xref: /linux/mm/hugetlb.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28 
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include "internal.h"
35 
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38 unsigned long hugepages_treat_as_movable;
39 
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 
44 __initdata LIST_HEAD(huge_boot_pages);
45 
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50 
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55 
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
59 
60 	spin_unlock(&spool->lock);
61 
62 	/* If no pages are used, and no other handles to the subpool
63 	 * remain, free the subpool the subpool remain */
64 	if (free)
65 		kfree(spool);
66 }
67 
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70 	struct hugepage_subpool *spool;
71 
72 	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 	if (!spool)
74 		return NULL;
75 
76 	spin_lock_init(&spool->lock);
77 	spool->count = 1;
78 	spool->max_hpages = nr_blocks;
79 	spool->used_hpages = 0;
80 
81 	return spool;
82 }
83 
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86 	spin_lock(&spool->lock);
87 	BUG_ON(!spool->count);
88 	spool->count--;
89 	unlock_or_release_subpool(spool);
90 }
91 
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 				      long delta)
94 {
95 	int ret = 0;
96 
97 	if (!spool)
98 		return 0;
99 
100 	spin_lock(&spool->lock);
101 	if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 		spool->used_hpages += delta;
103 	} else {
104 		ret = -ENOMEM;
105 	}
106 	spin_unlock(&spool->lock);
107 
108 	return ret;
109 }
110 
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 				       long delta)
113 {
114 	if (!spool)
115 		return;
116 
117 	spin_lock(&spool->lock);
118 	spool->used_hpages -= delta;
119 	/* If hugetlbfs_put_super couldn't free spool due to
120 	* an outstanding quota reference, free it now. */
121 	unlock_or_release_subpool(spool);
122 }
123 
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126 	return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128 
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131 	return subpool_inode(vma->vm_file->f_dentry->d_inode);
132 }
133 
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation mutex:
142  *
143  *	down_write(&mm->mmap_sem);
144  * or
145  *	down_read(&mm->mmap_sem);
146  *	mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149 	struct list_head link;
150 	long from;
151 	long to;
152 };
153 
154 static long region_add(struct list_head *head, long f, long t)
155 {
156 	struct file_region *rg, *nrg, *trg;
157 
158 	/* Locate the region we are either in or before. */
159 	list_for_each_entry(rg, head, link)
160 		if (f <= rg->to)
161 			break;
162 
163 	/* Round our left edge to the current segment if it encloses us. */
164 	if (f > rg->from)
165 		f = rg->from;
166 
167 	/* Check for and consume any regions we now overlap with. */
168 	nrg = rg;
169 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 		if (&rg->link == head)
171 			break;
172 		if (rg->from > t)
173 			break;
174 
175 		/* If this area reaches higher then extend our area to
176 		 * include it completely.  If this is not the first area
177 		 * which we intend to reuse, free it. */
178 		if (rg->to > t)
179 			t = rg->to;
180 		if (rg != nrg) {
181 			list_del(&rg->link);
182 			kfree(rg);
183 		}
184 	}
185 	nrg->from = f;
186 	nrg->to = t;
187 	return 0;
188 }
189 
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192 	struct file_region *rg, *nrg;
193 	long chg = 0;
194 
195 	/* Locate the region we are before or in. */
196 	list_for_each_entry(rg, head, link)
197 		if (f <= rg->to)
198 			break;
199 
200 	/* If we are below the current region then a new region is required.
201 	 * Subtle, allocate a new region at the position but make it zero
202 	 * size such that we can guarantee to record the reservation. */
203 	if (&rg->link == head || t < rg->from) {
204 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 		if (!nrg)
206 			return -ENOMEM;
207 		nrg->from = f;
208 		nrg->to   = f;
209 		INIT_LIST_HEAD(&nrg->link);
210 		list_add(&nrg->link, rg->link.prev);
211 
212 		return t - f;
213 	}
214 
215 	/* Round our left edge to the current segment if it encloses us. */
216 	if (f > rg->from)
217 		f = rg->from;
218 	chg = t - f;
219 
220 	/* Check for and consume any regions we now overlap with. */
221 	list_for_each_entry(rg, rg->link.prev, link) {
222 		if (&rg->link == head)
223 			break;
224 		if (rg->from > t)
225 			return chg;
226 
227 		/* We overlap with this area, if it extends further than
228 		 * us then we must extend ourselves.  Account for its
229 		 * existing reservation. */
230 		if (rg->to > t) {
231 			chg += rg->to - t;
232 			t = rg->to;
233 		}
234 		chg -= rg->to - rg->from;
235 	}
236 	return chg;
237 }
238 
239 static long region_truncate(struct list_head *head, long end)
240 {
241 	struct file_region *rg, *trg;
242 	long chg = 0;
243 
244 	/* Locate the region we are either in or before. */
245 	list_for_each_entry(rg, head, link)
246 		if (end <= rg->to)
247 			break;
248 	if (&rg->link == head)
249 		return 0;
250 
251 	/* If we are in the middle of a region then adjust it. */
252 	if (end > rg->from) {
253 		chg = rg->to - end;
254 		rg->to = end;
255 		rg = list_entry(rg->link.next, typeof(*rg), link);
256 	}
257 
258 	/* Drop any remaining regions. */
259 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 		if (&rg->link == head)
261 			break;
262 		chg += rg->to - rg->from;
263 		list_del(&rg->link);
264 		kfree(rg);
265 	}
266 	return chg;
267 }
268 
269 static long region_count(struct list_head *head, long f, long t)
270 {
271 	struct file_region *rg;
272 	long chg = 0;
273 
274 	/* Locate each segment we overlap with, and count that overlap. */
275 	list_for_each_entry(rg, head, link) {
276 		long seg_from;
277 		long seg_to;
278 
279 		if (rg->to <= f)
280 			continue;
281 		if (rg->from >= t)
282 			break;
283 
284 		seg_from = max(rg->from, f);
285 		seg_to = min(rg->to, t);
286 
287 		chg += seg_to - seg_from;
288 	}
289 
290 	return chg;
291 }
292 
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 			struct vm_area_struct *vma, unsigned long address)
299 {
300 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 			(vma->vm_pgoff >> huge_page_order(h));
302 }
303 
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 				     unsigned long address)
306 {
307 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309 
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316 	struct hstate *hstate;
317 
318 	if (!is_vm_hugetlb_page(vma))
319 		return PAGE_SIZE;
320 
321 	hstate = hstate_vma(vma);
322 
323 	return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326 
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336 	return vma_kernel_pagesize(vma);
337 }
338 #endif
339 
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348 
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370 	return (unsigned long)vma->vm_private_data;
371 }
372 
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 							unsigned long value)
375 {
376 	vma->vm_private_data = (void *)value;
377 }
378 
379 struct resv_map {
380 	struct kref refs;
381 	struct list_head regions;
382 };
383 
384 static struct resv_map *resv_map_alloc(void)
385 {
386 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 	if (!resv_map)
388 		return NULL;
389 
390 	kref_init(&resv_map->refs);
391 	INIT_LIST_HEAD(&resv_map->regions);
392 
393 	return resv_map;
394 }
395 
396 static void resv_map_release(struct kref *ref)
397 {
398 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399 
400 	/* Clear out any active regions before we release the map. */
401 	region_truncate(&resv_map->regions, 0);
402 	kfree(resv_map);
403 }
404 
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 	if (!(vma->vm_flags & VM_MAYSHARE))
409 		return (struct resv_map *)(get_vma_private_data(vma) &
410 							~HPAGE_RESV_MASK);
411 	return NULL;
412 }
413 
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418 
419 	set_vma_private_data(vma, (get_vma_private_data(vma) &
420 				HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422 
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427 
428 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430 
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434 
435 	return (get_vma_private_data(vma) & flag) != 0;
436 }
437 
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440 			struct vm_area_struct *vma)
441 {
442 	if (vma->vm_flags & VM_NORESERVE)
443 		return;
444 
445 	if (vma->vm_flags & VM_MAYSHARE) {
446 		/* Shared mappings always use reserves */
447 		h->resv_huge_pages--;
448 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449 		/*
450 		 * Only the process that called mmap() has reserves for
451 		 * private mappings.
452 		 */
453 		h->resv_huge_pages--;
454 	}
455 }
456 
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460 	VM_BUG_ON(!is_vm_hugetlb_page(vma));
461 	if (!(vma->vm_flags & VM_MAYSHARE))
462 		vma->vm_private_data = (void *)0;
463 }
464 
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468 	if (vma->vm_flags & VM_MAYSHARE)
469 		return 1;
470 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471 		return 1;
472 	return 0;
473 }
474 
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477 	int i;
478 	struct hstate *h = page_hstate(src);
479 	struct page *dst_base = dst;
480 	struct page *src_base = src;
481 
482 	for (i = 0; i < pages_per_huge_page(h); ) {
483 		cond_resched();
484 		copy_highpage(dst, src);
485 
486 		i++;
487 		dst = mem_map_next(dst, dst_base, i);
488 		src = mem_map_next(src, src_base, i);
489 	}
490 }
491 
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494 	int i;
495 	struct hstate *h = page_hstate(src);
496 
497 	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 		copy_gigantic_page(dst, src);
499 		return;
500 	}
501 
502 	might_sleep();
503 	for (i = 0; i < pages_per_huge_page(h); i++) {
504 		cond_resched();
505 		copy_highpage(dst + i, src + i);
506 	}
507 }
508 
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511 	int nid = page_to_nid(page);
512 	list_move(&page->lru, &h->hugepage_freelists[nid]);
513 	h->free_huge_pages++;
514 	h->free_huge_pages_node[nid]++;
515 }
516 
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519 	struct page *page;
520 
521 	if (list_empty(&h->hugepage_freelists[nid]))
522 		return NULL;
523 	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524 	list_move(&page->lru, &h->hugepage_activelist);
525 	set_page_refcounted(page);
526 	h->free_huge_pages--;
527 	h->free_huge_pages_node[nid]--;
528 	return page;
529 }
530 
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532 				struct vm_area_struct *vma,
533 				unsigned long address, int avoid_reserve)
534 {
535 	struct page *page = NULL;
536 	struct mempolicy *mpol;
537 	nodemask_t *nodemask;
538 	struct zonelist *zonelist;
539 	struct zone *zone;
540 	struct zoneref *z;
541 	unsigned int cpuset_mems_cookie;
542 
543 retry_cpuset:
544 	cpuset_mems_cookie = get_mems_allowed();
545 	zonelist = huge_zonelist(vma, address,
546 					htlb_alloc_mask, &mpol, &nodemask);
547 	/*
548 	 * A child process with MAP_PRIVATE mappings created by their parent
549 	 * have no page reserves. This check ensures that reservations are
550 	 * not "stolen". The child may still get SIGKILLed
551 	 */
552 	if (!vma_has_reserves(vma) &&
553 			h->free_huge_pages - h->resv_huge_pages == 0)
554 		goto err;
555 
556 	/* If reserves cannot be used, ensure enough pages are in the pool */
557 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558 		goto err;
559 
560 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 						MAX_NR_ZONES - 1, nodemask) {
562 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 			page = dequeue_huge_page_node(h, zone_to_nid(zone));
564 			if (page) {
565 				if (!avoid_reserve)
566 					decrement_hugepage_resv_vma(h, vma);
567 				break;
568 			}
569 		}
570 	}
571 
572 	mpol_cond_put(mpol);
573 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574 		goto retry_cpuset;
575 	return page;
576 
577 err:
578 	mpol_cond_put(mpol);
579 	return NULL;
580 }
581 
582 static void update_and_free_page(struct hstate *h, struct page *page)
583 {
584 	int i;
585 
586 	VM_BUG_ON(h->order >= MAX_ORDER);
587 
588 	h->nr_huge_pages--;
589 	h->nr_huge_pages_node[page_to_nid(page)]--;
590 	for (i = 0; i < pages_per_huge_page(h); i++) {
591 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592 				1 << PG_referenced | 1 << PG_dirty |
593 				1 << PG_active | 1 << PG_reserved |
594 				1 << PG_private | 1 << PG_writeback);
595 	}
596 	VM_BUG_ON(hugetlb_cgroup_from_page(page));
597 	set_compound_page_dtor(page, NULL);
598 	set_page_refcounted(page);
599 	arch_release_hugepage(page);
600 	__free_pages(page, huge_page_order(h));
601 }
602 
603 struct hstate *size_to_hstate(unsigned long size)
604 {
605 	struct hstate *h;
606 
607 	for_each_hstate(h) {
608 		if (huge_page_size(h) == size)
609 			return h;
610 	}
611 	return NULL;
612 }
613 
614 static void free_huge_page(struct page *page)
615 {
616 	/*
617 	 * Can't pass hstate in here because it is called from the
618 	 * compound page destructor.
