xref: /linux/mm/shmem.c (revision e5a52fd2b8cdb700b3c07b030e050a49ef3156b9)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96 
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 	pgoff_t start;		/* start of range currently being fallocated */
105 	pgoff_t next;		/* the next page offset to be fallocated */
106 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
107 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
108 };
109 
110 struct shmem_options {
111 	unsigned long long blocks;
112 	unsigned long long inodes;
113 	struct mempolicy *mpol;
114 	kuid_t uid;
115 	kgid_t gid;
116 	umode_t mode;
117 	int huge;
118 	int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 };
123 
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127 	return totalram_pages() / 2;
128 }
129 
130 static unsigned long shmem_default_max_inodes(void)
131 {
132 	unsigned long nr_pages = totalram_pages();
133 
134 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137 
138 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
139 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
140 				struct shmem_inode_info *info, pgoff_t index);
141 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
142 			     struct page **pagep, enum sgp_type sgp,
143 			     gfp_t gfp, struct vm_area_struct *vma,
144 			     vm_fault_t *fault_type);
145 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
146 		struct page **pagep, enum sgp_type sgp,
147 		gfp_t gfp, struct vm_area_struct *vma,
148 		struct vm_fault *vmf, vm_fault_t *fault_type);
149 
150 int shmem_getpage(struct inode *inode, pgoff_t index,
151 		struct page **pagep, enum sgp_type sgp)
152 {
153 	return shmem_getpage_gfp(inode, index, pagep, sgp,
154 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
155 }
156 
157 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
158 {
159 	return sb->s_fs_info;
160 }
161 
162 /*
163  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
164  * for shared memory and for shared anonymous (/dev/zero) mappings
165  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
166  * consistent with the pre-accounting of private mappings ...
167  */
168 static inline int shmem_acct_size(unsigned long flags, loff_t size)
169 {
170 	return (flags & VM_NORESERVE) ?
171 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
172 }
173 
174 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
175 {
176 	if (!(flags & VM_NORESERVE))
177 		vm_unacct_memory(VM_ACCT(size));
178 }
179 
180 static inline int shmem_reacct_size(unsigned long flags,
181 		loff_t oldsize, loff_t newsize)
182 {
183 	if (!(flags & VM_NORESERVE)) {
184 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
185 			return security_vm_enough_memory_mm(current->mm,
186 					VM_ACCT(newsize) - VM_ACCT(oldsize));
187 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
188 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
189 	}
190 	return 0;
191 }
192 
193 /*
194  * ... whereas tmpfs objects are accounted incrementally as
195  * pages are allocated, in order to allow large sparse files.
196  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
197  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
198  */
199 static inline int shmem_acct_block(unsigned long flags, long pages)
200 {
201 	if (!(flags & VM_NORESERVE))
202 		return 0;
203 
204 	return security_vm_enough_memory_mm(current->mm,
205 			pages * VM_ACCT(PAGE_SIZE));
206 }
207 
208 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
209 {
210 	if (flags & VM_NORESERVE)
211 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
212 }
213 
214 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
215 {
216 	struct shmem_inode_info *info = SHMEM_I(inode);
217 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218 
219 	if (shmem_acct_block(info->flags, pages))
220 		return false;
221 
222 	if (sbinfo->max_blocks) {
223 		if (percpu_counter_compare(&sbinfo->used_blocks,
224 					   sbinfo->max_blocks - pages) > 0)
225 			goto unacct;
226 		percpu_counter_add(&sbinfo->used_blocks, pages);
227 	}
228 
229 	return true;
230 
231 unacct:
232 	shmem_unacct_blocks(info->flags, pages);
233 	return false;
234 }
235 
236 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
237 {
238 	struct shmem_inode_info *info = SHMEM_I(inode);
239 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
240 
241 	if (sbinfo->max_blocks)
242 		percpu_counter_sub(&sbinfo->used_blocks, pages);
243 	shmem_unacct_blocks(info->flags, pages);
244 }
245 
246 static const struct super_operations shmem_ops;
247 static const struct address_space_operations shmem_aops;
248 static const struct file_operations shmem_file_operations;
249 static const struct inode_operations shmem_inode_operations;
250 static const struct inode_operations shmem_dir_inode_operations;
251 static const struct inode_operations shmem_special_inode_operations;
252 static const struct vm_operations_struct shmem_vm_ops;
253 static struct file_system_type shmem_fs_type;
254 
255 bool vma_is_shmem(struct vm_area_struct *vma)
256 {
257 	return vma->vm_ops == &shmem_vm_ops;
258 }
259 
260 static LIST_HEAD(shmem_swaplist);
261 static DEFINE_MUTEX(shmem_swaplist_mutex);
262 
263 static int shmem_reserve_inode(struct super_block *sb)
264 {
265 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
266 	if (sbinfo->max_inodes) {
267 		spin_lock(&sbinfo->stat_lock);
268 		if (!sbinfo->free_inodes) {
269 			spin_unlock(&sbinfo->stat_lock);
270 			return -ENOSPC;
271 		}
272 		sbinfo->free_inodes--;
273 		spin_unlock(&sbinfo->stat_lock);
274 	}
275 	return 0;
276 }
277 
278 static void shmem_free_inode(struct super_block *sb)
279 {
280 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
281 	if (sbinfo->max_inodes) {
282 		spin_lock(&sbinfo->stat_lock);
283 		sbinfo->free_inodes++;
284 		spin_unlock(&sbinfo->stat_lock);
285 	}
286 }
287 
288 /**
289  * shmem_recalc_inode - recalculate the block usage of an inode
290  * @inode: inode to recalc
291  *
292  * We have to calculate the free blocks since the mm can drop
293  * undirtied hole pages behind our back.
294  *
295  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
296  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
297  *
298  * It has to be called with the spinlock held.
299  */
300 static void shmem_recalc_inode(struct inode *inode)
301 {
302 	struct shmem_inode_info *info = SHMEM_I(inode);
303 	long freed;
304 
305 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
306 	if (freed > 0) {
307 		info->alloced -= freed;
308 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
309 		shmem_inode_unacct_blocks(inode, freed);
310 	}
311 }
312 
313 bool shmem_charge(struct inode *inode, long pages)
314 {
315 	struct shmem_inode_info *info = SHMEM_I(inode);
316 	unsigned long flags;
317 
318 	if (!shmem_inode_acct_block(inode, pages))
319 		return false;
320 
321 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
322 	inode->i_mapping->nrpages += pages;
323 
324 	spin_lock_irqsave(&info->lock, flags);
325 	info->alloced += pages;
326 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
327 	shmem_recalc_inode(inode);
328 	spin_unlock_irqrestore(&info->lock, flags);
329 
330 	return true;
331 }
332 
333 void shmem_uncharge(struct inode *inode, long pages)
334 {
335 	struct shmem_inode_info *info = SHMEM_I(inode);
336 	unsigned long flags;
337 
338 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
339 
340 	spin_lock_irqsave(&info->lock, flags);
341 	info->alloced -= pages;
342 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
343 	shmem_recalc_inode(inode);
344 	spin_unlock_irqrestore(&info->lock, flags);
345 
346 	shmem_inode_unacct_blocks(inode, pages);
347 }
348 
349 /*
350  * Replace item expected in xarray by a new item, while holding xa_lock.
351  */
352 static int shmem_replace_entry(struct address_space *mapping,
353 			pgoff_t index, void *expected, void *replacement)
354 {
355 	XA_STATE(xas, &mapping->i_pages, index);
356 	void *item;
357 
358 	VM_BUG_ON(!expected);
359 	VM_BUG_ON(!replacement);
360 	item = xas_load(&xas);
361 	if (item != expected)
362 		return -ENOENT;
363 	xas_store(&xas, replacement);
364 	return 0;
365 }
366 
367 /*
368  * Sometimes, before we decide whether to proceed or to fail, we must check
369  * that an entry was not already brought back from swap by a racing thread.
370  *
371  * Checking page is not enough: by the time a SwapCache page is locked, it
372  * might be reused, and again be SwapCache, using the same swap as before.
373  */
374 static bool shmem_confirm_swap(struct address_space *mapping,
375 			       pgoff_t index, swp_entry_t swap)
376 {
377 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
378 }
379 
380 /*
381  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
382  *
383  * SHMEM_HUGE_NEVER:
384  *	disables huge pages for the mount;
385  * SHMEM_HUGE_ALWAYS:
386  *	enables huge pages for the mount;
387  * SHMEM_HUGE_WITHIN_SIZE:
388  *	only allocate huge pages if the page will be fully within i_size,
389  *	also respect fadvise()/madvise() hints;
390  * SHMEM_HUGE_ADVISE:
391  *	only allocate huge pages if requested with fadvise()/madvise();
392  */
393 
394 #define SHMEM_HUGE_NEVER	0
395 #define SHMEM_HUGE_ALWAYS	1
396 #define SHMEM_HUGE_WITHIN_SIZE	2
397 #define SHMEM_HUGE_ADVISE	3
398 
399 /*
400  * Special values.
401  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
402  *
403  * SHMEM_HUGE_DENY:
404  *	disables huge on shm_mnt and all mounts, for emergency use;
405  * SHMEM_HUGE_FORCE:
406  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
407  *
408  */
409 #define SHMEM_HUGE_DENY		(-1)
410 #define SHMEM_HUGE_FORCE	(-2)
411 
412 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
413 /* ifdef here to avoid bloating shmem.o when not necessary */
414 
415 static int shmem_huge __read_mostly;
416 
417 #if defined(CONFIG_SYSFS)
418 static int shmem_parse_huge(const char *str)
419 {
420 	if (!strcmp(str, "never"))
421 		return SHMEM_HUGE_NEVER;
422 	if (!strcmp(str, "always"))
423 		return SHMEM_HUGE_ALWAYS;
424 	if (!strcmp(str, "within_size"))
425 		return SHMEM_HUGE_WITHIN_SIZE;
426 	if (!strcmp(str, "advise"))
427 		return SHMEM_HUGE_ADVISE;
428 	if (!strcmp(str, "deny"))
429 		return SHMEM_HUGE_DENY;
430 	if (!strcmp(str, "force"))
431 		return SHMEM_HUGE_FORCE;
432 	return -EINVAL;
433 }
434 #endif
435 
436 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
437 static const char *shmem_format_huge(int huge)
438 {
439 	switch (huge) {
440 	case SHMEM_HUGE_NEVER:
441 		return "never";
442 	case SHMEM_HUGE_ALWAYS:
443 		return "always";
444 	case SHMEM_HUGE_WITHIN_SIZE:
445 		return "within_size";
446 	case SHMEM_HUGE_ADVISE:
447 		return "advise";
448 	case SHMEM_HUGE_DENY:
449 		return "deny";
450 	case SHMEM_HUGE_FORCE:
451 		return "force";
452 	default:
453 		VM_BUG_ON(1);
454 		return "bad_val";
455 	}
456 }
457 #endif
458 
459 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
460 		struct shrink_control *sc, unsigned long nr_to_split)
461 {
462 	LIST_HEAD(list), *pos, *next;
463 	LIST_HEAD(to_remove);
464 	struct inode *inode;
465 	struct shmem_inode_info *info;
466 	struct page *page;
467 	unsigned long batch = sc ? sc->nr_to_scan : 128;
468 	int removed = 0, split = 0;
469 
470 	if (list_empty(&sbinfo->shrinklist))
471 		return SHRINK_STOP;
472 
473 	spin_lock(&sbinfo->shrinklist_lock);
474 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
475 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
476 
477 		/* pin the inode */
478 		inode = igrab(&info->vfs_inode);
479 
480 		/* inode is about to be evicted */
481 		if (!inode) {
482 			list_del_init(&info->shrinklist);
483 			removed++;
484 			goto next;
485 		}
486 
487 		/* Check if there's anything to gain */
488 		if (round_up(inode->i_size, PAGE_SIZE) ==
489 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
490 			list_move(&info->shrinklist, &to_remove);
491 			removed++;
492 			goto next;
493 		}
494 
495 		list_move(&info->shrinklist, &list);
496 next:
497 		if (!--batch)
498 			break;
499 	}
500 	spin_unlock(&sbinfo->shrinklist_lock);
501 
502 	list_for_each_safe(pos, next, &to_remove) {
503 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
504 		inode = &info->vfs_inode;
505 		list_del_init(&info->shrinklist);
506 		iput(inode);
507 	}
508 
509 	list_for_each_safe(pos, next, &list) {
510 		int ret;
511 
512 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
513 		inode = &info->vfs_inode;
514 
515 		if (nr_to_split && split >= nr_to_split)
516 			goto leave;
517 
518 		page = find_get_page(inode->i_mapping,
519 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
520 		if (!page)
521 			goto drop;
522 
523 		/* No huge page at the end of the file: nothing to split */
524 		if (!PageTransHuge(page)) {
525 			put_page(page);
526 			goto drop;
527 		}
528 
529 		/*
530 		 * Leave the inode on the list if we failed to lock
531 		 * the page at this time.
532 		 *
533 		 * Waiting for the lock may lead to deadlock in the
534 		 * reclaim path.
535 		 */
536 		if (!trylock_page(page)) {
537 			put_page(page);
538 			goto leave;
539 		}
540 
541 		ret = split_huge_page(page);
542 		unlock_page(page);
543 		put_page(page);
544 
545 		/* If split failed leave the inode on the list */
546 		if (ret)
547 			goto leave;
548 
549 		split++;
550 drop:
551 		list_del_init(&info->shrinklist);
552 		removed++;
553 leave:
554 		iput(inode);
555 	}
556 
557 	spin_lock(&sbinfo->shrinklist_lock);
558 	list_splice_tail(&list, &sbinfo->shrinklist);
559 	sbinfo->shrinklist_len -= removed;
560 	spin_unlock(&sbinfo->shrinklist_lock);
561 
562 	return split;
563 }
564 
565 static long shmem_unused_huge_scan(struct super_block *sb,
566 		struct shrink_control *sc)
567 {
568 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
569 
570 	if (!READ_ONCE(sbinfo->shrinklist_len))
571 		return SHRINK_STOP;
572 
573 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
574 }
575 
576 static long shmem_unused_huge_count(struct super_block *sb,
577 		struct shrink_control *sc)
578 {
579 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
580 	return READ_ONCE(sbinfo->shrinklist_len);
581 }
582 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
583 
584 #define shmem_huge SHMEM_HUGE_DENY
585 
586 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
587 		struct shrink_control *sc, unsigned long nr_to_split)
588 {
589 	return 0;
590 }
591 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
592 
593 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
594 {
595 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
596 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
597 	    shmem_huge != SHMEM_HUGE_DENY)
598 		return true;
599 	return false;
600 }
601 
602 /*
603  * Like add_to_page_cache_locked, but error if expected item has gone.
604  */
605 static int shmem_add_to_page_cache(struct page *page,
606 				   struct address_space *mapping,
607 				   pgoff_t index, void *expected, gfp_t gfp,
608 				   struct mm_struct *charge_mm)
609 {
610 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
611 	unsigned long i = 0;
612 	unsigned long nr = compound_nr(page);
613 	int error;
614 
615 	VM_BUG_ON_PAGE(PageTail(page), page);
616 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
617 	VM_BUG_ON_PAGE(!PageLocked(page), page);
618 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
619 	VM_BUG_ON(expected && PageTransHuge(page));
620 
621 	page_ref_add(page, nr);
622 	page->mapping = mapping;
623 	page->index = index;
624 
625 	if (!PageSwapCache(page)) {
626 		error = mem_cgroup_charge(page, charge_mm, gfp);
627 		if (error) {
628 			if (PageTransHuge(page)) {
629 				count_vm_event(THP_FILE_FALLBACK);
630 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
631 			}
632 			goto error;
633 		}
634 	}
635 	cgroup_throttle_swaprate(page, gfp);
636 
637 	do {
638 		void *entry;
639 		xas_lock_irq(&xas);
640 		entry = xas_find_conflict(&xas);
641 		if (entry != expected)
642 			xas_set_err(&xas, -EEXIST);
643 		xas_create_range(&xas);
644 		if (xas_error(&xas))
645 			goto unlock;
646 next:
647 		xas_store(&xas, page);
648 		if (++i < nr) {
649 			xas_next(&xas);
650 			goto next;
651 		}
652 		if (PageTransHuge(page)) {
653 			count_vm_event(THP_FILE_ALLOC);
654 			__inc_node_page_state(page, NR_SHMEM_THPS);
655 		}
656 		mapping->nrpages += nr;
657 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
658 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
659 unlock:
660 		xas_unlock_irq(&xas);
661 	} while (xas_nomem(&xas, gfp));
662 
663 	if (xas_error(&xas)) {
664 		error = xas_error(&xas);
665 		goto error;
666 	}
667 
668 	return 0;
669 error:
670 	page->mapping = NULL;
671 	page_ref_sub(page, nr);
672 	return error;
673 }
674 
675 /*
676  * Like delete_from_page_cache, but substitutes swap for page.
