xref: /linux/mm/hmm.c (revision 307797159ac25fe5a2048bf5c6a5718298edca57)
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35 
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37 
38 #if IS_ENABLED(CONFIG_HMM_MIRROR)
39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
40 
41 /*
42  * struct hmm - HMM per mm struct
43  *
44  * @mm: mm struct this HMM struct is bound to
45  * @lock: lock protecting ranges list
46  * @sequence: we track updates to the CPU page table with a sequence number
47  * @ranges: list of range being snapshotted
48  * @mirrors: list of mirrors for this mm
49  * @mmu_notifier: mmu notifier to track updates to CPU page table
50  * @mirrors_sem: read/write semaphore protecting the mirrors list
51  */
52 struct hmm {
53 	struct mm_struct	*mm;
54 	spinlock_t		lock;
55 	atomic_t		sequence;
56 	struct list_head	ranges;
57 	struct list_head	mirrors;
58 	struct mmu_notifier	mmu_notifier;
59 	struct rw_semaphore	mirrors_sem;
60 };
61 
62 /*
63  * hmm_register - register HMM against an mm (HMM internal)
64  *
65  * @mm: mm struct to attach to
66  *
67  * This is not intended to be used directly by device drivers. It allocates an
68  * HMM struct if mm does not have one, and initializes it.
69  */
70 static struct hmm *hmm_register(struct mm_struct *mm)
71 {
72 	struct hmm *hmm = READ_ONCE(mm->hmm);
73 	bool cleanup = false;
74 
75 	/*
76 	 * The hmm struct can only be freed once the mm_struct goes away,
77 	 * hence we should always have pre-allocated an new hmm struct
78 	 * above.
79 	 */
80 	if (hmm)
81 		return hmm;
82 
83 	hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
84 	if (!hmm)
85 		return NULL;
86 	INIT_LIST_HEAD(&hmm->mirrors);
87 	init_rwsem(&hmm->mirrors_sem);
88 	atomic_set(&hmm->sequence, 0);
89 	hmm->mmu_notifier.ops = NULL;
90 	INIT_LIST_HEAD(&hmm->ranges);
91 	spin_lock_init(&hmm->lock);
92 	hmm->mm = mm;
93 
94 	/*
95 	 * We should only get here if hold the mmap_sem in write mode ie on
96 	 * registration of first mirror through hmm_mirror_register()
97 	 */
98 	hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
99 	if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
100 		kfree(hmm);
101 		return NULL;
102 	}
103 
104 	spin_lock(&mm->page_table_lock);
105 	if (!mm->hmm)
106 		mm->hmm = hmm;
107 	else
108 		cleanup = true;
109 	spin_unlock(&mm->page_table_lock);
110 
111 	if (cleanup) {
112 		mmu_notifier_unregister(&hmm->mmu_notifier, mm);
113 		kfree(hmm);
114 	}
115 
116 	return mm->hmm;
117 }
118 
119 void hmm_mm_destroy(struct mm_struct *mm)
120 {
121 	kfree(mm->hmm);
122 }
123 
124 static void hmm_invalidate_range(struct hmm *hmm,
125 				 enum hmm_update_type action,
126 				 unsigned long start,
127 				 unsigned long end)
128 {
129 	struct hmm_mirror *mirror;
130 	struct hmm_range *range;
131 
132 	spin_lock(&hmm->lock);
133 	list_for_each_entry(range, &hmm->ranges, list) {
134 		unsigned long addr, idx, npages;
135 
136 		if (end < range->start || start >= range->end)
137 			continue;
138 
139 		range->valid = false;
140 		addr = max(start, range->start);
141 		idx = (addr - range->start) >> PAGE_SHIFT;
142 		npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
143 		memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
144 	}
145 	spin_unlock(&hmm->lock);
146 
147 	down_read(&hmm->mirrors_sem);
148 	list_for_each_entry(mirror, &hmm->mirrors, list)
149 		mirror->ops->sync_cpu_device_pagetables(mirror, action,
150 							start, end);
151 	up_read(&hmm->mirrors_sem);
152 }
153 
154 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
155 {
156 	struct hmm_mirror *mirror;
157 	struct hmm *hmm = mm->hmm;
158 
159 	down_write(&hmm->mirrors_sem);
160 	mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
161 					  list);
162 	while (mirror) {
163 		list_del_init(&mirror->list);
164 		if (mirror->ops->release) {
165 			/*
166 			 * Drop mirrors_sem so callback can wait on any pending
167 			 * work that might itself trigger mmu_notifier callback
168 			 * and thus would deadlock with us.
169 			 */
170 			up_write(&hmm->mirrors_sem);
171 			mirror->ops->release(mirror);
172 			down_write(&hmm->mirrors_sem);
173 		}
174 		mirror = list_first_entry_or_null(&hmm->mirrors,
175 						  struct hmm_mirror, list);
176 	}
177 	up_write(&hmm->mirrors_sem);
178 }
179 
180 static void hmm_invalidate_range_start(struct mmu_notifier *mn,
181 				       struct mm_struct *mm,
182 				       unsigned long start,
183 				       unsigned long end)
184 {
185 	struct hmm *hmm = mm->hmm;
186 
187 	VM_BUG_ON(!hmm);
188 
189 	atomic_inc(&hmm->sequence);
190 }
191 
192 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
193 				     struct mm_struct *mm,
194 				     unsigned long start,
195 				     unsigned long end)
196 {
197 	struct hmm *hmm = mm->hmm;
198 
199 	VM_BUG_ON(!hmm);
200 
201 	hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
202 }
203 
204 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
205 	.release		= hmm_release,
206 	.invalidate_range_start	= hmm_invalidate_range_start,
207 	.invalidate_range_end	= hmm_invalidate_range_end,
208 };
209 
210 /*
211  * hmm_mirror_register() - register a mirror against an mm
212  *
213  * @mirror: new mirror struct to register
214  * @mm: mm to register against
215  *
216  * To start mirroring a process address space, the device driver must register
217  * an HMM mirror struct.