619 	 */
620 	struct hstate *h = page_hstate(page);
621 	int nid = page_to_nid(page);
622 	struct hugepage_subpool *spool =
623 		(struct hugepage_subpool *)page_private(page);
624 
625 	set_page_private(page, 0);
626 	page->mapping = NULL;
627 	BUG_ON(page_count(page));
628 	BUG_ON(page_mapcount(page));
629 
630 	spin_lock(&hugetlb_lock);
631 	hugetlb_cgroup_uncharge_page(hstate_index(h),
632 				     pages_per_huge_page(h), page);
633 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
634 		/* remove the page from active list */
635 		list_del(&page->lru);
636 		update_and_free_page(h, page);
637 		h->surplus_huge_pages--;
638 		h->surplus_huge_pages_node[nid]--;
639 	} else {
640 		enqueue_huge_page(h, page);
641 	}
642 	spin_unlock(&hugetlb_lock);
643 	hugepage_subpool_put_pages(spool, 1);
644 }
645 
646 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647 {
648 	INIT_LIST_HEAD(&page->lru);
649 	set_compound_page_dtor(page, free_huge_page);
650 	spin_lock(&hugetlb_lock);
651 	set_hugetlb_cgroup(page, NULL);
652 	h->nr_huge_pages++;
653 	h->nr_huge_pages_node[nid]++;
654 	spin_unlock(&hugetlb_lock);
655 	put_page(page); /* free it into the hugepage allocator */
656 }
657 
658 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659 {
660 	int i;
661 	int nr_pages = 1 << order;
662 	struct page *p = page + 1;
663 
664 	/* we rely on prep_new_huge_page to set the destructor */
665 	set_compound_order(page, order);
666 	__SetPageHead(page);
667 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668 		__SetPageTail(p);
669 		set_page_count(p, 0);
670 		p->first_page = page;
671 	}
672 }
673 
674 int PageHuge(struct page *page)
675 {
676 	compound_page_dtor *dtor;
677 
678 	if (!PageCompound(page))
679 		return 0;
680 
681 	page = compound_head(page);
682 	dtor = get_compound_page_dtor(page);
683 
684 	return dtor == free_huge_page;
685 }
686 EXPORT_SYMBOL_GPL(PageHuge);
687 
688 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
689 {
690 	struct page *page;
691 
692 	if (h->order >= MAX_ORDER)
693 		return NULL;
694 
695 	page = alloc_pages_exact_node(nid,
696 		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
697 						__GFP_REPEAT|__GFP_NOWARN,
698 		huge_page_order(h));
699 	if (page) {
700 		if (arch_prepare_hugepage(page)) {
701 			__free_pages(page, huge_page_order(h));
702 			return NULL;
703 		}
704 		prep_new_huge_page(h, page, nid);
705 	}
706 
707 	return page;
708 }
709 
710 /*
711  * common helper functions for hstate_next_node_to_{alloc|free}.
712  * We may have allocated or freed a huge page based on a different
713  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
714  * be outside of *nodes_allowed.  Ensure that we use an allowed
715  * node for alloc or free.
716  */
717 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
718 {
719 	nid = next_node(nid, *nodes_allowed);
720 	if (nid == MAX_NUMNODES)
721 		nid = first_node(*nodes_allowed);
722 	VM_BUG_ON(nid >= MAX_NUMNODES);
723 
724 	return nid;
725 }
726 
727 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
728 {
729 	if (!node_isset(nid, *nodes_allowed))
730 		nid = next_node_allowed(nid, nodes_allowed);
731 	return nid;
732 }
733 
734 /*
735  * returns the previously saved node ["this node"] from which to
736  * allocate a persistent huge page for the pool and advance the
737  * next node from which to allocate, handling wrap at end of node
738  * mask.
739  */
740 static int hstate_next_node_to_alloc(struct hstate *h,
741 					nodemask_t *nodes_allowed)
742 {
743 	int nid;
744 
745 	VM_BUG_ON(!nodes_allowed);
746 
747 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
748 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
749 
750 	return nid;
751 }
752 
753 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
754 {
755 	struct page *page;
756 	int start_nid;
757 	int next_nid;
758 	int ret = 0;
759 
760 	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
761 	next_nid = start_nid;
762 
763 	do {
764 		page = alloc_fresh_huge_page_node(h, next_nid);
765 		if (page) {
766 			ret = 1;
767 			break;
768 		}
769 		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
770 	} while (next_nid != start_nid);
771 
772 	if (ret)
773 		count_vm_event(HTLB_BUDDY_PGALLOC);
774 	else
775 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
776 
777 	return ret;
778 }
779 
780 /*
781  * helper for free_pool_huge_page() - return the previously saved
782  * node ["this node"] from which to free a huge page.  Advance the
783  * next node id whether or not we find a free huge page to free so
784  * that the next attempt to free addresses the next node.
785  */
786 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
787 {
788 	int nid;
789 
790 	VM_BUG_ON(!nodes_allowed);
791 
792 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
793 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
794 
795 	return nid;
796 }
797 
798 /*
799  * Free huge page from pool from next node to free.
800  * Attempt to keep persistent huge pages more or less
801  * balanced over allowed nodes.
802  * Called with hugetlb_lock locked.
803  */
804 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
805 							 bool acct_surplus)
806 {
807 	int start_nid;
808 	int next_nid;
809 	int ret = 0;
810 
811 	start_nid = hstate_next_node_to_free(h, nodes_allowed);
812 	next_nid = start_nid;
813 
814 	do {
815 		/*
816 		 * If we're returning unused surplus pages, only examine
817 		 * nodes with surplus pages.
818 		 */
819 		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
820 		    !list_empty(&h->hugepage_freelists[next_nid])) {
821 			struct page *page =
822 				list_entry(h->hugepage_freelists[next_nid].next,
823 					  struct page, lru);
824 			list_del(&page->lru);
825 			h->free_huge_pages--;
826 			h->free_huge_pages_node[next_nid]--;
827 			if (acct_surplus) {
828 				h->surplus_huge_pages--;
829 				h->surplus_huge_pages_node[next_nid]--;
830 			}
831 			update_and_free_page(h, page);
832 			ret = 1;
833 			break;
834 		}
835 		next_nid = hstate_next_node_to_free(h, nodes_allowed);
836 	} while (next_nid != start_nid);
837 
838 	return ret;
839 }
840 
841 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
842 {
843 	struct page *page;
844 	unsigned int r_nid;
845 
846 	if (h->order >= MAX_ORDER)
847 		return NULL;
848 
849 	/*
850 	 * Assume we will successfully allocate the surplus page to
851 	 * prevent racing processes from causing the surplus to exceed
852 	 * overcommit
853 	 *
854 	 * This however introduces a different race, where a process B
855 	 * tries to grow the static hugepage pool while alloc_pages() is
856 	 * called by process A. B will only examine the per-node
857 	 * counters in determining if surplus huge pages can be
858 	 * converted to normal huge pages in adjust_pool_surplus(). A
859 	 * won't be able to increment the per-node counter, until the
860 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
861 	 * no more huge pages can be converted from surplus to normal
862 	 * state (and doesn't try to convert again). Thus, we have a
863 	 * case where a surplus huge page exists, the pool is grown, and
864 	 * the surplus huge page still exists after, even though it
865 	 * should just have been converted to a normal huge page. This
866 	 * does not leak memory, though, as the hugepage will be freed
867 	 * once it is out of use. It also does not allow the counters to
868 	 * go out of whack in adjust_pool_surplus() as we don't modify
869 	 * the node values until we've gotten the hugepage and only the
870 	 * per-node value is checked there.
871 	 */
872 	spin_lock(&hugetlb_lock);
873 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
874 		spin_unlock(&hugetlb_lock);
875 		return NULL;
876 	} else {
877 		h->nr_huge_pages++;
878 		h->surplus_huge_pages++;
879 	}
880 	spin_unlock(&hugetlb_lock);
881 
882 	if (nid == NUMA_NO_NODE)
883 		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
884 				   __GFP_REPEAT|__GFP_NOWARN,
885 				   huge_page_order(h));
886 	else
887 		page = alloc_pages_exact_node(nid,
888 			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
889 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
890 
891 	if (page && arch_prepare_hugepage(page)) {
892 		__free_pages(page, huge_page_order(h));
893 		page = NULL;
894 	}
895 
896 	spin_lock(&hugetlb_lock);
897 	if (page) {
898 		INIT_LIST_HEAD(&page->lru);
899 		r_nid = page_to_nid(page);
900 		set_compound_page_dtor(page, free_huge_page);
901 		set_hugetlb_cgroup(page, NULL);
902 		/*
903 		 * We incremented the global counters already
904 		 */
905 		h->nr_huge_pages_node[r_nid]++;
906 		h->surplus_huge_pages_node[r_nid]++;
907 		__count_vm_event(HTLB_BUDDY_PGALLOC);
908 	} else {
909 		h->nr_huge_pages--;
910 		h->surplus_huge_pages--;
911 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
912 	}
913 	spin_unlock(&hugetlb_lock);
914 
915 	return page;
916 }
917 
918 /*
919  * This allocation function is useful in the context where vma is irrelevant.
920  * E.g. soft-offlining uses this function because it only cares physical
921  * address of error page.
922  */
923 struct page *alloc_huge_page_node(struct hstate *h, int nid)
924 {
925 	struct page *page;
926 
927 	spin_lock(&hugetlb_lock);
928 	page = dequeue_huge_page_node(h, nid);
929 	spin_unlock(&hugetlb_lock);
930 
931 	if (!page)
932 		page = alloc_buddy_huge_page(h, nid);
933 
934 	return page;
935 }
936 
937 /*
938  * Increase the hugetlb pool such that it can accommodate a reservation
939  * of size 'delta'.
940  */
941 static int gather_surplus_pages(struct hstate *h, int delta)
942 {
943 	struct list_head surplus_list;
944 	struct page *page, *tmp;
945 	int ret, i;
946 	int needed, allocated;
947 	bool alloc_ok = true;
948 
949 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
950 	if (needed <= 0) {
951 		h->resv_huge_pages += delta;
952 		return 0;
953 	}
954 
955 	allocated = 0;
956 	INIT_LIST_HEAD(&surplus_list);
957 
958 	ret = -ENOMEM;
959 retry:
960 	spin_unlock(&hugetlb_lock);
961 	for (i = 0; i < needed; i++) {
962 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
963 		if (!page) {
964 			alloc_ok = false;
965 			break;
966 		}
967 		list_add(&page->lru, &surplus_list);
968 	}
969 	allocated += i;
970 
971 	/*
972 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
973 	 * because either resv_huge_pages or free_huge_pages may have changed.
974 	 */
975 	spin_lock(&hugetlb_lock);
976 	needed = (h->resv_huge_pages + delta) -
977 			(h->free_huge_pages + allocated);
978 	if (needed > 0) {
979 		if (alloc_ok)
980 			goto retry;
981 		/*
982 		 * We were not able to allocate enough pages to
983 		 * satisfy the entire reservation so we free what
984 		 * we've allocated so far.
985 		 */
986 		goto free;
987 	}
988 	/*
989 	 * The surplus_list now contains _at_least_ the number of extra pages
990 	 * needed to accommodate the reservation.  Add the appropriate number
991 	 * of pages to the hugetlb pool and free the extras back to the buddy
992 	 * allocator.  Commit the entire reservation here to prevent another
993 	 * process from stealing the pages as they are added to the pool but
994 	 * before they are reserved.
