xref: /linux/mm/mlock.c (revision cdb138080b78146d1cdadba9f5dadbeb97445b91)
1 /*
2  *	linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
21 
22 #include "internal.h"
23 
24 int can_do_mlock(void)
25 {
26 	if (capable(CAP_IPC_LOCK))
27 		return 1;
28 	if (rlimit(RLIMIT_MEMLOCK) != 0)
29 		return 1;
30 	return 0;
31 }
32 EXPORT_SYMBOL(can_do_mlock);
33 
34 /*
35  * Mlocked pages are marked with PageMlocked() flag for efficient testing
36  * in vmscan and, possibly, the fault path; and to support semi-accurate
37  * statistics.
38  *
39  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
40  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41  * The unevictable list is an LRU sibling list to the [in]active lists.
42  * PageUnevictable is set to indicate the unevictable state.
43  *
44  * When lazy mlocking via vmscan, it is important to ensure that the
45  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46  * may have mlocked a page that is being munlocked. So lazy mlock must take
47  * the mmap_sem for read, and verify that the vma really is locked
48  * (see mm/rmap.c).
49  */
50 
51 /*
52  *  LRU accounting for clear_page_mlock()
53  */
54 void __clear_page_mlock(struct page *page)
55 {
56 	VM_BUG_ON(!PageLocked(page));
57 
58 	if (!page->mapping) {	/* truncated ? */
59 		return;
60 	}
61 
62 	dec_zone_page_state(page, NR_MLOCK);
63 	count_vm_event(UNEVICTABLE_PGCLEARED);
64 	if (!isolate_lru_page(page)) {
65 		putback_lru_page(page);
66 	} else {
67 		/*
68 		 * We lost the race. the page already moved to evictable list.
69 		 */
70 		if (PageUnevictable(page))
71 			count_vm_event(UNEVICTABLE_PGSTRANDED);
72 	}
73 }
74 
75 /*
76  * Mark page as mlocked if not already.
77  * If page on LRU, isolate and putback to move to unevictable list.
78  */
79 void mlock_vma_page(struct page *page)
80 {
81 	BUG_ON(!PageLocked(page));
82 
83 	if (!TestSetPageMlocked(page)) {
84 		inc_zone_page_state(page, NR_MLOCK);
85 		count_vm_event(UNEVICTABLE_PGMLOCKED);
86 		if (!isolate_lru_page(page))
87 			putback_lru_page(page);
88 	}
89 }
90 
91 /**
92  * munlock_vma_page - munlock a vma page
93  * @page - page to be unlocked
94  *
95  * called from munlock()/munmap() path with page supposedly on the LRU.
96  * When we munlock a page, because the vma where we found the page is being
97  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
98  * page locked so that we can leave it on the unevictable lru list and not
99  * bother vmscan with it.  However, to walk the page's rmap list in
100  * try_to_munlock() we must isolate the page from the LRU.  If some other
101  * task has removed the page from the LRU, we won't be able to do that.
102  * So we clear the PageMlocked as we might not get another chance.  If we
103  * can't isolate the page, we leave it for putback_lru_page() and vmscan
104  * [page_referenced()/try_to_unmap()] to deal with.
105  */
106 void munlock_vma_page(struct page *page)
107 {
108 	BUG_ON(!PageLocked(page));
109 
110 	if (TestClearPageMlocked(page)) {
111 		dec_zone_page_state(page, NR_MLOCK);
112 		if (!isolate_lru_page(page)) {
113 			int ret = try_to_munlock(page);
114 			/*
115 			 * did try_to_unlock() succeed or punt?
116 			 */
117 			if (ret != SWAP_MLOCK)
118 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
119 
120 			putback_lru_page(page);
121 		} else {
122 			/*
123 			 * Some other task has removed the page from the LRU.
124 			 * putback_lru_page() will take care of removing the
125 			 * page from the unevictable list, if necessary.