218  *
219  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
220  */
221 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
222 {
223 	/* Sanity check */
224 	if (!mm || !mirror || !mirror->ops)
225 		return -EINVAL;
226 
227 again:
228 	mirror->hmm = hmm_register(mm);
229 	if (!mirror->hmm)
230 		return -ENOMEM;
231 
232 	down_write(&mirror->hmm->mirrors_sem);
233 	if (mirror->hmm->mm == NULL) {
234 		/*
235 		 * A racing hmm_mirror_unregister() is about to destroy the hmm
236 		 * struct. Try again to allocate a new one.
237 		 */
238 		up_write(&mirror->hmm->mirrors_sem);
239 		mirror->hmm = NULL;
240 		goto again;
241 	} else {
242 		list_add(&mirror->list, &mirror->hmm->mirrors);
243 		up_write(&mirror->hmm->mirrors_sem);
244 	}
245 
246 	return 0;
247 }
248 EXPORT_SYMBOL(hmm_mirror_register);
249 
250 /*
251  * hmm_mirror_unregister() - unregister a mirror
252  *
253  * @mirror: new mirror struct to register
254  *
255  * Stop mirroring a process address space, and cleanup.
256  */
257 void hmm_mirror_unregister(struct hmm_mirror *mirror)
258 {
259 	bool should_unregister = false;
260 	struct mm_struct *mm;
261 	struct hmm *hmm;
262 
263 	if (mirror->hmm == NULL)
264 		return;
265 
266 	hmm = mirror->hmm;
267 	down_write(&hmm->mirrors_sem);
268 	list_del_init(&mirror->list);
269 	should_unregister = list_empty(&hmm->mirrors);
270 	mirror->hmm = NULL;
271 	mm = hmm->mm;
272 	hmm->mm = NULL;
273 	up_write(&hmm->mirrors_sem);
274 
275 	if (!should_unregister || mm == NULL)
276 		return;
277 
278 	spin_lock(&mm->page_table_lock);
279 	if (mm->hmm == hmm)
280 		mm->hmm = NULL;
281 	spin_unlock(&mm->page_table_lock);
282 
283 	mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
284 	kfree(hmm);
285 }
286 EXPORT_SYMBOL(hmm_mirror_unregister);
287 
288 struct hmm_vma_walk {
289 	struct hmm_range	*range;
290 	unsigned long		last;
291 	bool			fault;
292 	bool			block;
293 };
294 
295 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
296 			    bool write_fault, uint64_t *pfn)
297 {
298 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
299 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
300 	struct hmm_range *range = hmm_vma_walk->range;
301 	struct vm_area_struct *vma = walk->vma;
302 	vm_fault_t ret;
303 
304 	flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
305 	flags |= write_fault ? FAULT_FLAG_WRITE : 0;
306 	ret = handle_mm_fault(vma, addr, flags);
307 	if (ret & VM_FAULT_RETRY)
308 		return -EBUSY;
309 	if (ret & VM_FAULT_ERROR) {
310 		*pfn = range->values[HMM_PFN_ERROR];
311 		return -EFAULT;
312 	}
313 
314 	return -EAGAIN;
315 }
316 
317 static int hmm_pfns_bad(unsigned long addr,
318 			unsigned long end,
319 			struct mm_walk *walk)
320 {
321 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
322 	struct hmm_range *range = hmm_vma_walk->range;
323 	uint64_t *pfns = range->pfns;
324 	unsigned long i;
325 
326 	i = (addr - range->start) >> PAGE_SHIFT;
327 	for (; addr < end; addr += PAGE_SIZE, i++)
328 		pfns[i] = range->values[HMM_PFN_ERROR];
329 
330 	return 0;
331 }
332 
333 /*
334  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
335  * @start: range virtual start address (inclusive)
336  * @end: range virtual end address (exclusive)
337  * @fault: should we fault or not ?
338  * @write_fault: write fault ?
339  * @walk: mm_walk structure
340  * Returns: 0 on success, -EAGAIN after page fault, or page fault error
341  *
342  * This function will be called whenever pmd_none() or pte_none() returns true,
343  * or whenever there is no page directory covering the virtual address range.
