GB
2188  *    1TB     101        10GB
2189  *   10TB     320        32GB
2190  */
2191 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2192 				 struct mem_cgroup *memcg,
2193 				 struct scan_control *sc, bool actual_reclaim)
2194 {
2195 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2196 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2197 	enum lru_list inactive_lru = file * LRU_FILE;
2198 	unsigned long inactive, active;
2199 	unsigned long inactive_ratio;
2200 	unsigned long refaults;
2201 	unsigned long gb;
2202 
2203 	/*
2204 	 * If we don't have swap space, anonymous page deactivation
2205 	 * is pointless.
2206 	 */
2207 	if (!file && !total_swap_pages)
2208 		return false;
2209 
2210 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2211 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2212 
2213 	if (memcg)
2214 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2215 	else
2216 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2217 
2218 	/*
2219 	 * When refaults are being observed, it means a new workingset
2220 	 * is being established. Disable active list protection to get
2221 	 * rid of the stale workingset quickly.
2222 	 */
2223 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2224 		inactive_ratio = 0;
2225 	} else {
2226 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2227 		if (gb)
2228 			inactive_ratio = int_sqrt(10 * gb);
2229 		else
2230 			inactive_ratio = 1;
2231 	}
2232 
2233 	if (actual_reclaim)
2234 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2235 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2236 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2237 			inactive_ratio, file);
2238 
2239 	return inactive * inactive_ratio < active;
2240 }
2241 
2242 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2243 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2244 				 struct scan_control *sc)
2245 {
2246 	if (is_active_lru(lru)) {
2247 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2248 					 memcg, sc, true))
2249 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2250 		return 0;
2251 	}
2252 
2253 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2254 }
2255 
2256 enum scan_balance {
2257 	SCAN_EQUAL,
2258 	SCAN_FRACT,
2259 	SCAN_ANON,
2260 	SCAN_FILE,
2261 };
2262 
2263 /*
2264  * Determine how aggressively the anon and file LRU lists should be
2265  * scanned.  The relative value of each set of LRU lists is determined
2266  * by looking at the fraction of the pages scanned we did rotate back
2267  * onto the active list instead of evict.
2268  *
2269  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2270  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2271  */
2272 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2273 			   struct scan_control *sc, unsigned long *nr,
2274 			   unsigned long *lru_pages)
2275 {
2276 	int swappiness = mem_cgroup_swappiness(memcg);
2277 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2278 	u64 fraction[2];
2279 	u64 denominator = 0;	/* gcc */
2280 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2281 	unsigned long anon_prio, file_prio;
2282 	enum scan_balance scan_balance;
2283 	unsigned long anon, file;
2284 	unsigned long ap, fp;
2285 	enum lru_list lru;
2286 
2287 	/* If we have no swap space, do not bother scanning anon pages. */
2288 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2289 		scan_balance = SCAN_FILE;
2290 		goto out;
2291 	}
2292 
2293 	/*
2294 	 * Global reclaim will swap to prevent OOM even with no
2295 	 * swappiness, but memcg users want to use this knob to
2296 	 * disable swapping for individual groups completely when
2297 	 * using the memory controller's swap limit feature would be
2298 	 * too expensive.
2299 	 */
2300 	if (!global_reclaim(sc) && !swappiness) {
2301 		scan_balance = SCAN_FILE;
2302 		goto out;
2303 	}
2304 
2305 	/*
2306 	 * Do not apply any pressure balancing cleverness when the
2307 	 * system is close to OOM, scan both anon and file equally
2308 	 * (unless the swappiness setting disagrees with swapping).
2309 	 */
2310 	if (!sc->priority && swappiness) {
2311 		scan_balance = SCAN_EQUAL;
2312 		goto out;
2313 	}
2314 
2315 	/*
2316 	 * Prevent the reclaimer from falling into the cache trap: as
2317 	 * cache pages start out inactive, every cache fault will tip
2318 	 * the scan balance towards the file LRU.  And as the file LRU
2319 	 * shrinks, so does the window for rotation from references.
2320 	 * This means we have a runaway feedback loop where a tiny
2321 	 * thrashing file LRU becomes infinitely more attractive than
2322 	 * anon pages.  Try to detect this based on file LRU size.
2323 	 */
2324 	if (global_reclaim(sc)) {
2325 		unsigned long pgdatfile;
2326 		unsigned long pgdatfree;
2327 		int z;
2328 		unsigned long total_high_wmark = 0;
2329 
2330 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2331 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2332 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2333 
2334 		for (z = 0; z < MAX_NR_ZONES; z++) {
2335 			struct zone *zone = &pgdat->node_zones[z];
2336 			if (!managed_zone(zone))
2337 				continue;
2338 
2339 			total_high_wmark += high_wmark_pages(zone);
2340 		}
2341 
2342 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2343 			/*
2344 			 * Force SCAN_ANON if there are enough inactive
2345 			 * anonymous pages on the LRU in eligible zones.
2346 			 * Otherwise, the small LRU gets thrashed.
2347 			 */
2348 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2349 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2350 					>> sc->priority) {
2351 				scan_balance = SCAN_ANON;
2352 				goto out;
2353 			}
2354 		}
2355 	}
2356 
2357 	/*
2358 	 * If there is enough inactive page cache, i.e. if the size of the
2359 	 * inactive list is greater than that of the active list *and* the
2360 	 * inactive list actually has some pages to scan on this priority, we
2361 	 * do not reclaim anything from the anonymous working set right now.
2362 	 * Without the second condition we could end up never scanning an
2363 	 * lruvec even if it has plenty of old anonymous pages unless the
2364 	 * system is under heavy pressure.
2365 	 */
2366 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2367 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2368 		scan_balance = SCAN_FILE;
2369 		goto out;
2370 	}
2371 
2372 	scan_balance = SCAN_FRACT;
2373 
2374 	/*
2375 	 * With swappiness at 100, anonymous and file have the same priority.
2376 	 * This scanning priority is essentially the inverse of IO cost.
2377 	 */
2378 	anon_prio = swappiness;
2379 	file_prio = 200 - anon_prio;
2380 
2381 	/*
2382 	 * OK, so we have swap space and a fair amount of page cache
2383 	 * pages.  We use the recently rotated / recently scanned
2384 	 * ratios to determine how valuable each cache is.
2385 	 *
2386 	 * Because workloads change over time (and to avoid overflow)
2387 	 * we keep these statistics as a floating average, which ends
2388 	 * up weighing recent references more than old ones.
2389 	 *
2390 	 * anon in [0], file in [1]
2391 	 */
2392 
2393 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2394 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2395 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2396 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2397 
2398 	spin_lock_irq(&pgdat->lru_lock);
2399 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2400 		reclaim_stat->recent_scanned[0] /= 2;
2401 		reclaim_stat->recent_rotated[0] /= 2;
2402 	}
2403 
2404 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2405 		reclaim_stat->recent_scanned[1] /= 2;
2406 		reclaim_stat->recent_rotated[1] /= 2;
2407 	}
2408 
2409 	/*
2410 	 * The amount of pressure on anon vs file pages is inversely
2411 	 * proportional to the fraction of recently scanned pages on
2412 	 * each list that were recently referenced and in active use.
2413 	 */
2414 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2415 	ap /= reclaim_stat->recent_rotated[0] + 1;
2416 
2417 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2418 	fp /= reclaim_stat->recent_rotated[1] + 1;
2419 	spin_unlock_irq(&pgdat->lru_lock);
2420 
2421 	fraction[0] = ap;
2422 	fraction[1] = fp;
2423 	denominator = ap + fp + 1;
2424 out:
2425 	*lru_pages = 0;
2426 	for_each_evictable_lru(lru) {
2427 		int file = is_file_lru(lru);
2428 		unsigned long size;
2429 		unsigned long scan;
2430 
2431 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2432 		scan = size >> sc->priority;
2433 		/*
2434 		 * If the cgroup's already been deleted, make sure to
2435 		 * scrape out the remaining cache.