995 	 */
996 	needed += allocated;
997 	h->resv_huge_pages += delta;
998 	ret = 0;
999 
1000 	/* Free the needed pages to the hugetlb pool */
1001 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1002 		if ((--needed) < 0)
1003 			break;
1004 		/*
1005 		 * This page is now managed by the hugetlb allocator and has
1006 		 * no users -- drop the buddy allocator's reference.
1007 		 */
1008 		put_page_testzero(page);
1009 		VM_BUG_ON(page_count(page));
1010 		enqueue_huge_page(h, page);
1011 	}
1012 free:
1013 	spin_unlock(&hugetlb_lock);
1014 
1015 	/* Free unnecessary surplus pages to the buddy allocator */
1016 	if (!list_empty(&surplus_list)) {
1017 		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1018 			put_page(page);
1019 		}
1020 	}
1021 	spin_lock(&hugetlb_lock);
1022 
1023 	return ret;
1024 }
1025 
1026 /*
1027  * When releasing a hugetlb pool reservation, any surplus pages that were
1028  * allocated to satisfy the reservation must be explicitly freed if they were
1029  * never used.
1030  * Called with hugetlb_lock held.
1031  */
1032 static void return_unused_surplus_pages(struct hstate *h,
1033 					unsigned long unused_resv_pages)
1034 {
1035 	unsigned long nr_pages;
1036 
1037 	/* Uncommit the reservation */
1038 	h->resv_huge_pages -= unused_resv_pages;
1039 
1040 	/* Cannot return gigantic pages currently */
1041 	if (h->order >= MAX_ORDER)
1042 		return;
1043 
1044 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1045 
1046 	/*
1047 	 * We want to release as many surplus pages as possible, spread
1048 	 * evenly across all nodes with memory. Iterate across these nodes
1049 	 * until we can no longer free unreserved surplus pages. This occurs
1050 	 * when the nodes with surplus pages have no free pages.
1051 	 * free_pool_huge_page() will balance the the freed pages across the
1052 	 * on-line nodes with memory and will handle the hstate accounting.
1053 	 */
1054 	while (nr_pages--) {
1055 		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1056 			break;
1057 	}
1058 }
1059 
1060 /*
1061  * Determine if the huge page at addr within the vma has an associated
1062  * reservation.  Where it does not we will need to logically increase
1063  * reservation and actually increase subpool usage before an allocation
1064  * can occur.  Where any new reservation would be required the
1065  * reservation change is prepared, but not committed.  Once the page
1066  * has been allocated from the subpool and instantiated the change should
1067  * be committed via vma_commit_reservation.  No action is required on
1068  * failure.
1069  */
1070 static long vma_needs_reservation(struct hstate *h,
1071 			struct vm_area_struct *vma, unsigned long addr)
1072 {
1073 	struct address_space *mapping = vma->vm_file->f_mapping;
1074 	struct inode *inode = mapping->host;
1075 
1076 	if (vma->vm_flags & VM_MAYSHARE) {
1077 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1078 		return region_chg(&inode->i_mapping->private_list,
1079 							idx, idx + 1);
1080 
1081 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1082 		return 1;
1083 
1084 	} else  {
1085 		long err;
1086 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1087 		struct resv_map *reservations = vma_resv_map(vma);
1088 
1089 		err = region_chg(&reservations->regions, idx, idx + 1);
1090 		if (err < 0)
1091 			return err;
1092 		return 0;
1093 	}
1094 }
1095 static void vma_commit_reservation(struct hstate *h,
1096 			struct vm_area_struct *vma, unsigned long addr)
1097 {
1098 	struct address_space *mapping = vma->vm_file->f_mapping;
1099 	struct inode *inode = mapping->host;
1100 
1101 	if (vma->vm_flags & VM_MAYSHARE) {
1102 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1103 		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1104 
1105 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106 		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1107 		struct resv_map *reservations = vma_resv_map(vma);
1108 
1109 		/* Mark this page used in the map. */
1110 		region_add(&reservations->regions, idx, idx + 1);
1111 	}
1112 }
1113 
1114 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1115 				    unsigned long addr, int avoid_reserve)
1116 {
1117 	struct hugepage_subpool *spool = subpool_vma(vma);
1118 	struct hstate *h = hstate_vma(vma);
1119 	struct page *page;
1120 	long chg;
1121 	int ret, idx;
1122 	struct hugetlb_cgroup *h_cg;
1123 
1124 	idx = hstate_index(h);
1125 	/*
1126 	 * Processes that did not create the mapping will have no
1127 	 * reserves and will not have accounted against subpool
1128 	 * limit. Check that the subpool limit can be made before
1129 	 * satisfying the allocation MAP_NORESERVE mappings may also
1130 	 * need pages and subpool limit allocated allocated if no reserve
1131 	 * mapping overlaps.
1132 	 */
1133 	chg = vma_needs_reservation(h, vma, addr);
1134 	if (chg < 0)
1135 		return ERR_PTR(-ENOMEM);
1136 	if (chg)
1137 		if (hugepage_subpool_get_pages(spool, chg))
1138 			return ERR_PTR(-ENOSPC);
1139 
1140 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1141 	if (ret) {
1142 		hugepage_subpool_put_pages(spool, chg);
1143 		return ERR_PTR(-ENOSPC);
1144 	}
1145 	spin_lock(&hugetlb_lock);
1146 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1147 	if (page) {
1148 		/* update page cgroup details */
1149 		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1150 					     h_cg, page);
1151 		spin_unlock(&hugetlb_lock);
1152 	} else {
1153 		spin_unlock(&hugetlb_lock);
1154 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1155 		if (!page) {
1156 			hugetlb_cgroup_uncharge_cgroup(idx,
1157 						       pages_per_huge_page(h),
1158 						       h_cg);
1159 			hugepage_subpool_put_pages(spool, chg);
1160 			return ERR_PTR(-ENOSPC);
1161 		}
1162 		spin_lock(&hugetlb_lock);
1163 		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1164 					     h_cg, page);
1165 		list_move(&page->lru, &h->hugepage_activelist);
1166 		spin_unlock(&hugetlb_lock);
1167 	}
1168 
1169 	set_page_private(page, (unsigned long)spool);
1170 
1171 	vma_commit_reservation(h, vma, addr);
1172 	return page;
1173 }
1174 
1175 int __weak alloc_bootmem_huge_page(struct hstate *h)
1176 {
1177 	struct huge_bootmem_page *m;
1178 	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1179 
1180 	while (nr_nodes) {
1181 		void *addr;
1182 
1183 		addr = __alloc_bootmem_node_nopanic(
1184 				NODE_DATA(hstate_next_node_to_alloc(h,
1185 						&node_states[N_HIGH_MEMORY])),
1186 				huge_page_size(h), huge_page_size(h), 0);
1187 
1188 		if (addr) {
1189 			/*
1190 			 * Use the beginning of the huge page to store the
1191 			 * huge_bootmem_page struct (until gather_bootmem
1192 			 * puts them into the mem_map).
1193 			 */
1194 			m = addr;
1195 			goto found;
1196 		}
1197 		nr_nodes--;
1198 	}
1199 	return 0;
1200 
1201 found:
1202 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1203 	/* Put them into a private list first because mem_map is not up yet */
1204 	list_add(&m->list, &huge_boot_pages);
1205 	m->hstate = h;
1206 	return 1;
1207 }
1208 
1209 static void prep_compound_huge_page(struct page *page, int order)
1210 {
1211 	if (unlikely(order > (MAX_ORDER - 1)))
1212 		prep_compound_gigantic_page(page, order);
1213 	else
1214 		prep_compound_page(page, order);
1215 }
1216 
1217 /* Put bootmem huge pages into the standard lists after mem_map is up */
1218 static void __init gather_bootmem_prealloc(void)
1219 {
1220 	struct huge_bootmem_page *m;
1221 
1222 	list_for_each_entry(m, &huge_boot_pages, list) {
1223 		struct hstate *h = m->hstate;
1224 		struct page *page;
1225 
1226 #ifdef CONFIG_HIGHMEM
1227 		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1228 		free_bootmem_late((unsigned long)m,
1229 				  sizeof(struct huge_bootmem_page));
1230 #else
1231 		page = virt_to_page(m);
1232 #endif
1233 		__ClearPageReserved(page);
1234 		WARN_ON(page_count(page) != 1);
1235 		prep_compound_huge_page(page, h->order);
1236 		prep_new_huge_page(h, page, page_to_nid(page));
1237 		/*
1238 		 * If we had gigantic hugepages allocated at boot time, we need
1239 		 * to restore the 'stolen' pages to totalram_pages in order to
1240 		 * fix confusing memory reports from free(1) and another
1241 		 * side-effects, like CommitLimit going negative.
1242 		 */
1243 		if (h->order > (MAX_ORDER - 1))
1244 			totalram_pages += 1 << h->order;
1245 	}
1246 }
1247 
1248 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1249 {
1250 	unsigned long i;
1251 
1252 	for (i = 0; i < h->max_huge_pages; ++i) {
1253 		if (h->order >= MAX_ORDER) {
1254 			if (!alloc_bootmem_huge_page(h))
1255 				break;
1256 		} else if (!alloc_fresh_huge_page(h,
1257 					 &node_states[N_HIGH_MEMORY]))
1258 			break;
1259 	}
1260 	h->max_huge_pages = i;
1261 }
1262 
1263 static void __init hugetlb_init_hstates(void)
1264 {
1265 	struct hstate *h;
1266 
1267 	for_each_hstate(h) {
1268 		/* oversize hugepages were init'ed in early boot */
1269 		if (h->order < MAX_ORDER)
1270 			hugetlb_hstate_alloc_pages(h);
1271 	}
1272 }
1273 
1274 static char * __init memfmt(char *buf, unsigned long n)
1275 {
1276 	if (n >= (1UL << 30))
1277 		sprintf(buf, "%lu GB", n >> 30);
1278 	else if (n >= (1UL << 20))
1279 		sprintf(buf, "%lu MB", n >> 20);
1280 	else
1281 		sprintf(buf, "%lu KB", n >> 10);
1282 	return buf;
1283 }
1284 
1285 static void __init report_hugepages(void)
1286 {
1287 	struct hstate *h;
1288 
1289 	for_each_hstate(h) {
1290 		char buf[32];
1291 		printk(KERN_INFO "HugeTLB registered %s page size, "
1292 				 "pre-allocated %ld pages\n",
1293 			memfmt(buf, huge_page_size(h)),
1294 			h->free_huge_pages);
1295 	}
1296 }
1297 
1298 #ifdef CONFIG_HIGHMEM
1299 static void try_to_free_low(struct hstate *h, unsigned long count,
1300 						nodemask_t *nodes_allowed)
1301 {
1302 	int i;
1303 
1304 	if (h->order >= MAX_ORDER)
1305 		return;
1306 
1307 	for_each_node_mask(i, *nodes_allowed) {
1308 		struct page *page, *next;
1309 		struct list_head *freel = &h->hugepage_freelists[i];
1310 		list_for_each_entry_safe(page, next, freel, lru) {
1311 			if (count >= h->nr_huge_pages)
1312 				return;
1313 			if (PageHighMem(page))
1314 				continue;
1315 			list_del(&page->lru);
1316 			update_and_free_page(h, page);
1317 			h->free_huge_pages--;
1318 			h->free_huge_pages_node[page_to_nid(page)]--;
1319 		}
1320 	}
1321 }
1322 #else
1323 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1324 						nodemask_t *nodes_allowed)
1325 {
1326 }
1327 #endif
1328 
1329 /*
1330  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1331  * balanced by operating on them in a round-robin fashion.
1332  * Returns 1 if an adjustment was made.