344  */
345 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
346 			      bool fault, bool write_fault,
347 			      struct mm_walk *walk)
348 {
349 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
350 	struct hmm_range *range = hmm_vma_walk->range;
351 	uint64_t *pfns = range->pfns;
352 	unsigned long i;
353 
354 	hmm_vma_walk->last = addr;
355 	i = (addr - range->start) >> PAGE_SHIFT;
356 	for (; addr < end; addr += PAGE_SIZE, i++) {
357 		pfns[i] = range->values[HMM_PFN_NONE];
358 		if (fault || write_fault) {
359 			int ret;
360 
361 			ret = hmm_vma_do_fault(walk, addr, write_fault,
362 					       &pfns[i]);
363 			if (ret != -EAGAIN)
364 				return ret;
365 		}
366 	}
367 
368 	return (fault || write_fault) ? -EAGAIN : 0;
369 }
370 
371 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
372 				      uint64_t pfns, uint64_t cpu_flags,
373 				      bool *fault, bool *write_fault)
374 {
375 	struct hmm_range *range = hmm_vma_walk->range;
376 
377 	*fault = *write_fault = false;
378 	if (!hmm_vma_walk->fault)
379 		return;
380 
381 	/* We aren't ask to do anything ... */
382 	if (!(pfns & range->flags[HMM_PFN_VALID]))
383 		return;
384 	/* If this is device memory than only fault if explicitly requested */
385 	if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
386 		/* Do we fault on device memory ? */
387 		if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
388 			*write_fault = pfns & range->flags[HMM_PFN_WRITE];
389 			*fault = true;
390 		}
391 		return;
392 	}
393 
394 	/* If CPU page table is not valid then we need to fault */
395 	*fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
396 	/* Need to write fault ? */
397 	if ((pfns & range->flags[HMM_PFN_WRITE]) &&
398 	    !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
399 		*write_fault = true;
400 		*fault = true;
401 	}
402 }
403 
404 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
405 				 const uint64_t *pfns, unsigned long npages,
406 				 uint64_t cpu_flags, bool *fault,
407 				 bool *write_fault)
408 {
409 	unsigned long i;
410 
411 	if (!hmm_vma_walk->fault) {
412 		*fault = *write_fault = false;
413 		return;
414 	}
415 
416 	for (i = 0; i < npages; ++i) {
417 		hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
418 				   fault, write_fault);
419 		if ((*fault) || (*write_fault))
420 			return;
421 	}
422 }
423 
424 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
425 			     struct mm_walk *walk)
426 {
427 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
428 	struct hmm_range *range = hmm_vma_walk->range;
429 	bool fault, write_fault;
430 	unsigned long i, npages;
431 	uint64_t *pfns;
432 
433 	i = (addr - range->start) >> PAGE_SHIFT;
434 	npages = (end - addr) >> PAGE_SHIFT;
435 	pfns = &range->pfns[i];
436 	hmm_range_need_fault(hmm_vma_walk, pfns, npages,
437 			     0, &fault, &write_fault);
438 	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
439 }
440 
441 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
442 {
443 	if (pmd_protnone(pmd))
444 		return 0;
445 	return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
446 				range->flags[HMM_PFN_WRITE] :
447 				range->flags[HMM_PFN_VALID];
448 }
449 
450 static int hmm_vma_handle_pmd(struct mm_walk *walk,
451 			      unsigned long addr,
452 			      unsigned long end,
453 			      uint64_t *pfns,
454 			      pmd_t pmd)
455 {
456 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
457 	struct hmm_range *range = hmm_vma_walk->range;
458 	unsigned long pfn, npages, i;
459 	bool fault, write_fault;
460 	uint64_t cpu_flags;
461 
462 	npages = (end - addr) >> PAGE_SHIFT;
463 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
464 	hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
465 			     &fault, &write_fault);
466 
467 	if (pmd_protnone(pmd) || fault || write_fault)
468 		return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
469 
470 	pfn = pmd_pfn(pmd) + pte_index(addr);
471 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
472 		pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
473 	hmm_vma_walk->last = end;
474 	return 0;
475 }
476 
477 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
478 {
479 	if (pte_none(pte) || !pte_present(pte))
480 		return 0;
481 	return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
482 				range->flags[HMM_PFN_WRITE] :
483 				range->flags[HMM_PFN_VALID];
484 }
485 
486 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
487 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
488 			      uint64_t *pfn)
489 {
490 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
491 	struct hmm_range *range = hmm_vma_walk->range;
492 	struct vm_area_struct *vma = walk->vma;
493 	bool fault, write_fault;
494 	uint64_t cpu_flags;
495 	pte_t pte = *ptep;
496 	uint64_t orig_pfn = *pfn;
497 
498 	*pfn = range->values[HMM_PFN_NONE];
499 	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
500 	hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
501 			   &fault, &write_fault);
502 
503 	if (pte_none(pte)) {
504 		if (fault || write_fault)
505 			goto fault;
506 		return 0;
507 	}
508 
509 	if (!pte_present(pte)) {
510 		swp_entry_t entry = pte_to_swp_entry(pte);
511 
512 		if (!non_swap_entry(entry)) {
513 			if (fault || write_fault)
514 				goto fault;
515 			return 0;
516 		}
517 
518 		/*
519 		 * This is a special swap entry, ignore migration, use
520 		 * device and report anything else as error.
521 		 */
522 		if (is_device_private_entry(entry)) {
523 			cpu_flags = range->flags[HMM_PFN_VALID] |
524 				range->flags[HMM_PFN_DEVICE_PRIVATE];
525 			cpu_flags |= is_write_device_private_entry(entry) ?
526 				range->flags[HMM_PFN_WRITE] : 0;
527 			hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
528 					   &fault, &write_fault);
529 			if (fault || write_fault)
530 				goto fault;
531 			*pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
532 			*pfn |= cpu_flags;
533 			return 0;
534 		}
535 
536 		if (is_migration_entry(entry)) {
537 			if (fault || write_fault) {
538 				pte_unmap(ptep);
539 				hmm_vma_walk->last = addr;
540 				migration_entry_wait(vma->vm_mm,
541 						     pmdp, addr);
542 				return -EAGAIN;
543 			}
544 			return 0;
545 		}
546 
547 		/* Report error for everything else */
548 		*pfn = range->values[HMM_PFN_ERROR];
549 		return -EFAULT;
550 	}
551 
552 	if (fault || write_fault)
553 		goto fault;
554 
555 	*pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
556 	return 0;
557 
558 fault:
559 	pte_unmap(ptep);
560 	/* Fault any virtual address we were asked to fault */
561 	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
562 }
563 
564 static int hmm_vma_walk_pmd(pmd_t *pmdp,
565 			    unsigned long start,
566 			    unsigned long end,
567 			    struct mm_walk *walk)
568 {
569 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
570 	struct hmm_range *range = hmm_vma_walk->range;
571 	uint64_t *pfns = range->pfns;
572 	unsigned long addr = start, i;
573 	pte_t *ptep;
574 
575 	i = (addr - range->start) >> PAGE_SHIFT;
576 
577 again:
578 	if (pmd_none(*pmdp))
579 		return hmm_vma_walk_hole(start, end, walk);
580 
581 	if (pmd_huge(*pmdp) && (range->vma->vm_flags & VM_HUGETLB))
582 		return hmm_pfns_bad(start, end, walk);
583 
584 	if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
585 		pmd_t pmd;
586 
587 		/*
588 		 * No need to take pmd_lock here, even if some other threads
589 		 * is splitting the huge pmd we will get that event through
590 		 * mmu_notifier callback.