2436 		 */
2437 		if (!scan && !mem_cgroup_online(memcg))
2438 			scan = min(size, SWAP_CLUSTER_MAX);
2439 
2440 		switch (scan_balance) {
2441 		case SCAN_EQUAL:
2442 			/* Scan lists relative to size */
2443 			break;
2444 		case SCAN_FRACT:
2445 			/*
2446 			 * Scan types proportional to swappiness and
2447 			 * their relative recent reclaim efficiency.
2448 			 */
2449 			scan = div64_u64(scan * fraction[file],
2450 					 denominator);
2451 			break;
2452 		case SCAN_FILE:
2453 		case SCAN_ANON:
2454 			/* Scan one type exclusively */
2455 			if ((scan_balance == SCAN_FILE) != file) {
2456 				size = 0;
2457 				scan = 0;
2458 			}
2459 			break;
2460 		default:
2461 			/* Look ma, no brain */
2462 			BUG();
2463 		}
2464 
2465 		*lru_pages += size;
2466 		nr[lru] = scan;
2467 	}
2468 }
2469 
2470 /*
2471  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2472  */
2473 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2474 			      struct scan_control *sc, unsigned long *lru_pages)
2475 {
2476 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2477 	unsigned long nr[NR_LRU_LISTS];
2478 	unsigned long targets[NR_LRU_LISTS];
2479 	unsigned long nr_to_scan;
2480 	enum lru_list lru;
2481 	unsigned long nr_reclaimed = 0;
2482 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2483 	struct blk_plug plug;
2484 	bool scan_adjusted;
2485 
2486 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2487 
2488 	/* Record the original scan target for proportional adjustments later */
2489 	memcpy(targets, nr, sizeof(nr));
2490 
2491 	/*
2492 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2493 	 * event that can occur when there is little memory pressure e.g.
2494 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2495 	 * when the requested number of pages are reclaimed when scanning at
2496 	 * DEF_PRIORITY on the assumption that the fact we are direct
2497 	 * reclaiming implies that kswapd is not keeping up and it is best to
2498 	 * do a batch of work at once. For memcg reclaim one check is made to
2499 	 * abort proportional reclaim if either the file or anon lru has already
2500 	 * dropped to zero at the first pass.
2501 	 */
2502 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2503 			 sc->priority == DEF_PRIORITY);
2504 
2505 	blk_start_plug(&plug);
2506 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2507 					nr[LRU_INACTIVE_FILE]) {
2508 		unsigned long nr_anon, nr_file, percentage;
2509 		unsigned long nr_scanned;
2510 
2511 		for_each_evictable_lru(lru) {
2512 			if (nr[lru]) {
2513 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2514 				nr[lru] -= nr_to_scan;
2515 
2516 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2517 							    lruvec, memcg, sc);
2518 			}
2519 		}
2520 
2521 		cond_resched();
2522 
2523 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2524 			continue;
2525 
2526 		/*
2527 		 * For kswapd and memcg, reclaim at least the number of pages
2528 		 * requested. Ensure that the anon and file LRUs are scanned
2529 		 * proportionally what was requested by get_scan_count(). We
2530 		 * stop reclaiming one LRU and reduce the amount scanning
2531 		 * proportional to the original scan target.
2532 		 */
2533 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2534 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2535 
2536 		/*
2537 		 * It's just vindictive to attack the larger once the smaller
2538 		 * has gone to zero.  And given the way we stop scanning the
2539 		 * smaller below, this makes sure that we only make one nudge
2540 		 * towards proportionality once we've got nr_to_reclaim.
2541 		 */
2542 		if (!nr_file || !nr_anon)
2543 			break;
2544 
2545 		if (nr_file > nr_anon) {
2546 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2547 						targets[LRU_ACTIVE_ANON] + 1;
2548 			lru = LRU_BASE;
2549 			percentage = nr_anon * 100 / scan_target;
2550 		} else {
2551 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2552 						targets[LRU_ACTIVE_FILE] + 1;
2553 			lru = LRU_FILE;
2554 			percentage = nr_file * 100 / scan_target;
2555 		}
2556 
2557 		/* Stop scanning the smaller of the LRU */
2558 		nr[lru] = 0;
2559 		nr[lru + LRU_ACTIVE] = 0;
2560 
2561 		/*
2562 		 * Recalculate the other LRU scan count based on its original
2563 		 * scan target and the percentage scanning already complete
2564 		 */
2565 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2566 		nr_scanned = targets[lru] - nr[lru];
2567 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2568 		nr[lru] -= min(nr[lru], nr_scanned);
2569 
2570 		lru += LRU_ACTIVE;
2571 		nr_scanned = targets[lru] - nr[lru];
2572 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2573 		nr[lru] -= min(nr[lru], nr_scanned);
2574 
2575 		scan_adjusted = true;
2576 	}
2577 	blk_finish_plug(&plug);
2578 	sc->nr_reclaimed += nr_reclaimed;
2579 
2580 	/*
2581 	 * Even if we did not try to evict anon pages at all, we want to
2582 	 * rebalance the anon lru active/inactive ratio.
2583 	 */
2584 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2585 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2586 				   sc, LRU_ACTIVE_ANON);
2587 }
2588 
2589 /* Use reclaim/compaction for costly allocs or under memory pressure */
2590 static bool in_reclaim_compaction(struct scan_control *sc)
2591 {
2592 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2593 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2594 			 sc->priority < DEF_PRIORITY - 2))
2595 		return true;
2596 
2597 	return false;
2598 }
2599 
2600 /*
2601  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2602  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2603  * true if more pages should be reclaimed such that when the page allocator
2604  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2605  * It will give up earlier than that if there is difficulty reclaiming pages.
2606  */
2607 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2608 					unsigned long nr_reclaimed,
2609 					unsigned long nr_scanned,
2610 					struct scan_control *sc)
2611 {
2612 	unsigned long pages_for_compaction;
2613 	unsigned long inactive_lru_pages;
2614 	int z;
2615 
2616 	/* If not in reclaim/compaction mode, stop */
2617 	if (!in_reclaim_compaction(sc))
2618 		return false;
2619 
2620 	/* Consider stopping depending on scan and reclaim activity */
2621 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2622 		/*
2623 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2624 		 * full LRU list has been scanned and we are still failing
2625 		 * to reclaim pages. This full LRU scan is potentially
2626 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2627 		 */
2628 		if (!nr_reclaimed && !nr_scanned)
2629 			return false;
2630 	} else {
2631 		/*
2632 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2633 		 * fail without consequence, stop if we failed to reclaim
2634 		 * any pages from the last SWAP_CLUSTER_MAX number of
2635 		 * pages that were scanned. This will return to the
2636 		 * caller faster at the risk reclaim/compaction and
2637 		 * the resulting allocation attempt fails
2638 		 */
2639 		if (!nr_reclaimed)
2640 			return false;
2641 	}
2642 
2643 	/*
2644 	 * If we have not reclaimed enough pages for compaction and the
2645 	 * inactive lists are large enough, continue reclaiming
2646 	 */
2647 	pages_for_compaction = compact_gap(sc->order);
2648 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2649 	if (get_nr_swap_pages() > 0)
2650 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2651 	if (sc->nr_reclaimed < pages_for_compaction &&
2652 			inactive_lru_pages > pages_for_compaction)
2653 		return true;
2654 
2655 	/* If compaction would go ahead or the allocation would succeed, stop */
2656 	for (z = 0; z <= sc->reclaim_idx; z++) {
2657 		struct zone *zone = &pgdat->node_zones[z];
2658 		if (!managed_zone(zone))
2659 			continue;
2660 
2661 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2662 		case COMPACT_SUCCESS:
2663 		case COMPACT_CONTINUE:
2664 			return false;
2665 		default:
2666 			/* check next zone */
2667 			;
2668 		}
2669 	}
2670 	return true;
2671 }
2672 
2673 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2674 {
2675 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2676 		(memcg && memcg_congested(pgdat, memcg));
2677 }
2678 
2679 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2680 {
2681 	struct reclaim_state *reclaim_state = current->reclaim_state;
2682 	unsigned long nr_reclaimed, nr_scanned;
2683 	bool reclaimable = false;
2684 
2685 	do {
2686 		struct mem_cgroup *root = sc->target_mem_cgroup;
2687 		struct mem_cgroup_reclaim_cookie reclaim = {
2688 			.pgdat = pgdat,
2689 			.priority = sc->priority,
2690 		};
2691 		unsigned long node_lru_pages = 0;
2692 		struct mem_cgroup *memcg;
2693 
2694 		memset(&sc->nr, 0, sizeof(sc->nr));
2695 
2696 		nr_reclaimed = sc->nr_reclaimed;
2697 		nr_scanned = sc->nr_scanned;
2698 
2699 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2700 		do {
2701 			unsigned long lru_pages;
2702 			unsigned long reclaimed;
2703 			unsigned long scanned;
2704 
2705 			switch (mem_cgroup_protected(root, memcg)) {
2706 			case MEMCG_PROT_MIN:
2707 				/*
2708 				 * Hard protection.