677  */
678 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
679 {
680 	struct address_space *mapping = page->mapping;
681 	int error;
682 
683 	VM_BUG_ON_PAGE(PageCompound(page), page);
684 
685 	xa_lock_irq(&mapping->i_pages);
686 	error = shmem_replace_entry(mapping, page->index, page, radswap);
687 	page->mapping = NULL;
688 	mapping->nrpages--;
689 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
690 	__dec_lruvec_page_state(page, NR_SHMEM);
691 	xa_unlock_irq(&mapping->i_pages);
692 	put_page(page);
693 	BUG_ON(error);
694 }
695 
696 /*
697  * Remove swap entry from page cache, free the swap and its page cache.
698  */
699 static int shmem_free_swap(struct address_space *mapping,
700 			   pgoff_t index, void *radswap)
701 {
702 	void *old;
703 
704 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
705 	if (old != radswap)
706 		return -ENOENT;
707 	free_swap_and_cache(radix_to_swp_entry(radswap));
708 	return 0;
709 }
710 
711 /*
712  * Determine (in bytes) how many of the shmem object's pages mapped by the
713  * given offsets are swapped out.
714  *
715  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
716  * as long as the inode doesn't go away and racy results are not a problem.
717  */
718 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
719 						pgoff_t start, pgoff_t end)
720 {
721 	XA_STATE(xas, &mapping->i_pages, start);
722 	struct page *page;
723 	unsigned long swapped = 0;
724 
725 	rcu_read_lock();
726 	xas_for_each(&xas, page, end - 1) {
727 		if (xas_retry(&xas, page))
728 			continue;
729 		if (xa_is_value(page))
730 			swapped++;
731 
732 		if (need_resched()) {
733 			xas_pause(&xas);
734 			cond_resched_rcu();
735 		}
736 	}
737 
738 	rcu_read_unlock();
739 
740 	return swapped << PAGE_SHIFT;
741 }
742 
743 /*
744  * Determine (in bytes) how many of the shmem object's pages mapped by the
745  * given vma is swapped out.
746  *
747  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
748  * as long as the inode doesn't go away and racy results are not a problem.
749  */
750 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
751 {
752 	struct inode *inode = file_inode(vma->vm_file);
753 	struct shmem_inode_info *info = SHMEM_I(inode);
754 	struct address_space *mapping = inode->i_mapping;
755 	unsigned long swapped;
756 
757 	/* Be careful as we don't hold info->lock */
758 	swapped = READ_ONCE(info->swapped);
759 
760 	/*
761 	 * The easier cases are when the shmem object has nothing in swap, or
762 	 * the vma maps it whole. Then we can simply use the stats that we
763 	 * already track.
764 	 */
765 	if (!swapped)
766 		return 0;
767 
768 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
769 		return swapped << PAGE_SHIFT;
770 
771 	/* Here comes the more involved part */
772 	return shmem_partial_swap_usage(mapping,
773 			linear_page_index(vma, vma->vm_start),
774 			linear_page_index(vma, vma->vm_end));
775 }
776 
777 /*
778  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
779  */
780 void shmem_unlock_mapping(struct address_space *mapping)
781 {
782 	struct pagevec pvec;
783 	pgoff_t indices[PAGEVEC_SIZE];
784 	pgoff_t index = 0;
785 
786 	pagevec_init(&pvec);
787 	/*
788 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
789 	 */
790 	while (!mapping_unevictable(mapping)) {
791 		/*
792 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
793 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
794 		 */
795 		pvec.nr = find_get_entries(mapping, index,
796 					   PAGEVEC_SIZE, pvec.pages, indices);
797 		if (!pvec.nr)
798 			break;
799 		index = indices[pvec.nr - 1] + 1;
800 		pagevec_remove_exceptionals(&pvec);
801 		check_move_unevictable_pages(&pvec);
802 		pagevec_release(&pvec);
803 		cond_resched();
804 	}
805 }
806 
807 /*
808  * Check whether a hole-punch or truncation needs to split a huge page,
809  * returning true if no split was required, or the split has been successful.
810  *
811  * Eviction (or truncation to 0 size) should never need to split a huge page;
812  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
813  * head, and then succeeded to trylock on tail.
814  *
815  * A split can only succeed when there are no additional references on the
816  * huge page: so the split below relies upon find_get_entries() having stopped
817  * when it found a subpage of the huge page, without getting further references.
818  */
819 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
820 {
821 	if (!PageTransCompound(page))
822 		return true;
823 
824 	/* Just proceed to delete a huge page wholly within the range punched */
825 	if (PageHead(page) &&
826 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
827 		return true;
828 
829 	/* Try to split huge page, so we can truly punch the hole or truncate */
830 	return split_huge_page(page) >= 0;
831 }
832 
833 /*
834  * Remove range of pages and swap entries from page cache, and free them.
835  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
836  */
837 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
838 								 bool unfalloc)
839 {
840 	struct address_space *mapping = inode->i_mapping;
841 	struct shmem_inode_info *info = SHMEM_I(inode);
842 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
843 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
844 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
845 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
846 	struct pagevec pvec;
847 	pgoff_t indices[PAGEVEC_SIZE];
848 	long nr_swaps_freed = 0;
849 	pgoff_t index;
850 	int i;
851 
852 	if (lend == -1)
853 		end = -1;	/* unsigned, so actually very big */
854 
855 	pagevec_init(&pvec);
856 	index = start;
857 	while (index < end) {
858 		pvec.nr = find_get_entries(mapping, index,
859 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
860 			pvec.pages, indices);
861 		if (!pvec.nr)
862 			break;
863 		for (i = 0; i < pagevec_count(&pvec); i++) {
864 			struct page *page = pvec.pages[i];
865 
866 			index = indices[i];
867 			if (index >= end)
868 				break;
869 
870 			if (xa_is_value(page)) {
871 				if (unfalloc)
872 					continue;
873 				nr_swaps_freed += !shmem_free_swap(mapping,
874 								index, page);
875 				continue;
876 			}
877 
878 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
879 
880 			if (!trylock_page(page))
881 				continue;
882 
883 			if ((!unfalloc || !PageUptodate(page)) &&
884 			    page_mapping(page) == mapping) {
885 				VM_BUG_ON_PAGE(PageWriteback(page), page);
886 				if (shmem_punch_compound(page, start, end))
887 					truncate_inode_page(mapping, page);
888 			}
889 			unlock_page(page);
890 		}
891 		pagevec_remove_exceptionals(&pvec);
892 		pagevec_release(&pvec);
893 		cond_resched();
894 		index++;
895 	}
896 
897 	if (partial_start) {
898 		struct page *page = NULL;
899 		shmem_getpage(inode, start - 1, &page, SGP_READ);
900 		if (page) {
901 			unsigned int top = PAGE_SIZE;
902 			if (start > end) {
903 				top = partial_end;
904 				partial_end = 0;
905 			}
906 			zero_user_segment(page, partial_start, top);
907 			set_page_dirty(page);
908 			unlock_page(page);
909 			put_page(page);
910 		}
911 	}
912 	if (partial_end) {
913 		struct page *page = NULL;
914 		shmem_getpage(inode, end, &page, SGP_READ);
915 		if (page) {
916 			zero_user_segment(page, 0, partial_end);
917 			set_page_dirty(page);
918 			unlock_page(page);
919 			put_page(page);
920 		}
921 	}
922 	if (start >= end)
923 		return;
924 
925 	index = start;
926 	while (index < end) {
927 		cond_resched();
928 
929 		pvec.nr = find_get_entries(mapping, index,
930 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
931 				pvec.pages, indices);
932 		if (!pvec.nr) {
933 			/* If all gone or hole-punch or unfalloc, we're done */
934 			if (index == start || end != -1)
935 				break;
936 			/* But if truncating, restart to make sure all gone */
937 			index = start;
938 			continue;
939 		}
940 		for (i = 0; i < pagevec_count(&pvec); i++) {
941 			struct page *page = pvec.pages[i];
942 
943 			index = indices[i];
944 			if (index >= end)
945 				break;
946 
947 			if (xa_is_value(page)) {
948 				if (unfalloc)
949 					continue;
950 				if (shmem_free_swap(mapping, index, page)) {
951 					/* Swap was replaced by page: retry */
952 					index--;
953 					break;
954 				}
955 				nr_swaps_freed++;
956 				continue;
957 			}
958 
959 			lock_page(page);
960 
961 			if (!unfalloc || !PageUptodate(page)) {
962 				if (page_mapping(page) != mapping) {
963 					/* Page was replaced by swap: retry */
964 					unlock_page(page);
965 					index--;
966 					break;
967 				}
968 				VM_BUG_ON_PAGE(PageWriteback(page), page);
969 				if (shmem_punch_compound(page, start, end))
970 					truncate_inode_page(mapping, page);
971 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
972 					/* Wipe the page and don't get stuck */
973 					clear_highpage(page);
974 					flush_dcache_page(page);
975 					set_page_dirty(page);
976 					if (index <
977 					    round_up(start, HPAGE_PMD_NR))
978 						start = index + 1;
979 				}
980 			}
981 			unlock_page(page);
982 		}
983 		pagevec_remove_exceptionals(&pvec);
984 		pagevec_release(&pvec);
985 		index++;
986 	}
987 
988 	spin_lock_irq(&info->lock);
989 	info->swapped -= nr_swaps_freed;
990 	shmem_recalc_inode(inode);
991 	spin_unlock_irq(&info->lock);
992 }
993 
994 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
995 {
996 	shmem_undo_range(inode, lstart, lend, false);
997 	inode->i_ctime = inode->i_mtime = current_time(inode);
998 }
999 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1000 
1001 static int shmem_getattr(const struct path *path, struct kstat *stat,
1002 			 u32 request_mask, unsigned int query_flags)
1003 {
1004 	struct inode *inode = path->dentry->d_inode;
1005 	struct shmem_inode_info *info = SHMEM_I(inode);
1006 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1007 
1008 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1009 		spin_lock_irq(&info->lock);
1010 		shmem_recalc_inode(inode);
1011 		spin_unlock_irq(&info->lock);
1012 	}
1013 	generic_fillattr(inode, stat);
1014 
1015 	if (is_huge_enabled(sb_info))
1016 		stat->blksize = HPAGE_PMD_SIZE;
1017 
1018 	return 0;
1019 }
1020 
1021 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1022 {
1023 	struct inode *inode = d_inode(dentry);
1024 	struct shmem_inode_info *info = SHMEM_I(inode);
1025 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1026 	int error;
1027 
1028 	error = setattr_prepare(dentry, attr);
1029 	if (error)
1030 		return error;
1031 
1032 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1033 		loff_t oldsize = inode->i_size;
1034 		loff_t newsize = attr->ia_size;
1035 
1036 		/* protected by i_mutex */
1037 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1038 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1039 			return -EPERM;
1040 
1041 		if (newsize != oldsize) {
1042 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1043 					oldsize, newsize);
1044 			if (error)
1045 				return error;
1046 			i_size_write(inode, newsize);
1047 			inode->i_ctime = inode->i_mtime = current_time(inode);
1048 		}
1049 		if (newsize <= oldsize) {
1050 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1051 			if (oldsize > holebegin)
1052 				unmap_mapping_range(inode->i_mapping,
1053 							holebegin, 0, 1);
1054 			if (info->alloced)
1055 				shmem_truncate_range(inode,
1056 							newsize, (loff_t)-1);
1057 			/* unmap again to remove racily COWed private pages */
1058 			if (oldsize > holebegin)
1059 				unmap_mapping_range(inode->i_mapping,
1060 							holebegin, 0, 1);
1061 
1062 			/*
1063 			 * Part of the huge page can be beyond i_size: subject
1064 			 * to shrink under memory pressure.
1065 			 */
1066 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1067 				spin_lock(&sbinfo->shrinklist_lock);
1068 				/*
1069 				 * _careful to defend against unlocked access to
1070 				 * ->shrink_list in shmem_unused_huge_shrink()
1071 				 */
1072 				if (list_empty_careful(&info->shrinklist)) {
1073 					list_add_tail(&info->shrinklist,
1074 							&sbinfo->shrinklist);
1075 					sbinfo->shrinklist_len++;
1076 				}
1077 				spin_unlock(&sbinfo->shrinklist_lock);
1078 			}
1079 		}
1080 	}
1081 
1082 	setattr_copy(inode, attr);
1083 	if (attr->ia_valid & ATTR_MODE)
1084 		error = posix_acl_chmod(inode, inode->i_mode);
1085 	return error;
1086 }
1087 
1088 static void shmem_evict_inode(struct inode *inode)
1089 {
1090 	struct shmem_inode_info *info = SHMEM_I(inode);
1091 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1092 
1093 	if (inode->i_mapping->a_ops == &shmem_aops) {
1094 		shmem_unacct_size(info->flags, inode->i_size);
1095 		inode->i_size = 0;
1096 		shmem_truncate_range(inode, 0, (loff_t)-1);
1097 		if (!list_empty(&info->shrinklist)) {
1098 			spin_lock(&sbinfo->shrinklist_lock);
1099 			if (!list_empty(&info->shrinklist)) {
1100 				list_del_init(&info->shrinklist);
1101 				sbinfo->shrinklist_len--;
1102 			}
1103 			spin_unlock(&sbinfo->shrinklist_lock);
1104 		}
1105 		while (!list_empty(&info->swaplist)) {
1106 			/* Wait while shmem_unuse() is scanning this inode... */
1107 			wait_var_event(&info->stop_eviction,
1108 				       !atomic_read(&info->stop_eviction));
1109 			mutex_lock(&shmem_swaplist_mutex);
1110 			/* ...but beware of the race if we peeked too early */
1111 			if (!atomic_read(&info->stop_eviction))
1112 				list_del_init(&info->swaplist);
1113 			mutex_unlock(&shmem_swaplist_mutex);
1114 		}
1115 	}
1116 
1117 	simple_xattrs_free(&info->xattrs);
1118 	WARN_ON(inode->i_blocks);
1119 	shmem_free_inode(inode->i_sb);
1120 	clear_inode(inode);
1121 }
1122 
1123 extern struct swap_info_struct *swap_info[];
1124 
1125 static int shmem_find_swap_entries(struct address_space *mapping,
1126 				   pgoff_t start, unsigned int nr_entries,
1127 				   struct page **entries, pgoff_t *indices,
1128 				   unsigned int type, bool frontswap)
1129 {
1130 	XA_STATE(xas, &mapping->i_pages, start);
1131 	struct page *page;
1132 	swp_entry_t entry;
1133 	unsigned int ret = 0;
1134 
1135 	if (!nr_entries)
1136 		return 0;
1137 
1138 	rcu_read_lock();
1139 	xas_for_each(&xas, page, ULONG_MAX) {
1140 		if (xas_retry(&xas, page))
1141 			continue;
1142 
1143 		if (!xa_is_value(page))
1144 			continue;
1145 
1146 		entry = radix_to_swp_entry(page);
1147 		if (swp_type(entry) != type)
1148 			continue;
1149 		if (frontswap &&
1150 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1151 			continue;
1152 
1153 		indices[ret] = xas.xa_index;
1154 		entries[ret] = page;
1155 
1156 		if (need_resched()) {
1157 			xas_pause(&xas);
1158 			cond_resched_rcu();
1159 		}
1160 		if (++ret == nr_entries)
1161 			break;
1162 	}
1163 	rcu_read_unlock();
1164 
1165 	return ret;
1166 }
1167 
1168 /*
1169  * Move the swapped pages for an inode to page cache. Returns the count
1170  * of pages swapped in, or the error in case of failure.