591 		 *
592 		 * So just read pmd value and check again its a transparent
593 		 * huge or device mapping one and compute corresponding pfn
594 		 * values.
595 		 */
596 		pmd = pmd_read_atomic(pmdp);
597 		barrier();
598 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
599 			goto again;
600 
601 		return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
602 	}
603 
604 	if (pmd_bad(*pmdp))
605 		return hmm_pfns_bad(start, end, walk);
606 
607 	ptep = pte_offset_map(pmdp, addr);
608 	for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
609 		int r;
610 
611 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
612 		if (r) {
613 			/* hmm_vma_handle_pte() did unmap pte directory */
614 			hmm_vma_walk->last = addr;
615 			return r;
616 		}
617 	}
618 	pte_unmap(ptep - 1);
619 
620 	hmm_vma_walk->last = addr;
621 	return 0;
622 }
623 
624 static void hmm_pfns_clear(struct hmm_range *range,
625 			   uint64_t *pfns,
626 			   unsigned long addr,
627 			   unsigned long end)
628 {
629 	for (; addr < end; addr += PAGE_SIZE, pfns++)
630 		*pfns = range->values[HMM_PFN_NONE];
631 }
632 
633 static void hmm_pfns_special(struct hmm_range *range)
634 {
635 	unsigned long addr = range->start, i = 0;
636 
637 	for (; addr < range->end; addr += PAGE_SIZE, i++)
638 		range->pfns[i] = range->values[HMM_PFN_SPECIAL];
639 }
640 
641 /*
642  * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
643  * @range: range being snapshotted
644  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
645  *          vma permission, 0 success
646  *
647  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
648  * validity is tracked by range struct. See hmm_vma_range_done() for further
649  * information.
650  *
651  * The range struct is initialized here. It tracks the CPU page table, but only
652  * if the function returns success (0), in which case the caller must then call
653  * hmm_vma_range_done() to stop CPU page table update tracking on this range.
654  *
655  * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
656  * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
657  */
658 int hmm_vma_get_pfns(struct hmm_range *range)
659 {
660 	struct vm_area_struct *vma = range->vma;
661 	struct hmm_vma_walk hmm_vma_walk;
662 	struct mm_walk mm_walk;
663 	struct hmm *hmm;
664 
665 	/* Sanity check, this really should not happen ! */
666 	if (range->start < vma->vm_start || range->start >= vma->vm_end)
667 		return -EINVAL;
668 	if (range->end < vma->vm_start || range->end > vma->vm_end)
669 		return -EINVAL;
670 
671 	hmm = hmm_register(vma->vm_mm);
672 	if (!hmm)
673 		return -ENOMEM;
674 	/* Caller must have registered a mirror, via hmm_mirror_register() ! */
675 	if (!hmm->mmu_notifier.ops)
676 		return -EINVAL;
677 
678 	/* FIXME support hugetlb fs */
679 	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
680 			vma_is_dax(vma)) {
681 		hmm_pfns_special(range);
682 		return -EINVAL;
683 	}
684 
685 	if (!(vma->vm_flags & VM_READ)) {
686 		/*
687 		 * If vma do not allow read access, then assume that it does
688 		 * not allow write access, either. Architecture that allow
689 		 * write without read access are not supported by HMM, because
690 		 * operations such has atomic access would not work.
691 		 */
692 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
693 		return -EPERM;
694 	}
695 
696 	/* Initialize range to track CPU page table update */
697 	spin_lock(&hmm->lock);
698 	range->valid = true;
699 	list_add_rcu(&range->list, &hmm->ranges);
700 	spin_unlock(&hmm->lock);
701 
702 	hmm_vma_walk.fault = false;
703 	hmm_vma_walk.range = range;
704 	mm_walk.private = &hmm_vma_walk;
705 
706 	mm_walk.vma = vma;
707 	mm_walk.mm = vma->vm_mm;
708 	mm_walk.pte_entry = NULL;
709 	mm_walk.test_walk = NULL;
710 	mm_walk.hugetlb_entry = NULL;
711 	mm_walk.pmd_entry = hmm_vma_walk_pmd;
712 	mm_walk.pte_hole = hmm_vma_walk_hole;
713 
714 	walk_page_range(range->start, range->end, &mm_walk);
715 	return 0;
716 }
717 EXPORT_SYMBOL(hmm_vma_get_pfns);
718 
719 /*
720  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
721  * @range: range being tracked
722  * Returns: false if range data has been invalidated, true otherwise
723  *
724  * Range struct is used to track updates to the CPU page table after a call to
725  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
726  * using the data,  or wants to lock updates to the data it got from those
727  * functions, it must call the hmm_vma_range_done() function, which will then
728  * stop tracking CPU page table updates.