2709 				 * If there is no reclaimable memory, OOM.
2710 				 */
2711 				continue;
2712 			case MEMCG_PROT_LOW:
2713 				/*
2714 				 * Soft protection.
2715 				 * Respect the protection only as long as
2716 				 * there is an unprotected supply
2717 				 * of reclaimable memory from other cgroups.
2718 				 */
2719 				if (!sc->memcg_low_reclaim) {
2720 					sc->memcg_low_skipped = 1;
2721 					continue;
2722 				}
2723 				memcg_memory_event(memcg, MEMCG_LOW);
2724 				break;
2725 			case MEMCG_PROT_NONE:
2726 				break;
2727 			}
2728 
2729 			reclaimed = sc->nr_reclaimed;
2730 			scanned = sc->nr_scanned;
2731 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2732 			node_lru_pages += lru_pages;
2733 
2734 			shrink_slab(sc->gfp_mask, pgdat->node_id,
2735 				    memcg, sc->priority);
2736 
2737 			/* Record the group's reclaim efficiency */
2738 			vmpressure(sc->gfp_mask, memcg, false,
2739 				   sc->nr_scanned - scanned,
2740 				   sc->nr_reclaimed - reclaimed);
2741 
2742 			/*
2743 			 * Direct reclaim and kswapd have to scan all memory
2744 			 * cgroups to fulfill the overall scan target for the
2745 			 * node.
2746 			 *
2747 			 * Limit reclaim, on the other hand, only cares about
2748 			 * nr_to_reclaim pages to be reclaimed and it will
2749 			 * retry with decreasing priority if one round over the
2750 			 * whole hierarchy is not sufficient.
2751 			 */
2752 			if (!global_reclaim(sc) &&
2753 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2754 				mem_cgroup_iter_break(root, memcg);
2755 				break;
2756 			}
2757 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2758 
2759 		if (reclaim_state) {
2760 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2761 			reclaim_state->reclaimed_slab = 0;
2762 		}
2763 
2764 		/* Record the subtree's reclaim efficiency */
2765 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2766 			   sc->nr_scanned - nr_scanned,
2767 			   sc->nr_reclaimed - nr_reclaimed);
2768 
2769 		if (sc->nr_reclaimed - nr_reclaimed)
2770 			reclaimable = true;
2771 
2772 		if (current_is_kswapd()) {
2773 			/*
2774 			 * If reclaim is isolating dirty pages under writeback,
2775 			 * it implies that the long-lived page allocation rate
2776 			 * is exceeding the page laundering rate. Either the
2777 			 * global limits are not being effective at throttling
2778 			 * processes due to the page distribution throughout
2779 			 * zones or there is heavy usage of a slow backing
2780 			 * device. The only option is to throttle from reclaim
2781 			 * context which is not ideal as there is no guarantee
2782 			 * the dirtying process is throttled in the same way
2783 			 * balance_dirty_pages() manages.
2784 			 *
2785 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2786 			 * count the number of pages under pages flagged for
2787 			 * immediate reclaim and stall if any are encountered
2788 			 * in the nr_immediate check below.
2789 			 */
2790 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2791 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2792 
2793 			/*
2794 			 * Tag a node as congested if all the dirty pages
2795 			 * scanned were backed by a congested BDI and
2796 			 * wait_iff_congested will stall.
2797 			 */
2798 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2799 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2800 
2801 			/* Allow kswapd to start writing pages during reclaim.*/
2802 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2803 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2804 
2805 			/*
2806 			 * If kswapd scans pages marked marked for immediate
2807 			 * reclaim and under writeback (nr_immediate), it
2808 			 * implies that pages are cycling through the LRU
2809 			 * faster than they are written so also forcibly stall.
2810 			 */
2811 			if (sc->nr.immediate)
2812 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2813 		}
2814 
2815 		/*
2816 		 * Legacy memcg will stall in page writeback so avoid forcibly
2817 		 * stalling in wait_iff_congested().
2818 		 */
2819 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2820 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2821 			set_memcg_congestion(pgdat, root, true);
2822 
2823 		/*
2824 		 * Stall direct reclaim for IO completions if underlying BDIs
2825 		 * and node is congested. Allow kswapd to continue until it
2826 		 * starts encountering unqueued dirty pages or cycling through
2827 		 * the LRU too quickly.
2828 		 */
2829 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2830 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2831 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2832 
2833 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2834 					 sc->nr_scanned - nr_scanned, sc));
2835 
2836 	/*
2837 	 * Kswapd gives up on balancing particular nodes after too
2838 	 * many failures to reclaim anything from them and goes to
2839 	 * sleep. On reclaim progress, reset the failure counter. A
2840 	 * successful direct reclaim run will revive a dormant kswapd.
2841 	 */
2842 	if (reclaimable)
2843 		pgdat->kswapd_failures = 0;
2844 
2845 	return reclaimable;
2846 }
2847 
2848 /*
2849  * Returns true if compaction should go ahead for a costly-order request, or
2850  * the allocation would already succeed without compaction. Return false if we
2851  * should reclaim first.
2852  */
2853 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2854 {
2855 	unsigned long watermark;
2856 	enum compact_result suitable;
2857 
2858 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2859 	if (suitable == COMPACT_SUCCESS)
2860 		/* Allocation should succeed already. Don't reclaim. */
2861 		return true;
2862 	if (suitable == COMPACT_SKIPPED)
2863 		/* Compaction cannot yet proceed. Do reclaim. */
2864 		return false;
2865 
2866 	/*
2867 	 * Compaction is already possible, but it takes time to run and there
2868 	 * are potentially other callers using the pages just freed. So proceed
2869 	 * with reclaim to make a buffer of free pages available to give
2870 	 * compaction a reasonable chance of completing and allocating the page.
2871 	 * Note that we won't actually reclaim the whole buffer in one attempt
2872 	 * as the target watermark in should_continue_reclaim() is lower. But if
2873 	 * we are already above the high+gap watermark, don't reclaim at all.
2874 	 */
2875 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2876 
2877 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2878 }
2879 
2880 /*
2881  * This is the direct reclaim path, for page-allocating processes.  We only
2882  * try to reclaim pages from zones which will satisfy the caller's allocation
2883  * request.
2884  *
2885  * If a zone is deemed to be full of pinned pages then just give it a light
2886  * scan then give up on it.
2887  */
2888 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2889 {
2890 	struct zoneref *z;
2891 	struct zone *zone;
2892 	unsigned long nr_soft_reclaimed;
2893 	unsigned long nr_soft_scanned;
2894 	gfp_t orig_mask;
2895 	pg_data_t *last_pgdat = NULL;
2896 
2897 	/*
2898 	 * If the number of buffer_heads in the machine exceeds the maximum
2899 	 * allowed level, force direct reclaim to scan the highmem zone as
2900 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2901 	 */
2902 	orig_mask = sc->gfp_mask;
2903 	if (buffer_heads_over_limit) {
2904 		sc->gfp_mask |= __GFP_HIGHMEM;
2905 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2906 	}
2907 
2908 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2909 					sc->reclaim_idx, sc->nodemask) {
2910 		/*
2911 		 * Take care memory controller reclaiming has small influence
2912 		 * to global LRU.
2913 		 */
2914 		if (global_reclaim(sc)) {
2915 			if (!cpuset_zone_allowed(zone,
2916 						 GFP_KERNEL | __GFP_HARDWALL))
2917 				continue;
2918 
2919 			/*
2920 			 * If we already have plenty of memory free for
2921 			 * compaction in this zone, don't free any more.