1171  */
1172 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1173 				    pgoff_t *indices)
1174 {
1175 	int i = 0;
1176 	int ret = 0;
1177 	int error = 0;
1178 	struct address_space *mapping = inode->i_mapping;
1179 
1180 	for (i = 0; i < pvec.nr; i++) {
1181 		struct page *page = pvec.pages[i];
1182 
1183 		if (!xa_is_value(page))
1184 			continue;
1185 		error = shmem_swapin_page(inode, indices[i],
1186 					  &page, SGP_CACHE,
1187 					  mapping_gfp_mask(mapping),
1188 					  NULL, NULL);
1189 		if (error == 0) {
1190 			unlock_page(page);
1191 			put_page(page);
1192 			ret++;
1193 		}
1194 		if (error == -ENOMEM)
1195 			break;
1196 		error = 0;
1197 	}
1198 	return error ? error : ret;
1199 }
1200 
1201 /*
1202  * If swap found in inode, free it and move page from swapcache to filecache.
1203  */
1204 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1205 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1206 {
1207 	struct address_space *mapping = inode->i_mapping;
1208 	pgoff_t start = 0;
1209 	struct pagevec pvec;
1210 	pgoff_t indices[PAGEVEC_SIZE];
1211 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1212 	int ret = 0;
1213 
1214 	pagevec_init(&pvec);
1215 	do {
1216 		unsigned int nr_entries = PAGEVEC_SIZE;
1217 
1218 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1219 			nr_entries = *fs_pages_to_unuse;
1220 
1221 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1222 						  pvec.pages, indices,
1223 						  type, frontswap);
1224 		if (pvec.nr == 0) {
1225 			ret = 0;
1226 			break;
1227 		}
1228 
1229 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1230 		if (ret < 0)
1231 			break;
1232 
1233 		if (frontswap_partial) {
1234 			*fs_pages_to_unuse -= ret;
1235 			if (*fs_pages_to_unuse == 0) {
1236 				ret = FRONTSWAP_PAGES_UNUSED;
1237 				break;
1238 			}
1239 		}
1240 
1241 		start = indices[pvec.nr - 1];
1242 	} while (true);
1243 
1244 	return ret;
1245 }
1246 
1247 /*
1248  * Read all the shared memory data that resides in the swap
1249  * device 'type' back into memory, so the swap device can be
1250  * unused.
1251  */
1252 int shmem_unuse(unsigned int type, bool frontswap,
1253 		unsigned long *fs_pages_to_unuse)
1254 {
1255 	struct shmem_inode_info *info, *next;
1256 	int error = 0;
1257 
1258 	if (list_empty(&shmem_swaplist))
1259 		return 0;
1260 
1261 	mutex_lock(&shmem_swaplist_mutex);
1262 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1263 		if (!info->swapped) {
1264 			list_del_init(&info->swaplist);
1265 			continue;
1266 		}
1267 		/*
1268 		 * Drop the swaplist mutex while searching the inode for swap;
1269 		 * but before doing so, make sure shmem_evict_inode() will not
1270 		 * remove placeholder inode from swaplist, nor let it be freed
1271 		 * (igrab() would protect from unlink, but not from unmount).
1272 		 */
1273 		atomic_inc(&info->stop_eviction);
1274 		mutex_unlock(&shmem_swaplist_mutex);
1275 
1276 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1277 					  fs_pages_to_unuse);
1278 		cond_resched();
1279 
1280 		mutex_lock(&shmem_swaplist_mutex);
1281 		next = list_next_entry(info, swaplist);
1282 		if (!info->swapped)
1283 			list_del_init(&info->swaplist);
1284 		if (atomic_dec_and_test(&info->stop_eviction))
1285 			wake_up_var(&info->stop_eviction);
1286 		if (error)
1287 			break;
1288 	}
1289 	mutex_unlock(&shmem_swaplist_mutex);
1290 
1291 	return error;
1292 }
1293 
1294 /*
1295  * Move the page from the page cache to the swap cache.
1296  */
1297 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1298 {
1299 	struct shmem_inode_info *info;
1300 	struct address_space *mapping;
1301 	struct inode *inode;
1302 	swp_entry_t swap;
1303 	pgoff_t index;
1304 
1305 	VM_BUG_ON_PAGE(PageCompound(page), page);
1306 	BUG_ON(!PageLocked(page));
1307 	mapping = page->mapping;
1308 	index = page->index;
1309 	inode = mapping->host;
1310 	info = SHMEM_I(inode);
1311 	if (info->flags & VM_LOCKED)
1312 		goto redirty;
1313 	if (!total_swap_pages)
1314 		goto redirty;
1315 
1316 	/*
1317 	 * Our capabilities prevent regular writeback or sync from ever calling
1318 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1319 	 * its underlying filesystem, in which case tmpfs should write out to
1320 	 * swap only in response to memory pressure, and not for the writeback
1321 	 * threads or sync.
1322 	 */
1323 	if (!wbc->for_reclaim) {
1324 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1325 		goto redirty;
1326 	}
1327 
1328 	/*
1329 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1330 	 * value into swapfile.c, the only way we can correctly account for a
1331 	 * fallocated page arriving here is now to initialize it and write it.
1332 	 *
1333 	 * That's okay for a page already fallocated earlier, but if we have
1334 	 * not yet completed the fallocation, then (a) we want to keep track
1335 	 * of this page in case we have to undo it, and (b) it may not be a
1336 	 * good idea to continue anyway, once we're pushing into swap.  So
1337 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1338 	 */
1339 	if (!PageUptodate(page)) {
1340 		if (inode->i_private) {
1341 			struct shmem_falloc *shmem_falloc;
1342 			spin_lock(&inode->i_lock);
1343 			shmem_falloc = inode->i_private;
1344 			if (shmem_falloc &&
1345 			    !shmem_falloc->waitq &&
1346 			    index >= shmem_falloc->start &&
1347 			    index < shmem_falloc->next)
1348 				shmem_falloc->nr_unswapped++;
1349 			else
1350 				shmem_falloc = NULL;
1351 			spin_unlock(&inode->i_lock);
1352 			if (shmem_falloc)
1353 				goto redirty;
1354 		}
1355 		clear_highpage(page);
1356 		flush_dcache_page(page);
1357 		SetPageUptodate(page);
1358 	}
1359 
1360 	swap = get_swap_page(page);
1361 	if (!swap.val)
1362 		goto redirty;
1363 
1364 	/*
1365 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1366 	 * if it's not already there.  Do it now before the page is
1367 	 * moved to swap cache, when its pagelock no longer protects
1368 	 * the inode from eviction.  But don't unlock the mutex until
1369 	 * we've incremented swapped, because shmem_unuse_inode() will
1370 	 * prune a !swapped inode from the swaplist under this mutex.
1371 	 */
1372 	mutex_lock(&shmem_swaplist_mutex);
1373 	if (list_empty(&info->swaplist))
1374 		list_add(&info->swaplist, &shmem_swaplist);
1375 
1376 	if (add_to_swap_cache(page, swap,
1377 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1378 		spin_lock_irq(&info->lock);
1379 		shmem_recalc_inode(inode);
1380 		info->swapped++;
1381 		spin_unlock_irq(&info->lock);
1382 
1383 		swap_shmem_alloc(swap);
1384 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1385 
1386 		mutex_unlock(&shmem_swaplist_mutex);
1387 		BUG_ON(page_mapped(page));
1388 		swap_writepage(page, wbc);
1389 		return 0;
1390 	}
1391 
1392 	mutex_unlock(&shmem_swaplist_mutex);
1393 	put_swap_page(page, swap);
1394 redirty:
1395 	set_page_dirty(page);
1396 	if (wbc->for_reclaim)
1397 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1398 	unlock_page(page);
1399 	return 0;
1400 }
1401 
1402 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1403 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1404 {
1405 	char buffer[64];
1406 
1407 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1408 		return;		/* show nothing */
1409 
1410 	mpol_to_str(buffer, sizeof(buffer), mpol);
1411 
1412 	seq_printf(seq, ",mpol=%s", buffer);
1413 }
1414 
1415 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1416 {
1417 	struct mempolicy *mpol = NULL;
1418 	if (sbinfo->mpol) {
1419 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1420 		mpol = sbinfo->mpol;
1421 		mpol_get(mpol);
1422 		spin_unlock(&sbinfo->stat_lock);
1423 	}
1424 	return mpol;
1425 }
1426 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1427 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1428 {
1429 }
1430 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1431 {
1432 	return NULL;
1433 }
1434 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1435 #ifndef CONFIG_NUMA
1436 #define vm_policy vm_private_data
1437 #endif
1438 
1439 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1440 		struct shmem_inode_info *info, pgoff_t index)
1441 {
1442 	/* Create a pseudo vma that just contains the policy */
1443 	vma_init(vma, NULL);
1444 	/* Bias interleave by inode number to distribute better across nodes */
1445 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1446 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1447 }
1448 
1449 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1450 {
1451 	/* Drop reference taken by mpol_shared_policy_lookup() */
1452 	mpol_cond_put(vma->vm_policy);
1453 }
1454 
1455 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1456 			struct shmem_inode_info *info, pgoff_t index)
1457 {
1458 	struct vm_area_struct pvma;
1459 	struct page *page;
1460 	struct vm_fault vmf;
1461 
1462 	shmem_pseudo_vma_init(&pvma, info, index);
1463 	vmf.vma = &pvma;
1464 	vmf.address = 0;
1465 	page = swap_cluster_readahead(swap, gfp, &vmf);
1466 	shmem_pseudo_vma_destroy(&pvma);
1467 
1468 	return page;
1469 }
1470 
1471 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1472 		struct shmem_inode_info *info, pgoff_t index)
1473 {
1474 	struct vm_area_struct pvma;
1475 	struct address_space *mapping = info->vfs_inode.i_mapping;
1476 	pgoff_t hindex;
1477 	struct page *page;
1478 
1479 	hindex = round_down(index, HPAGE_PMD_NR);
1480 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1481 								XA_PRESENT))
1482 		return NULL;
1483 
1484 	shmem_pseudo_vma_init(&pvma, info, hindex);
1485 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1486 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1487 	shmem_pseudo_vma_destroy(&pvma);
1488 	if (page)
1489 		prep_transhuge_page(page);
1490 	else
1491 		count_vm_event(THP_FILE_FALLBACK);
1492 	return page;
1493 }
1494 
1495 static struct page *shmem_alloc_page(gfp_t gfp,
1496 			struct shmem_inode_info *info, pgoff_t index)
1497 {
1498 	struct vm_area_struct pvma;
1499 	struct page *page;
1500 
1501 	shmem_pseudo_vma_init(&pvma, info, index);
1502 	page = alloc_page_vma(gfp, &pvma, 0);
1503 	shmem_pseudo_vma_destroy(&pvma);
1504 
1505 	return page;
1506 }
1507 
1508 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1509 		struct inode *inode,
1510 		pgoff_t index, bool huge)
1511 {
1512 	struct shmem_inode_info *info = SHMEM_I(inode);
1513 	struct page *page;
1514 	int nr;
1515 	int err = -ENOSPC;
1516 
1517 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1518 		huge = false;
1519 	nr = huge ? HPAGE_PMD_NR : 1;
1520 
1521 	if (!shmem_inode_acct_block(inode, nr))
1522 		goto failed;
1523 
1524 	if (huge)
1525 		page = shmem_alloc_hugepage(gfp, info, index);
1526 	else
1527 		page = shmem_alloc_page(gfp, info, index);
1528 	if (page) {
1529 		__SetPageLocked(page);
1530 		__SetPageSwapBacked(page);
1531 		return page;
1532 	}
1533 
1534 	err = -ENOMEM;
1535 	shmem_inode_unacct_blocks(inode, nr);
1536 failed:
1537 	return ERR_PTR(err);
1538 }
1539 
1540 /*
1541  * When a page is moved from swapcache to shmem filecache (either by the
1542  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1543  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1544  * ignorance of the mapping it belongs to.  If that mapping has special
1545  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1546  * we may need to copy to a suitable page before moving to filecache.
1547  *
1548  * In a future release, this may well be extended to respect cpuset and
1549  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1550  * but for now it is a simple matter of zone.
1551  */
1552 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1553 {
1554 	return page_zonenum(page) > gfp_zone(gfp);
1555 }
1556 
1557 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1558 				struct shmem_inode_info *info, pgoff_t index)
1559 {
1560 	struct page *oldpage, *newpage;
1561 	struct address_space *swap_mapping;
1562 	swp_entry_t entry;
1563 	pgoff_t swap_index;
1564 	int error;
1565 
1566 	oldpage = *pagep;
1567 	entry.val = page_private(oldpage);
1568 	swap_index = swp_offset(entry);
1569 	swap_mapping = page_mapping(oldpage);
1570 
1571 	/*
1572 	 * We have arrived here because our zones are constrained, so don't
1573 	 * limit chance of success by further cpuset and node constraints.
1574 	 */
1575 	gfp &= ~GFP_CONSTRAINT_MASK;
1576 	newpage = shmem_alloc_page(gfp, info, index);
1577 	if (!newpage)
1578 		return -ENOMEM;
1579 
1580 	get_page(newpage);
1581 	copy_highpage(newpage, oldpage);
1582 	flush_dcache_page(newpage);
1583 
1584 	__SetPageLocked(newpage);
1585 	__SetPageSwapBacked(newpage);
1586 	SetPageUptodate(newpage);
1587 	set_page_private(newpage, entry.val);
1588 	SetPageSwapCache(newpage);
1589 
1590 	/*
1591 	 * Our caller will very soon move newpage out of swapcache, but it's
1592 	 * a nice clean interface for us to replace oldpage by newpage there.
1593 	 */
1594 	xa_lock_irq(&swap_mapping->i_pages);
1595 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1596 	if (!error) {
1597 		mem_cgroup_migrate(oldpage, newpage);
1598 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1599 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1600 	}
1601 	xa_unlock_irq(&swap_mapping->i_pages);
1602 
1603 	if (unlikely(error)) {
1604 		/*
1605 		 * Is this possible?  I think not, now that our callers check
1606 		 * both PageSwapCache and page_private after getting page lock;
1607 		 * but be defensive.  Reverse old to newpage for clear and free.
1608 		 */
1609 		oldpage = newpage;
1610 	} else {
1611 		lru_cache_add(newpage);
1612 		*pagep = newpage;
1613 	}
1614 
1615 	ClearPageSwapCache(oldpage);
1616 	set_page_private(oldpage, 0);
1617 
1618 	unlock_page(oldpage);
1619 	put_page(oldpage);
1620 	put_page(oldpage);
1621 	return error;
1622 }
1623 
1624 /*
1625  * Swap in the page pointed to by *pagep.
1626  * Caller has to make sure that *pagep contains a valid swapped page.
1627  * Returns 0 and the page in pagep if success. On failure, returns the
1628  * the error code and NULL in *pagep.