126 			 * vmscan [page_referenced()] will move the page back
127 			 * to the unevictable list if some other vma has it
128 			 * mlocked.
129 			 */
130 			if (PageUnevictable(page))
131 				count_vm_event(UNEVICTABLE_PGSTRANDED);
132 			else
133 				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134 		}
135 	}
136 }
137 
138 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
139 {
140 	return (vma->vm_flags & VM_GROWSDOWN) &&
141 		(vma->vm_start == addr) &&
142 		!vma_stack_continue(vma->vm_prev, addr);
143 }
144 
145 /**
146  * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
147  * @vma:   target vma
148  * @start: start address
149  * @end:   end address
150  *
151  * This takes care of making the pages present too.
152  *
153  * return 0 on success, negative error code on error.
154  *
155  * vma->vm_mm->mmap_sem must be held for at least read.
156  */
157 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
158 				    unsigned long start, unsigned long end)
159 {
160 	struct mm_struct *mm = vma->vm_mm;
161 	unsigned long addr = start;
162 	struct page *pages[16]; /* 16 gives a reasonable batch */
163 	int nr_pages = (end - start) / PAGE_SIZE;
164 	int ret = 0;
165 	int gup_flags;
166 
167 	VM_BUG_ON(start & ~PAGE_MASK);
168 	VM_BUG_ON(end   & ~PAGE_MASK);
169 	VM_BUG_ON(start < vma->vm_start);
170 	VM_BUG_ON(end   > vma->vm_end);
171 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
172 
173 	gup_flags = FOLL_TOUCH | FOLL_GET;
174 	if (vma->vm_flags & VM_WRITE)
175 		gup_flags |= FOLL_WRITE;
176 
177 	/* We don't try to access the guard page of a stack vma */
178 	if (stack_guard_page(vma, start)) {
179 		addr += PAGE_SIZE;
180 		nr_pages--;
181 	}
182 
183 	while (nr_pages > 0) {
184 		int i;
185 
186 		cond_resched();
187 
188 		/*
189 		 * get_user_pages makes pages present if we are
190 		 * setting mlock. and this extra reference count will
191 		 * disable migration of this page.  However, page may
192 		 * still be truncated out from under us.
193 		 */
194 		ret = __get_user_pages(current, mm, addr,
195 				min_t(int, nr_pages, ARRAY_SIZE(pages)),
196 				gup_flags, pages, NULL);
197 		/*
198 		 * This can happen for, e.g., VM_NONLINEAR regions before
199 		 * a page has been allocated and mapped at a given offset,
200 		 * or for addresses that map beyond end of a file.
201 		 * We'll mlock the pages if/when they get faulted in.
202 		 */
203 		if (ret < 0)
204 			break;
205 
206 		lru_add_drain();	/* push cached pages to LRU */
207 
208 		for (i = 0; i < ret; i++) {
209 			struct page *page = pages[i];
210 
211 			if (page->mapping) {
212 				/*
213 				 * That preliminary check is mainly to avoid
214 				 * the pointless overhead of lock_page on the
215 				 * ZERO_PAGE: which might bounce very badly if
216 				 * there is contention.  However, we're still
217 				 * dirtying its cacheline with get/put_page:
218 				 * we'll add another __get_user_pages flag to
219 				 * avoid it if that case turns out to matter.
220 				 */
221 				lock_page(page);
222 				/*
223 				 * Because we lock page here and migration is
224 				 * blocked by the elevated reference, we need
225 				 * only check for file-cache page truncation.
226 				 */
227 				if (page->mapping)
228 					mlock_vma_page(page);
229 				unlock_page(page);
230 			}
231 			put_page(page);	/* ref from get_user_pages() */
232 		}
233 
234 		addr += ret * PAGE_SIZE;
235 		nr_pages -= ret;
236 		ret = 0;
237 	}
238 
239 	return ret;	/* 0 or negative error code */
240 }
241 
242 /*
243  * convert get_user_pages() return value to posix mlock() error
244  */
245 static int __mlock_posix_error_return(long retval)
246 {
247 	if (retval == -EFAULT)
248 		retval = -ENOMEM;
249 	else if (retval == -ENOMEM)
250 		retval = -EAGAIN;
251 	return retval;
252 }
253 
254 /**
255  * mlock_vma_pages_range() - mlock pages in specified vma range.