2922 			 * Even though compaction is invoked for any
2923 			 * non-zero order, only frequent costly order
2924 			 * reclamation is disruptive enough to become a
2925 			 * noticeable problem, like transparent huge
2926 			 * page allocations.
2927 			 */
2928 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2929 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2930 			    compaction_ready(zone, sc)) {
2931 				sc->compaction_ready = true;
2932 				continue;
2933 			}
2934 
2935 			/*
2936 			 * Shrink each node in the zonelist once. If the
2937 			 * zonelist is ordered by zone (not the default) then a
2938 			 * node may be shrunk multiple times but in that case
2939 			 * the user prefers lower zones being preserved.
2940 			 */
2941 			if (zone->zone_pgdat == last_pgdat)
2942 				continue;
2943 
2944 			/*
2945 			 * This steals pages from memory cgroups over softlimit
2946 			 * and returns the number of reclaimed pages and
2947 			 * scanned pages. This works for global memory pressure
2948 			 * and balancing, not for a memcg's limit.
2949 			 */
2950 			nr_soft_scanned = 0;
2951 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2952 						sc->order, sc->gfp_mask,
2953 						&nr_soft_scanned);
2954 			sc->nr_reclaimed += nr_soft_reclaimed;
2955 			sc->nr_scanned += nr_soft_scanned;
2956 			/* need some check for avoid more shrink_zone() */
2957 		}
2958 
2959 		/* See comment about same check for global reclaim above */
2960 		if (zone->zone_pgdat == last_pgdat)
2961 			continue;
2962 		last_pgdat = zone->zone_pgdat;
2963 		shrink_node(zone->zone_pgdat, sc);
2964 	}
2965 
2966 	/*
2967 	 * Restore to original mask to avoid the impact on the caller if we
2968 	 * promoted it to __GFP_HIGHMEM.
2969 	 */
2970 	sc->gfp_mask = orig_mask;
2971 }
2972 
2973 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2974 {
2975 	struct mem_cgroup *memcg;
2976 
2977 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2978 	do {
2979 		unsigned long refaults;
2980 		struct lruvec *lruvec;
2981 
2982 		if (memcg)
2983 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2984 		else
2985 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2986 
2987 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2988 		lruvec->refaults = refaults;
2989 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2990 }
2991 
2992 /*
2993  * This is the main entry point to direct page reclaim.
2994  *
2995  * If a full scan of the inactive list fails to free enough memory then we
2996  * are "out of memory" and something needs to be killed.
2997  *
2998  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2999  * high - the zone may be full of dirty or under-writeback pages, which this
3000  * caller can't do much about.  We kick the writeback threads and take explicit
3001  * naps in the hope that some of these pages can be written.  But if the
3002  * allocating task holds filesystem locks which prevent writeout this might not
3003  * work, and the allocation attempt will fail.
3004  *
3005  * returns:	0, if no pages reclaimed
3006  * 		else, the number of pages reclaimed
3007  */
3008 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3009 					  struct scan_control *sc)
3010 {
3011 	int initial_priority = sc->priority;
3012 	pg_data_t *last_pgdat;
3013 	struct zoneref *z;
3014 	struct zone *zone;
3015 retry:
3016 	delayacct_freepages_start();
3017 
3018 	if (global_reclaim(sc))
3019 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3020 
3021 	do {
3022 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3023 				sc->priority);
3024 		sc->nr_scanned = 0;
3025 		shrink_zones(zonelist, sc);
3026 
3027 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3028 			break;
3029 
3030 		if (sc->compaction_ready)
3031 			break;
3032 
3033 		/*
3034 		 * If we're getting trouble reclaiming, start doing
3035 		 * writepage even in laptop mode.
3036 		 */
3037 		if (sc->priority < DEF_PRIORITY - 2)
3038 			sc->may_writepage = 1;
3039 	} while (--sc->priority >= 0);
3040 
3041 	last_pgdat = NULL;
3042 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3043 					sc->nodemask) {
3044 		if (zone->zone_pgdat == last_pgdat)
3045 			continue;
3046 		last_pgdat = zone->zone_pgdat;
3047 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3048 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3049 	}
3050 
3051 	delayacct_freepages_end();
3052 
3053 	if (sc->nr_reclaimed)
3054 		return sc->nr_reclaimed;
3055 
3056 	/* Aborted reclaim to try compaction? don't OOM, then */
3057 	if (sc->compaction_ready)
3058 		return 1;
3059 
3060 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3061 	if (sc->memcg_low_skipped) {
3062 		sc->priority = initial_priority;
3063 		sc->memcg_low_reclaim = 1;
3064 		sc->memcg_low_skipped = 0;
3065 		goto retry;
3066 	}
3067 
3068 	return 0;
3069 }
3070 
3071 static bool allow_direct_reclaim(pg_data_t *pgdat)
3072 {
3073 	struct zone *zone;
3074 	unsigned long pfmemalloc_reserve = 0;
3075 	unsigned long free_pages = 0;
3076 	int i;
3077 	bool wmark_ok;
3078 
3079 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3080 		return true;
3081 
3082 	for (i = 0; i <= ZONE_NORMAL; i++) {
3083 		zone = &pgdat->node_zones[i];
3084 		if (!managed_zone(zone))
3085 			continue;
3086 
3087 		if (!zone_reclaimable_pages(zone))
3088 			continue;
3089 
3090 		pfmemalloc_reserve += min_wmark_pages(zone);
3091 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3092 	}
3093 
3094 	/* If there are no reserves (unexpected config) then do not throttle */
3095 	if (!pfmemalloc_reserve)
3096 		return true;
3097 
3098 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3099 
3100 	/* kswapd must be awake if processes are being throttled */
3101 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3102 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3103 						(enum zone_type)ZONE_NORMAL);
3104 		wake_up_interruptible(&pgdat->kswapd_wait);
3105 	}
3106 
3107 	return wmark_ok;
3108 }
3109 
3110 /*
3111  * Throttle direct reclaimers if backing storage is backed by the network
3112  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3113  * depleted. kswapd will continue to make progress and wake the processes
3114  * when the low watermark is reached.
3115  *
3116  * Returns true if a fatal signal was delivered during throttling. If this
3117  * happens, the page allocator should not consider triggering the OOM killer.
3118  */
3119 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3120 					nodemask_t *nodemask)
3121 {
3122 	struct zoneref *z;
3123 	struct zone *zone;
3124 	pg_data_t *pgdat = NULL;
3125 
3126 	/*
3127 	 * Kernel threads should not be throttled as they may be indirectly
3128 	 * responsible for cleaning pages necessary for reclaim to make forward
3129 	 * progress. kjournald for example may enter direct reclaim while
3130 	 * committing a transaction where throttling it could forcing other
3131 	 * processes to block on log_wait_commit().
3132 	 */
3133 	if (current->flags & PF_KTHREAD)
3134 		goto out;
3135 
3136 	/*
3137 	 * If a fatal signal is pending, this process should not throttle.
3138 	 * It should return quickly so it can exit and free its memory
3139 	 */
3140 	if (fatal_signal_pending(current))
3141 		goto out;
3142 
3143 	/*
3144 	 * Check if the pfmemalloc reserves are ok by finding the first node
3145 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3146 	 * GFP_KERNEL will be required for allocating network buffers when
3147 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3148 	 *
3149 	 * Throttling is based on the first usable node and throttled processes
3150 	 * wait on a queue until kswapd makes progress and wakes them. There
3151 	 * is an affinity then between processes waking up and where reclaim
3152 	 * progress has been made assuming the process wakes on the same node.
3153 	 * More importantly, processes running on remote nodes will not compete
3154 	 * for remote pfmemalloc reserves and processes on different nodes
3155 	 * should make reasonable progress.