729  *
730  * Note that device driver must still implement general CPU page table update
731  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
732  * the mmu_notifier API directly.
733  *
734  * CPU page table update tracking done through hmm_range is only temporary and
735  * to be used while trying to duplicate CPU page table contents for a range of
736  * virtual addresses.
737  *
738  * There are two ways to use this :
739  * again:
740  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
741  *   trans = device_build_page_table_update_transaction(pfns);
742  *   device_page_table_lock();
743  *   if (!hmm_vma_range_done(range)) {
744  *     device_page_table_unlock();
745  *     goto again;
746  *   }
747  *   device_commit_transaction(trans);
748  *   device_page_table_unlock();
749  *
750  * Or:
751  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
752  *   device_page_table_lock();
753  *   hmm_vma_range_done(range);
754  *   device_update_page_table(range->pfns);
755  *   device_page_table_unlock();
756  */
757 bool hmm_vma_range_done(struct hmm_range *range)
758 {
759 	unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
760 	struct hmm *hmm;
761 
762 	if (range->end <= range->start) {
763 		BUG();
764 		return false;
765 	}
766 
767 	hmm = hmm_register(range->vma->vm_mm);
768 	if (!hmm) {
769 		memset(range->pfns, 0, sizeof(*range->pfns) * npages);
770 		return false;
771 	}
772 
773 	spin_lock(&hmm->lock);
774 	list_del_rcu(&range->list);
775 	spin_unlock(&hmm->lock);
776 
777 	return range->valid;
778 }
779 EXPORT_SYMBOL(hmm_vma_range_done);
780 
781 /*
782  * hmm_vma_fault() - try to fault some address in a virtual address range
783  * @range: range being faulted
784  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
785  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
786  *
787  * This is similar to a regular CPU page fault except that it will not trigger
788  * any memory migration if the memory being faulted is not accessible by CPUs.
789  *
790  * On error, for one virtual address in the range, the function will mark the
791  * corresponding HMM pfn entry with an error flag.
792  *
793  * Expected use pattern:
794  * retry:
795  *   down_read(&mm->mmap_sem);
796  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
797  *   // array accordingly
798  *   ret = hmm_vma_fault(range, write, block);
799  *   switch (ret) {
800  *   case -EAGAIN:
801  *     hmm_vma_range_done(range);
802  *     // You might want to rate limit or yield to play nicely, you may
803  *     // also commit any valid pfn in the array assuming that you are
804  *     // getting true from hmm_vma_range_monitor_end()
805  *     goto retry;
806  *   case 0:
807  *     break;
808  *   case -ENOMEM:
809  *   case -EINVAL:
810  *   case -EPERM:
811  *   default:
812  *     // Handle error !
813  *     up_read(&mm->mmap_sem)
814  *     return;
815  *   }
816  *   // Take device driver lock that serialize device page table update
817  *   driver_lock_device_page_table_update();
818  *   hmm_vma_range_done(range);
819  *   // Commit pfns we got from hmm_vma_fault()
820  *   driver_unlock_device_page_table_update();
821  *   up_read(&mm->mmap_sem)
822  *
823  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
824  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
825  *
826  * YOU HAVE BEEN WARNED !
827  */
828 int hmm_vma_fault(struct hmm_range *range, bool block)
829 {
830 	struct vm_area_struct *vma = range->vma;
831 	unsigned long start = range->start;
832 	struct hmm_vma_walk hmm_vma_walk;
833 	struct mm_walk mm_walk;
834 	struct hmm *hmm;
835 	int ret;
836 
837 	/* Sanity check, this really should not happen ! */
838 	if (range->start < vma->vm_start || range->start >= vma->vm_end)
839 		return -EINVAL;
840 	if (range->end < vma->vm_start || range->end > vma->vm_end)
841 		return -EINVAL;
842 
843 	hmm = hmm_register(vma->vm_mm);
844 	if (!hmm) {
845 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
846 		return -ENOMEM;
847 	}
848 	/* Caller must have registered a mirror using hmm_mirror_register() */
849 	if (!hmm->mmu_notifier.ops)
850 		return -EINVAL;
851 
852 	/* FIXME support hugetlb fs */
853 	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
854 			vma_is_dax(vma)) {
855 		hmm_pfns_special(range);
856 		return -EINVAL;
857 	}
858 
859 	if (!(vma->vm_flags & VM_READ)) {
860 		/*
861 		 * If vma do not allow read access, then assume that it does
862 		 * not allow write access, either. Architecture that allow
863 		 * write without read access are not supported by HMM, because
864 		 * operations such has atomic access would not work.