1629  */
1630 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1631 			     struct page **pagep, enum sgp_type sgp,
1632 			     gfp_t gfp, struct vm_area_struct *vma,
1633 			     vm_fault_t *fault_type)
1634 {
1635 	struct address_space *mapping = inode->i_mapping;
1636 	struct shmem_inode_info *info = SHMEM_I(inode);
1637 	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1638 	struct page *page;
1639 	swp_entry_t swap;
1640 	int error;
1641 
1642 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1643 	swap = radix_to_swp_entry(*pagep);
1644 	*pagep = NULL;
1645 
1646 	/* Look it up and read it in.. */
1647 	page = lookup_swap_cache(swap, NULL, 0);
1648 	if (!page) {
1649 		/* Or update major stats only when swapin succeeds?? */
1650 		if (fault_type) {
1651 			*fault_type |= VM_FAULT_MAJOR;
1652 			count_vm_event(PGMAJFAULT);
1653 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1654 		}
1655 		/* Here we actually start the io */
1656 		page = shmem_swapin(swap, gfp, info, index);
1657 		if (!page) {
1658 			error = -ENOMEM;
1659 			goto failed;
1660 		}
1661 	}
1662 
1663 	/* We have to do this with page locked to prevent races */
1664 	lock_page(page);
1665 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1666 	    !shmem_confirm_swap(mapping, index, swap)) {
1667 		error = -EEXIST;
1668 		goto unlock;
1669 	}
1670 	if (!PageUptodate(page)) {
1671 		error = -EIO;
1672 		goto failed;
1673 	}
1674 	wait_on_page_writeback(page);
1675 
1676 	if (shmem_should_replace_page(page, gfp)) {
1677 		error = shmem_replace_page(&page, gfp, info, index);
1678 		if (error)
1679 			goto failed;
1680 	}
1681 
1682 	error = shmem_add_to_page_cache(page, mapping, index,
1683 					swp_to_radix_entry(swap), gfp,
1684 					charge_mm);
1685 	if (error)
1686 		goto failed;
1687 
1688 	spin_lock_irq(&info->lock);
1689 	info->swapped--;
1690 	shmem_recalc_inode(inode);
1691 	spin_unlock_irq(&info->lock);
1692 
1693 	if (sgp == SGP_WRITE)
1694 		mark_page_accessed(page);
1695 
1696 	delete_from_swap_cache(page);
1697 	set_page_dirty(page);
1698 	swap_free(swap);
1699 
1700 	*pagep = page;
1701 	return 0;
1702 failed:
1703 	if (!shmem_confirm_swap(mapping, index, swap))
1704 		error = -EEXIST;
1705 unlock:
1706 	if (page) {
1707 		unlock_page(page);
1708 		put_page(page);
1709 	}
1710 
1711 	return error;
1712 }
1713 
1714 /*
1715  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1716  *
1717  * If we allocate a new one we do not mark it dirty. That's up to the
1718  * vm. If we swap it in we mark it dirty since we also free the swap
1719  * entry since a page cannot live in both the swap and page cache.
1720  *
1721  * vmf and fault_type are only supplied by shmem_fault:
1722  * otherwise they are NULL.
1723  */
1724 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1725 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1726 	struct vm_area_struct *vma, struct vm_fault *vmf,
1727 			vm_fault_t *fault_type)
1728 {
1729 	struct address_space *mapping = inode->i_mapping;
1730 	struct shmem_inode_info *info = SHMEM_I(inode);
1731 	struct shmem_sb_info *sbinfo;
1732 	struct mm_struct *charge_mm;
1733 	struct page *page;
1734 	enum sgp_type sgp_huge = sgp;
1735 	pgoff_t hindex = index;
1736 	int error;
1737 	int once = 0;
1738 	int alloced = 0;
1739 
1740 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1741 		return -EFBIG;
1742 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1743 		sgp = SGP_CACHE;
1744 repeat:
1745 	if (sgp <= SGP_CACHE &&
1746 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1747 		return -EINVAL;
1748 	}
1749 
1750 	sbinfo = SHMEM_SB(inode->i_sb);
1751 	charge_mm = vma ? vma->vm_mm : current->mm;
1752 
1753 	page = find_lock_entry(mapping, index);
1754 	if (xa_is_value(page)) {
1755 		error = shmem_swapin_page(inode, index, &page,
1756 					  sgp, gfp, vma, fault_type);
1757 		if (error == -EEXIST)
1758 			goto repeat;
1759 
1760 		*pagep = page;
1761 		return error;
1762 	}
1763 
1764 	if (page && sgp == SGP_WRITE)
1765 		mark_page_accessed(page);
1766 
1767 	/* fallocated page? */
1768 	if (page && !PageUptodate(page)) {
1769 		if (sgp != SGP_READ)
1770 			goto clear;
1771 		unlock_page(page);
1772 		put_page(page);
1773 		page = NULL;
1774 	}
1775 	if (page || sgp == SGP_READ) {
1776 		*pagep = page;
1777 		return 0;
1778 	}
1779 
1780 	/*
1781 	 * Fast cache lookup did not find it:
1782 	 * bring it back from swap or allocate.
1783 	 */
1784 
1785 	if (vma && userfaultfd_missing(vma)) {
1786 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1787 		return 0;
1788 	}
1789 
1790 	/* shmem_symlink() */
1791 	if (mapping->a_ops != &shmem_aops)
1792 		goto alloc_nohuge;
1793 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1794 		goto alloc_nohuge;
1795 	if (shmem_huge == SHMEM_HUGE_FORCE)
1796 		goto alloc_huge;
1797 	switch (sbinfo->huge) {
1798 	case SHMEM_HUGE_NEVER:
1799 		goto alloc_nohuge;
1800 	case SHMEM_HUGE_WITHIN_SIZE: {
1801 		loff_t i_size;
1802 		pgoff_t off;
1803 
1804 		off = round_up(index, HPAGE_PMD_NR);
1805 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1806 		if (i_size >= HPAGE_PMD_SIZE &&
1807 		    i_size >> PAGE_SHIFT >= off)
1808 			goto alloc_huge;
1809 
1810 		fallthrough;
1811 	}
1812 	case SHMEM_HUGE_ADVISE:
1813 		if (sgp_huge == SGP_HUGE)
1814 			goto alloc_huge;
1815 		/* TODO: implement fadvise() hints */
1816 		goto alloc_nohuge;
1817 	}
1818 
1819 alloc_huge:
1820 	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1821 	if (IS_ERR(page)) {
1822 alloc_nohuge:
1823 		page = shmem_alloc_and_acct_page(gfp, inode,
1824 						 index, false);
1825 	}
1826 	if (IS_ERR(page)) {
1827 		int retry = 5;
1828 
1829 		error = PTR_ERR(page);
1830 		page = NULL;
1831 		if (error != -ENOSPC)
1832 			goto unlock;
1833 		/*
1834 		 * Try to reclaim some space by splitting a huge page
1835 		 * beyond i_size on the filesystem.
1836 		 */
1837 		while (retry--) {
1838 			int ret;
1839 
1840 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1841 			if (ret == SHRINK_STOP)
1842 				break;
1843 			if (ret)
1844 				goto alloc_nohuge;
1845 		}
1846 		goto unlock;
1847 	}
1848 
1849 	if (PageTransHuge(page))
1850 		hindex = round_down(index, HPAGE_PMD_NR);
1851 	else
1852 		hindex = index;
1853 
1854 	if (sgp == SGP_WRITE)
1855 		__SetPageReferenced(page);
1856 
1857 	error = shmem_add_to_page_cache(page, mapping, hindex,
1858 					NULL, gfp & GFP_RECLAIM_MASK,
1859 					charge_mm);
1860 	if (error)
1861 		goto unacct;
1862 	lru_cache_add(page);
1863 
1864 	spin_lock_irq(&info->lock);
1865 	info->alloced += compound_nr(page);
1866 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1867 	shmem_recalc_inode(inode);
1868 	spin_unlock_irq(&info->lock);
1869 	alloced = true;
1870 
1871 	if (PageTransHuge(page) &&
1872 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1873 			hindex + HPAGE_PMD_NR - 1) {
1874 		/*
1875 		 * Part of the huge page is beyond i_size: subject
1876 		 * to shrink under memory pressure.
1877 		 */
1878 		spin_lock(&sbinfo->shrinklist_lock);
1879 		/*
1880 		 * _careful to defend against unlocked access to
1881 		 * ->shrink_list in shmem_unused_huge_shrink()
1882 		 */
1883 		if (list_empty_careful(&info->shrinklist)) {
1884 			list_add_tail(&info->shrinklist,
1885 				      &sbinfo->shrinklist);
1886 			sbinfo->shrinklist_len++;
1887 		}
1888 		spin_unlock(&sbinfo->shrinklist_lock);
1889 	}
1890 
1891 	/*
1892 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1893 	 */
1894 	if (sgp == SGP_FALLOC)
1895 		sgp = SGP_WRITE;
1896 clear:
1897 	/*
1898 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1899 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1900 	 * it now, lest undo on failure cancel our earlier guarantee.
1901 	 */
1902 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1903 		struct page *head = compound_head(page);
1904 		int i;
1905 
1906 		for (i = 0; i < compound_nr(head); i++) {
1907 			clear_highpage(head + i);
1908 			flush_dcache_page(head + i);
1909 		}
1910 		SetPageUptodate(head);
1911 	}
1912 
1913 	/* Perhaps the file has been truncated since we checked */
1914 	if (sgp <= SGP_CACHE &&
1915 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1916 		if (alloced) {
1917 			ClearPageDirty(page);
1918 			delete_from_page_cache(page);
1919 			spin_lock_irq(&info->lock);
1920 			shmem_recalc_inode(inode);
1921 			spin_unlock_irq(&info->lock);
1922 		}
1923 		error = -EINVAL;
1924 		goto unlock;
1925 	}
1926 	*pagep = page + index - hindex;
1927 	return 0;
1928 
1929 	/*
1930 	 * Error recovery.
1931 	 */
1932 unacct:
1933 	shmem_inode_unacct_blocks(inode, compound_nr(page));
1934 
1935 	if (PageTransHuge(page)) {
1936 		unlock_page(page);
1937 		put_page(page);
1938 		goto alloc_nohuge;
1939 	}
1940 unlock:
1941 	if (page) {
1942 		unlock_page(page);
1943 		put_page(page);
1944 	}
1945 	if (error == -ENOSPC && !once++) {
1946 		spin_lock_irq(&info->lock);
1947 		shmem_recalc_inode(inode);
1948 		spin_unlock_irq(&info->lock);
1949 		goto repeat;
1950 	}
1951 	if (error == -EEXIST)
1952 		goto repeat;
1953 	return error;
1954 }
1955 
1956 /*
1957  * This is like autoremove_wake_function, but it removes the wait queue
1958  * entry unconditionally - even if something else had already woken the
1959  * target.
1960  */
1961 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1962 {
1963 	int ret = default_wake_function(wait, mode, sync, key);
1964 	list_del_init(&wait->entry);
1965 	return ret;
1966 }
1967 
1968 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1969 {
1970 	struct vm_area_struct *vma = vmf->vma;
1971 	struct inode *inode = file_inode(vma->vm_file);
1972 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1973 	enum sgp_type sgp;
1974 	int err;
1975 	vm_fault_t ret = VM_FAULT_LOCKED;
1976 
1977 	/*
1978 	 * Trinity finds that probing a hole which tmpfs is punching can
1979 	 * prevent the hole-punch from ever completing: which in turn
1980 	 * locks writers out with its hold on i_mutex.  So refrain from
1981 	 * faulting pages into the hole while it's being punched.  Although
1982 	 * shmem_undo_range() does remove the additions, it may be unable to
1983 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1984 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1985 	 *
1986 	 * It does not matter if we sometimes reach this check just before the
1987 	 * hole-punch begins, so that one fault then races with the punch:
1988 	 * we just need to make racing faults a rare case.
1989 	 *
1990 	 * The implementation below would be much simpler if we just used a
1991 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1992 	 * and bloating every shmem inode for this unlikely case would be sad.
1993 	 */
1994 	if (unlikely(inode->i_private)) {
1995 		struct shmem_falloc *shmem_falloc;
1996 
1997 		spin_lock(&inode->i_lock);
1998 		shmem_falloc = inode->i_private;
1999 		if (shmem_falloc &&
2000 		    shmem_falloc->waitq &&
2001 		    vmf->pgoff >= shmem_falloc->start &&
2002 		    vmf->pgoff < shmem_falloc->next) {
2003 			struct file *fpin;
2004 			wait_queue_head_t *shmem_falloc_waitq;
2005 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2006 
2007 			ret = VM_FAULT_NOPAGE;
2008 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2009 			if (fpin)
2010 				ret = VM_FAULT_RETRY;
2011 
2012 			shmem_falloc_waitq = shmem_falloc->waitq;
2013 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2014 					TASK_UNINTERRUPTIBLE);
2015 			spin_unlock(&inode->i_lock);
2016 			schedule();
2017 
2018 			/*
2019 			 * shmem_falloc_waitq points into the shmem_fallocate()
2020 			 * stack of the hole-punching task: shmem_falloc_waitq
2021 			 * is usually invalid by the time we reach here, but
2022 			 * finish_wait() does not dereference it in that case;
2023 			 * though i_lock needed lest racing with wake_up_all().
2024 			 */
2025 			spin_lock(&inode->i_lock);
2026 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2027 			spin_unlock(&inode->i_lock);
2028 
2029 			if (fpin)
2030 				fput(fpin);
2031 			return ret;
2032 		}
2033 		spin_unlock(&inode->i_lock);
2034 	}
2035 
2036 	sgp = SGP_CACHE;
2037 
2038 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2039 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2040 		sgp = SGP_NOHUGE;
2041 	else if (vma->vm_flags & VM_HUGEPAGE)
2042 		sgp = SGP_HUGE;
2043 
2044 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2045 				  gfp, vma, vmf, &ret);
2046 	if (err)
2047 		return vmf_error(err);
2048 	return ret;
2049 }
2050 
2051 unsigned long shmem_get_unmapped_area(struct file *file,
2052 				      unsigned long uaddr, unsigned long len,
2053 				      unsigned long pgoff, unsigned long flags)
2054 {
2055 	unsigned long (*get_area)(struct file *,
2056 		unsigned long, unsigned long, unsigned long, unsigned long);
2057 	unsigned long addr;
2058 	unsigned long offset;
2059 	unsigned long inflated_len;
2060 	unsigned long inflated_addr;
2061 	unsigned long inflated_offset;
2062 
2063 	if (len > TASK_SIZE)
2064 		return -ENOMEM;
2065 
2066 	get_area = current->mm->get_unmapped_area;
2067 	addr = get_area(file, uaddr, len, pgoff, flags);
2068 
2069 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2070 		return addr;
2071 	if (IS_ERR_VALUE(addr))
2072 		return addr;
2073 	if (addr & ~PAGE_MASK)
2074 		return addr;
2075 	if (addr > TASK_SIZE - len)
2076 		return addr;
2077 
2078 	if (shmem_huge == SHMEM_HUGE_DENY)
2079 		return addr;
2080 	if (len < HPAGE_PMD_SIZE)
2081 		return addr;
2082 	if (flags & MAP_FIXED)
2083 		return addr;
2084 	/*
2085 	 * Our priority is to support MAP_SHARED mapped hugely;
2086 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2087 	 * But if caller specified an address hint and we allocated area there
2088 	 * successfully, respect that as before.
2089 	 */
2090 	if (uaddr == addr)
2091 		return addr;
2092 
2093 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2094 		struct super_block *sb;
2095 
2096 		if (file) {
2097 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2098 			sb = file_inode(file)->i_sb;
2099 		} else {
2100 			/*
2101 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2102 			 * for "/dev/zero", to create a shared anonymous object.
2103 			 */
2104 			if (IS_ERR(shm_mnt))
2105 				return addr;
2106 			sb = shm_mnt->mnt_sb;
2107 		}
2108 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2109 			return addr;
2110 	}
2111 
2112 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2113 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2114 		return addr;
2115 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2116 		return addr;
2117 
2118 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2119 	if (inflated_len > TASK_SIZE)
2120 		return addr;
2121 	if (inflated_len < len)
2122 		return addr;
2123 
2124 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2125 	if (IS_ERR_VALUE(inflated_addr))
2126 		return addr;
2127 	if (inflated_addr & ~PAGE_MASK)
2128 		return addr;
2129 
2130 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2131 	inflated_addr += offset - inflated_offset;
2132 	if (inflated_offset > offset)
2133 		inflated_addr += HPAGE_PMD_SIZE;
2134 
2135 	if (inflated_addr > TASK_SIZE - len)
2136 		return addr;
2137 	return inflated_addr;
2138 }
2139 
2140 #ifdef CONFIG_NUMA
2141 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2142 {
2143 	struct inode *inode = file_inode(vma->vm_file);
2144 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2145 }
2146 
2147 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2148 					  unsigned long addr)
2149 {
2150 	struct inode *inode = file_inode(vma->vm_file);
2151 	pgoff_t index;
2152 
2153 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2154 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2155 }
2156 #endif
2157 
2158 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2159 {
2160 	struct inode *inode = file_inode(file);
2161 	struct shmem_inode_info *info = SHMEM_I(inode);
2162 	int retval = -ENOMEM;
2163 
2164 	/*
2165 	 * What serializes the accesses to info->flags?
2166 	 * ipc_lock_object() when called from shmctl_do_lock(),
2167 	 * no serialization needed when called from shm_destroy().