3156 	 */
3157 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3158 					gfp_zone(gfp_mask), nodemask) {
3159 		if (zone_idx(zone) > ZONE_NORMAL)
3160 			continue;
3161 
3162 		/* Throttle based on the first usable node */
3163 		pgdat = zone->zone_pgdat;
3164 		if (allow_direct_reclaim(pgdat))
3165 			goto out;
3166 		break;
3167 	}
3168 
3169 	/* If no zone was usable by the allocation flags then do not throttle */
3170 	if (!pgdat)
3171 		goto out;
3172 
3173 	/* Account for the throttling */
3174 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3175 
3176 	/*
3177 	 * If the caller cannot enter the filesystem, it's possible that it
3178 	 * is due to the caller holding an FS lock or performing a journal
3179 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3180 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3181 	 * blocked waiting on the same lock. Instead, throttle for up to a
3182 	 * second before continuing.
3183 	 */
3184 	if (!(gfp_mask & __GFP_FS)) {
3185 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3186 			allow_direct_reclaim(pgdat), HZ);
3187 
3188 		goto check_pending;
3189 	}
3190 
3191 	/* Throttle until kswapd wakes the process */
3192 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3193 		allow_direct_reclaim(pgdat));
3194 
3195 check_pending:
3196 	if (fatal_signal_pending(current))
3197 		return true;
3198 
3199 out:
3200 	return false;
3201 }
3202 
3203 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3204 				gfp_t gfp_mask, nodemask_t *nodemask)
3205 {
3206 	unsigned long nr_reclaimed;
3207 	struct scan_control sc = {
3208 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3209 		.gfp_mask = current_gfp_context(gfp_mask),
3210 		.reclaim_idx = gfp_zone(gfp_mask),
3211 		.order = order,
3212 		.nodemask = nodemask,
3213 		.priority = DEF_PRIORITY,
3214 		.may_writepage = !laptop_mode,
3215 		.may_unmap = 1,
3216 		.may_swap = 1,
3217 	};
3218 
3219 	/*
3220 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3221 	 * Confirm they are large enough for max values.
3222 	 */
3223 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3224 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3225 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3226 
3227 	/*
3228 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3229 	 * 1 is returned so that the page allocator does not OOM kill at this
3230 	 * point.
3231 	 */
3232 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3233 		return 1;
3234 
3235 	trace_mm_vmscan_direct_reclaim_begin(order,
3236 				sc.may_writepage,
3237 				sc.gfp_mask,
3238 				sc.reclaim_idx);
3239 
3240 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3241 
3242 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3243 
3244 	return nr_reclaimed;
3245 }
3246 
3247 #ifdef CONFIG_MEMCG
3248 
3249 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3250 						gfp_t gfp_mask, bool noswap,
3251 						pg_data_t *pgdat,
3252 						unsigned long *nr_scanned)
3253 {
3254 	struct scan_control sc = {
3255 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3256 		.target_mem_cgroup = memcg,
3257 		.may_writepage = !laptop_mode,
3258 		.may_unmap = 1,
3259 		.reclaim_idx = MAX_NR_ZONES - 1,
3260 		.may_swap = !noswap,
3261 	};
3262 	unsigned long lru_pages;
3263 
3264 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3265 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3266 
3267 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3268 						      sc.may_writepage,
3269 						      sc.gfp_mask,
3270 						      sc.reclaim_idx);
3271 
3272 	/*
3273 	 * NOTE: Although we can get the priority field, using it
3274 	 * here is not a good idea, since it limits the pages we can scan.
3275 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3276 	 * will pick up pages from other mem cgroup's as well. We hack
3277 	 * the priority and make it zero.
3278 	 */
3279 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3280 
3281 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3282 
3283 	*nr_scanned = sc.nr_scanned;
3284 	return sc.nr_reclaimed;
3285 }
3286 
3287 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3288 					   unsigned long nr_pages,
3289 					   gfp_t gfp_mask,
3290 					   bool may_swap)
3291 {
3292 	struct zonelist *zonelist;
3293 	unsigned long nr_reclaimed;
3294 	int nid;
3295 	unsigned int noreclaim_flag;
3296 	struct scan_control sc = {
3297 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3298 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3299 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3300 		.reclaim_idx = MAX_NR_ZONES - 1,
3301 		.target_mem_cgroup = memcg,
3302 		.priority = DEF_PRIORITY,
3303 		.may_writepage = !laptop_mode,
3304 		.may_unmap = 1,
3305 		.may_swap = may_swap,
3306 	};
3307 
3308 	/*
3309 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3310 	 * take care of from where we get pages. So the node where we start the
3311 	 * scan does not need to be the current node.
3312 	 */
3313 	nid = mem_cgroup_select_victim_node(memcg);
3314 
3315 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3316 
3317 	trace_mm_vmscan_memcg_reclaim_begin(0,
3318 					    sc.may_writepage,
3319 					    sc.gfp_mask,
3320 					    sc.reclaim_idx);
3321 
3322 	noreclaim_flag = memalloc_noreclaim_save();
3323 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3324 	memalloc_noreclaim_restore(noreclaim_flag);
3325 
3326 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3327 
3328 	return nr_reclaimed;
3329 }
3330 #endif
3331 
3332 static void age_active_anon(struct pglist_data *pgdat,
3333 				struct scan_control *sc)
3334 {
3335 	struct mem_cgroup *memcg;
3336 
3337 	if (!total_swap_pages)
3338 		return;
3339 
3340 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3341 	do {
3342 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3343 
3344 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3345 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3346 					   sc, LRU_ACTIVE_ANON);
3347 
3348 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3349 	} while (memcg);
3350 }
3351 
3352 /*
3353  * Returns true if there is an eligible zone balanced for the request order
3354  * and classzone_idx
3355  */
3356 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3357 {
3358 	int i;
3359 	unsigned long mark = -1;
3360 	struct zone *zone;
3361 
3362 	for (i = 0; i <= classzone_idx; i++) {
3363 		zone = pgdat->node_zones + i;
3364 
3365 		if (!managed_zone(zone))
3366 			continue;
3367 
3368 		mark = high_wmark_pages(zone);
3369 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3370 			return true;
3371 	}
3372 
3373 	/*
3374 	 * If a node has no populated zone within classzone_idx, it does not
3375 	 * need balancing by definition. This can happen if a zone-restricted
3376 	 * allocation tries to wake a remote kswapd.
3377 	 */
3378 	if (mark == -1)
3379 		return true;
3380 
3381 	return false;
3382 }
3383 
3384 /* Clear pgdat state for congested, dirty or under writeback. */
3385 static void clear_pgdat_congested(pg_data_t *pgdat)
3386 {
3387 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3388 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3389 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3390 }
3391 
3392 /*
3393  * Prepare kswapd for sleeping. This verifies that there are no processes
3394  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3395  *
3396  * Returns true if kswapd is ready to sleep
3397  */
3398 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3399 {
3400 	/*
3401 	 * The throttled processes are normally woken up in balance_pgdat() as
3402 	 * soon as allow_direct_reclaim() is true. But there is a potential
3403 	 * race between when kswapd checks the watermarks and a process gets
3404 	 * throttled. There is also a potential race if processes get
3405 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3406 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3407 	 * the wake up checks. If kswapd is going to sleep, no process should
3408 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3409 	 * the wake up is premature, processes will wake kswapd and get
3410 	 * throttled again. The difference from wake ups in balance_pgdat() is
3411 	 * that here we are under prepare_to_wait().
3412 	 */
3413 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3414 		wake_up_all(&pgdat->pfmemalloc_wait);
3415 
3416 	/* Hopeless node, leave it to direct reclaim */
3417 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3418 		return true;
3419 
3420 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3421 		clear_pgdat_congested(pgdat);
3422 		return true;
3423 	}
3424 
3425 	return false;
3426 }
3427 
3428 /*
3429  * kswapd shrinks a node of pages that are at or below the highest usable
3430  * zone that is currently unbalanced.
3431  *
3432  * Returns true if kswapd scanned at least the requested number of pages to
3433  * reclaim or if the lack of progress was due to pages under writeback.
3434  * This is used to determine if the scanning priority needs to be raised.