1333  */
1334 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1335 				int delta)
1336 {
1337 	int start_nid, next_nid;
1338 	int ret = 0;
1339 
1340 	VM_BUG_ON(delta != -1 && delta != 1);
1341 
1342 	if (delta < 0)
1343 		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1344 	else
1345 		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1346 	next_nid = start_nid;
1347 
1348 	do {
1349 		int nid = next_nid;
1350 		if (delta < 0)  {
1351 			/*
1352 			 * To shrink on this node, there must be a surplus page
1353 			 */
1354 			if (!h->surplus_huge_pages_node[nid]) {
1355 				next_nid = hstate_next_node_to_alloc(h,
1356 								nodes_allowed);
1357 				continue;
1358 			}
1359 		}
1360 		if (delta > 0) {
1361 			/*
1362 			 * Surplus cannot exceed the total number of pages
1363 			 */
1364 			if (h->surplus_huge_pages_node[nid] >=
1365 						h->nr_huge_pages_node[nid]) {
1366 				next_nid = hstate_next_node_to_free(h,
1367 								nodes_allowed);
1368 				continue;
1369 			}
1370 		}
1371 
1372 		h->surplus_huge_pages += delta;
1373 		h->surplus_huge_pages_node[nid] += delta;
1374 		ret = 1;
1375 		break;
1376 	} while (next_nid != start_nid);
1377 
1378 	return ret;
1379 }
1380 
1381 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1382 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1383 						nodemask_t *nodes_allowed)
1384 {
1385 	unsigned long min_count, ret;
1386 
1387 	if (h->order >= MAX_ORDER)
1388 		return h->max_huge_pages;
1389 
1390 	/*
1391 	 * Increase the pool size
1392 	 * First take pages out of surplus state.  Then make up the
1393 	 * remaining difference by allocating fresh huge pages.
1394 	 *
1395 	 * We might race with alloc_buddy_huge_page() here and be unable
1396 	 * to convert a surplus huge page to a normal huge page. That is
1397 	 * not critical, though, it just means the overall size of the
1398 	 * pool might be one hugepage larger than it needs to be, but
1399 	 * within all the constraints specified by the sysctls.
1400 	 */
1401 	spin_lock(&hugetlb_lock);
1402 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1403 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1404 			break;
1405 	}
1406 
1407 	while (count > persistent_huge_pages(h)) {
1408 		/*
1409 		 * If this allocation races such that we no longer need the
1410 		 * page, free_huge_page will handle it by freeing the page
1411 		 * and reducing the surplus.
1412 		 */
1413 		spin_unlock(&hugetlb_lock);
1414 		ret = alloc_fresh_huge_page(h, nodes_allowed);
1415 		spin_lock(&hugetlb_lock);
1416 		if (!ret)
1417 			goto out;
1418 
1419 		/* Bail for signals. Probably ctrl-c from user */
1420 		if (signal_pending(current))
1421 			goto out;
1422 	}
1423 
1424 	/*
1425 	 * Decrease the pool size
1426 	 * First return free pages to the buddy allocator (being careful
1427 	 * to keep enough around to satisfy reservations).  Then place
1428 	 * pages into surplus state as needed so the pool will shrink
1429 	 * to the desired size as pages become free.
1430 	 *
1431 	 * By placing pages into the surplus state independent of the
1432 	 * overcommit value, we are allowing the surplus pool size to
1433 	 * exceed overcommit. There are few sane options here. Since
1434 	 * alloc_buddy_huge_page() is checking the global counter,
1435 	 * though, we'll note that we're not allowed to exceed surplus
1436 	 * and won't grow the pool anywhere else. Not until one of the
1437 	 * sysctls are changed, or the surplus pages go out of use.
1438 	 */
1439 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1440 	min_count = max(count, min_count);
1441 	try_to_free_low(h, min_count, nodes_allowed);
1442 	while (min_count < persistent_huge_pages(h)) {
1443 		if (!free_pool_huge_page(h, nodes_allowed, 0))
1444 			break;
1445 	}
1446 	while (count < persistent_huge_pages(h)) {
1447 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1448 			break;
1449 	}
1450 out:
1451 	ret = persistent_huge_pages(h);
1452 	spin_unlock(&hugetlb_lock);
1453 	return ret;
1454 }
1455 
1456 #define HSTATE_ATTR_RO(_name) \
1457 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1458 
1459 #define HSTATE_ATTR(_name) \
1460 	static struct kobj_attribute _name##_attr = \
1461 		__ATTR(_name, 0644, _name##_show, _name##_store)
1462 
1463 static struct kobject *hugepages_kobj;
1464 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1465 
1466 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1467 
1468 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1469 {
1470 	int i;
1471 
1472 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1473 		if (hstate_kobjs[i] == kobj) {
1474 			if (nidp)
1475 				*nidp = NUMA_NO_NODE;
1476 			return &hstates[i];
1477 		}
1478 
1479 	return kobj_to_node_hstate(kobj, nidp);
1480 }
1481 
1482 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1483 					struct kobj_attribute *attr, char *buf)
1484 {
1485 	struct hstate *h;
1486 	unsigned long nr_huge_pages;
1487 	int nid;
1488 
1489 	h = kobj_to_hstate(kobj, &nid);
1490 	if (nid == NUMA_NO_NODE)
1491 		nr_huge_pages = h->nr_huge_pages;
1492 	else
1493 		nr_huge_pages = h->nr_huge_pages_node[nid];
1494 
1495 	return sprintf(buf, "%lu\n", nr_huge_pages);
1496 }
1497 
1498 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1499 			struct kobject *kobj, struct kobj_attribute *attr,
1500 			const char *buf, size_t len)
1501 {
1502 	int err;
1503 	int nid;
1504 	unsigned long count;
1505 	struct hstate *h;
1506 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1507 
1508 	err = strict_strtoul(buf, 10, &count);
1509 	if (err)
1510 		goto out;
1511 
1512 	h = kobj_to_hstate(kobj, &nid);
1513 	if (h->order >= MAX_ORDER) {
1514 		err = -EINVAL;
1515 		goto out;
1516 	}
1517 
1518 	if (nid == NUMA_NO_NODE) {
1519 		/*
1520 		 * global hstate attribute
1521 		 */
1522 		if (!(obey_mempolicy &&
1523 				init_nodemask_of_mempolicy(nodes_allowed))) {
1524 			NODEMASK_FREE(nodes_allowed);
1525 			nodes_allowed = &node_states[N_HIGH_MEMORY];
1526 		}
1527 	} else if (nodes_allowed) {
1528 		/*
1529 		 * per node hstate attribute: adjust count to global,
1530 		 * but restrict alloc/free to the specified node.
1531 		 */
1532 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1533 		init_nodemask_of_node(nodes_allowed, nid);
1534 	} else
1535 		nodes_allowed = &node_states[N_HIGH_MEMORY];
1536 
1537 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1538 
1539 	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1540 		NODEMASK_FREE(nodes_allowed);
1541 
1542 	return len;
1543 out:
1544 	NODEMASK_FREE(nodes_allowed);
1545 	return err;
1546 }
1547 
1548 static ssize_t nr_hugepages_show(struct kobject *kobj,
1549 				       struct kobj_attribute *attr, char *buf)
1550 {
1551 	return nr_hugepages_show_common(kobj, attr, buf);
1552 }
1553 
1554 static ssize_t nr_hugepages_store(struct kobject *kobj,
1555 	       struct kobj_attribute *attr, const char *buf, size_t len)
1556 {
1557 	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1558 }
1559 HSTATE_ATTR(nr_hugepages);
1560 
1561 #ifdef CONFIG_NUMA
1562 
1563 /*
1564  * hstate attribute for optionally mempolicy-based constraint on persistent
1565  * huge page alloc/free.
1566  */
1567 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1568 				       struct kobj_attribute *attr, char *buf)
1569 {
1570 	return nr_hugepages_show_common(kobj, attr, buf);
1571 }
1572 
1573 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1574 	       struct kobj_attribute *attr, const char *buf, size_t len)
1575 {
1576 	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1577 }
1578 HSTATE_ATTR(nr_hugepages_mempolicy);
1579 #endif
1580 
1581 
1582 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1583 					struct kobj_attribute *attr, char *buf)
1584 {
1585 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1586 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1587 }
1588 
1589 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1590 		struct kobj_attribute *attr, const char *buf, size_t count)
1591 {
1592 	int err;
1593 	unsigned long input;
1594 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1595 
1596 	if (h->order >= MAX_ORDER)
1597 		return -EINVAL;
1598 
1599 	err = strict_strtoul(buf, 10, &input);
1600 	if (err)
1601 		return err;
1602 
1603 	spin_lock(&hugetlb_lock);
1604 	h->nr_overcommit_huge_pages = input;
1605 	spin_unlock(&hugetlb_lock);
1606 
1607 	return count;
1608 }
1609 HSTATE_ATTR(nr_overcommit_hugepages);
1610 
1611 static ssize_t free_hugepages_show(struct kobject *kobj,
1612 					struct kobj_attribute *attr, char *buf)
1613 {
1614 	struct hstate *h;
1615 	unsigned long free_huge_pages;
1616 	int nid;
1617 
1618 	h = kobj_to_hstate(kobj, &nid);
1619 	if (nid == NUMA_NO_NODE)
1620 		free_huge_pages = h->free_huge_pages;
1621 	else
1622 		free_huge_pages = h->free_huge_pages_node[nid];
1623 
1624 	return sprintf(buf, "%lu\n", free_huge_pages);
1625 }
1626 HSTATE_ATTR_RO(free_hugepages);
1627 
1628 static ssize_t resv_hugepages_show(struct kobject *kobj,
1629 					struct kobj_attribute *attr, char *buf)
1630 {
1631 	struct hstate *h = kobj_to_hstate(kobj, NULL);
1632 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1633 }
1634 HSTATE_ATTR_RO(resv_hugepages);
1635 
1636 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1637 					struct kobj_attribute *attr, char *buf)
1638 {
1639 	struct hstate *h;
1640 	unsigned long surplus_huge_pages;
1641 	int nid;
1642 
1643 	h = kobj_to_hstate(kobj, &nid);
1644 	if (nid == NUMA_NO_NODE)
1645 		surplus_huge_pages = h->surplus_huge_pages;
1646 	else
1647 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1648 
1649 	return sprintf(buf, "%lu\n", surplus_huge_pages);
1650 }
1651 HSTATE_ATTR_RO(surplus_hugepages);
1652 
1653 static struct attribute *hstate_attrs[] = {
1654 	&nr_hugepages_attr.attr,
1655 	&nr_overcommit_hugepages_attr.attr,
1656 	&free_hugepages_attr.attr,
1657 	&resv_hugepages_attr.attr,
1658 	&surplus_hugepages_attr.attr,
1659 #ifdef CONFIG_NUMA
1660 	&nr_hugepages_mempolicy_attr.attr,
1661 #endif
1662 	NULL,
1663 };
1664 
1665 static struct attribute_group hstate_attr_group = {
1666 	.attrs = hstate_attrs,
1667 };
1668 
1669 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1670 				    struct kobject **hstate_kobjs,
1671 				    struct attribute_group *hstate_attr_group)
1672 {
1673 	int retval;
1674 	int hi = hstate_index(h);
1675 
1676 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1677 	if (!hstate_kobjs[hi])
1678 		return -ENOMEM;
1679 
1680 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1681 	if (retval)
1682 		kobject_put(hstate_kobjs[hi]);
1683 
1684 	return retval;
1685 }
1686 
1687 static void __init hugetlb_sysfs_init(void)
1688 {
1689 	struct hstate *h;
1690 	int err;
1691 
1692 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1693 	if (!hugepages_kobj)
1694 		return;
1695 
1696 	for_each_hstate(h) {
1697 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1698 					 hstate_kobjs, &hstate_attr_group);
1699 		if (err)
1700 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1701 								h->name);
1702 	}
1703 }
1704 
1705 #ifdef CONFIG_NUMA
1706 
1707 /*
1708  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1709  * with node devices in node_devices[] using a parallel array.  The array
1710  * index of a node device or _hstate == node id.
1711  * This is here to avoid any static dependency of the node device driver, in
1712  * the base kernel, on the hugetlb module.
1713  */
1714 struct node_hstate {
1715 	struct kobject		*hugepages_kobj;
1716 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1717 };
1718 struct node_hstate node_hstates[MAX_NUMNODES];
1719 
1720 /*
1721  * A subset of global hstate attributes for node devices
1722  */
1723 static struct attribute *per_node_hstate_attrs[] = {
1724 	&nr_hugepages_attr.attr,
1725 	&free_hugepages_attr.attr,
1726 	&surplus_hugepages_attr.attr,
1727 	NULL,
1728 };
1729 
1730 static struct attribute_group per_node_hstate_attr_group = {
1731 	.attrs = per_node_hstate_attrs,
1732 };
1733 
1734 /*
1735  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1736  * Returns node id via non-NULL nidp.