2168 	 */
2169 	if (lock && !(info->flags & VM_LOCKED)) {
2170 		if (!user_shm_lock(inode->i_size, user))
2171 			goto out_nomem;
2172 		info->flags |= VM_LOCKED;
2173 		mapping_set_unevictable(file->f_mapping);
2174 	}
2175 	if (!lock && (info->flags & VM_LOCKED) && user) {
2176 		user_shm_unlock(inode->i_size, user);
2177 		info->flags &= ~VM_LOCKED;
2178 		mapping_clear_unevictable(file->f_mapping);
2179 	}
2180 	retval = 0;
2181 
2182 out_nomem:
2183 	return retval;
2184 }
2185 
2186 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2187 {
2188 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2189 
2190 	if (info->seals & F_SEAL_FUTURE_WRITE) {
2191 		/*
2192 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2193 		 * "future write" seal active.
2194 		 */
2195 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2196 			return -EPERM;
2197 
2198 		/*
2199 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2200 		 * MAP_SHARED and read-only, take care to not allow mprotect to
2201 		 * revert protections on such mappings. Do this only for shared
2202 		 * mappings. For private mappings, don't need to mask
2203 		 * VM_MAYWRITE as we still want them to be COW-writable.
2204 		 */
2205 		if (vma->vm_flags & VM_SHARED)
2206 			vma->vm_flags &= ~(VM_MAYWRITE);
2207 	}
2208 
2209 	file_accessed(file);
2210 	vma->vm_ops = &shmem_vm_ops;
2211 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2212 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2213 			(vma->vm_end & HPAGE_PMD_MASK)) {
2214 		khugepaged_enter(vma, vma->vm_flags);
2215 	}
2216 	return 0;
2217 }
2218 
2219 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2220 				     umode_t mode, dev_t dev, unsigned long flags)
2221 {
2222 	struct inode *inode;
2223 	struct shmem_inode_info *info;
2224 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2225 
2226 	if (shmem_reserve_inode(sb))
2227 		return NULL;
2228 
2229 	inode = new_inode(sb);
2230 	if (inode) {
2231 		inode->i_ino = get_next_ino();
2232 		inode_init_owner(inode, dir, mode);
2233 		inode->i_blocks = 0;
2234 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2235 		inode->i_generation = prandom_u32();
2236 		info = SHMEM_I(inode);
2237 		memset(info, 0, (char *)inode - (char *)info);
2238 		spin_lock_init(&info->lock);
2239 		atomic_set(&info->stop_eviction, 0);
2240 		info->seals = F_SEAL_SEAL;
2241 		info->flags = flags & VM_NORESERVE;
2242 		INIT_LIST_HEAD(&info->shrinklist);
2243 		INIT_LIST_HEAD(&info->swaplist);
2244 		simple_xattrs_init(&info->xattrs);
2245 		cache_no_acl(inode);
2246 
2247 		switch (mode & S_IFMT) {
2248 		default:
2249 			inode->i_op = &shmem_special_inode_operations;
2250 			init_special_inode(inode, mode, dev);
2251 			break;
2252 		case S_IFREG:
2253 			inode->i_mapping->a_ops = &shmem_aops;
2254 			inode->i_op = &shmem_inode_operations;
2255 			inode->i_fop = &shmem_file_operations;
2256 			mpol_shared_policy_init(&info->policy,
2257 						 shmem_get_sbmpol(sbinfo));
2258 			break;
2259 		case S_IFDIR:
2260 			inc_nlink(inode);
2261 			/* Some things misbehave if size == 0 on a directory */
2262 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2263 			inode->i_op = &shmem_dir_inode_operations;
2264 			inode->i_fop = &simple_dir_operations;
2265 			break;
2266 		case S_IFLNK:
2267 			/*
2268 			 * Must not load anything in the rbtree,
2269 			 * mpol_free_shared_policy will not be called.
2270 			 */
2271 			mpol_shared_policy_init(&info->policy, NULL);
2272 			break;
2273 		}
2274 
2275 		lockdep_annotate_inode_mutex_key(inode);
2276 	} else
2277 		shmem_free_inode(sb);
2278 	return inode;
2279 }
2280 
2281 bool shmem_mapping(struct address_space *mapping)
2282 {
2283 	return mapping->a_ops == &shmem_aops;
2284 }
2285 
2286 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2287 				  pmd_t *dst_pmd,
2288 				  struct vm_area_struct *dst_vma,
2289 				  unsigned long dst_addr,
2290 				  unsigned long src_addr,
2291 				  bool zeropage,
2292 				  struct page **pagep)
2293 {
2294 	struct inode *inode = file_inode(dst_vma->vm_file);
2295 	struct shmem_inode_info *info = SHMEM_I(inode);
2296 	struct address_space *mapping = inode->i_mapping;
2297 	gfp_t gfp = mapping_gfp_mask(mapping);
2298 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2299 	spinlock_t *ptl;
2300 	void *page_kaddr;
2301 	struct page *page;
2302 	pte_t _dst_pte, *dst_pte;
2303 	int ret;
2304 	pgoff_t offset, max_off;
2305 
2306 	ret = -ENOMEM;
2307 	if (!shmem_inode_acct_block(inode, 1))
2308 		goto out;
2309 
2310 	if (!*pagep) {
2311 		page = shmem_alloc_page(gfp, info, pgoff);
2312 		if (!page)
2313 			goto out_unacct_blocks;
2314 
2315 		if (!zeropage) {	/* mcopy_atomic */
2316 			page_kaddr = kmap_atomic(page);
2317 			ret = copy_from_user(page_kaddr,
2318 					     (const void __user *)src_addr,
2319 					     PAGE_SIZE);
2320 			kunmap_atomic(page_kaddr);
2321 
2322 			/* fallback to copy_from_user outside mmap_lock */
2323 			if (unlikely(ret)) {
2324 				*pagep = page;
2325 				shmem_inode_unacct_blocks(inode, 1);
2326 				/* don't free the page */
2327 				return -ENOENT;
2328 			}
2329 		} else {		/* mfill_zeropage_atomic */
2330 			clear_highpage(page);
2331 		}
2332 	} else {
2333 		page = *pagep;
2334 		*pagep = NULL;
2335 	}
2336 
2337 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2338 	__SetPageLocked(page);
2339 	__SetPageSwapBacked(page);
2340 	__SetPageUptodate(page);
2341 
2342 	ret = -EFAULT;
2343 	offset = linear_page_index(dst_vma, dst_addr);
2344 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2345 	if (unlikely(offset >= max_off))
2346 		goto out_release;
2347 
2348 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2349 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2350 	if (ret)
2351 		goto out_release;
2352 
2353 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2354 	if (dst_vma->vm_flags & VM_WRITE)
2355 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2356 	else {
2357 		/*
2358 		 * We don't set the pte dirty if the vma has no
2359 		 * VM_WRITE permission, so mark the page dirty or it
2360 		 * could be freed from under us. We could do it
2361 		 * unconditionally before unlock_page(), but doing it
2362 		 * only if VM_WRITE is not set is faster.
2363 		 */
2364 		set_page_dirty(page);
2365 	}
2366 
2367 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2368 
2369 	ret = -EFAULT;
2370 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2371 	if (unlikely(offset >= max_off))
2372 		goto out_release_unlock;
2373 
2374 	ret = -EEXIST;
2375 	if (!pte_none(*dst_pte))
2376 		goto out_release_unlock;
2377 
2378 	lru_cache_add(page);
2379 
2380 	spin_lock_irq(&info->lock);
2381 	info->alloced++;
2382 	inode->i_blocks += BLOCKS_PER_PAGE;
2383 	shmem_recalc_inode(inode);
2384 	spin_unlock_irq(&info->lock);
2385 
2386 	inc_mm_counter(dst_mm, mm_counter_file(page));
2387 	page_add_file_rmap(page, false);
2388 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2389 
2390 	/* No need to invalidate - it was non-present before */
2391 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2392 	pte_unmap_unlock(dst_pte, ptl);
2393 	unlock_page(page);
2394 	ret = 0;
2395 out:
2396 	return ret;
2397 out_release_unlock:
2398 	pte_unmap_unlock(dst_pte, ptl);
2399 	ClearPageDirty(page);
2400 	delete_from_page_cache(page);
2401 out_release:
2402 	unlock_page(page);
2403 	put_page(page);
2404 out_unacct_blocks:
2405 	shmem_inode_unacct_blocks(inode, 1);
2406 	goto out;
2407 }
2408 
2409 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2410 			   pmd_t *dst_pmd,
2411 			   struct vm_area_struct *dst_vma,
2412 			   unsigned long dst_addr,
2413 			   unsigned long src_addr,
2414 			   struct page **pagep)
2415 {
2416 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2417 				      dst_addr, src_addr, false, pagep);
2418 }
2419 
2420 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2421 			     pmd_t *dst_pmd,
2422 			     struct vm_area_struct *dst_vma,
2423 			     unsigned long dst_addr)
2424 {
2425 	struct page *page = NULL;
2426 
2427 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2428 				      dst_addr, 0, true, &page);
2429 }
2430 
2431 #ifdef CONFIG_TMPFS
2432 static const struct inode_operations shmem_symlink_inode_operations;
2433 static const struct inode_operations shmem_short_symlink_operations;
2434 
2435 #ifdef CONFIG_TMPFS_XATTR
2436 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2437 #else
2438 #define shmem_initxattrs NULL
2439 #endif
2440 
2441 static int
2442 shmem_write_begin(struct file *file, struct address_space *mapping,
2443 			loff_t pos, unsigned len, unsigned flags,
2444 			struct page **pagep, void **fsdata)
2445 {
2446 	struct inode *inode = mapping->host;
2447 	struct shmem_inode_info *info = SHMEM_I(inode);
2448 	pgoff_t index = pos >> PAGE_SHIFT;
2449 
2450 	/* i_mutex is held by caller */
2451 	if (unlikely(info->seals & (F_SEAL_GROW |
2452 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2453 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2454 			return -EPERM;
2455 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2456 			return -EPERM;
2457 	}
2458 
2459 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2460 }
2461 
2462 static int
2463 shmem_write_end(struct file *file, struct address_space *mapping,
2464 			loff_t pos, unsigned len, unsigned copied,
2465 			struct page *page, void *fsdata)
2466 {
2467 	struct inode *inode = mapping->host;
2468 
2469 	if (pos + copied > inode->i_size)
2470 		i_size_write(inode, pos + copied);
2471 
2472 	if (!PageUptodate(page)) {
2473 		struct page *head = compound_head(page);
2474 		if (PageTransCompound(page)) {
2475 			int i;
2476 
2477 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2478 				if (head + i == page)
2479 					continue;
2480 				clear_highpage(head + i);
2481 				flush_dcache_page(head + i);
2482 			}
2483 		}
2484 		if (copied < PAGE_SIZE) {
2485 			unsigned from = pos & (PAGE_SIZE - 1);
2486 			zero_user_segments(page, 0, from,
2487 					from + copied, PAGE_SIZE);
2488 		}
2489 		SetPageUptodate(head);
2490 	}
2491 	set_page_dirty(page);
2492 	unlock_page(page);
2493 	put_page(page);
2494 
2495 	return copied;
2496 }
2497 
2498 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2499 {
2500 	struct file *file = iocb->ki_filp;
2501 	struct inode *inode = file_inode(file);
2502 	struct address_space *mapping = inode->i_mapping;
2503 	pgoff_t index;
2504 	unsigned long offset;
2505 	enum sgp_type sgp = SGP_READ;
2506 	int error = 0;
2507 	ssize_t retval = 0;
2508 	loff_t *ppos = &iocb->ki_pos;
2509 
2510 	/*
2511 	 * Might this read be for a stacking filesystem?  Then when reading
2512 	 * holes of a sparse file, we actually need to allocate those pages,
2513 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2514 	 */
2515 	if (!iter_is_iovec(to))
2516 		sgp = SGP_CACHE;
2517 
2518 	index = *ppos >> PAGE_SHIFT;
2519 	offset = *ppos & ~PAGE_MASK;
2520 
2521 	for (;;) {
2522 		struct page *page = NULL;
2523 		pgoff_t end_index;
2524 		unsigned long nr, ret;
2525 		loff_t i_size = i_size_read(inode);
2526 
2527 		end_index = i_size >> PAGE_SHIFT;
2528 		if (index > end_index)
2529 			break;
2530 		if (index == end_index) {
2531 			nr = i_size & ~PAGE_MASK;
2532 			if (nr <= offset)
2533 				break;
2534 		}
2535 
2536 		error = shmem_getpage(inode, index, &page, sgp);
2537 		if (error) {
2538 			if (error == -EINVAL)
2539 				error = 0;
2540 			break;
2541 		}
2542 		if (page) {
2543 			if (sgp == SGP_CACHE)
2544 				set_page_dirty(page);
2545 			unlock_page(page);
2546 		}
2547 
2548 		/*
2549 		 * We must evaluate after, since reads (unlike writes)
2550 		 * are called without i_mutex protection against truncate
2551 		 */
2552 		nr = PAGE_SIZE;
2553 		i_size = i_size_read(inode);
2554 		end_index = i_size >> PAGE_SHIFT;
2555 		if (index == end_index) {
2556 			nr = i_size & ~PAGE_MASK;
2557 			if (nr <= offset) {
2558 				if (page)
2559 					put_page(page);
2560 				break;
2561 			}
2562 		}
2563 		nr -= offset;
2564 
2565 		if (page) {
2566 			/*
2567 			 * If users can be writing to this page using arbitrary
2568 			 * virtual addresses, take care about potential aliasing
2569 			 * before reading the page on the kernel side.
2570 			 */
2571 			if (mapping_writably_mapped(mapping))
2572 				flush_dcache_page(page);
2573 			/*
2574 			 * Mark the page accessed if we read the beginning.
2575 			 */
2576 			if (!offset)
2577 				mark_page_accessed(page);
2578 		} else {
2579 			page = ZERO_PAGE(0);
2580 			get_page(page);
2581 		}
2582 
2583 		/*
2584 		 * Ok, we have the page, and it's up-to-date, so
2585 		 * now we can copy it to user space...