3435  */
3436 static bool kswapd_shrink_node(pg_data_t *pgdat,
3437 			       struct scan_control *sc)
3438 {
3439 	struct zone *zone;
3440 	int z;
3441 
3442 	/* Reclaim a number of pages proportional to the number of zones */
3443 	sc->nr_to_reclaim = 0;
3444 	for (z = 0; z <= sc->reclaim_idx; z++) {
3445 		zone = pgdat->node_zones + z;
3446 		if (!managed_zone(zone))
3447 			continue;
3448 
3449 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3450 	}
3451 
3452 	/*
3453 	 * Historically care was taken to put equal pressure on all zones but
3454 	 * now pressure is applied based on node LRU order.
3455 	 */
3456 	shrink_node(pgdat, sc);
3457 
3458 	/*
3459 	 * Fragmentation may mean that the system cannot be rebalanced for
3460 	 * high-order allocations. If twice the allocation size has been
3461 	 * reclaimed then recheck watermarks only at order-0 to prevent
3462 	 * excessive reclaim. Assume that a process requested a high-order
3463 	 * can direct reclaim/compact.
3464 	 */
3465 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3466 		sc->order = 0;
3467 
3468 	return sc->nr_scanned >= sc->nr_to_reclaim;
3469 }
3470 
3471 /*
3472  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3473  * that are eligible for use by the caller until at least one zone is
3474  * balanced.
3475  *
3476  * Returns the order kswapd finished reclaiming at.
3477  *
3478  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3479  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3480  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3481  * or lower is eligible for reclaim until at least one usable zone is
3482  * balanced.
3483  */
3484 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3485 {
3486 	int i;
3487 	unsigned long nr_soft_reclaimed;
3488 	unsigned long nr_soft_scanned;
3489 	struct zone *zone;
3490 	struct scan_control sc = {
3491 		.gfp_mask = GFP_KERNEL,
3492 		.order = order,
3493 		.priority = DEF_PRIORITY,
3494 		.may_writepage = !laptop_mode,
3495 		.may_unmap = 1,
3496 		.may_swap = 1,
3497 	};
3498 
3499 	__fs_reclaim_acquire();
3500 
3501 	count_vm_event(PAGEOUTRUN);
3502 
3503 	do {
3504 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3505 		bool raise_priority = true;
3506 		bool ret;
3507 
3508 		sc.reclaim_idx = classzone_idx;
3509 
3510 		/*
3511 		 * If the number of buffer_heads exceeds the maximum allowed
3512 		 * then consider reclaiming from all zones. This has a dual
3513 		 * purpose -- on 64-bit systems it is expected that
3514 		 * buffer_heads are stripped during active rotation. On 32-bit
3515 		 * systems, highmem pages can pin lowmem memory and shrinking
3516 		 * buffers can relieve lowmem pressure. Reclaim may still not
3517 		 * go ahead if all eligible zones for the original allocation
3518 		 * request are balanced to avoid excessive reclaim from kswapd.
3519 		 */
3520 		if (buffer_heads_over_limit) {
3521 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3522 				zone = pgdat->node_zones + i;
3523 				if (!managed_zone(zone))
3524 					continue;
3525 
3526 				sc.reclaim_idx = i;
3527 				break;
3528 			}
3529 		}
3530 
3531 		/*
3532 		 * Only reclaim if there are no eligible zones. Note that
3533 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3534 		 * have adjusted it.
3535 		 */
3536 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3537 			goto out;
3538 
3539 		/*
3540 		 * Do some background aging of the anon list, to give
3541 		 * pages a chance to be referenced before reclaiming. All
3542 		 * pages are rotated regardless of classzone as this is
3543 		 * about consistent aging.
3544 		 */
3545 		age_active_anon(pgdat, &sc);
3546 
3547 		/*
3548 		 * If we're getting trouble reclaiming, start doing writepage
3549 		 * even in laptop mode.
3550 		 */
3551 		if (sc.priority < DEF_PRIORITY - 2)
3552 			sc.may_writepage = 1;
3553 
3554 		/* Call soft limit reclaim before calling shrink_node. */
3555 		sc.nr_scanned = 0;
3556 		nr_soft_scanned = 0;
3557 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3558 						sc.gfp_mask, &nr_soft_scanned);
3559 		sc.nr_reclaimed += nr_soft_reclaimed;
3560 
3561 		/*
3562 		 * There should be no need to raise the scanning priority if
3563 		 * enough pages are already being scanned that that high
3564 		 * watermark would be met at 100% efficiency.
3565 		 */
3566 		if (kswapd_shrink_node(pgdat, &sc))
3567 			raise_priority = false;
3568 
3569 		/*
3570 		 * If the low watermark is met there is no need for processes
3571 		 * to be throttled on pfmemalloc_wait as they should not be
3572 		 * able to safely make forward progress. Wake them
3573 		 */
3574 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3575 				allow_direct_reclaim(pgdat))
3576 			wake_up_all(&pgdat->pfmemalloc_wait);
3577 
3578 		/* Check if kswapd should be suspending */
3579 		__fs_reclaim_release();
3580 		ret = try_to_freeze();
3581 		__fs_reclaim_acquire();
3582 		if (ret || kthread_should_stop())
3583 			break;
3584 
3585 		/*
3586 		 * Raise priority if scanning rate is too low or there was no
3587 		 * progress in reclaiming pages
3588 		 */
3589 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3590 		if (raise_priority || !nr_reclaimed)
3591 			sc.priority--;
3592 	} while (sc.priority >= 1);
3593 
3594 	if (!sc.nr_reclaimed)
3595 		pgdat->kswapd_failures++;
3596 
3597 out:
3598 	snapshot_refaults(NULL, pgdat);
3599 	__fs_reclaim_release();
3600 	/*
3601 	 * Return the order kswapd stopped reclaiming at as
3602 	 * prepare_kswapd_sleep() takes it into account. If another caller
3603 	 * entered the allocator slow path while kswapd was awake, order will
3604 	 * remain at the higher level.
3605 	 */
3606 	return sc.order;
3607 }
3608 
3609 /*
3610  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3611  * allocation request woke kswapd for. When kswapd has not woken recently,
3612  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3613  * given classzone and returns it or the highest classzone index kswapd
3614  * was recently woke for.
3615  */
3616 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3617 					   enum zone_type classzone_idx)
3618 {
3619 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3620 		return classzone_idx;
3621 
3622 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3623 }
3624 
3625 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3626 				unsigned int classzone_idx)
3627 {
3628 	long remaining = 0;
3629 	DEFINE_WAIT(wait);
3630 
3631 	if (freezing(current) || kthread_should_stop())
3632 		return;
3633 
3634 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3635 
3636 	/*
3637 	 * Try to sleep for a short interval. Note that kcompactd will only be
3638 	 * woken if it is possible to sleep for a short interval. This is
3639 	 * deliberate on the assumption that if reclaim cannot keep an
3640 	 * eligible zone balanced that it's also unlikely that compaction will
3641 	 * succeed.
3642 	 */
3643 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3644 		/*
3645 		 * Compaction records what page blocks it recently failed to
3646 		 * isolate pages from and skips them in the future scanning.
3647 		 * When kswapd is going to sleep, it is reasonable to assume
3648 		 * that pages and compaction may succeed so reset the cache.
3649 		 */
3650 		reset_isolation_suitable(pgdat);
3651 
3652 		/*
3653 		 * We have freed the memory, now we should compact it to make
3654 		 * allocation of the requested order possible.
3655 		 */
3656 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3657 
3658 		remaining = schedule_timeout(HZ/10);
3659 
3660 		/*
3661 		 * If woken prematurely then reset kswapd_classzone_idx and
3662 		 * order. The values will either be from a wakeup request or
3663 		 * the previous request that slept prematurely.
3664 		 */
3665 		if (remaining) {
3666 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3667 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3668 		}
3669 
3670 		finish_wait(&pgdat->kswapd_wait, &wait);
3671 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3672 	}
3673 
3674 	/*
3675 	 * After a short sleep, check if it was a premature sleep. If not, then
3676 	 * go fully to sleep until explicitly woken up.
3677 	 */
3678 	if (!remaining &&
3679 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3680 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3681 
3682 		/*
3683 		 * vmstat counters are not perfectly accurate and the estimated
3684 		 * value for counters such as NR_FREE_PAGES can deviate from the
3685 		 * true value by nr_online_cpus * threshold. To avoid the zone
3686 		 * watermarks being breached while under pressure, we reduce the
3687 		 * per-cpu vmstat threshold while kswapd is awake and restore
3688 		 * them before going back to sleep.