865 		 */
866 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
867 		return -EPERM;
868 	}
869 
870 	/* Initialize range to track CPU page table update */
871 	spin_lock(&hmm->lock);
872 	range->valid = true;
873 	list_add_rcu(&range->list, &hmm->ranges);
874 	spin_unlock(&hmm->lock);
875 
876 	hmm_vma_walk.fault = true;
877 	hmm_vma_walk.block = block;
878 	hmm_vma_walk.range = range;
879 	mm_walk.private = &hmm_vma_walk;
880 	hmm_vma_walk.last = range->start;
881 
882 	mm_walk.vma = vma;
883 	mm_walk.mm = vma->vm_mm;
884 	mm_walk.pte_entry = NULL;
885 	mm_walk.test_walk = NULL;
886 	mm_walk.hugetlb_entry = NULL;
887 	mm_walk.pmd_entry = hmm_vma_walk_pmd;
888 	mm_walk.pte_hole = hmm_vma_walk_hole;
889 
890 	do {
891 		ret = walk_page_range(start, range->end, &mm_walk);
892 		start = hmm_vma_walk.last;
893 	} while (ret == -EAGAIN);
894 
895 	if (ret) {
896 		unsigned long i;
897 
898 		i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
899 		hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
900 			       range->end);
901 		hmm_vma_range_done(range);
902 	}
903 	return ret;
904 }
905 EXPORT_SYMBOL(hmm_vma_fault);
906 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
907 
908 
909 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
910 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
911 				       unsigned long addr)
912 {
913 	struct page *page;
914 
915 	page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
916 	if (!page)
917 		return NULL;
918 	lock_page(page);
919 	return page;
920 }
921 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
922 
923 
924 static void hmm_devmem_ref_release(struct percpu_ref *ref)
925 {
926 	struct hmm_devmem *devmem;
927 
928 	devmem = container_of(ref, struct hmm_devmem, ref);
929 	complete(&devmem->completion);
930 }
931 
932 static void hmm_devmem_ref_exit(void *data)
933 {
934 	struct percpu_ref *ref = data;
935 	struct hmm_devmem *devmem;
936 
937 	devmem = container_of(ref, struct hmm_devmem, ref);
938 	percpu_ref_exit(ref);
939 	devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
940 }
941 
942 static void hmm_devmem_ref_kill(void *data)
943 {
944 	struct percpu_ref *ref = data;
945 	struct hmm_devmem *devmem;
946 
947 	devmem = container_of(ref, struct hmm_devmem, ref);
948 	percpu_ref_kill(ref);
949 	wait_for_completion(&devmem->completion);
950 	devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
951 }
952 
953 static int hmm_devmem_fault(struct vm_area_struct *vma,
954 			    unsigned long addr,
955 			    const struct page *page,
956 			    unsigned int flags,
957 			    pmd_t *pmdp)
958 {
959 	struct hmm_devmem *devmem = page->pgmap->data;
960 
961 	return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
962 }
963 
964 static void hmm_devmem_free(struct page *page, void *data)
965 {
966 	struct hmm_devmem *devmem = data;
967 
968 	devmem->ops->free(devmem, page);
969 }
970 
971 static DEFINE_MUTEX(hmm_devmem_lock);
972 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
973 
974 static void hmm_devmem_radix_release(struct resource *resource)
975 {
976 	resource_size_t key;
977 
978 	mutex_lock(&hmm_devmem_lock);
979 	for (key = resource->start;
980 	     key <= resource->end;
981 	     key += PA_SECTION_SIZE)
982 		radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
983 	mutex_unlock(&hmm_devmem_lock);
984 }
985 
986 static void hmm_devmem_release(struct device *dev, void *data)
987 {
988 	struct hmm_devmem *devmem = data;
989 	struct resource *resource = devmem->resource;
990 	unsigned long start_pfn, npages;
991 	struct zone *zone;
992 	struct page *page;
993 
994 	if (percpu_ref_tryget_live(&devmem->ref)) {
995 		dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
996 		percpu_ref_put(&devmem->ref);
997 	}
998 
999 	/* pages are dead and unused, undo the arch mapping */
1000 	start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
1001 	npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
1002 
1003 	page = pfn_to_page(start_pfn);
1004 	zone = page_zone(page);
1005 
1006 	mem_hotplug_begin();
1007 	if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
1008 		__remove_pages(zone, start_pfn, npages, NULL);
1009 	else
1010 		arch_remove_memory(start_pfn << PAGE_SHIFT,
1011 				   npages << PAGE_SHIFT, NULL);
1012 	mem_hotplug_done();
1013 
1014 	hmm_devmem_radix_release(resource);
1015 }
1016 
1017 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
1018 {
1019 	resource_size_t key, align_start, align_size, align_end;
1020 	struct device *device = devmem->device;
1021 	int ret, nid, is_ram;
1022 	unsigned long pfn;
1023 
1024 	align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
1025 	align_size = ALIGN(devmem->resource->start +
1026 			   resource_size(devmem->resource),
1027 			   PA_SECTION_SIZE) - align_start;
1028 
1029 	is_ram = region_intersects(align_start, align_size,
1030 				   IORESOURCE_SYSTEM_RAM,
1031 				   IORES_DESC_NONE);
1032 	if (is_ram == REGION_MIXED) {
1033 		WARN_ONCE(1, "%s attempted on mixed region %pr\n",
1034 				__func__, devmem->resource);
1035 		return -ENXIO;
1036 	}
1037 	if (is_ram == REGION_INTERSECTS)
1038 		return -ENXIO;
1039 
1040 	if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
1041 		devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1042 	else
1043 		devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1044 
1045 	devmem->pagemap.res = *devmem->resource;
1046 	devmem->pagemap.page_fault = hmm_devmem_fault;
1047 	devmem->pagemap.page_free = hmm_devmem_free;
1048 	devmem->pagemap.dev = devmem->device;
1049 	devmem->pagemap.ref = &devmem->ref;
1050 	devmem->pagemap.data = devmem;
1051 
1052 	mutex_lock(&hmm_devmem_lock);
1053 	align_end = align_start + align_size - 1;
1054 	for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
1055 		struct hmm_devmem *dup;
1056 
1057 		dup = radix_tree_lookup(&hmm_devmem_radix,
1058 					key >> PA_SECTION_SHIFT);
1059 		if (dup) {
1060 			dev_err(device, "%s: collides with mapping for %s\n",
1061 				__func__, dev_name(dup->device));
1062 			mutex_unlock(&hmm_devmem_lock);
1063 			ret = -EBUSY;
1064 			goto error;
1065 		}
1066 		ret = radix_tree_insert(&hmm_devmem_radix,
1067 					key >> PA_SECTION_SHIFT,
1068 					devmem);
1069 		if (ret) {
1070 			dev_err(device, "%s: failed: %d\n", __func__, ret);
1071 			mutex_unlock(&hmm_devmem_lock);
1072 			goto error_radix;
1073 		}
1074 	}
1075 	mutex_unlock(&hmm_devmem_lock);
1076 
1077 	nid = dev_to_node(device);
1078 	if (nid < 0)
1079 		nid = numa_mem_id();
1080 
1081 	mem_hotplug_begin();
1082 	/*
1083 	 * For device private memory we call add_pages() as we only need to
1084 	 * allocate and initialize struct page for the device memory. More-
1085 	 * over the device memory is un-accessible thus we do not want to
1086 	 * create a linear mapping for the memory like arch_add_memory()
1087 	 * would do.