2586 		 */
2587 		ret = copy_page_to_iter(page, offset, nr, to);
2588 		retval += ret;
2589 		offset += ret;
2590 		index += offset >> PAGE_SHIFT;
2591 		offset &= ~PAGE_MASK;
2592 
2593 		put_page(page);
2594 		if (!iov_iter_count(to))
2595 			break;
2596 		if (ret < nr) {
2597 			error = -EFAULT;
2598 			break;
2599 		}
2600 		cond_resched();
2601 	}
2602 
2603 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2604 	file_accessed(file);
2605 	return retval ? retval : error;
2606 }
2607 
2608 /*
2609  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2610  */
2611 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2612 				    pgoff_t index, pgoff_t end, int whence)
2613 {
2614 	struct page *page;
2615 	struct pagevec pvec;
2616 	pgoff_t indices[PAGEVEC_SIZE];
2617 	bool done = false;
2618 	int i;
2619 
2620 	pagevec_init(&pvec);
2621 	pvec.nr = 1;		/* start small: we may be there already */
2622 	while (!done) {
2623 		pvec.nr = find_get_entries(mapping, index,
2624 					pvec.nr, pvec.pages, indices);
2625 		if (!pvec.nr) {
2626 			if (whence == SEEK_DATA)
2627 				index = end;
2628 			break;
2629 		}
2630 		for (i = 0; i < pvec.nr; i++, index++) {
2631 			if (index < indices[i]) {
2632 				if (whence == SEEK_HOLE) {
2633 					done = true;
2634 					break;
2635 				}
2636 				index = indices[i];
2637 			}
2638 			page = pvec.pages[i];
2639 			if (page && !xa_is_value(page)) {
2640 				if (!PageUptodate(page))
2641 					page = NULL;
2642 			}
2643 			if (index >= end ||
2644 			    (page && whence == SEEK_DATA) ||
2645 			    (!page && whence == SEEK_HOLE)) {
2646 				done = true;
2647 				break;
2648 			}
2649 		}
2650 		pagevec_remove_exceptionals(&pvec);
2651 		pagevec_release(&pvec);
2652 		pvec.nr = PAGEVEC_SIZE;
2653 		cond_resched();
2654 	}
2655 	return index;
2656 }
2657 
2658 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2659 {
2660 	struct address_space *mapping = file->f_mapping;
2661 	struct inode *inode = mapping->host;
2662 	pgoff_t start, end;
2663 	loff_t new_offset;
2664 
2665 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2666 		return generic_file_llseek_size(file, offset, whence,
2667 					MAX_LFS_FILESIZE, i_size_read(inode));
2668 	inode_lock(inode);
2669 	/* We're holding i_mutex so we can access i_size directly */
2670 
2671 	if (offset < 0 || offset >= inode->i_size)
2672 		offset = -ENXIO;
2673 	else {
2674 		start = offset >> PAGE_SHIFT;
2675 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2676 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2677 		new_offset <<= PAGE_SHIFT;
2678 		if (new_offset > offset) {
2679 			if (new_offset < inode->i_size)
2680 				offset = new_offset;
2681 			else if (whence == SEEK_DATA)
2682 				offset = -ENXIO;
2683 			else
2684 				offset = inode->i_size;
2685 		}
2686 	}
2687 
2688 	if (offset >= 0)
2689 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2690 	inode_unlock(inode);
2691 	return offset;
2692 }
2693 
2694 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2695 							 loff_t len)
2696 {
2697 	struct inode *inode = file_inode(file);
2698 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2699 	struct shmem_inode_info *info = SHMEM_I(inode);
2700 	struct shmem_falloc shmem_falloc;
2701 	pgoff_t start, index, end;
2702 	int error;
2703 
2704 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2705 		return -EOPNOTSUPP;
2706 
2707 	inode_lock(inode);
2708 
2709 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2710 		struct address_space *mapping = file->f_mapping;
2711 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2712 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2713 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2714 
2715 		/* protected by i_mutex */
2716 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2717 			error = -EPERM;
2718 			goto out;
2719 		}
2720 
2721 		shmem_falloc.waitq = &shmem_falloc_waitq;
2722 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2723 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2724 		spin_lock(&inode->i_lock);
2725 		inode->i_private = &shmem_falloc;
2726 		spin_unlock(&inode->i_lock);
2727 
2728 		if ((u64)unmap_end > (u64)unmap_start)
2729 			unmap_mapping_range(mapping, unmap_start,
2730 					    1 + unmap_end - unmap_start, 0);
2731 		shmem_truncate_range(inode, offset, offset + len - 1);
2732 		/* No need to unmap again: hole-punching leaves COWed pages */
2733 
2734 		spin_lock(&inode->i_lock);
2735 		inode->i_private = NULL;
2736 		wake_up_all(&shmem_falloc_waitq);
2737 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2738 		spin_unlock(&inode->i_lock);
2739 		error = 0;
2740 		goto out;
2741 	}
2742 
2743 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2744 	error = inode_newsize_ok(inode, offset + len);
2745 	if (error)
2746 		goto out;
2747 
2748 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2749 		error = -EPERM;
2750 		goto out;
2751 	}
2752 
2753 	start = offset >> PAGE_SHIFT;
2754 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2755 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2756 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2757 		error = -ENOSPC;
2758 		goto out;
2759 	}
2760 
2761 	shmem_falloc.waitq = NULL;
2762 	shmem_falloc.start = start;
2763 	shmem_falloc.next  = start;
2764 	shmem_falloc.nr_falloced = 0;
2765 	shmem_falloc.nr_unswapped = 0;
2766 	spin_lock(&inode->i_lock);
2767 	inode->i_private = &shmem_falloc;
2768 	spin_unlock(&inode->i_lock);
2769 
2770 	for (index = start; index < end; index++) {
2771 		struct page *page;
2772 
2773 		/*
2774 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2775 		 * been interrupted because we are using up too much memory.
2776 		 */
2777 		if (signal_pending(current))
2778 			error = -EINTR;
2779 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2780 			error = -ENOMEM;
2781 		else
2782 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2783 		if (error) {
2784 			/* Remove the !PageUptodate pages we added */
2785 			if (index > start) {
2786 				shmem_undo_range(inode,
2787 				    (loff_t)start << PAGE_SHIFT,
2788 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2789 			}
2790 			goto undone;
2791 		}
2792 
2793 		/*
2794 		 * Inform shmem_writepage() how far we have reached.
2795 		 * No need for lock or barrier: we have the page lock.
2796 		 */
2797 		shmem_falloc.next++;
2798 		if (!PageUptodate(page))
2799 			shmem_falloc.nr_falloced++;
2800 
2801 		/*
2802 		 * If !PageUptodate, leave it that way so that freeable pages
2803 		 * can be recognized if we need to rollback on error later.
2804 		 * But set_page_dirty so that memory pressure will swap rather
2805 		 * than free the pages we are allocating (and SGP_CACHE pages
2806 		 * might still be clean: we now need to mark those dirty too).
2807 		 */
2808 		set_page_dirty(page);
2809 		unlock_page(page);
2810 		put_page(page);
2811 		cond_resched();
2812 	}
2813 
2814 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2815 		i_size_write(inode, offset + len);
2816 	inode->i_ctime = current_time(inode);
2817 undone:
2818 	spin_lock(&inode->i_lock);
2819 	inode->i_private = NULL;
2820 	spin_unlock(&inode->i_lock);
2821 out:
2822 	inode_unlock(inode);
2823 	return error;
2824 }
2825 
2826 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2827 {
2828 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2829 
2830 	buf->f_type = TMPFS_MAGIC;
2831 	buf->f_bsize = PAGE_SIZE;
2832 	buf->f_namelen = NAME_MAX;
2833 	if (sbinfo->max_blocks) {
2834 		buf->f_blocks = sbinfo->max_blocks;
2835 		buf->f_bavail =
2836 		buf->f_bfree  = sbinfo->max_blocks -
2837 				percpu_counter_sum(&sbinfo->used_blocks);
2838 	}
2839 	if (sbinfo->max_inodes) {
2840 		buf->f_files = sbinfo->max_inodes;
2841 		buf->f_ffree = sbinfo->free_inodes;
2842 	}
2843 	/* else leave those fields 0 like simple_statfs */
2844 	return 0;
2845 }
2846 
2847 /*
2848  * File creation. Allocate an inode, and we're done..
2849  */
2850 static int
2851 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2852 {
2853 	struct inode *inode;
2854 	int error = -ENOSPC;
2855 
2856 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2857 	if (inode) {
2858 		error = simple_acl_create(dir, inode);
2859 		if (error)
2860 			goto out_iput;
2861 		error = security_inode_init_security(inode, dir,
2862 						     &dentry->d_name,
2863 						     shmem_initxattrs, NULL);
2864 		if (error && error != -EOPNOTSUPP)
2865 			goto out_iput;
2866 
2867 		error = 0;
2868 		dir->i_size += BOGO_DIRENT_SIZE;
2869 		dir->i_ctime = dir->i_mtime = current_time(dir);
2870 		d_instantiate(dentry, inode);
2871 		dget(dentry); /* Extra count - pin the dentry in core */
2872 	}
2873 	return error;
2874 out_iput:
2875 	iput(inode);
2876 	return error;
2877 }
2878 
2879 static int
2880 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2881 {
2882 	struct inode *inode;
2883 	int error = -ENOSPC;
2884 
2885 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2886 	if (inode) {
2887 		error = security_inode_init_security(inode, dir,
2888 						     NULL,
2889 						     shmem_initxattrs, NULL);
2890 		if (error && error != -EOPNOTSUPP)
2891 			goto out_iput;
2892 		error = simple_acl_create(dir, inode);
2893 		if (error)
2894 			goto out_iput;
2895 		d_tmpfile(dentry, inode);
2896 	}
2897 	return error;
2898 out_iput:
2899 	iput(inode);
2900 	return error;
2901 }
2902 
2903 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2904 {
2905 	int error;
2906 
2907 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2908 		return error;
2909 	inc_nlink(dir);
2910 	return 0;
2911 }
2912 
2913 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2914 		bool excl)
2915 {
2916 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2917 }
2918 
2919 /*
2920  * Link a file..
2921  */
2922 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2923 {
2924 	struct inode *inode = d_inode(old_dentry);
2925 	int ret = 0;
2926 
2927 	/*
2928 	 * No ordinary (disk based) filesystem counts links as inodes;
2929 	 * but each new link needs a new dentry, pinning lowmem, and
2930 	 * tmpfs dentries cannot be pruned until they are unlinked.
2931 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2932 	 * first link must skip that, to get the accounting right.
2933 	 */
2934 	if (inode->i_nlink) {
2935 		ret = shmem_reserve_inode(inode->i_sb);
2936 		if (ret)
2937 			goto out;
2938 	}
2939 
2940 	dir->i_size += BOGO_DIRENT_SIZE;
2941 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2942 	inc_nlink(inode);
2943 	ihold(inode);	/* New dentry reference */
2944 	dget(dentry);		/* Extra pinning count for the created dentry */
2945 	d_instantiate(dentry, inode);
2946 out:
2947 	return ret;
2948 }
2949 
2950 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2951 {
2952 	struct inode *inode = d_inode(dentry);
2953 
2954 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2955 		shmem_free_inode(inode->i_sb);
2956 
2957 	dir->i_size -= BOGO_DIRENT_SIZE;
2958 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2959 	drop_nlink(inode);
2960 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2961 	return 0;
2962 }
2963 
2964 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2965 {
2966 	if (!simple_empty(dentry))
2967 		return -ENOTEMPTY;
2968 
2969 	drop_nlink(d_inode(dentry));
2970 	drop_nlink(dir);
2971 	return shmem_unlink(dir, dentry);
2972 }
2973 
2974 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2975 {
2976 	bool old_is_dir = d_is_dir(old_dentry);
2977 	bool new_is_dir = d_is_dir(new_dentry);
2978 
2979 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2980 		if (old_is_dir) {
2981 			drop_nlink(old_dir);
2982 			inc_nlink(new_dir);
2983 		} else {
2984 			drop_nlink(new_dir);
2985 			inc_nlink(old_dir);
2986 		}
2987 	}
2988 	old_dir->i_ctime = old_dir->i_mtime =
2989 	new_dir->i_ctime = new_dir->i_mtime =
2990 	d_inode(old_dentry)->i_ctime =
2991 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2992 
2993 	return 0;
2994 }
2995 
2996 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2997 {
2998 	struct dentry *whiteout;
2999 	int error;
3000 
3001 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3002 	if (!whiteout)
3003 		return -ENOMEM;
3004 
3005 	error = shmem_mknod(old_dir, whiteout,
3006 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3007 	dput(whiteout);
3008 	if (error)
3009 		return error;
3010 
3011 	/*
3012 	 * Cheat and hash the whiteout while the old dentry is still in
3013 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3014 	 *
3015 	 * d_lookup() will consistently find one of them at this point,
3016 	 * not sure which one, but that isn't even important.
3017 	 */
3018 	d_rehash(whiteout);
3019 	return 0;
3020 }
3021 
3022 /*
3023  * The VFS layer already does all the dentry stuff for rename,
3024  * we just have to decrement the usage count for the target if
3025  * it exists so that the VFS layer correctly free's it when it
3026  * gets overwritten.
3027  */
3028 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3029 {
3030 	struct inode *inode = d_inode(old_dentry);
3031 	int they_are_dirs = S_ISDIR(inode->i_mode);
3032 
3033 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3034 		return -EINVAL;
3035 
3036 	if (flags & RENAME_EXCHANGE)
3037 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3038 
3039 	if (!simple_empty(new_dentry))
3040 		return -ENOTEMPTY;
3041 
3042 	if (flags & RENAME_WHITEOUT) {
3043 		int error;
3044 
3045 		error = shmem_whiteout(old_dir, old_dentry);
3046 		if (error)
3047 			return error;
3048 	}
3049 
3050 	if (d_really_is_positive(new_dentry)) {
3051 		(void) shmem_unlink(new_dir, new_dentry);
3052 		if (they_are_dirs) {
3053 			drop_nlink(d_inode(new_dentry));
3054 			drop_nlink(old_dir);
3055 		}
3056 	} else if (they_are_dirs) {
3057 		drop_nlink(old_dir);
3058 		inc_nlink(new_dir);
3059 	}
3060 
3061 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3062 	new_dir->i_size += BOGO_DIRENT_SIZE;
3063 	old_dir->i_ctime = old_dir->i_mtime =
3064 	new_dir->i_ctime = new_dir->i_mtime =
3065 	inode->i_ctime = current_time(old_dir);
3066 	return 0;
3067 }
3068 
3069 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3070 {
3071 	int error;
3072 	int len;
3073 	struct inode *inode;
3074 	struct page *page;
3075 
3076 	len = strlen(symname) + 1;
3077 	if (len > PAGE_SIZE)
3078 		return -ENAMETOOLONG;
3079 
3080 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3081 				VM_NORESERVE);
3082 	if (!inode)
3083 		return -ENOSPC;
3084 
3085 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3086 					     shmem_initxattrs, NULL);
3087 	if (error && error != -EOPNOTSUPP) {
3088 		iput(inode);
3089 		return error;
3090 	}
3091 
3092 	inode->i_size = len-1;
3093 	if (len <= SHORT_SYMLINK_LEN) {
3094 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3095 		if (!inode->i_link) {
3096 			iput(inode);
3097 			return -ENOMEM;
3098 		}
3099 		inode->i_op = &shmem_short_symlink_operations;
3100 	} else {
3101 		inode_nohighmem(inode);
3102 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3103 		if (error) {
3104 			iput(inode);
3105 			return error;
3106 		}
3107 		inode->i_mapping->a_ops = &shmem_aops;
3108 		inode->i_op = &shmem_symlink_inode_operations;
3109 		memcpy(page_address(page), symname, len);
3110 		SetPageUptodate(page);
3111 		set_page_dirty(page);
3112 		unlock_page(page);
3113 		put_page(page);
3114 	}
3115 	dir->i_size += BOGO_DIRENT_SIZE;
3116 	dir->i_ctime = dir->i_mtime = current_time(dir);
3117 	d_instantiate(dentry, inode);
3118 	dget(dentry);
3119 	return 0;
3120 }
3121 
3122 static void shmem_put_link(void *arg)
3123 {
3124 	mark_page_accessed(arg);
3125 	put_page(arg);
3126 }
3127 
3128 static const char *shmem_get_link(struct dentry *dentry,
3129 				  struct inode *inode,
3130 				  struct delayed_call *done)
3131 {
3132 	struct page *page = NULL;
3133 	int error;
3134 	if (!dentry) {
3135 		page = find_get_page(inode->i_mapping, 0);
3136 		if (!page)
3137 			return ERR_PTR(-ECHILD);
3138 		if (!PageUptodate(page)) {
3139 			put_page(page);
3140 			return ERR_PTR(-ECHILD);
3141 		}
3142 	} else {
3143 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3144 		if (error)
3145 			return ERR_PTR(error);
3146 		unlock_page(page);
3147 	}
3148 	set_delayed_call(done, shmem_put_link, page);
3149 	return page_address(page);
3150 }
3151 
3152 #ifdef CONFIG_TMPFS_XATTR
3153 /*
3154  * Superblocks without xattr inode operations may get some security.* xattr
3155  * support from the LSM "for free". As soon as we have any other xattrs
3156  * like ACLs, we also need to implement the security.* handlers at
3157  * filesystem level, though.
3158  */
3159 
3160 /*
3161  * Callback for security_inode_init_security() for acquiring xattrs.