256  * @vma - the vma containing the specfied address range
257  * @start - starting address in @vma to mlock
258  * @end   - end address [+1] in @vma to mlock
259  *
260  * For mmap()/mremap()/expansion of mlocked vma.
261  *
262  * return 0 on success for "normal" vmas.
263  *
264  * return number of pages [> 0] to be removed from locked_vm on success
265  * of "special" vmas.
266  */
267 long mlock_vma_pages_range(struct vm_area_struct *vma,
268 			unsigned long start, unsigned long end)
269 {
270 	int nr_pages = (end - start) / PAGE_SIZE;
271 	BUG_ON(!(vma->vm_flags & VM_LOCKED));
272 
273 	/*
274 	 * filter unlockable vmas
275 	 */
276 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
277 		goto no_mlock;
278 
279 	if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
280 			is_vm_hugetlb_page(vma) ||
281 			vma == get_gate_vma(current))) {
282 
283 		__mlock_vma_pages_range(vma, start, end);
284 
285 		/* Hide errors from mmap() and other callers */
286 		return 0;
287 	}
288 
289 	/*
290 	 * User mapped kernel pages or huge pages:
291 	 * make these pages present to populate the ptes, but
292 	 * fall thru' to reset VM_LOCKED--no need to unlock, and
293 	 * return nr_pages so these don't get counted against task's
294 	 * locked limit.  huge pages are already counted against
295 	 * locked vm limit.
296 	 */
297 	make_pages_present(start, end);
298 
299 no_mlock:
300 	vma->vm_flags &= ~VM_LOCKED;	/* and don't come back! */
301 	return nr_pages;		/* error or pages NOT mlocked */
302 }
303 
304 /*
305  * munlock_vma_pages_range() - munlock all pages in the vma range.'
306  * @vma - vma containing range to be munlock()ed.
307  * @start - start address in @vma of the range
308  * @end - end of range in @vma.
309  *
310  *  For mremap(), munmap() and exit().
311  *
312  * Called with @vma VM_LOCKED.
313  *
314  * Returns with VM_LOCKED cleared.  Callers must be prepared to
315  * deal with this.
316  *
317  * We don't save and restore VM_LOCKED here because pages are
318  * still on lru.  In unmap path, pages might be scanned by reclaim
319  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
320  * free them.  This will result in freeing mlocked pages.
321  */
322 void munlock_vma_pages_range(struct vm_area_struct *vma,
323 			     unsigned long start, unsigned long end)
324 {
325 	unsigned long addr;
326 
327 	lru_add_drain();
328 	vma->vm_flags &= ~VM_LOCKED;
329 
330 	for (addr = start; addr < end; addr += PAGE_SIZE) {
331 		struct page *page;
332 		/*
333 		 * Although FOLL_DUMP is intended for get_dump_page(),
334 		 * it just so happens that its special treatment of the
335 		 * ZERO_PAGE (returning an error instead of doing get_page)
336 		 * suits munlock very well (and if somehow an abnormal page
337 		 * has sneaked into the range, we won't oops here: great).
338 		 */
339 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
340 		if (page && !IS_ERR(page)) {
341 			lock_page(page);
342 			/*
343 			 * Like in __mlock_vma_pages_range(),
344 			 * because we lock page here and migration is
345 			 * blocked by the elevated reference, we need
346 			 * only check for file-cache page truncation.