1737  */
1738 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1739 {
1740 	int nid;
1741 
1742 	for (nid = 0; nid < nr_node_ids; nid++) {
1743 		struct node_hstate *nhs = &node_hstates[nid];
1744 		int i;
1745 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1746 			if (nhs->hstate_kobjs[i] == kobj) {
1747 				if (nidp)
1748 					*nidp = nid;
1749 				return &hstates[i];
1750 			}
1751 	}
1752 
1753 	BUG();
1754 	return NULL;
1755 }
1756 
1757 /*
1758  * Unregister hstate attributes from a single node device.
1759  * No-op if no hstate attributes attached.
1760  */
1761 void hugetlb_unregister_node(struct node *node)
1762 {
1763 	struct hstate *h;
1764 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1765 
1766 	if (!nhs->hugepages_kobj)
1767 		return;		/* no hstate attributes */
1768 
1769 	for_each_hstate(h) {
1770 		int idx = hstate_index(h);
1771 		if (nhs->hstate_kobjs[idx]) {
1772 			kobject_put(nhs->hstate_kobjs[idx]);
1773 			nhs->hstate_kobjs[idx] = NULL;
1774 		}
1775 	}
1776 
1777 	kobject_put(nhs->hugepages_kobj);
1778 	nhs->hugepages_kobj = NULL;
1779 }
1780 
1781 /*
1782  * hugetlb module exit:  unregister hstate attributes from node devices
1783  * that have them.
1784  */
1785 static void hugetlb_unregister_all_nodes(void)
1786 {
1787 	int nid;
1788 
1789 	/*
1790 	 * disable node device registrations.
1791 	 */
1792 	register_hugetlbfs_with_node(NULL, NULL);
1793 
1794 	/*
1795 	 * remove hstate attributes from any nodes that have them.
1796 	 */
1797 	for (nid = 0; nid < nr_node_ids; nid++)
1798 		hugetlb_unregister_node(&node_devices[nid]);
1799 }
1800 
1801 /*
1802  * Register hstate attributes for a single node device.
1803  * No-op if attributes already registered.
1804  */
1805 void hugetlb_register_node(struct node *node)
1806 {
1807 	struct hstate *h;
1808 	struct node_hstate *nhs = &node_hstates[node->dev.id];
1809 	int err;
1810 
1811 	if (nhs->hugepages_kobj)
1812 		return;		/* already allocated */
1813 
1814 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1815 							&node->dev.kobj);
1816 	if (!nhs->hugepages_kobj)
1817 		return;
1818 
1819 	for_each_hstate(h) {
1820 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1821 						nhs->hstate_kobjs,
1822 						&per_node_hstate_attr_group);
1823 		if (err) {
1824 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1825 					" for node %d\n",
1826 						h->name, node->dev.id);
1827 			hugetlb_unregister_node(node);
1828 			break;
1829 		}
1830 	}
1831 }
1832 
1833 /*
1834  * hugetlb init time:  register hstate attributes for all registered node
1835  * devices of nodes that have memory.  All on-line nodes should have
1836  * registered their associated device by this time.
1837  */
1838 static void hugetlb_register_all_nodes(void)
1839 {
1840 	int nid;
1841 
1842 	for_each_node_state(nid, N_HIGH_MEMORY) {
1843 		struct node *node = &node_devices[nid];
1844 		if (node->dev.id == nid)
1845 			hugetlb_register_node(node);
1846 	}
1847 
1848 	/*
1849 	 * Let the node device driver know we're here so it can
1850 	 * [un]register hstate attributes on node hotplug.
1851 	 */
1852 	register_hugetlbfs_with_node(hugetlb_register_node,
1853 				     hugetlb_unregister_node);
1854 }
1855 #else	/* !CONFIG_NUMA */
1856 
1857 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1858 {
1859 	BUG();
1860 	if (nidp)
1861 		*nidp = -1;
1862 	return NULL;
1863 }
1864 
1865 static void hugetlb_unregister_all_nodes(void) { }
1866 
1867 static void hugetlb_register_all_nodes(void) { }
1868 
1869 #endif
1870 
1871 static void __exit hugetlb_exit(void)
1872 {
1873 	struct hstate *h;
1874 
1875 	hugetlb_unregister_all_nodes();
1876 
1877 	for_each_hstate(h) {
1878 		kobject_put(hstate_kobjs[hstate_index(h)]);
1879 	}
1880 
1881 	kobject_put(hugepages_kobj);
1882 }
1883 module_exit(hugetlb_exit);
1884 
1885 static int __init hugetlb_init(void)
1886 {
1887 	/* Some platform decide whether they support huge pages at boot
1888 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1889 	 * there is no such support
1890 	 */
1891 	if (HPAGE_SHIFT == 0)
1892 		return 0;
1893 
1894 	if (!size_to_hstate(default_hstate_size)) {
1895 		default_hstate_size = HPAGE_SIZE;
1896 		if (!size_to_hstate(default_hstate_size))
1897 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1898 	}
1899 	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1900 	if (default_hstate_max_huge_pages)
1901 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1902 
1903 	hugetlb_init_hstates();
1904 
1905 	gather_bootmem_prealloc();
1906 
1907 	report_hugepages();
1908 
1909 	hugetlb_sysfs_init();
1910 
1911 	hugetlb_register_all_nodes();
1912 
1913 	return 0;
1914 }
1915 module_init(hugetlb_init);
1916 
1917 /* Should be called on processing a hugepagesz=... option */
1918 void __init hugetlb_add_hstate(unsigned order)
1919 {
1920 	struct hstate *h;
1921 	unsigned long i;
1922 
1923 	if (size_to_hstate(PAGE_SIZE << order)) {
1924 		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1925 		return;
1926 	}
1927 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1928 	BUG_ON(order == 0);
1929 	h = &hstates[hugetlb_max_hstate++];
1930 	h->order = order;
1931 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1932 	h->nr_huge_pages = 0;
1933 	h->free_huge_pages = 0;
1934 	for (i = 0; i < MAX_NUMNODES; ++i)
1935 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1936 	INIT_LIST_HEAD(&h->hugepage_activelist);
1937 	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1938 	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1939 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1940 					huge_page_size(h)/1024);
1941 	/*
1942 	 * Add cgroup control files only if the huge page consists
1943 	 * of more than two normal pages. This is because we use
1944 	 * page[2].lru.next for storing cgoup details.
1945 	 */
1946 	if (order >= HUGETLB_CGROUP_MIN_ORDER)
1947 		hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
1948 
1949 	parsed_hstate = h;
1950 }
1951 
1952 static int __init hugetlb_nrpages_setup(char *s)
1953 {
1954 	unsigned long *mhp;
1955 	static unsigned long *last_mhp;
1956 
1957 	/*
1958 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1959 	 * so this hugepages= parameter goes to the "default hstate".
1960 	 */
1961 	if (!hugetlb_max_hstate)
1962 		mhp = &default_hstate_max_huge_pages;
1963 	else
1964 		mhp = &parsed_hstate->max_huge_pages;
1965 
1966 	if (mhp == last_mhp) {
1967 		printk(KERN_WARNING "hugepages= specified twice without "
1968 			"interleaving hugepagesz=, ignoring\n");
1969 		return 1;
1970 	}
1971 
1972 	if (sscanf(s, "%lu", mhp) <= 0)
1973 		*mhp = 0;
1974 
1975 	/*
1976 	 * Global state is always initialized later in hugetlb_init.
1977 	 * But we need to allocate >= MAX_ORDER hstates here early to still
1978 	 * use the bootmem allocator.
1979 	 */
1980 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1981 		hugetlb_hstate_alloc_pages(parsed_hstate);
1982 
1983 	last_mhp = mhp;
1984 
1985 	return 1;
1986 }
1987 __setup("hugepages=", hugetlb_nrpages_setup);
1988 
1989 static int __init hugetlb_default_setup(char *s)
1990 {
1991 	default_hstate_size = memparse(s, &s);
1992 	return 1;
1993 }
1994 __setup("default_hugepagesz=", hugetlb_default_setup);
1995 
1996 static unsigned int cpuset_mems_nr(unsigned int *array)
1997 {
1998 	int node;
1999 	unsigned int nr = 0;
2000 
2001 	for_each_node_mask(node, cpuset_current_mems_allowed)
2002 		nr += array[node];
2003 
2004 	return nr;
2005 }
2006 
2007 #ifdef CONFIG_SYSCTL
2008 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2009 			 struct ctl_table *table, int write,
2010 			 void __user *buffer, size_t *length, loff_t *ppos)
2011 {
2012 	struct hstate *h = &default_hstate;
2013 	unsigned long tmp;
2014 	int ret;
2015 
2016 	tmp = h->max_huge_pages;
2017 
2018 	if (write && h->order >= MAX_ORDER)
2019 		return -EINVAL;
2020 
2021 	table->data = &tmp;
2022 	table->maxlen = sizeof(unsigned long);
2023 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2024 	if (ret)
2025 		goto out;
2026 
2027 	if (write) {
2028 		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2029 						GFP_KERNEL | __GFP_NORETRY);
2030 		if (!(obey_mempolicy &&
2031 			       init_nodemask_of_mempolicy(nodes_allowed))) {
2032 			NODEMASK_FREE(nodes_allowed);
2033 			nodes_allowed = &node_states[N_HIGH_MEMORY];
2034 		}
2035 		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2036 
2037 		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2038 			NODEMASK_FREE(nodes_allowed);
2039 	}
2040 out:
2041 	return ret;
2042 }
2043 
2044 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2045 			  void __user *buffer, size_t *length, loff_t *ppos)
2046 {
2047 
2048 	return hugetlb_sysctl_handler_common(false, table, write,
2049 							buffer, length, ppos);
2050 }
2051 
2052 #ifdef CONFIG_NUMA
2053 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2054 			  void __user *buffer, size_t *length, loff_t *ppos)
2055 {
2056 	return hugetlb_sysctl_handler_common(true, table, write,
2057 							buffer, length, ppos);
2058 }
2059 #endif /* CONFIG_NUMA */
2060 
2061 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2062 			void __user *buffer,
2063 			size_t *length, loff_t *ppos)
2064 {
2065 	proc_dointvec(table, write, buffer, length, ppos);
2066 	if (hugepages_treat_as_movable)
2067 		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2068 	else
2069 		htlb_alloc_mask = GFP_HIGHUSER;
2070 	return 0;
2071 }
2072 
2073 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2074 			void __user *buffer,
2075 			size_t *length, loff_t *ppos)
2076 {
2077 	struct hstate *h = &default_hstate;
2078 	unsigned long tmp;
2079 	int ret;
2080 
2081 	tmp = h->nr_overcommit_huge_pages;
2082 
2083 	if (write && h->order >= MAX_ORDER)
2084 		return -EINVAL;
2085 
2086 	table->data = &tmp;
2087 	table->maxlen = sizeof(unsigned long);
2088 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2089 	if (ret)
2090 		goto out;
2091 
2092 	if (write) {
2093 		spin_lock(&hugetlb_lock);
2094 		h->nr_overcommit_huge_pages = tmp;
2095 		spin_unlock(&hugetlb_lock);
2096 	}
2097 out:
2098 	return ret;
2099 }
2100 
2101 #endif /* CONFIG_SYSCTL */
2102 
2103 void hugetlb_report_meminfo(struct seq_file *m)
2104 {
2105 	struct hstate *h = &default_hstate;
2106 	seq_printf(m,
2107 			"HugePages_Total:   %5lu\n"
2108 			"HugePages_Free:    %5lu\n"
2109 			"HugePages_Rsvd:    %5lu\n"
2110 			"HugePages_Surp:    %5lu\n"
2111 			"Hugepagesize:   %8lu kB\n",
2112 			h->nr_huge_pages,
2113 			h->free_huge_pages,
2114 			h->resv_huge_pages,
2115 			h->surplus_huge_pages,
2116 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2117 }
2118 
2119 int hugetlb_report_node_meminfo(int nid, char *buf)
2120 {
2121 	struct hstate *h = &default_hstate;
2122 	return sprintf(buf,
2123 		"Node %d HugePages_Total: %5u\n"
2124 		"Node %d HugePages_Free:  %5u\n"
2125 		"Node %d HugePages_Surp:  %5u\n",
2126 		nid, h->nr_huge_pages_node[nid],
2127 		nid, h->free_huge_pages_node[nid],
2128 		nid, h->surplus_huge_pages_node[nid]);
2129 }
2130 
2131 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2132 unsigned long hugetlb_total_pages(void)
2133 {
2134 	struct hstate *h = &default_hstate;
2135 	return h->nr_huge_pages * pages_per_huge_page(h);
2136 }
2137 
2138 static int hugetlb_acct_memory(struct hstate *h, long delta)
2139 {
2140 	int ret = -ENOMEM;
2141 
2142 	spin_lock(&hugetlb_lock);
2143 	/*
2144 	 * When cpuset is configured, it breaks the strict hugetlb page
2145 	 * reservation as the accounting is done on a global variable. Such
2146 	 * reservation is completely rubbish in the presence of cpuset because
2147 	 * the reservation is not checked against page availability for the
2148 	 * current cpuset. Application can still potentially OOM'ed by kernel
2149 	 * with lack of free htlb page in cpuset that the task is in.