3162  */
3163 static int shmem_initxattrs(struct inode *inode,
3164 			    const struct xattr *xattr_array,
3165 			    void *fs_info)
3166 {
3167 	struct shmem_inode_info *info = SHMEM_I(inode);
3168 	const struct xattr *xattr;
3169 	struct simple_xattr *new_xattr;
3170 	size_t len;
3171 
3172 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3173 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3174 		if (!new_xattr)
3175 			return -ENOMEM;
3176 
3177 		len = strlen(xattr->name) + 1;
3178 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3179 					  GFP_KERNEL);
3180 		if (!new_xattr->name) {
3181 			kvfree(new_xattr);
3182 			return -ENOMEM;
3183 		}
3184 
3185 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3186 		       XATTR_SECURITY_PREFIX_LEN);
3187 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3188 		       xattr->name, len);
3189 
3190 		simple_xattr_list_add(&info->xattrs, new_xattr);
3191 	}
3192 
3193 	return 0;
3194 }
3195 
3196 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3197 				   struct dentry *unused, struct inode *inode,
3198 				   const char *name, void *buffer, size_t size)
3199 {
3200 	struct shmem_inode_info *info = SHMEM_I(inode);
3201 
3202 	name = xattr_full_name(handler, name);
3203 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3204 }
3205 
3206 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3207 				   struct dentry *unused, struct inode *inode,
3208 				   const char *name, const void *value,
3209 				   size_t size, int flags)
3210 {
3211 	struct shmem_inode_info *info = SHMEM_I(inode);
3212 
3213 	name = xattr_full_name(handler, name);
3214 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3215 }
3216 
3217 static const struct xattr_handler shmem_security_xattr_handler = {
3218 	.prefix = XATTR_SECURITY_PREFIX,
3219 	.get = shmem_xattr_handler_get,
3220 	.set = shmem_xattr_handler_set,
3221 };
3222 
3223 static const struct xattr_handler shmem_trusted_xattr_handler = {
3224 	.prefix = XATTR_TRUSTED_PREFIX,
3225 	.get = shmem_xattr_handler_get,
3226 	.set = shmem_xattr_handler_set,
3227 };
3228 
3229 static const struct xattr_handler *shmem_xattr_handlers[] = {
3230 #ifdef CONFIG_TMPFS_POSIX_ACL
3231 	&posix_acl_access_xattr_handler,
3232 	&posix_acl_default_xattr_handler,
3233 #endif
3234 	&shmem_security_xattr_handler,
3235 	&shmem_trusted_xattr_handler,
3236 	NULL
3237 };
3238 
3239 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3240 {
3241 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3242 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3243 }
3244 #endif /* CONFIG_TMPFS_XATTR */
3245 
3246 static const struct inode_operations shmem_short_symlink_operations = {
3247 	.get_link	= simple_get_link,
3248 #ifdef CONFIG_TMPFS_XATTR
3249 	.listxattr	= shmem_listxattr,
3250 #endif
3251 };
3252 
3253 static const struct inode_operations shmem_symlink_inode_operations = {
3254 	.get_link	= shmem_get_link,
3255 #ifdef CONFIG_TMPFS_XATTR
3256 	.listxattr	= shmem_listxattr,
3257 #endif
3258 };
3259 
3260 static struct dentry *shmem_get_parent(struct dentry *child)
3261 {
3262 	return ERR_PTR(-ESTALE);
3263 }
3264 
3265 static int shmem_match(struct inode *ino, void *vfh)
3266 {
3267 	__u32 *fh = vfh;
3268 	__u64 inum = fh[2];
3269 	inum = (inum << 32) | fh[1];
3270 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3271 }
3272 
3273 /* Find any alias of inode, but prefer a hashed alias */
3274 static struct dentry *shmem_find_alias(struct inode *inode)
3275 {
3276 	struct dentry *alias = d_find_alias(inode);
3277 
3278 	return alias ?: d_find_any_alias(inode);
3279 }
3280 
3281 
3282 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3283 		struct fid *fid, int fh_len, int fh_type)
3284 {
3285 	struct inode *inode;
3286 	struct dentry *dentry = NULL;
3287 	u64 inum;
3288 
3289 	if (fh_len < 3)
3290 		return NULL;
3291 
3292 	inum = fid->raw[2];
3293 	inum = (inum << 32) | fid->raw[1];
3294 
3295 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3296 			shmem_match, fid->raw);
3297 	if (inode) {
3298 		dentry = shmem_find_alias(inode);
3299 		iput(inode);
3300 	}
3301 
3302 	return dentry;
3303 }
3304 
3305 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3306 				struct inode *parent)
3307 {
3308 	if (*len < 3) {
3309 		*len = 3;
3310 		return FILEID_INVALID;
3311 	}
3312 
3313 	if (inode_unhashed(inode)) {
3314 		/* Unfortunately insert_inode_hash is not idempotent,
3315 		 * so as we hash inodes here rather than at creation
3316 		 * time, we need a lock to ensure we only try
3317 		 * to do it once
3318 		 */
3319 		static DEFINE_SPINLOCK(lock);
3320 		spin_lock(&lock);
3321 		if (inode_unhashed(inode))
3322 			__insert_inode_hash(inode,
3323 					    inode->i_ino + inode->i_generation);
3324 		spin_unlock(&lock);
3325 	}
3326 
3327 	fh[0] = inode->i_generation;
3328 	fh[1] = inode->i_ino;
3329 	fh[2] = ((__u64)inode->i_ino) >> 32;
3330 
3331 	*len = 3;
3332 	return 1;
3333 }
3334 
3335 static const struct export_operations shmem_export_ops = {
3336 	.get_parent     = shmem_get_parent,
3337 	.encode_fh      = shmem_encode_fh,
3338 	.fh_to_dentry	= shmem_fh_to_dentry,
3339 };
3340 
3341 enum shmem_param {
3342 	Opt_gid,
3343 	Opt_huge,
3344 	Opt_mode,
3345 	Opt_mpol,
3346 	Opt_nr_blocks,
3347 	Opt_nr_inodes,
3348 	Opt_size,
3349 	Opt_uid,
3350 };
3351 
3352 static const struct constant_table shmem_param_enums_huge[] = {
3353 	{"never",	SHMEM_HUGE_NEVER },
3354 	{"always",	SHMEM_HUGE_ALWAYS },
3355 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3356 	{"advise",	SHMEM_HUGE_ADVISE },
3357 	{}
3358 };
3359 
3360 const struct fs_parameter_spec shmem_fs_parameters[] = {
3361 	fsparam_u32   ("gid",		Opt_gid),
3362 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3363 	fsparam_u32oct("mode",		Opt_mode),
3364 	fsparam_string("mpol",		Opt_mpol),
3365 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3366 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3367 	fsparam_string("size",		Opt_size),
3368 	fsparam_u32   ("uid",		Opt_uid),
3369 	{}
3370 };
3371 
3372 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3373 {
3374 	struct shmem_options *ctx = fc->fs_private;
3375 	struct fs_parse_result result;
3376 	unsigned long long size;
3377 	char *rest;
3378 	int opt;
3379 
3380 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3381 	if (opt < 0)
3382 		return opt;
3383 
3384 	switch (opt) {
3385 	case Opt_size:
3386 		size = memparse(param->string, &rest);
3387 		if (*rest == '%') {
3388 			size <<= PAGE_SHIFT;
3389 			size *= totalram_pages();
3390 			do_div(size, 100);
3391 			rest++;
3392 		}
3393 		if (*rest)
3394 			goto bad_value;
3395 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3396 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3397 		break;
3398 	case Opt_nr_blocks:
3399 		ctx->blocks = memparse(param->string, &rest);
3400 		if (*rest)
3401 			goto bad_value;
3402 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3403 		break;
3404 	case Opt_nr_inodes:
3405 		ctx->inodes = memparse(param->string, &rest);
3406 		if (*rest)
3407 			goto bad_value;
3408 		ctx->seen |= SHMEM_SEEN_INODES;
3409 		break;
3410 	case Opt_mode:
3411 		ctx->mode = result.uint_32 & 07777;
3412 		break;
3413 	case Opt_uid:
3414 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3415 		if (!uid_valid(ctx->uid))
3416 			goto bad_value;
3417 		break;
3418 	case Opt_gid:
3419 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3420 		if (!gid_valid(ctx->gid))
3421 			goto bad_value;
3422 		break;
3423 	case Opt_huge:
3424 		ctx->huge = result.uint_32;
3425 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3426 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3427 		      has_transparent_hugepage()))
3428 			goto unsupported_parameter;
3429 		ctx->seen |= SHMEM_SEEN_HUGE;
3430 		break;
3431 	case Opt_mpol:
3432 		if (IS_ENABLED(CONFIG_NUMA)) {
3433 			mpol_put(ctx->mpol);
3434 			ctx->mpol = NULL;
3435 			if (mpol_parse_str(param->string, &ctx->mpol))
3436 				goto bad_value;
3437 			break;
3438 		}
3439 		goto unsupported_parameter;
3440 	}
3441 	return 0;
3442 
3443 unsupported_parameter:
3444 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3445 bad_value:
3446 	return invalfc(fc, "Bad value for '%s'", param->key);
3447 }
3448 
3449 static int shmem_parse_options(struct fs_context *fc, void *data)
3450 {
3451 	char *options = data;
3452 
3453 	if (options) {
3454 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3455 		if (err)
3456 			return err;
3457 	}
3458 
3459 	while (options != NULL) {
3460 		char *this_char = options;
3461 		for (;;) {
3462 			/*
3463 			 * NUL-terminate this option: unfortunately,
3464 			 * mount options form a comma-separated list,
3465 			 * but mpol's nodelist may also contain commas.
3466 			 */
3467 			options = strchr(options, ',');
3468 			if (options == NULL)
3469 				break;
3470 			options++;
3471 			if (!isdigit(*options)) {
3472 				options[-1] = '\0';
3473 				break;
3474 			}
3475 		}
3476 		if (*this_char) {
3477 			char *value = strchr(this_char,'=');
3478 			size_t len = 0;
3479 			int err;
3480 
3481 			if (value) {
3482 				*value++ = '\0';
3483 				len = strlen(value);
3484 			}
3485 			err = vfs_parse_fs_string(fc, this_char, value, len);
3486 			if (err < 0)
3487 				return err;
3488 		}
3489 	}
3490 	return 0;
3491 }
3492 
3493 /*
3494  * Reconfigure a shmem filesystem.
3495  *
3496  * Note that we disallow change from limited->unlimited blocks/inodes while any
3497  * are in use; but we must separately disallow unlimited->limited, because in
3498  * that case we have no record of how much is already in use.
3499  */
3500 static int shmem_reconfigure(struct fs_context *fc)
3501 {
3502 	struct shmem_options *ctx = fc->fs_private;
3503 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3504 	unsigned long inodes;
3505 	const char *err;
3506 
3507 	spin_lock(&sbinfo->stat_lock);
3508 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3509 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3510 		if (!sbinfo->max_blocks) {
3511 			err = "Cannot retroactively limit size";
3512 			goto out;
3513 		}
3514 		if (percpu_counter_compare(&sbinfo->used_blocks,
3515 					   ctx->blocks) > 0) {
3516 			err = "Too small a size for current use";
3517 			goto out;
3518 		}
3519 	}
3520 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3521 		if (!sbinfo->max_inodes) {
3522 			err = "Cannot retroactively limit inodes";
3523 			goto out;
3524 		}
3525 		if (ctx->inodes < inodes) {
3526 			err = "Too few inodes for current use";
3527 			goto out;
3528 		}
3529 	}
3530 
3531 	if (ctx->seen & SHMEM_SEEN_HUGE)
3532 		sbinfo->huge = ctx->huge;
3533 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3534 		sbinfo->max_blocks  = ctx->blocks;
3535 	if (ctx->seen & SHMEM_SEEN_INODES) {
3536 		sbinfo->max_inodes  = ctx->inodes;
3537 		sbinfo->free_inodes = ctx->inodes - inodes;
3538 	}
3539 
3540 	/*
3541 	 * Preserve previous mempolicy unless mpol remount option was specified.
3542 	 */
3543 	if (ctx->mpol) {
3544 		mpol_put(sbinfo->mpol);
3545 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3546 		ctx->mpol = NULL;
3547 	}
3548 	spin_unlock(&sbinfo->stat_lock);
3549 	return 0;
3550 out:
3551 	spin_unlock(&sbinfo->stat_lock);
3552 	return invalfc(fc, "%s", err);
3553 }
3554 
3555 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3556 {
3557 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3558 
3559 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3560 		seq_printf(seq, ",size=%luk",
3561 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3562 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3563 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3564 	if (sbinfo->mode != (0777 | S_ISVTX))
3565 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3566 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3567 		seq_printf(seq, ",uid=%u",
3568 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3569 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3570 		seq_printf(seq, ",gid=%u",
3571 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3572 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3573 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3574 	if (sbinfo->huge)
3575 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3576 #endif
3577 	shmem_show_mpol(seq, sbinfo->mpol);
3578 	return 0;
3579 }
3580 
3581 #endif /* CONFIG_TMPFS */
3582 
3583 static void shmem_put_super(struct super_block *sb)
3584 {
3585 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3586 
3587 	percpu_counter_destroy(&sbinfo->used_blocks);
3588 	mpol_put(sbinfo->mpol);
3589 	kfree(sbinfo);
3590 	sb->s_fs_info = NULL;
3591 }
3592 
3593 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3594 {
3595 	struct shmem_options *ctx = fc->fs_private;
3596 	struct inode *inode;
3597 	struct shmem_sb_info *sbinfo;
3598 	int err = -ENOMEM;
3599 
3600 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3601 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3602 				L1_CACHE_BYTES), GFP_KERNEL);
3603 	if (!sbinfo)
3604 		return -ENOMEM;
3605 
3606 	sb->s_fs_info = sbinfo;
3607 
3608 #ifdef CONFIG_TMPFS
3609 	/*
3610 	 * Per default we only allow half of the physical ram per
3611 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3612 	 * but the internal instance is left unlimited.