347 			 */
348 			if (page->mapping)
349 				munlock_vma_page(page);
350 			unlock_page(page);
351 			put_page(page);
352 		}
353 		cond_resched();
354 	}
355 }
356 
357 /*
358  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
359  *
360  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
361  * munlock is a no-op.  However, for some special vmas, we go ahead and
362  * populate the ptes via make_pages_present().
363  *
364  * For vmas that pass the filters, merge/split as appropriate.
365  */
366 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
367 	unsigned long start, unsigned long end, unsigned int newflags)
368 {
369 	struct mm_struct *mm = vma->vm_mm;
370 	pgoff_t pgoff;
371 	int nr_pages;
372 	int ret = 0;
373 	int lock = newflags & VM_LOCKED;
374 
375 	if (newflags == vma->vm_flags ||
376 			(vma->vm_flags & (VM_IO | VM_PFNMAP)))
377 		goto out;	/* don't set VM_LOCKED,  don't count */
378 
379 	if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
380 			is_vm_hugetlb_page(vma) ||
381 			vma == get_gate_vma(current)) {
382 		if (lock)
383 			make_pages_present(start, end);
384 		goto out;	/* don't set VM_LOCKED,  don't count */
385 	}
386 
387 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
388 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
389 			  vma->vm_file, pgoff, vma_policy(vma));
390 	if (*prev) {
391 		vma = *prev;
392 		goto success;
393 	}
394 
395 	if (start != vma->vm_start) {
396 		ret = split_vma(mm, vma, start, 1);
397 		if (ret)
398 			goto out;
399 	}
400 
401 	if (end != vma->vm_end) {
402 		ret = split_vma(mm, vma, end, 0);
403 		if (ret)
404 			goto out;
405 	}
406 
407 success:
408 	/*
409 	 * Keep track of amount of locked VM.
410 	 */
411 	nr_pages = (end - start) >> PAGE_SHIFT;
412 	if (!lock)
413 		nr_pages = -nr_pages;
414 	mm->locked_vm += nr_pages;
415 
416 	/*
417 	 * vm_flags is protected by the mmap_sem held in write mode.
418 	 * It's okay if try_to_unmap_one unmaps a page just after we
419 	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
420 	 */
421 
422 	if (lock) {
423 		vma->vm_flags = newflags;
424 		ret = __mlock_vma_pages_range(vma, start, end);
425 		if (ret < 0)
426 			ret = __mlock_posix_error_return(ret);
427 	} else {
428 		munlock_vma_pages_range(vma, start, end);
429 	}
430 
431 out:
432 	*prev = vma;
433 	return ret;
434 }
435 
436 static int do_mlock(unsigned long start, size_t len, int on)
437 {
438 	unsigned long nstart, end, tmp;
439 	struct vm_area_struct * vma, * prev;
440 	int error;
441 
442 	len = PAGE_ALIGN(len);
443 	end = start + len;
444 	if (end < start)
445 		return -EINVAL;
446 	if (end == start)
447 		return 0;
448 	vma = find_vma_prev(current->mm, start, &prev);
449 	if (!vma || vma->vm_start > start)
450 		return -ENOMEM;
451 
452 	if (start > vma->vm_start)
453 		prev = vma;
454 
455 	for (nstart = start ; ; ) {
456 		unsigned int newflags;
457 
458 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
459 
460 		newflags = vma->vm_flags | VM_LOCKED;
461 		if (!on)
462 			newflags &= ~VM_LOCKED;
463 
464 		tmp = vma->vm_end;
465 		if (tmp > end)
466 			tmp = end;
467 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
468 		if (error)
469 			break;
470 		nstart = tmp;
471 		if (nstart < prev->vm_end)
472 			nstart = prev->vm_end;
473 		if (nstart >= end)
474 			break;
475 
476 		vma = prev->vm_next;
477 		if (!vma || vma->vm_start != nstart) {
478 			error = -ENOMEM;
479 			break;
480 		}
481 	}
482 	return error;
483 }
484 