1088 	 *
1089 	 * For device public memory, which is accesible by the CPU, we do
1090 	 * want the linear mapping and thus use arch_add_memory().
1091 	 */
1092 	if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
1093 		ret = arch_add_memory(nid, align_start, align_size, NULL,
1094 				false);
1095 	else
1096 		ret = add_pages(nid, align_start >> PAGE_SHIFT,
1097 				align_size >> PAGE_SHIFT, NULL, false);
1098 	if (ret) {
1099 		mem_hotplug_done();
1100 		goto error_add_memory;
1101 	}
1102 	move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1103 				align_start >> PAGE_SHIFT,
1104 				align_size >> PAGE_SHIFT, NULL);
1105 	mem_hotplug_done();
1106 
1107 	for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
1108 		struct page *page = pfn_to_page(pfn);
1109 
1110 		page->pgmap = &devmem->pagemap;
1111 	}
1112 	return 0;
1113 
1114 error_add_memory:
1115 	untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
1116 error_radix:
1117 	hmm_devmem_radix_release(devmem->resource);
1118 error:
1119 	return ret;
1120 }
1121 
1122 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
1123 {
1124 	struct hmm_devmem *devmem = data;
1125 
1126 	return devmem->resource == match_data;
1127 }
1128 
1129 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
1130 {
1131 	devres_release(devmem->device, &hmm_devmem_release,
1132 		       &hmm_devmem_match, devmem->resource);
1133 }
1134 
1135 /*
1136  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1137  *
1138  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1139  * @device: device struct to bind the resource too
1140  * @size: size in bytes of the device memory to add
1141  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1142  *
1143  * This function first finds an empty range of physical address big enough to
1144  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1145  * in turn allocates struct pages. It does not do anything beyond that; all
1146  * events affecting the memory will go through the various callbacks provided
1147  * by hmm_devmem_ops struct.
1148  *
1149  * Device driver should call this function during device initialization and
1150  * is then responsible of memory management. HMM only provides helpers.
1151  */
1152 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1153 				  struct device *device,
1154 				  unsigned long size)
1155 {
1156 	struct hmm_devmem *devmem;
1157 	resource_size_t addr;
1158 	int ret;
1159 
1160 	dev_pagemap_get_ops();
1161 
1162 	devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1163 				   GFP_KERNEL, dev_to_node(device));
1164 	if (!devmem)
1165 		return ERR_PTR(-ENOMEM);
1166 
1167 	init_completion(&devmem->completion);
1168 	devmem->pfn_first = -1UL;
1169 	devmem->pfn_last = -1UL;
1170 	devmem->resource = NULL;
1171 	devmem->device = device;
1172 	devmem->ops = ops;
1173 
1174 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1175 			      0, GFP_KERNEL);
1176 	if (ret)
1177 		goto error_percpu_ref;
1178 
1179 	ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1180 	if (ret)
1181 		goto error_devm_add_action;
1182 
1183 	size = ALIGN(size, PA_SECTION_SIZE);
1184 	addr = min((unsigned long)iomem_resource.end,
1185 		   (1UL << MAX_PHYSMEM_BITS) - 1);
1186 	addr = addr - size + 1UL;
1187 
1188 	/*
1189 	 * FIXME add a new helper to quickly walk resource tree and find free
1190 	 * range
1191 	 *
1192 	 * FIXME what about ioport_resource resource ?