3613 	 */
3614 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3615 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3616 			ctx->blocks = shmem_default_max_blocks();
3617 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3618 			ctx->inodes = shmem_default_max_inodes();
3619 	} else {
3620 		sb->s_flags |= SB_NOUSER;
3621 	}
3622 	sb->s_export_op = &shmem_export_ops;
3623 	sb->s_flags |= SB_NOSEC;
3624 #else
3625 	sb->s_flags |= SB_NOUSER;
3626 #endif
3627 	sbinfo->max_blocks = ctx->blocks;
3628 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3629 	sbinfo->uid = ctx->uid;
3630 	sbinfo->gid = ctx->gid;
3631 	sbinfo->mode = ctx->mode;
3632 	sbinfo->huge = ctx->huge;
3633 	sbinfo->mpol = ctx->mpol;
3634 	ctx->mpol = NULL;
3635 
3636 	spin_lock_init(&sbinfo->stat_lock);
3637 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3638 		goto failed;
3639 	spin_lock_init(&sbinfo->shrinklist_lock);
3640 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3641 
3642 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3643 	sb->s_blocksize = PAGE_SIZE;
3644 	sb->s_blocksize_bits = PAGE_SHIFT;
3645 	sb->s_magic = TMPFS_MAGIC;
3646 	sb->s_op = &shmem_ops;
3647 	sb->s_time_gran = 1;
3648 #ifdef CONFIG_TMPFS_XATTR
3649 	sb->s_xattr = shmem_xattr_handlers;
3650 #endif
3651 #ifdef CONFIG_TMPFS_POSIX_ACL
3652 	sb->s_flags |= SB_POSIXACL;
3653 #endif
3654 	uuid_gen(&sb->s_uuid);
3655 
3656 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3657 	if (!inode)
3658 		goto failed;
3659 	inode->i_uid = sbinfo->uid;
3660 	inode->i_gid = sbinfo->gid;
3661 	sb->s_root = d_make_root(inode);
3662 	if (!sb->s_root)
3663 		goto failed;
3664 	return 0;
3665 
3666 failed:
3667 	shmem_put_super(sb);
3668 	return err;
3669 }
3670 
3671 static int shmem_get_tree(struct fs_context *fc)
3672 {
3673 	return get_tree_nodev(fc, shmem_fill_super);
3674 }
3675 
3676 static void shmem_free_fc(struct fs_context *fc)
3677 {
3678 	struct shmem_options *ctx = fc->fs_private;
3679 
3680 	if (ctx) {
3681 		mpol_put(ctx->mpol);
3682 		kfree(ctx);
3683 	}
3684 }
3685 
3686 static const struct fs_context_operations shmem_fs_context_ops = {
3687 	.free			= shmem_free_fc,
3688 	.get_tree		= shmem_get_tree,
3689 #ifdef CONFIG_TMPFS
3690 	.parse_monolithic	= shmem_parse_options,
3691 	.parse_param		= shmem_parse_one,
3692 	.reconfigure		= shmem_reconfigure,
3693 #endif
3694 };
3695 
3696 static struct kmem_cache *shmem_inode_cachep;
3697 
3698 static struct inode *shmem_alloc_inode(struct super_block *sb)
3699 {
3700 	struct shmem_inode_info *info;
3701 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3702 	if (!info)
3703 		return NULL;
3704 	return &info->vfs_inode;
3705 }
3706 
3707 static void shmem_free_in_core_inode(struct inode *inode)
3708 {
3709 	if (S_ISLNK(inode->i_mode))
3710 		kfree(inode->i_link);
3711 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3712 }
3713 
3714 static void shmem_destroy_inode(struct inode *inode)
3715 {
3716 	if (S_ISREG(inode->i_mode))
3717 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3718 }
3719 
3720 static void shmem_init_inode(void *foo)
3721 {
3722 	struct shmem_inode_info *info = foo;
3723 	inode_init_once(&info->vfs_inode);
3724 }
3725 
3726 static void shmem_init_inodecache(void)
3727 {
3728 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3729 				sizeof(struct shmem_inode_info),
3730 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3731 }
3732 
3733 static void shmem_destroy_inodecache(void)
3734 {
3735 	kmem_cache_destroy(shmem_inode_cachep);
3736 }
3737 
3738 static const struct address_space_operations shmem_aops = {
3739 	.writepage	= shmem_writepage,
3740 	.set_page_dirty	= __set_page_dirty_no_writeback,
3741 #ifdef CONFIG_TMPFS
3742 	.write_begin	= shmem_write_begin,
3743 	.write_end	= shmem_write_end,
3744 #endif
3745 #ifdef CONFIG_MIGRATION
3746 	.migratepage	= migrate_page,
3747 #endif
3748 	.error_remove_page = generic_error_remove_page,
3749 };
3750 
3751 static const struct file_operations shmem_file_operations = {
3752 	.mmap		= shmem_mmap,
3753 	.get_unmapped_area = shmem_get_unmapped_area,
3754 #ifdef CONFIG_TMPFS
3755 	.llseek		= shmem_file_llseek,
3756 	.read_iter	= shmem_file_read_iter,
3757 	.write_iter	= generic_file_write_iter,
3758 	.fsync		= noop_fsync,
3759 	.splice_read	= generic_file_splice_read,
3760 	.splice_write	= iter_file_splice_write,
3761 	.fallocate	= shmem_fallocate,
3762 #endif
3763 };
3764 
3765 static const struct inode_operations shmem_inode_operations = {
3766 	.getattr	= shmem_getattr,
3767 	.setattr	= shmem_setattr,
3768 #ifdef CONFIG_TMPFS_XATTR
3769 	.listxattr	= shmem_listxattr,
3770 	.set_acl	= simple_set_acl,
3771 #endif
3772 };
3773 
3774 static const struct inode_operations shmem_dir_inode_operations = {
3775 #ifdef CONFIG_TMPFS
3776 	.create		= shmem_create,
3777 	.lookup		= simple_lookup,
3778 	.link		= shmem_link,
3779 	.unlink		= shmem_unlink,
3780 	.symlink	= shmem_symlink,
3781 	.mkdir		= shmem_mkdir,
3782 	.rmdir		= shmem_rmdir,
3783 	.mknod		= shmem_mknod,
3784 	.rename		= shmem_rename2,
3785 	.tmpfile	= shmem_tmpfile,
3786 #endif
3787 #ifdef CONFIG_TMPFS_XATTR
3788 	.listxattr	= shmem_listxattr,
3789 #endif
3790 #ifdef CONFIG_TMPFS_POSIX_ACL
3791 	.setattr	= shmem_setattr,
3792 	.set_acl	= simple_set_acl,
3793 #endif
3794 };
3795 
3796 static const struct inode_operations shmem_special_inode_operations = {
3797 #ifdef CONFIG_TMPFS_XATTR
3798 	.listxattr	= shmem_listxattr,
3799 #endif
3800 #ifdef CONFIG_TMPFS_POSIX_ACL
3801 	.setattr	= shmem_setattr,
3802 	.set_acl	= simple_set_acl,
3803 #endif
3804 };
3805 
3806 static const struct super_operations shmem_ops = {
3807 	.alloc_inode	= shmem_alloc_inode,
3808 	.free_inode	= shmem_free_in_core_inode,
3809 	.destroy_inode	= shmem_destroy_inode,
3810 #ifdef CONFIG_TMPFS
3811 	.statfs		= shmem_statfs,
3812 	.show_options	= shmem_show_options,
3813 #endif
3814 	.evict_inode	= shmem_evict_inode,
3815 	.drop_inode	= generic_delete_inode,
3816 	.put_super	= shmem_put_super,
3817 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3818 	.nr_cached_objects	= shmem_unused_huge_count,
3819 	.free_cached_objects	= shmem_unused_huge_scan,
3820 #endif
3821 };
3822 
3823 static const struct vm_operations_struct shmem_vm_ops = {
3824 	.fault		= shmem_fault,
3825 	.map_pages	= filemap_map_pages,
3826 #ifdef CONFIG_NUMA
3827 	.set_policy     = shmem_set_policy,
3828 	.get_policy     = shmem_get_policy,
3829 #endif
3830 };
3831 
3832 int shmem_init_fs_context(struct fs_context *fc)
3833 {
3834 	struct shmem_options *ctx;
3835 
3836 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3837 	if (!ctx)
3838 		return -ENOMEM;
3839 
3840 	ctx->mode = 0777 | S_ISVTX;
3841 	ctx->uid = current_fsuid();
3842 	ctx->gid = current_fsgid();
3843 
3844 	fc->fs_private = ctx;
3845 	fc->ops = &shmem_fs_context_ops;
3846 	return 0;
3847 }
3848 
3849 static struct file_system_type shmem_fs_type = {
3850 	.owner		= THIS_MODULE,
3851 	.name		= "tmpfs",
3852 	.init_fs_context = shmem_init_fs_context,
3853 #ifdef CONFIG_TMPFS
3854 	.parameters	= shmem_fs_parameters,
3855 #endif
3856 	.kill_sb	= kill_litter_super,
3857 	.fs_flags	= FS_USERNS_MOUNT,
3858 };
3859 
3860 int __init shmem_init(void)
3861 {
3862 	int error;
3863 
3864 	shmem_init_inodecache();
3865 
3866 	error = register_filesystem(&shmem_fs_type);
3867 	if (error) {
3868 		pr_err("Could not register tmpfs\n");
3869 		goto out2;
3870 	}
3871 
3872 	shm_mnt = kern_mount(&shmem_fs_type);
3873 	if (IS_ERR(shm_mnt)) {
3874 		error = PTR_ERR(shm_mnt);
3875 		pr_err("Could not kern_mount tmpfs\n");
3876 		goto out1;
3877 	}
3878 
3879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3880 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3881 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3882 	else
3883 		shmem_huge = 0; /* just in case it was patched */
3884 #endif
3885 	return 0;
3886 
3887 out1:
3888 	unregister_filesystem(&shmem_fs_type);
3889 out2:
3890 	shmem_destroy_inodecache();
3891 	shm_mnt = ERR_PTR(error);
3892 	return error;
3893 }
3894 
3895 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3896 static ssize_t shmem_enabled_show(struct kobject *kobj,
3897 		struct kobj_attribute *attr, char *buf)
3898 {
3899 	static const int values[] = {
3900 		SHMEM_HUGE_ALWAYS,
3901 		SHMEM_HUGE_WITHIN_SIZE,
3902 		SHMEM_HUGE_ADVISE,
3903 		SHMEM_HUGE_NEVER,
3904 		SHMEM_HUGE_DENY,
3905 		SHMEM_HUGE_FORCE,
3906 	};
3907 	int i, count;
3908 
3909 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3910 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3911 
3912 		count += sprintf(buf + count, fmt,
3913 				shmem_format_huge(values[i]));
3914 	}
3915 	buf[count - 1] = '\n';
3916 	return count;
3917 }
3918 
3919 static ssize_t shmem_enabled_store(struct kobject *kobj,
3920 		struct kobj_attribute *attr, const char *buf, size_t count)
3921 {
3922 	char tmp[16];
3923 	int huge;
3924 
3925 	if (count + 1 > sizeof(tmp))
3926 		return -EINVAL;
3927 	memcpy(tmp, buf, count);
3928 	tmp[count] = '\0';
3929 	if (count && tmp[count - 1] == '\n')
3930 		tmp[count - 1] = '\0';
3931 
3932 	huge = shmem_parse_huge(tmp);
3933 	if (huge == -EINVAL)
3934 		return -EINVAL;
3935 	if (!has_transparent_hugepage() &&
3936 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3937 		return -EINVAL;
3938 
3939 	shmem_huge = huge;
3940 	if (shmem_huge > SHMEM_HUGE_DENY)
3941 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3942 	return count;
3943 }
3944 
3945 struct kobj_attribute shmem_enabled_attr =
3946 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3947 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3948 
3949 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3950 bool shmem_huge_enabled(struct vm_area_struct *vma)
3951 {
3952 	struct inode *inode = file_inode(vma->vm_file);
3953 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3954 	loff_t i_size;
3955 	pgoff_t off;
3956 
3957 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3958 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3959 		return false;
3960 	if (shmem_huge == SHMEM_HUGE_FORCE)
3961 		return true;
3962 	if (shmem_huge == SHMEM_HUGE_DENY)
3963 		return false;
3964 	switch (sbinfo->huge) {
3965 		case SHMEM_HUGE_NEVER:
3966 			return false;
3967 		case SHMEM_HUGE_ALWAYS:
3968 			return true;
3969 		case SHMEM_HUGE_WITHIN_SIZE:
3970 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3971 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3972 			if (i_size >= HPAGE_PMD_SIZE &&
3973 					i_size >> PAGE_SHIFT >= off)
3974 				return true;
3975 			fallthrough;
3976 		case SHMEM_HUGE_ADVISE:
3977 			/* TODO: implement fadvise() hints */
3978 			return (vma->vm_flags & VM_HUGEPAGE);
3979 		default:
3980 			VM_BUG_ON(1);
3981 			return false;
3982 	}
3983 }
3984 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3985 
3986 #else /* !CONFIG_SHMEM */
3987 
3988 /*
3989  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3990  *
3991  * This is intended for small system where the benefits of the full
3992  * shmem code (swap-backed and resource-limited) are outweighed by
3993  * their complexity. On systems without swap this code should be
3994  * effectively equivalent, but much lighter weight.
3995  */
3996 
3997 static struct file_system_type shmem_fs_type = {
3998 	.name		= "tmpfs",
3999 	.init_fs_context = ramfs_init_fs_context,
4000 	.parameters	= ramfs_fs_parameters,
4001 	.kill_sb	= kill_litter_super,
4002 	.fs_flags	= FS_USERNS_MOUNT,
4003 };
4004 
4005 int __init shmem_init(void)
4006 {
4007 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4008 
4009 	shm_mnt = kern_mount(&shmem_fs_type);
4010 	BUG_ON(IS_ERR(shm_mnt));
4011 
4012 	return 0;
4013 }
4014 
4015 int shmem_unuse(unsigned int type, bool frontswap,
4016 		unsigned long *fs_pages_to_unuse)
4017 {
4018 	return 0;
4019 }
4020 
4021 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4022 {
4023 	return 0;
4024 }
4025 
4026 void shmem_unlock_mapping(struct address_space *mapping)
4027 {
4028 }
4029 
4030 #ifdef CONFIG_MMU
4031 unsigned long shmem_get_unmapped_area(struct file *file,
4032 				      unsigned long addr, unsigned long len,
4033 				      unsigned long pgoff, unsigned long flags)
4034 {
4035 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4036 }
4037 #endif
4038 
4039 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4040 {
4041 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4042 }
4043 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4044 
4045 #define shmem_vm_ops				generic_file_vm_ops
4046 #define shmem_file_operations			ramfs_file_operations
4047 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4048 #define shmem_acct_size(flags, size)		0
4049 #define shmem_unacct_size(flags, size)		do {} while (0)
4050 
4051 #endif /* CONFIG_SHMEM */
4052 
4053 /* common code */
4054 
4055 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4056 				       unsigned long flags, unsigned int i_flags)
4057 {
4058 	struct inode *inode;
4059 	struct file *res;
4060 
4061 	if (IS_ERR(mnt))
4062 		return ERR_CAST(mnt);
4063 
4064 	if (size < 0 || size > MAX_LFS_FILESIZE)
4065 		return ERR_PTR(-EINVAL);
4066 
4067 	if (shmem_acct_size(flags, size))
4068 		return ERR_PTR(-ENOMEM);
4069 
4070 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4071 				flags);
4072 	if (unlikely(!inode)) {
4073 		shmem_unacct_size(flags, size);
4074 		return ERR_PTR(-ENOSPC);
4075 	}
4076 	inode->i_flags |= i_flags;
4077 	inode->i_size = size;
4078 	clear_nlink(inode);	/* It is unlinked */
4079 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4080 	if (!IS_ERR(res))
4081 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4082 				&shmem_file_operations);
4083 	if (IS_ERR(res))
4084 		iput(inode);
4085 	return res;
4086 }
4087 
4088 /**
4089  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4090  * 	kernel internal.  There will be NO LSM permission checks against the
4091  * 	underlying inode.  So users of this interface must do LSM checks at a
4092  *	higher layer.  The users are the big_key and shm implementations.  LSM
4093  *	checks are provided at the key or shm level rather than the inode.
4094  * @name: name for dentry (to be seen in /proc/<pid>/maps
4095  * @size: size to be set for the file
4096  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4097  */
4098 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4099 {
4100 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4101 }
4102 
4103 /**
4104  * shmem_file_setup - get an unlinked file living in tmpfs
4105  * @name: name for dentry (to be seen in /proc/<pid>/maps
4106  * @size: size to be set for the file
4107  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4108  */
4109 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4110 {
4111 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4112 }
4113 EXPORT_SYMBOL_GPL(shmem_file_setup);
4114 
4115 /**
4116  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4117  * @mnt: the tmpfs mount where the file will be created
4118  * @name: name for dentry (to be seen in /proc/<pid>/maps
4119  * @size: size to be set for the file
4120  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4121  */
4122 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4123 				       loff_t size, unsigned long flags)
4124 {
4125 	return __shmem_file_setup(mnt, name, size, flags, 0);
4126 }
4127 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4128 
4129 /**
4130  * shmem_zero_setup - setup a shared anonymous mapping
4131  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4132  */
4133 int shmem_zero_setup(struct vm_area_struct *vma)
4134 {
4135 	struct file *file;
4136 	loff_t size = vma->vm_end - vma->vm_start;
4137 
4138 	/*
4139 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4140 	 * between XFS directory reading and selinux: since this file is only
4141 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4142 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4143 	 */
4144 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4145 	if (IS_ERR(file))
4146 		return PTR_ERR(file);
4147 
4148 	if (vma->vm_file)
4149 		fput(vma->vm_file);
4150 	vma->vm_file = file;
4151 	vma->vm_ops = &shmem_vm_ops;
4152 
4153 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4154 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4155 			(vma->vm_end & HPAGE_PMD_MASK)) {
4156 		khugepaged_enter(vma, vma->vm_flags);
4157 	}
4158 
4159 	return 0;
4160 }
4161 
4162 /**
4163  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4164  * @mapping:	the page's address_space
4165  * @index:	the page index
4166  * @gfp:	the page allocator flags to use if allocating
4167  *
4168  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4169  * with any new page allocations done using the specified allocation flags.
4170  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4171  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4172  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4173  *
4174  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4175  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4176  */
4177 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4178 					 pgoff_t index, gfp_t gfp)
4179 {
4180 #ifdef CONFIG_SHMEM
4181 	struct inode *inode = mapping->host;
4182 	struct page *page;
4183 	int error;
4184 
4185 	BUG_ON(mapping->a_ops != &shmem_aops);
4186 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4187 				  gfp, NULL, NULL, NULL);
4188 	if (error)
4189 		page = ERR_PTR(error);
4190 	else
4191 		unlock_page(page);
4192 	return page;
4193 #else
4194 	/*
4195 	 * The tiny !SHMEM case uses ramfs without swap
4196 	 */
4197 	return read_cache_page_gfp(mapping, index, gfp);
4198 #endif
4199 }
4200 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4201