2150 	 * Attempt to enforce strict accounting with cpuset is almost
2151 	 * impossible (or too ugly) because cpuset is too fluid that
2152 	 * task or memory node can be dynamically moved between cpusets.
2153 	 *
2154 	 * The change of semantics for shared hugetlb mapping with cpuset is
2155 	 * undesirable. However, in order to preserve some of the semantics,
2156 	 * we fall back to check against current free page availability as
2157 	 * a best attempt and hopefully to minimize the impact of changing
2158 	 * semantics that cpuset has.
2159 	 */
2160 	if (delta > 0) {
2161 		if (gather_surplus_pages(h, delta) < 0)
2162 			goto out;
2163 
2164 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2165 			return_unused_surplus_pages(h, delta);
2166 			goto out;
2167 		}
2168 	}
2169 
2170 	ret = 0;
2171 	if (delta < 0)
2172 		return_unused_surplus_pages(h, (unsigned long) -delta);
2173 
2174 out:
2175 	spin_unlock(&hugetlb_lock);
2176 	return ret;
2177 }
2178 
2179 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2180 {
2181 	struct resv_map *reservations = vma_resv_map(vma);
2182 
2183 	/*
2184 	 * This new VMA should share its siblings reservation map if present.
2185 	 * The VMA will only ever have a valid reservation map pointer where
2186 	 * it is being copied for another still existing VMA.  As that VMA
2187 	 * has a reference to the reservation map it cannot disappear until
2188 	 * after this open call completes.  It is therefore safe to take a
2189 	 * new reference here without additional locking.
2190 	 */
2191 	if (reservations)
2192 		kref_get(&reservations->refs);
2193 }
2194 
2195 static void resv_map_put(struct vm_area_struct *vma)
2196 {
2197 	struct resv_map *reservations = vma_resv_map(vma);
2198 
2199 	if (!reservations)
2200 		return;
2201 	kref_put(&reservations->refs, resv_map_release);
2202 }
2203 
2204 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2205 {
2206 	struct hstate *h = hstate_vma(vma);
2207 	struct resv_map *reservations = vma_resv_map(vma);
2208 	struct hugepage_subpool *spool = subpool_vma(vma);
2209 	unsigned long reserve;
2210 	unsigned long start;
2211 	unsigned long end;
2212 
2213 	if (reservations) {
2214 		start = vma_hugecache_offset(h, vma, vma->vm_start);
2215 		end = vma_hugecache_offset(h, vma, vma->vm_end);
2216 
2217 		reserve = (end - start) -
2218 			region_count(&reservations->regions, start, end);
2219 
2220 		resv_map_put(vma);
2221 
2222 		if (reserve) {
2223 			hugetlb_acct_memory(h, -reserve);
2224 			hugepage_subpool_put_pages(spool, reserve);
2225 		}
2226 	}
2227 }
2228 
2229 /*
2230  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2231  * handle_mm_fault() to try to instantiate regular-sized pages in the
2232  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2233  * this far.
2234  */
2235 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2236 {
2237 	BUG();
2238 	return 0;
2239 }
2240 
2241 const struct vm_operations_struct hugetlb_vm_ops = {
2242 	.fault = hugetlb_vm_op_fault,
2243 	.open = hugetlb_vm_op_open,
2244 	.close = hugetlb_vm_op_close,
2245 };
2246 
2247 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2248 				int writable)
2249 {
2250 	pte_t entry;
2251 
2252 	if (writable) {
2253 		entry =
2254 		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2255 	} else {
2256 		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2257 	}
2258 	entry = pte_mkyoung(entry);
2259 	entry = pte_mkhuge(entry);
2260 	entry = arch_make_huge_pte(entry, vma, page, writable);
2261 
2262 	return entry;
2263 }
2264 
2265 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2266 				   unsigned long address, pte_t *ptep)
2267 {
2268 	pte_t entry;
2269 
2270 	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2271 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2272 		update_mmu_cache(vma, address, ptep);
2273 }
2274 
2275 
2276 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2277 			    struct vm_area_struct *vma)
2278 {
2279 	pte_t *src_pte, *dst_pte, entry;
2280 	struct page *ptepage;
2281 	unsigned long addr;
2282 	int cow;
2283 	struct hstate *h = hstate_vma(vma);
2284 	unsigned long sz = huge_page_size(h);
2285 
2286 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2287 
2288 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2289 		src_pte = huge_pte_offset(src, addr);
2290 		if (!src_pte)
2291 			continue;
2292 		dst_pte = huge_pte_alloc(dst, addr, sz);
2293 		if (!dst_pte)
2294 			goto nomem;
2295 
2296 		/* If the pagetables are shared don't copy or take references */
2297 		if (dst_pte == src_pte)
2298 			continue;
2299 
2300 		spin_lock(&dst->page_table_lock);
2301 		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2302 		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2303 			if (cow)
2304 				huge_ptep_set_wrprotect(src, addr, src_pte);
2305 			entry = huge_ptep_get(src_pte);
2306 			ptepage = pte_page(entry);
2307 			get_page(ptepage);
2308 			page_dup_rmap(ptepage);
2309 			set_huge_pte_at(dst, addr, dst_pte, entry);
2310 		}
2311 		spin_unlock(&src->page_table_lock);
2312 		spin_unlock(&dst->page_table_lock);
2313 	}
2314 	return 0;
2315 
2316 nomem:
2317 	return -ENOMEM;
2318 }
2319 
2320 static int is_hugetlb_entry_migration(pte_t pte)
2321 {
2322 	swp_entry_t swp;
2323 
2324 	if (huge_pte_none(pte) || pte_present(pte))
2325 		return 0;
2326 	swp = pte_to_swp_entry(pte);
2327 	if (non_swap_entry(swp) && is_migration_entry(swp))
2328 		return 1;
2329 	else
2330 		return 0;
2331 }
2332 
2333 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2334 {
2335 	swp_entry_t swp;
2336 
2337 	if (huge_pte_none(pte) || pte_present(pte))
2338 		return 0;
2339 	swp = pte_to_swp_entry(pte);
2340 	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2341 		return 1;
2342 	else
2343 		return 0;
2344 }
2345 
2346 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2347 			    unsigned long start, unsigned long end,
2348 			    struct page *ref_page)
2349 {
2350 	int force_flush = 0;
2351 	struct mm_struct *mm = vma->vm_mm;
2352 	unsigned long address;
2353 	pte_t *ptep;
2354 	pte_t pte;
2355 	struct page *page;
2356 	struct hstate *h = hstate_vma(vma);
2357 	unsigned long sz = huge_page_size(h);
2358 
2359 	WARN_ON(!is_vm_hugetlb_page(vma));
2360 	BUG_ON(start & ~huge_page_mask(h));
2361 	BUG_ON(end & ~huge_page_mask(h));
2362 
2363 	tlb_start_vma(tlb, vma);
2364 	mmu_notifier_invalidate_range_start(mm, start, end);
2365 again:
2366 	spin_lock(&mm->page_table_lock);
2367 	for (address = start; address < end; address += sz) {
2368 		ptep = huge_pte_offset(mm, address);
2369 		if (!ptep)
2370 			continue;
2371 
2372 		if (huge_pmd_unshare(mm, &address, ptep))
2373 			continue;
2374 
2375 		pte = huge_ptep_get(ptep);
2376 		if (huge_pte_none(pte))
2377 			continue;
2378 
2379 		/*
2380 		 * HWPoisoned hugepage is already unmapped and dropped reference
2381 		 */
2382 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2383 			continue;
2384 
2385 		page = pte_page(pte);
2386 		/*
2387 		 * If a reference page is supplied, it is because a specific
2388 		 * page is being unmapped, not a range. Ensure the page we
2389 		 * are about to unmap is the actual page of interest.
2390 		 */
2391 		if (ref_page) {
2392 			if (page != ref_page)
2393 				continue;
2394 
2395 			/*
2396 			 * Mark the VMA as having unmapped its page so that
2397 			 * future faults in this VMA will fail rather than
2398 			 * looking like data was lost
2399 			 */
2400 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2401 		}
2402 
2403 		pte = huge_ptep_get_and_clear(mm, address, ptep);
2404 		tlb_remove_tlb_entry(tlb, ptep, address);
2405 		if (pte_dirty(pte))
2406 			set_page_dirty(page);
2407 
2408 		page_remove_rmap(page);
2409 		force_flush = !__tlb_remove_page(tlb, page);
2410 		if (force_flush)
2411 			break;
2412 		/* Bail out after unmapping reference page if supplied */
2413 		if (ref_page)
2414 			break;
2415 	}
2416 	spin_unlock(&mm->page_table_lock);
2417 	/*
2418 	 * mmu_gather ran out of room to batch pages, we break out of
2419 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2420 	 * and page-free while holding it.
2421 	 */
2422 	if (force_flush) {
2423 		force_flush = 0;
2424 		tlb_flush_mmu(tlb);
2425 		if (address < end && !ref_page)
2426 			goto again;
2427 	}
2428 	mmu_notifier_invalidate_range_end(mm, start, end);
2429 	tlb_end_vma(tlb, vma);
2430 }
2431 
2432 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2433 			  struct vm_area_struct *vma, unsigned long start,
2434 			  unsigned long end, struct page *ref_page)
2435 {
2436 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2437 
2438 	/*
2439 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2440 	 * test will fail on a vma being torn down, and not grab a page table
2441 	 * on its way out.  We're lucky that the flag has such an appropriate
2442 	 * name, and can in fact be safely cleared here. We could clear it
2443 	 * before the __unmap_hugepage_range above, but all that's necessary
2444 	 * is to clear it before releasing the i_mmap_mutex. This works
2445 	 * because in the context this is called, the VMA is about to be
2446 	 * destroyed and the i_mmap_mutex is held.
2447 	 */
2448 	vma->vm_flags &= ~VM_MAYSHARE;
2449 }
2450 
2451 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2452 			  unsigned long end, struct page *ref_page)
2453 {
2454 	struct mm_struct *mm;
2455 	struct mmu_gather tlb;
2456 
2457 	mm = vma->vm_mm;
2458 
2459 	tlb_gather_mmu(&tlb, mm, 0);
2460 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2461 	tlb_finish_mmu(&tlb, start, end);
2462 }
2463 
2464 /*
2465  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2466  * mappping it owns the reserve page for. The intention is to unmap the page
2467  * from other VMAs and let the children be SIGKILLed if they are faulting the
2468  * same region.
2469  */
2470 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2471 				struct page *page, unsigned long address)
2472 {
2473 	struct hstate *h = hstate_vma(vma);
2474 	struct vm_area_struct *iter_vma;
2475 	struct address_space *mapping;
2476 	struct prio_tree_iter iter;
2477 	pgoff_t pgoff;
2478 
2479 	/*
2480 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2481 	 * from page cache lookup which is in HPAGE_SIZE units.