3689 		 */
3690 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3691 
3692 		if (!kthread_should_stop())
3693 			schedule();
3694 
3695 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3696 	} else {
3697 		if (remaining)
3698 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3699 		else
3700 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3701 	}
3702 	finish_wait(&pgdat->kswapd_wait, &wait);
3703 }
3704 
3705 /*
3706  * The background pageout daemon, started as a kernel thread
3707  * from the init process.
3708  *
3709  * This basically trickles out pages so that we have _some_
3710  * free memory available even if there is no other activity
3711  * that frees anything up. This is needed for things like routing
3712  * etc, where we otherwise might have all activity going on in
3713  * asynchronous contexts that cannot page things out.
3714  *
3715  * If there are applications that are active memory-allocators
3716  * (most normal use), this basically shouldn't matter.
3717  */
3718 static int kswapd(void *p)
3719 {
3720 	unsigned int alloc_order, reclaim_order;
3721 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3722 	pg_data_t *pgdat = (pg_data_t*)p;
3723 	struct task_struct *tsk = current;
3724 
3725 	struct reclaim_state reclaim_state = {
3726 		.reclaimed_slab = 0,
3727 	};
3728 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3729 
3730 	if (!cpumask_empty(cpumask))
3731 		set_cpus_allowed_ptr(tsk, cpumask);
3732 	current->reclaim_state = &reclaim_state;
3733 
3734 	/*
3735 	 * Tell the memory management that we're a "memory allocator",
3736 	 * and that if we need more memory we should get access to it
3737 	 * regardless (see "__alloc_pages()"). "kswapd" should
3738 	 * never get caught in the normal page freeing logic.
3739 	 *
3740 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3741 	 * you need a small amount of memory in order to be able to
3742 	 * page out something else, and this flag essentially protects
3743 	 * us from recursively trying to free more memory as we're
3744 	 * trying to free the first piece of memory in the first place).
3745 	 */
3746 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3747 	set_freezable();
3748 
3749 	pgdat->kswapd_order = 0;
3750 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3751 	for ( ; ; ) {
3752 		bool ret;
3753 
3754 		alloc_order = reclaim_order = pgdat->kswapd_order;
3755 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3756 
3757 kswapd_try_sleep:
3758 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3759 					classzone_idx);
3760 
3761 		/* Read the new order and classzone_idx */
3762 		alloc_order = reclaim_order = pgdat->kswapd_order;
3763 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3764 		pgdat->kswapd_order = 0;
3765 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3766 
3767 		ret = try_to_freeze();
3768 		if (kthread_should_stop())
3769 			break;
3770 
3771 		/*
3772 		 * We can speed up thawing tasks if we don't call balance_pgdat
3773 		 * after returning from the refrigerator
3774 		 */
3775 		if (ret)
3776 			continue;
3777 
3778 		/*
3779 		 * Reclaim begins at the requested order but if a high-order
3780 		 * reclaim fails then kswapd falls back to reclaiming for
3781 		 * order-0. If that happens, kswapd will consider sleeping
3782 		 * for the order it finished reclaiming at (reclaim_order)
3783 		 * but kcompactd is woken to compact for the original
3784 		 * request (alloc_order).
3785 		 */
3786 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3787 						alloc_order);
3788 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3789 		if (reclaim_order < alloc_order)
3790 			goto kswapd_try_sleep;
3791 	}
3792 
3793 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3794 	current->reclaim_state = NULL;
3795 
3796 	return 0;
3797 }
3798 
3799 /*
3800  * A zone is low on free memory or too fragmented for high-order memory.  If
3801  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3802  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3803  * has failed or is not needed, still wake up kcompactd if only compaction is
3804  * needed.
3805  */
3806 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3807 		   enum zone_type classzone_idx)
3808 {
3809 	pg_data_t *pgdat;
3810 
3811 	if (!managed_zone(zone))
3812 		return;
3813 
3814 	if (!cpuset_zone_allowed(zone, gfp_flags))
3815 		return;
3816 	pgdat = zone->zone_pgdat;
3817 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3818 							   classzone_idx);
3819 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3820 	if (!waitqueue_active(&pgdat->kswapd_wait))
3821 		return;
3822 
3823 	/* Hopeless node, leave it to direct reclaim if possible */
3824 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3825 	    pgdat_balanced(pgdat, order, classzone_idx)) {
3826 		/*
3827 		 * There may be plenty of free memory available, but it's too
3828 		 * fragmented for high-order allocations.  Wake up kcompactd
3829 		 * and rely on compaction_suitable() to determine if it's
3830 		 * needed.  If it fails, it will defer subsequent attempts to
3831 		 * ratelimit its work.
3832 		 */
3833 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3834 			wakeup_kcompactd(pgdat, order, classzone_idx);
3835 		return;
3836 	}
3837 
3838 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3839 				      gfp_flags);
3840 	wake_up_interruptible(&pgdat->kswapd_wait);
3841 }
3842 
3843 #ifdef CONFIG_HIBERNATION
3844 /*
3845  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3846  * freed pages.
3847  *
3848  * Rather than trying to age LRUs the aim is to preserve the overall
3849  * LRU order by reclaiming preferentially
3850  * inactive > active > active referenced > active mapped
3851  */
3852 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3853 {
3854 	struct reclaim_state reclaim_state;
3855 	struct scan_control sc = {
3856 		.nr_to_reclaim = nr_to_reclaim,
3857 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3858 		.reclaim_idx = MAX_NR_ZONES - 1,
3859 		.priority = DEF_PRIORITY,
3860 		.may_writepage = 1,
3861 		.may_unmap = 1,
3862 		.may_swap = 1,
3863 		.hibernation_mode = 1,
3864 	};
3865 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3866 	struct task_struct *p = current;
3867 	unsigned long nr_reclaimed;
3868 	unsigned int noreclaim_flag;
3869 
3870 	fs_reclaim_acquire(sc.gfp_mask);
3871 	noreclaim_flag = memalloc_noreclaim_save();
3872 	reclaim_state.reclaimed_slab = 0;
3873 	p->reclaim_state = &reclaim_state;
3874 
3875 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3876 
3877 	p->reclaim_state = NULL;
3878 	memalloc_noreclaim_restore(noreclaim_flag);
3879 	fs_reclaim_release(sc.gfp_mask);
3880 
3881 	return nr_reclaimed;
3882 }
3883 #endif /* CONFIG_HIBERNATION */
3884 
3885 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3886    not required for correctness.  So if the last cpu in a node goes
3887    away, we get changed to run anywhere: as the first one comes back,
3888    restore their cpu bindings. */
3889 static int kswapd_cpu_online(unsigned int cpu)
3890 {
3891 	int nid;
3892 
3893 	for_each_node_state(nid, N_MEMORY) {
3894 		pg_data_t *pgdat = NODE_DATA(nid);
3895 		const struct cpumask *mask;
3896 
3897 		mask = cpumask_of_node(pgdat->node_id);
3898 
3899 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3900 			/* One of our CPUs online: restore mask */
3901 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3902 	}
3903 	return 0;
3904 }
3905 
3906 /*
3907  * This kswapd start function will be called by init and node-hot-add.
3908  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3909  */
3910 int kswapd_run(int nid)
3911 {
3912 	pg_data_t *pgdat = NODE_DATA(nid);
3913 	int ret = 0;
3914 
3915 	if (pgdat->kswapd)
3916 		return 0;
3917 
3918 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3919 	if (IS_ERR(pgdat->kswapd)) {
3920 		/* failure at boot is fatal */
3921 		BUG_ON(system_state < SYSTEM_RUNNING);
3922 		pr_err("Failed to start kswapd on node %d\n", nid);
3923 		ret = PTR_ERR(pgdat->kswapd);
3924 		pgdat->kswapd = NULL;
3925 	}
3926 	return ret;
3927 }
3928 
3929 /*
3930  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3931  * hold mem_hotplug_begin/end().