485 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
486 {
487 	unsigned long locked;
488 	unsigned long lock_limit;
489 	int error = -ENOMEM;
490 
491 	if (!can_do_mlock())
492 		return -EPERM;
493 
494 	lru_add_drain_all();	/* flush pagevec */
495 
496 	down_write(&current->mm->mmap_sem);
497 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
498 	start &= PAGE_MASK;
499 
500 	locked = len >> PAGE_SHIFT;
501 	locked += current->mm->locked_vm;
502 
503 	lock_limit = rlimit(RLIMIT_MEMLOCK);
504 	lock_limit >>= PAGE_SHIFT;
505 
506 	/* check against resource limits */
507 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
508 		error = do_mlock(start, len, 1);
509 	up_write(&current->mm->mmap_sem);
510 	return error;
511 }
512 
513 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
514 {
515 	int ret;
516 
517 	down_write(&current->mm->mmap_sem);
518 	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
519 	start &= PAGE_MASK;
520 	ret = do_mlock(start, len, 0);
521 	up_write(&current->mm->mmap_sem);
522 	return ret;
523 }
524 
525 static int do_mlockall(int flags)
526 {
527 	struct vm_area_struct * vma, * prev = NULL;
528 	unsigned int def_flags = 0;
529 
530 	if (flags & MCL_FUTURE)
531 		def_flags = VM_LOCKED;
532 	current->mm->def_flags = def_flags;
533 	if (flags == MCL_FUTURE)
534 		goto out;
535 
536 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
537 		unsigned int newflags;
538 
539 		newflags = vma->vm_flags | VM_LOCKED;
540 		if (!(flags & MCL_CURRENT))
541 			newflags &= ~VM_LOCKED;
542 
543 		/* Ignore errors */
544 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
545 	}
546 out:
547 	return 0;
548 }
549 
550 SYSCALL_DEFINE1(mlockall, int, flags)
551 {
552 	unsigned long lock_limit;
553 	int ret = -EINVAL;
554 
555 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
556 		goto out;
557 
558 	ret = -EPERM;
559 	if (!can_do_mlock())
560 		goto out;
561 
562 	lru_add_drain_all();	/* flush pagevec */
563 
564 	down_write(&current->mm->mmap_sem);
565 
566 	lock_limit = rlimit(RLIMIT_MEMLOCK);
567 	lock_limit >>= PAGE_SHIFT;
568 
569 	ret = -ENOMEM;
570 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
571 	    capable(CAP_IPC_LOCK))
572 		ret = do_mlockall(flags);
573 	up_write(&current->mm->mmap_sem);
574 out:
575 	return ret;
576 }
577 
578 SYSCALL_DEFINE0(munlockall)
579 {
580 	int ret;
581 
582 	down_write(&current->mm->mmap_sem);
583 	ret = do_mlockall(0);
584 	up_write(&current->mm->mmap_sem);
585 	return ret;
586 }
587 
588 /*
589  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
590  * shm segments) get accounted against the user_struct instead.
591  */
592 static DEFINE_SPINLOCK(shmlock_user_lock);
593 
594 int user_shm_lock(size_t size, struct user_struct *user)
595 {
596 	unsigned long lock_limit, locked;
597 	int allowed = 0;
598 
599 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
600 	lock_limit = rlimit(RLIMIT_MEMLOCK);
601 	if (lock_limit == RLIM_INFINITY)
602 		allowed = 1;
603 	lock_limit >>= PAGE_SHIFT;
604 	spin_lock(&shmlock_user_lock);
605 	if (!allowed &&
606 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
607 		goto out;
608 	get_uid(user);
609 	user->locked_shm += locked;
610 	allowed = 1;
611 out:
612 	spin_unlock(&shmlock_user_lock);
613 	return allowed;
614 }
615 
616 void user_shm_unlock(size_t size, struct user_struct *user)
617 {
618 	spin_lock(&shmlock_user_lock);
619 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
620 	spin_unlock(&shmlock_user_lock);
621 	free_uid(user);
622 }
623