2482 	 */
2483 	address = address & huge_page_mask(h);
2484 	pgoff = vma_hugecache_offset(h, vma, address);
2485 	mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2486 
2487 	/*
2488 	 * Take the mapping lock for the duration of the table walk. As
2489 	 * this mapping should be shared between all the VMAs,
2490 	 * __unmap_hugepage_range() is called as the lock is already held
2491 	 */
2492 	mutex_lock(&mapping->i_mmap_mutex);
2493 	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2494 		/* Do not unmap the current VMA */
2495 		if (iter_vma == vma)
2496 			continue;
2497 
2498 		/*
2499 		 * Unmap the page from other VMAs without their own reserves.
2500 		 * They get marked to be SIGKILLed if they fault in these
2501 		 * areas. This is because a future no-page fault on this VMA
2502 		 * could insert a zeroed page instead of the data existing
2503 		 * from the time of fork. This would look like data corruption
2504 		 */
2505 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2506 			unmap_hugepage_range(iter_vma, address,
2507 					     address + huge_page_size(h), page);
2508 	}
2509 	mutex_unlock(&mapping->i_mmap_mutex);
2510 
2511 	return 1;
2512 }
2513 
2514 /*
2515  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2516  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2517  * cannot race with other handlers or page migration.
2518  * Keep the pte_same checks anyway to make transition from the mutex easier.
2519  */
2520 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2521 			unsigned long address, pte_t *ptep, pte_t pte,
2522 			struct page *pagecache_page)
2523 {
2524 	struct hstate *h = hstate_vma(vma);
2525 	struct page *old_page, *new_page;
2526 	int avoidcopy;
2527 	int outside_reserve = 0;
2528 
2529 	old_page = pte_page(pte);
2530 
2531 retry_avoidcopy:
2532 	/* If no-one else is actually using this page, avoid the copy
2533 	 * and just make the page writable */
2534 	avoidcopy = (page_mapcount(old_page) == 1);
2535 	if (avoidcopy) {
2536 		if (PageAnon(old_page))
2537 			page_move_anon_rmap(old_page, vma, address);
2538 		set_huge_ptep_writable(vma, address, ptep);
2539 		return 0;
2540 	}
2541 
2542 	/*
2543 	 * If the process that created a MAP_PRIVATE mapping is about to
2544 	 * perform a COW due to a shared page count, attempt to satisfy
2545 	 * the allocation without using the existing reserves. The pagecache
2546 	 * page is used to determine if the reserve at this address was
2547 	 * consumed or not. If reserves were used, a partial faulted mapping
2548 	 * at the time of fork() could consume its reserves on COW instead
2549 	 * of the full address range.
2550 	 */
2551 	if (!(vma->vm_flags & VM_MAYSHARE) &&
2552 			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2553 			old_page != pagecache_page)
2554 		outside_reserve = 1;
2555 
2556 	page_cache_get(old_page);
2557 
2558 	/* Drop page_table_lock as buddy allocator may be called */
2559 	spin_unlock(&mm->page_table_lock);
2560 	new_page = alloc_huge_page(vma, address, outside_reserve);
2561 
2562 	if (IS_ERR(new_page)) {
2563 		long err = PTR_ERR(new_page);
2564 		page_cache_release(old_page);
2565 
2566 		/*
2567 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2568 		 * it is due to references held by a child and an insufficient
2569 		 * huge page pool. To guarantee the original mappers
2570 		 * reliability, unmap the page from child processes. The child
2571 		 * may get SIGKILLed if it later faults.
2572 		 */
2573 		if (outside_reserve) {
2574 			BUG_ON(huge_pte_none(pte));
2575 			if (unmap_ref_private(mm, vma, old_page, address)) {
2576 				BUG_ON(huge_pte_none(pte));
2577 				spin_lock(&mm->page_table_lock);
2578 				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2579 				if (likely(pte_same(huge_ptep_get(ptep), pte)))
2580 					goto retry_avoidcopy;
2581 				/*
2582 				 * race occurs while re-acquiring page_table_lock, and
2583 				 * our job is done.
2584 				 */
2585 				return 0;
2586 			}
2587 			WARN_ON_ONCE(1);
2588 		}
2589 
2590 		/* Caller expects lock to be held */
2591 		spin_lock(&mm->page_table_lock);
2592 		if (err == -ENOMEM)
2593 			return VM_FAULT_OOM;
2594 		else
2595 			return VM_FAULT_SIGBUS;
2596 	}
2597 
2598 	/*
2599 	 * When the original hugepage is shared one, it does not have
2600 	 * anon_vma prepared.
2601 	 */
2602 	if (unlikely(anon_vma_prepare(vma))) {
2603 		page_cache_release(new_page);
2604 		page_cache_release(old_page);
2605 		/* Caller expects lock to be held */
2606 		spin_lock(&mm->page_table_lock);
2607 		return VM_FAULT_OOM;
2608 	}
2609 
2610 	copy_user_huge_page(new_page, old_page, address, vma,
2611 			    pages_per_huge_page(h));
2612 	__SetPageUptodate(new_page);
2613 
2614 	/*
2615 	 * Retake the page_table_lock to check for racing updates
2616 	 * before the page tables are altered
2617 	 */
2618 	spin_lock(&mm->page_table_lock);
2619 	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2620 	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2621 		/* Break COW */
2622 		mmu_notifier_invalidate_range_start(mm,
2623 			address & huge_page_mask(h),
2624 			(address & huge_page_mask(h)) + huge_page_size(h));
2625 		huge_ptep_clear_flush(vma, address, ptep);
2626 		set_huge_pte_at(mm, address, ptep,
2627 				make_huge_pte(vma, new_page, 1));
2628 		page_remove_rmap(old_page);
2629 		hugepage_add_new_anon_rmap(new_page, vma, address);
2630 		/* Make the old page be freed below */
2631 		new_page = old_page;
2632 		mmu_notifier_invalidate_range_end(mm,
2633 			address & huge_page_mask(h),
2634 			(address & huge_page_mask(h)) + huge_page_size(h));
2635 	}
2636 	page_cache_release(new_page);
2637 	page_cache_release(old_page);
2638 	return 0;
2639 }
2640 
2641 /* Return the pagecache page at a given address within a VMA */
2642 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2643 			struct vm_area_struct *vma, unsigned long address)
2644 {
2645 	struct address_space *mapping;
2646 	pgoff_t idx;
2647 
2648 	mapping = vma->vm_file->f_mapping;
2649 	idx = vma_hugecache_offset(h, vma, address);
2650 
2651 	return find_lock_page(mapping, idx);
2652 }
2653 
2654 /*
2655  * Return whether there is a pagecache page to back given address within VMA.
2656  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2657  */
2658 static bool hugetlbfs_pagecache_present(struct hstate *h,
2659 			struct vm_area_struct *vma, unsigned long address)
2660 {
2661 	struct address_space *mapping;
2662 	pgoff_t idx;
2663 	struct page *page;
2664 
2665 	mapping = vma->vm_file->f_mapping;
2666 	idx = vma_hugecache_offset(h, vma, address);
2667 
2668 	page = find_get_page(mapping, idx);
2669 	if (page)
2670 		put_page(page);
2671 	return page != NULL;
2672 }
2673 
2674 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2675 			unsigned long address, pte_t *ptep, unsigned int flags)
2676 {
2677 	struct hstate *h = hstate_vma(vma);
2678 	int ret = VM_FAULT_SIGBUS;
2679 	int anon_rmap = 0;
2680 	pgoff_t idx;
2681 	unsigned long size;
2682 	struct page *page;
2683 	struct address_space *mapping;
2684 	pte_t new_pte;
2685 
2686 	/*
2687 	 * Currently, we are forced to kill the process in the event the
2688 	 * original mapper has unmapped pages from the child due to a failed
2689 	 * COW. Warn that such a situation has occurred as it may not be obvious
2690 	 */
2691 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2692 		printk(KERN_WARNING
2693 			"PID %d killed due to inadequate hugepage pool\n",
2694 			current->pid);
2695 		return ret;
2696 	}
2697 
2698 	mapping = vma->vm_file->f_mapping;
2699 	idx = vma_hugecache_offset(h, vma, address);
2700 
2701 	/*
2702 	 * Use page lock to guard against racing truncation
2703 	 * before we get page_table_lock.
2704 	 */
2705 retry:
2706 	page = find_lock_page(mapping, idx);
2707 	if (!page) {
2708 		size = i_size_read(mapping->host) >> huge_page_shift(h);
2709 		if (idx >= size)
2710 			goto out;
2711 		page = alloc_huge_page(vma, address, 0);
2712 		if (IS_ERR(page)) {
2713 			ret = PTR_ERR(page);
2714 			if (ret == -ENOMEM)
2715 				ret = VM_FAULT_OOM;
2716 			else
2717 				ret = VM_FAULT_SIGBUS;
2718 			goto out;
2719 		}
2720 		clear_huge_page(page, address, pages_per_huge_page(h));
2721 		__SetPageUptodate(page);
2722 
2723 		if (vma->vm_flags & VM_MAYSHARE) {
2724 			int err;
2725 			struct inode *inode = mapping->host;
2726 
2727 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2728 			if (err) {
2729 				put_page(page);
2730 				if (err == -EEXIST)
2731 					goto retry;
2732 				goto out;
2733 			}
2734 
2735 			spin_lock(&inode->i_lock);
2736 			inode->i_blocks += blocks_per_huge_page(h);
2737 			spin_unlock(&inode->i_lock);
2738 		} else {
2739 			lock_page(page);
2740 			if (unlikely(anon_vma_prepare(vma))) {
2741 				ret = VM_FAULT_OOM;
2742 				goto backout_unlocked;
2743 			}
2744 			anon_rmap = 1;
2745 		}
2746 	} else {
2747 		/*
2748 		 * If memory error occurs between mmap() and fault, some process
2749 		 * don't have hwpoisoned swap entry for errored virtual address.
2750 		 * So we need to block hugepage fault by PG_hwpoison bit check.
2751 		 */
2752 		if (unlikely(PageHWPoison(page))) {
2753 			ret = VM_FAULT_HWPOISON |
2754 				VM_FAULT_SET_HINDEX(hstate_index(h));
2755 			goto backout_unlocked;
2756 		}
2757 	}
2758 
2759 	/*
2760 	 * If we are going to COW a private mapping later, we examine the
2761 	 * pending reservations for this page now. This will ensure that
2762 	 * any allocations necessary to record that reservation occur outside
2763 	 * the spinlock.
2764 	 */
2765 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2766 		if (vma_needs_reservation(h, vma, address) < 0) {
2767 			ret = VM_FAULT_OOM;
2768 			goto backout_unlocked;
2769 		}
2770 
2771 	spin_lock(&mm->page_table_lock);
2772 	size = i_size_read(mapping->host) >> huge_page_shift(h);
2773 	if (idx >= size)
2774 		goto backout;
2775 
2776 	ret = 0;
2777 	if (!huge_pte_none(huge_ptep_get(ptep)))
2778 		goto backout;
2779 
2780 	if (anon_rmap)
2781 		hugepage_add_new_anon_rmap(page, vma, address);
2782 	else
2783 		page_dup_rmap(page);
2784 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2785 				&& (vma->vm_flags & VM_SHARED)));
2786 	set_huge_pte_at(mm, address, ptep, new_pte);
2787 
2788 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2789 		/* Optimization, do the COW without a second fault */
2790 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2791 	}
2792 
2793 	spin_unlock(&mm->page_table_lock);
2794 	unlock_page(page);
2795 out:
2796 	return ret;
2797 
2798 backout:
2799 	spin_unlock(&mm->page_table_lock);
2800 backout_unlocked:
2801 	unlock_page(page);
2802 	put_page(page);
2803 	goto out;
2804 }
2805 
2806 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2807 			unsigned long address, unsigned int flags)
2808 {
2809 	pte_t *ptep;
2810 	pte_t entry;
2811 	int ret;
2812 	struct page *page = NULL;
2813 	struct page *pagecache_page = NULL;
2814 	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2815 	struct hstate *h = hstate_vma(vma);
2816 
2817 	address &= huge_page_mask(h);
2818 
2819 	ptep = huge_pte_offset(mm, address);
2820 	if (ptep) {
2821 		entry = huge_ptep_get(ptep);
2822 		if (unlikely(is_hugetlb_entry_migration(entry))) {
2823 			migration_entry_wait(mm, (pmd_t *)ptep, address);
2824 			return 0;
2825 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2826 			return VM_FAULT_HWPOISON_LARGE |
2827 				VM_FAULT_SET_HINDEX(hstate_index(h));
2828 	}
2829 
2830 	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2831 	if (!ptep)
2832 		return VM_FAULT_OOM;
2833 
2834 	/*
2835 	 * Serialize hugepage allocation and instantiation, so that we don't
2836 	 * get spurious allocation failures if two CPUs race to instantiate
2837 	 * the same page in the page cache.