3932  */
3933 void kswapd_stop(int nid)
3934 {
3935 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3936 
3937 	if (kswapd) {
3938 		kthread_stop(kswapd);
3939 		NODE_DATA(nid)->kswapd = NULL;
3940 	}
3941 }
3942 
3943 static int __init kswapd_init(void)
3944 {
3945 	int nid, ret;
3946 
3947 	swap_setup();
3948 	for_each_node_state(nid, N_MEMORY)
3949  		kswapd_run(nid);
3950 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3951 					"mm/vmscan:online", kswapd_cpu_online,
3952 					NULL);
3953 	WARN_ON(ret < 0);
3954 	return 0;
3955 }
3956 
3957 module_init(kswapd_init)
3958 
3959 #ifdef CONFIG_NUMA
3960 /*
3961  * Node reclaim mode
3962  *
3963  * If non-zero call node_reclaim when the number of free pages falls below
3964  * the watermarks.
3965  */
3966 int node_reclaim_mode __read_mostly;
3967 
3968 #define RECLAIM_OFF 0
3969 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3970 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3971 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3972 
3973 /*
3974  * Priority for NODE_RECLAIM. This determines the fraction of pages
3975  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3976  * a zone.
3977  */
3978 #define NODE_RECLAIM_PRIORITY 4
3979 
3980 /*
3981  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3982  * occur.
3983  */
3984 int sysctl_min_unmapped_ratio = 1;
3985 
3986 /*
3987  * If the number of slab pages in a zone grows beyond this percentage then
3988  * slab reclaim needs to occur.
3989  */
3990 int sysctl_min_slab_ratio = 5;
3991 
3992 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3993 {
3994 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3995 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3996 		node_page_state(pgdat, NR_ACTIVE_FILE);
3997 
3998 	/*
3999 	 * It's possible for there to be more file mapped pages than
4000 	 * accounted for by the pages on the file LRU lists because
4001 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4002 	 */
4003 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4004 }
4005 
4006 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4007 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4008 {
4009 	unsigned long nr_pagecache_reclaimable;
4010 	unsigned long delta = 0;
4011 
4012 	/*
4013 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4014 	 * potentially reclaimable. Otherwise, we have to worry about
4015 	 * pages like swapcache and node_unmapped_file_pages() provides
4016 	 * a better estimate
4017 	 */
4018 	if (node_reclaim_mode & RECLAIM_UNMAP)
4019 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4020 	else
4021 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4022 
4023 	/* If we can't clean pages, remove dirty pages from consideration */
4024 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4025 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4026 
4027 	/* Watch for any possible underflows due to delta */
4028 	if (unlikely(delta > nr_pagecache_reclaimable))
4029 		delta = nr_pagecache_reclaimable;
4030 
4031 	return nr_pagecache_reclaimable - delta;
4032 }
4033 
4034 /*
4035  * Try to free up some pages from this node through reclaim.
4036  */
4037 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4038 {
4039 	/* Minimum pages needed in order to stay on node */
4040 	const unsigned long nr_pages = 1 << order;
4041 	struct task_struct *p = current;
4042 	struct reclaim_state reclaim_state;
4043 	unsigned int noreclaim_flag;
4044 	struct scan_control sc = {
4045 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4046 		.gfp_mask = current_gfp_context(gfp_mask),
4047 		.order = order,
4048 		.priority = NODE_RECLAIM_PRIORITY,
4049 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4050 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4051 		.may_swap = 1,
4052 		.reclaim_idx = gfp_zone(gfp_mask),
4053 	};
4054 
4055 	cond_resched();
4056 	fs_reclaim_acquire(sc.gfp_mask);
4057 	/*
4058 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4059 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4060 	 * and RECLAIM_UNMAP.
4061 	 */
4062 	noreclaim_flag = memalloc_noreclaim_save();
4063 	p->flags |= PF_SWAPWRITE;
4064 	reclaim_state.reclaimed_slab = 0;
4065 	p->reclaim_state = &reclaim_state;
4066 
4067 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4068 		/*
4069 		 * Free memory by calling shrink node with increasing
4070 		 * priorities until we have enough memory freed.
4071 		 */
4072 		do {
4073 			shrink_node(pgdat, &sc);
4074 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4075 	}
4076 
4077 	p->reclaim_state = NULL;
4078 	current->flags &= ~PF_SWAPWRITE;
4079 	memalloc_noreclaim_restore(noreclaim_flag);
4080 	fs_reclaim_release(sc.gfp_mask);
4081 	return sc.nr_reclaimed >= nr_pages;
4082 }
4083 
4084 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4085 {
4086 	int ret;
4087 
4088 	/*
4089 	 * Node reclaim reclaims unmapped file backed pages and
4090 	 * slab pages if we are over the defined limits.
4091 	 *
4092 	 * A small portion of unmapped file backed pages is needed for
4093 	 * file I/O otherwise pages read by file I/O will be immediately
4094 	 * thrown out if the node is overallocated. So we do not reclaim
4095 	 * if less than a specified percentage of the node is used by
4096 	 * unmapped file backed pages.
4097 	 */
4098 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4099 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4100 		return NODE_RECLAIM_FULL;
4101 
4102 	/*
4103 	 * Do not scan if the allocation should not be delayed.
4104 	 */
4105 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4106 		return NODE_RECLAIM_NOSCAN;
4107 
4108 	/*
4109 	 * Only run node reclaim on the local node or on nodes that do not
4110 	 * have associated processors. This will favor the local processor
4111 	 * over remote processors and spread off node memory allocations
4112 	 * as wide as possible.
4113 	 */
4114 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4115 		return NODE_RECLAIM_NOSCAN;
4116 
4117 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4118 		return NODE_RECLAIM_NOSCAN;
4119 
4120 	ret = __node_reclaim(pgdat, gfp_mask, order);
4121 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4122 
4123 	if (!ret)
4124 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4125 
4126 	return ret;
4127 }
4128 #endif
4129 
4130 /*
4131  * page_evictable - test whether a page is evictable
4132  * @page: the page to test
4133  *
4134  * Test whether page is evictable--i.e., should be placed on active/inactive
4135  * lists vs unevictable list.
4136  *
4137  * Reasons page might not be evictable:
4138  * (1) page's mapping marked unevictable
4139  * (2) page is part of an mlocked VMA
4140  *
4141  */
4142 int page_evictable(struct page *page)
4143 {
4144 	int ret;
4145 
4146 	/* Prevent address_space of inode and swap cache from being freed */
4147 	rcu_read_lock();
4148 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4149 	rcu_read_unlock();
4150 	return ret;
4151 }
4152 
4153 #ifdef CONFIG_SHMEM
4154 /**
4155  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4156  * @pages:	array of pages to check
4157  * @nr_pages:	number of pages to check
4158  *
4159  * Checks pages for evictability and moves them to the appropriate lru list.
4160  *
4161  * This function is only used for SysV IPC SHM_UNLOCK.
4162  */
4163 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4164 {
4165 	struct lruvec *lruvec;
4166 	struct pglist_data *pgdat = NULL;
4167 	int pgscanned = 0;
4168 	int pgrescued = 0;
4169 	int i;
4170 
4171 	for (i = 0; i < nr_pages; i++) {
4172 		struct page *page = pages[i];
4173 		struct pglist_data *pagepgdat = page_pgdat(page);
4174 
4175 		pgscanned++;
4176 		if (pagepgdat != pgdat) {
4177 			if (pgdat)
4178 				spin_unlock_irq(&pgdat->lru_lock);
4179 			pgdat = pagepgdat;
4180 			spin_lock_irq(&pgdat->lru_lock);
4181 		}
4182 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4183 
4184 		if (!PageLRU(page) || !PageUnevictable(page))
4185 			continue;
4186 
4187 		if (page_evictable(page)) {
4188 			enum lru_list lru = page_lru_base_type(page);
4189 
4190 			VM_BUG_ON_PAGE(PageActive(page), page);
4191 			ClearPageUnevictable(page);
4192 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4193 			add_page_to_lru_list(page, lruvec, lru);
4194 			pgrescued++;
4195 		}
4196 	}
4197 
4198 	if (pgdat) {
4199 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4200 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4201 		spin_unlock_irq(&pgdat->lru_lock);
4202 	}
4203 }
4204 #endif /* CONFIG_SHMEM */
4205