1193 	 */
1194 	for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1195 		ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1196 		if (ret != REGION_DISJOINT)
1197 			continue;
1198 
1199 		devmem->resource = devm_request_mem_region(device, addr, size,
1200 							   dev_name(device));
1201 		if (!devmem->resource) {
1202 			ret = -ENOMEM;
1203 			goto error_no_resource;
1204 		}
1205 		break;
1206 	}
1207 	if (!devmem->resource) {
1208 		ret = -ERANGE;
1209 		goto error_no_resource;
1210 	}
1211 
1212 	devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1213 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1214 	devmem->pfn_last = devmem->pfn_first +
1215 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1216 
1217 	ret = hmm_devmem_pages_create(devmem);
1218 	if (ret)
1219 		goto error_pages;
1220 
1221 	devres_add(device, devmem);
1222 
1223 	ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1224 	if (ret) {
1225 		hmm_devmem_remove(devmem);
1226 		return ERR_PTR(ret);
1227 	}
1228 
1229 	return devmem;
1230 
1231 error_pages:
1232 	devm_release_mem_region(device, devmem->resource->start,
1233 				resource_size(devmem->resource));
1234 error_no_resource:
1235 error_devm_add_action:
1236 	hmm_devmem_ref_kill(&devmem->ref);
1237 	hmm_devmem_ref_exit(&devmem->ref);
1238 error_percpu_ref:
1239 	devres_free(devmem);
1240 	return ERR_PTR(ret);
1241 }
1242 EXPORT_SYMBOL(hmm_devmem_add);
1243 
1244 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1245 					   struct device *device,
1246 					   struct resource *res)
1247 {
1248 	struct hmm_devmem *devmem;
1249 	int ret;
1250 
1251 	if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1252 		return ERR_PTR(-EINVAL);
1253 
1254 	dev_pagemap_get_ops();
1255 
1256 	devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1257 				   GFP_KERNEL, dev_to_node(device));
1258 	if (!devmem)
1259 		return ERR_PTR(-ENOMEM);
1260 
1261 	init_completion(&devmem->completion);
1262 	devmem->pfn_first = -1UL;
1263 	devmem->pfn_last = -1UL;
1264 	devmem->resource = res;
1265 	devmem->device = device;
1266 	devmem->ops = ops;
1267 
1268 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1269 			      0, GFP_KERNEL);
1270 	if (ret)
1271 		goto error_percpu_ref;
1272 
1273 	ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1274 	if (ret)
1275 		goto error_devm_add_action;
1276 
1277 
1278 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1279 	devmem->pfn_last = devmem->pfn_first +
1280 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1281 
1282 	ret = hmm_devmem_pages_create(devmem);
1283 	if (ret)
1284 		goto error_devm_add_action;
1285 
1286 	devres_add(device, devmem);
1287 
1288 	ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1289 	if (ret) {
1290 		hmm_devmem_remove(devmem);
1291 		return ERR_PTR(ret);
1292 	}
1293 
1294 	return devmem;
1295 
1296 error_devm_add_action:
1297 	hmm_devmem_ref_kill(&devmem->ref);
1298 	hmm_devmem_ref_exit(&devmem->ref);
1299 error_percpu_ref:
1300 	devres_free(devmem);
1301 	return ERR_PTR(ret);
1302 }
1303 EXPORT_SYMBOL(hmm_devmem_add_resource);
1304 
1305 /*
1306  * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1307  *
1308  * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1309  *
1310  * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1311  * of the device driver. It will free struct page and remove the resource that
1312  * reserved the physical address range for this device memory.
1313  */
1314 void hmm_devmem_remove(struct hmm_devmem *devmem)
1315 {
1316 	resource_size_t start, size;
1317 	struct device *device;
1318 	bool cdm = false;
1319 
1320 	if (!devmem)
1321 		return;
1322 
1323 	device = devmem->device;
1324 	start = devmem->resource->start;
1325 	size = resource_size(devmem->resource);
1326 
1327 	cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1328 	hmm_devmem_ref_kill(&devmem->ref);
1329 	hmm_devmem_ref_exit(&devmem->ref);
1330 	hmm_devmem_pages_remove(devmem);
1331 
1332 	if (!cdm)
1333 		devm_release_mem_region(device, start, size);
1334 }
1335 EXPORT_SYMBOL(hmm_devmem_remove);
1336 
1337 /*
1338  * A device driver that wants to handle multiple devices memory through a
1339  * single fake device can use hmm_device to do so. This is purely a helper
1340  * and it is not needed to make use of any HMM functionality.
1341  */
1342 #define HMM_DEVICE_MAX 256
1343 
1344 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1345 static DEFINE_SPINLOCK(hmm_device_lock);
1346 static struct class *hmm_device_class;
1347 static dev_t hmm_device_devt;
1348 
1349 static void hmm_device_release(struct device *device)
1350 {
1351 	struct hmm_device *hmm_device;
1352 
1353 	hmm_device = container_of(device, struct hmm_device, device);
1354 	spin_lock(&hmm_device_lock);
1355 	clear_bit(hmm_device->minor, hmm_device_mask);
1356 	spin_unlock(&hmm_device_lock);
1357 
1358 	kfree(hmm_device);
1359 }
1360 
1361 struct hmm_device *hmm_device_new(void *drvdata)
1362 {
1363 	struct hmm_device *hmm_device;
1364 
1365 	hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1366 	if (!hmm_device)
1367 		return ERR_PTR(-ENOMEM);
1368 
1369 	spin_lock(&hmm_device_lock);
1370 	hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1371 	if (hmm_device->minor >= HMM_DEVICE_MAX) {
1372 		spin_unlock(&hmm_device_lock);
1373 		kfree(hmm_device);
1374 		return ERR_PTR(-EBUSY);
1375 	}
1376 	set_bit(hmm_device->minor, hmm_device_mask);
1377 	spin_unlock(&hmm_device_lock);
1378 
1379 	dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1380 	hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1381 					hmm_device->minor);
1382 	hmm_device->device.release = hmm_device_release;
1383 	dev_set_drvdata(&hmm_device->device, drvdata);
1384 	hmm_device->device.class = hmm_device_class;
1385 	device_initialize(&hmm_device->device);
1386 
1387 	return hmm_device;
1388 }
1389 EXPORT_SYMBOL(hmm_device_new);
1390 
1391 void hmm_device_put(struct hmm_device *hmm_device)
1392 {
1393 	put_device(&hmm_device->device);
1394 }
1395 EXPORT_SYMBOL(hmm_device_put);
1396 
1397 static int __init hmm_init(void)
1398 {
1399 	int ret;
1400 
1401 	ret = alloc_chrdev_region(&hmm_device_devt, 0,
1402 				  HMM_DEVICE_MAX,
1403 				  "hmm_device");
1404 	if (ret)
1405 		return ret;
1406 
1407 	hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1408 	if (IS_ERR(hmm_device_class)) {
1409 		unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1410 		return PTR_ERR(hmm_device_class);
1411 	}
1412 	return 0;
1413 }
1414 
1415 device_initcall(hmm_init);
1416 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
1417