2838 	 */
2839 	mutex_lock(&hugetlb_instantiation_mutex);
2840 	entry = huge_ptep_get(ptep);
2841 	if (huge_pte_none(entry)) {
2842 		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2843 		goto out_mutex;
2844 	}
2845 
2846 	ret = 0;
2847 
2848 	/*
2849 	 * If we are going to COW the mapping later, we examine the pending
2850 	 * reservations for this page now. This will ensure that any
2851 	 * allocations necessary to record that reservation occur outside the
2852 	 * spinlock. For private mappings, we also lookup the pagecache
2853 	 * page now as it is used to determine if a reservation has been
2854 	 * consumed.
2855 	 */
2856 	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2857 		if (vma_needs_reservation(h, vma, address) < 0) {
2858 			ret = VM_FAULT_OOM;
2859 			goto out_mutex;
2860 		}
2861 
2862 		if (!(vma->vm_flags & VM_MAYSHARE))
2863 			pagecache_page = hugetlbfs_pagecache_page(h,
2864 								vma, address);
2865 	}
2866 
2867 	/*
2868 	 * hugetlb_cow() requires page locks of pte_page(entry) and
2869 	 * pagecache_page, so here we need take the former one
2870 	 * when page != pagecache_page or !pagecache_page.
2871 	 * Note that locking order is always pagecache_page -> page,
2872 	 * so no worry about deadlock.
2873 	 */
2874 	page = pte_page(entry);
2875 	get_page(page);
2876 	if (page != pagecache_page)
2877 		lock_page(page);
2878 
2879 	spin_lock(&mm->page_table_lock);
2880 	/* Check for a racing update before calling hugetlb_cow */
2881 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2882 		goto out_page_table_lock;
2883 
2884 
2885 	if (flags & FAULT_FLAG_WRITE) {
2886 		if (!pte_write(entry)) {
2887 			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2888 							pagecache_page);
2889 			goto out_page_table_lock;
2890 		}
2891 		entry = pte_mkdirty(entry);
2892 	}
2893 	entry = pte_mkyoung(entry);
2894 	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2895 						flags & FAULT_FLAG_WRITE))
2896 		update_mmu_cache(vma, address, ptep);
2897 
2898 out_page_table_lock:
2899 	spin_unlock(&mm->page_table_lock);
2900 
2901 	if (pagecache_page) {
2902 		unlock_page(pagecache_page);
2903 		put_page(pagecache_page);
2904 	}
2905 	if (page != pagecache_page)
2906 		unlock_page(page);
2907 	put_page(page);
2908 
2909 out_mutex:
2910 	mutex_unlock(&hugetlb_instantiation_mutex);
2911 
2912 	return ret;
2913 }
2914 
2915 /* Can be overriden by architectures */
2916 __attribute__((weak)) struct page *
2917 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2918 	       pud_t *pud, int write)
2919 {
2920 	BUG();
2921 	return NULL;
2922 }
2923 
2924 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2925 			struct page **pages, struct vm_area_struct **vmas,
2926 			unsigned long *position, int *length, int i,
2927 			unsigned int flags)
2928 {
2929 	unsigned long pfn_offset;
2930 	unsigned long vaddr = *position;
2931 	int remainder = *length;
2932 	struct hstate *h = hstate_vma(vma);
2933 
2934 	spin_lock(&mm->page_table_lock);
2935 	while (vaddr < vma->vm_end && remainder) {
2936 		pte_t *pte;
2937 		int absent;
2938 		struct page *page;
2939 
2940 		/*
2941 		 * Some archs (sparc64, sh*) have multiple pte_ts to
2942 		 * each hugepage.  We have to make sure we get the
2943 		 * first, for the page indexing below to work.
2944 		 */
2945 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2946 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
2947 
2948 		/*
2949 		 * When coredumping, it suits get_dump_page if we just return
2950 		 * an error where there's an empty slot with no huge pagecache
2951 		 * to back it.  This way, we avoid allocating a hugepage, and
2952 		 * the sparse dumpfile avoids allocating disk blocks, but its
2953 		 * huge holes still show up with zeroes where they need to be.
2954 		 */
2955 		if (absent && (flags & FOLL_DUMP) &&
2956 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2957 			remainder = 0;
2958 			break;
2959 		}
2960 
2961 		if (absent ||
2962 		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2963 			int ret;
2964 
2965 			spin_unlock(&mm->page_table_lock);
2966 			ret = hugetlb_fault(mm, vma, vaddr,
2967 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2968 			spin_lock(&mm->page_table_lock);
2969 			if (!(ret & VM_FAULT_ERROR))
2970 				continue;
2971 
2972 			remainder = 0;
2973 			break;
2974 		}
2975 
2976 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2977 		page = pte_page(huge_ptep_get(pte));
2978 same_page:
2979 		if (pages) {
2980 			pages[i] = mem_map_offset(page, pfn_offset);
2981 			get_page(pages[i]);
2982 		}
2983 
2984 		if (vmas)
2985 			vmas[i] = vma;
2986 
2987 		vaddr += PAGE_SIZE;
2988 		++pfn_offset;
2989 		--remainder;
2990 		++i;
2991 		if (vaddr < vma->vm_end && remainder &&
2992 				pfn_offset < pages_per_huge_page(h)) {
2993 			/*
2994 			 * We use pfn_offset to avoid touching the pageframes
2995 			 * of this compound page.
2996 			 */
2997 			goto same_page;
2998 		}
2999 	}
3000 	spin_unlock(&mm->page_table_lock);
3001 	*length = remainder;
3002 	*position = vaddr;
3003 
3004 	return i ? i : -EFAULT;
3005 }
3006 
3007 void hugetlb_change_protection(struct vm_area_struct *vma,
3008 		unsigned long address, unsigned long end, pgprot_t newprot)
3009 {
3010 	struct mm_struct *mm = vma->vm_mm;
3011 	unsigned long start = address;
3012 	pte_t *ptep;
3013 	pte_t pte;
3014 	struct hstate *h = hstate_vma(vma);
3015 
3016 	BUG_ON(address >= end);
3017 	flush_cache_range(vma, address, end);
3018 
3019 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3020 	spin_lock(&mm->page_table_lock);
3021 	for (; address < end; address += huge_page_size(h)) {
3022 		ptep = huge_pte_offset(mm, address);
3023 		if (!ptep)
3024 			continue;
3025 		if (huge_pmd_unshare(mm, &address, ptep))
3026 			continue;
3027 		if (!huge_pte_none(huge_ptep_get(ptep))) {
3028 			pte = huge_ptep_get_and_clear(mm, address, ptep);
3029 			pte = pte_mkhuge(pte_modify(pte, newprot));
3030 			set_huge_pte_at(mm, address, ptep, pte);
3031 		}
3032 	}
3033 	spin_unlock(&mm->page_table_lock);
3034 	/*
3035 	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3036 	 * may have cleared our pud entry and done put_page on the page table:
3037 	 * once we release i_mmap_mutex, another task can do the final put_page
3038 	 * and that page table be reused and filled with junk.
3039 	 */
3040 	flush_tlb_range(vma, start, end);
3041 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3042 }
3043 
3044 int hugetlb_reserve_pages(struct inode *inode,
3045 					long from, long to,
3046 					struct vm_area_struct *vma,
3047 					vm_flags_t vm_flags)
3048 {
3049 	long ret, chg;
3050 	struct hstate *h = hstate_inode(inode);
3051 	struct hugepage_subpool *spool = subpool_inode(inode);
3052 
3053 	/*
3054 	 * Only apply hugepage reservation if asked. At fault time, an
3055 	 * attempt will be made for VM_NORESERVE to allocate a page
3056 	 * without using reserves
3057 	 */
3058 	if (vm_flags & VM_NORESERVE)
3059 		return 0;
3060 
3061 	/*
3062 	 * Shared mappings base their reservation on the number of pages that
3063 	 * are already allocated on behalf of the file. Private mappings need
3064 	 * to reserve the full area even if read-only as mprotect() may be
3065 	 * called to make the mapping read-write. Assume !vma is a shm mapping
3066 	 */
3067 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3068 		chg = region_chg(&inode->i_mapping->private_list, from, to);
3069 	else {
3070 		struct resv_map *resv_map = resv_map_alloc();
3071 		if (!resv_map)
3072 			return -ENOMEM;
3073 
3074 		chg = to - from;
3075 
3076 		set_vma_resv_map(vma, resv_map);
3077 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3078 	}
3079 
3080 	if (chg < 0) {
3081 		ret = chg;
3082 		goto out_err;
3083 	}
3084 
3085 	/* There must be enough pages in the subpool for the mapping */
3086 	if (hugepage_subpool_get_pages(spool, chg)) {
3087 		ret = -ENOSPC;
3088 		goto out_err;
3089 	}
3090 
3091 	/*
3092 	 * Check enough hugepages are available for the reservation.
3093 	 * Hand the pages back to the subpool if there are not
3094 	 */
3095 	ret = hugetlb_acct_memory(h, chg);
3096 	if (ret < 0) {
3097 		hugepage_subpool_put_pages(spool, chg);
3098 		goto out_err;
3099 	}
3100 
3101 	/*
3102 	 * Account for the reservations made. Shared mappings record regions
3103 	 * that have reservations as they are shared by multiple VMAs.
3104 	 * When the last VMA disappears, the region map says how much
3105 	 * the reservation was and the page cache tells how much of
3106 	 * the reservation was consumed. Private mappings are per-VMA and
3107 	 * only the consumed reservations are tracked. When the VMA
3108 	 * disappears, the original reservation is the VMA size and the
3109 	 * consumed reservations are stored in the map. Hence, nothing
3110 	 * else has to be done for private mappings here
3111 	 */
3112 	if (!vma || vma->vm_flags & VM_MAYSHARE)
3113 		region_add(&inode->i_mapping->private_list, from, to);
3114 	return 0;
3115 out_err:
3116 	if (vma)
3117 		resv_map_put(vma);
3118 	return ret;
3119 }
3120 
3121 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3122 {
3123 	struct hstate *h = hstate_inode(inode);
3124 	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3125 	struct hugepage_subpool *spool = subpool_inode(inode);
3126 
3127 	spin_lock(&inode->i_lock);
3128 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3129 	spin_unlock(&inode->i_lock);
3130 
3131 	hugepage_subpool_put_pages(spool, (chg - freed));
3132 	hugetlb_acct_memory(h, -(chg - freed));
3133 }
3134 
3135 #ifdef CONFIG_MEMORY_FAILURE
3136 
3137 /* Should be called in hugetlb_lock */
3138 static int is_hugepage_on_freelist(struct page *hpage)
3139 {
3140 	struct page *page;
3141 	struct page *tmp;
3142 	struct hstate *h = page_hstate(hpage);
3143 	int nid = page_to_nid(hpage);
3144 
3145 	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3146 		if (page == hpage)
3147 			return 1;
3148 	return 0;
3149 }
3150 
3151 /*
3152  * This function is called from memory failure code.
3153  * Assume the caller holds page lock of the head page.
3154  */
3155 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3156 {
3157 	struct hstate *h = page_hstate(hpage);
3158 	int nid = page_to_nid(hpage);
3159 	int ret = -EBUSY;
3160 
3161 	spin_lock(&hugetlb_lock);
3162 	if (is_hugepage_on_freelist(hpage)) {
3163 		list_del(&hpage->lru);
3164 		set_page_refcounted(hpage);
3165 		h->free_huge_pages--;
3166 		h->free_huge_pages_node[nid]--;
3167 		ret = 0;
3168 	}
3169 	spin_unlock(&hugetlb_lock);
3170 	return ret;
3171 }
3172 #endif
3173