xref: /linux/mm/highmem.c (revision cdb138080b78146d1cdadba9f5dadbeb97445b91)
1 /*
2  * High memory handling common code and variables.
3  *
4  * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
5  *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
6  *
7  *
8  * Redesigned the x86 32-bit VM architecture to deal with
9  * 64-bit physical space. With current x86 CPUs this
10  * means up to 64 Gigabytes physical RAM.
11  *
12  * Rewrote high memory support to move the page cache into
13  * high memory. Implemented permanent (schedulable) kmaps
14  * based on Linus' idea.
15  *
16  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
17  */
18 
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/swap.h>
22 #include <linux/bio.h>
23 #include <linux/pagemap.h>
24 #include <linux/mempool.h>
25 #include <linux/blkdev.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/highmem.h>
29 #include <linux/kgdb.h>
30 #include <asm/tlbflush.h>
31 
32 /*
33  * Virtual_count is not a pure "count".
34  *  0 means that it is not mapped, and has not been mapped
35  *    since a TLB flush - it is usable.
36  *  1 means that there are no users, but it has been mapped
37  *    since the last TLB flush - so we can't use it.
38  *  n means that there are (n-1) current users of it.
39  */
40 #ifdef CONFIG_HIGHMEM
41 
42 unsigned long totalhigh_pages __read_mostly;
43 EXPORT_SYMBOL(totalhigh_pages);
44 
45 unsigned int nr_free_highpages (void)
46 {
47 	pg_data_t *pgdat;
48 	unsigned int pages = 0;
49 
50 	for_each_online_pgdat(pgdat) {
51 		pages += zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
52 			NR_FREE_PAGES);
53 		if (zone_movable_is_highmem())
54 			pages += zone_page_state(
55 					&pgdat->node_zones[ZONE_MOVABLE],
56 					NR_FREE_PAGES);
57 	}
58 
59 	return pages;
60 }
61 
62 static int pkmap_count[LAST_PKMAP];
63 static unsigned int last_pkmap_nr;
64 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
65 
66 pte_t * pkmap_page_table;
67 
68 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
69 
70 /*
71  * Most architectures have no use for kmap_high_get(), so let's abstract
72  * the disabling of IRQ out of the locking in that case to save on a
73  * potential useless overhead.
74  */
75 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
76 #define lock_kmap()             spin_lock_irq(&kmap_lock)
77 #define unlock_kmap()           spin_unlock_irq(&kmap_lock)
78 #define lock_kmap_any(flags)    spin_lock_irqsave(&kmap_lock, flags)
79 #define unlock_kmap_any(flags)  spin_unlock_irqrestore(&kmap_lock, flags)
80 #else
81 #define lock_kmap()             spin_lock(&kmap_lock)
82 #define unlock_kmap()           spin_unlock(&kmap_lock)
83 #define lock_kmap_any(flags)    \
84 		do { spin_lock(&kmap_lock); (void)(flags); } while (0)
85 #define unlock_kmap_any(flags)  \
86 		do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
87 #endif
88 
89 static void flush_all_zero_pkmaps(void)
90 {
91 	int i;
92 	int need_flush = 0;
93 
94 	flush_cache_kmaps();
95 
96 	for (i = 0; i < LAST_PKMAP; i++) {
97 		struct page *page;
98 
99 		/*
100 		 * zero means we don't have anything to do,
101 		 * >1 means that it is still in use. Only
102 		 * a count of 1 means that it is free but
103 		 * needs to be unmapped
104 		 */
105 		if (pkmap_count[i] != 1)
106 			continue;
107 		pkmap_count[i] = 0;
108 
109 		/* sanity check */
110 		BUG_ON(pte_none(pkmap_page_table[i]));
111 
112 		/*
113 		 * Don't need an atomic fetch-and-clear op here;
114 		 * no-one has the page mapped, and cannot get at
115 		 * its virtual address (and hence PTE) without first
116 		 * getting the kmap_lock (which is held here).
117 		 * So no dangers, even with speculative execution.
118 		 */
119 		page = pte_page(pkmap_page_table[i]);
120 		pte_clear(&init_mm, (unsigned long)page_address(page),
121 			  &pkmap_page_table[i]);
122 
123 		set_page_address(page, NULL);
124 		need_flush = 1;
125 	}
126 	if (need_flush)
127 		flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
128 }
129 
130 /**
131  * kmap_flush_unused - flush all unused kmap mappings in order to remove stray mappings
132  */
133 void kmap_flush_unused(void)
134 {
135 	lock_kmap();
136 	flush_all_zero_pkmaps();
137 	unlock_kmap();
138 }
139 
140 static inline unsigned long map_new_virtual(struct page *page)
141 {
142 	unsigned long vaddr;
143 	int count;
144 
145 start:
146 	count = LAST_PKMAP;
147 	/* Find an empty entry */
148 	for (;;) {
149 		last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
150 		if (!last_pkmap_nr) {
151 			flush_all_zero_pkmaps();
152 			count = LAST_PKMAP;
153 		}
154 		if (!pkmap_count[last_pkmap_nr])
155 			break;	/* Found a usable entry */
156 		if (--count)
157 			continue;
158 
159 		/*
160 		 * Sleep for somebody else to unmap their entries
161 		 */
162 		{
163 			DECLARE_WAITQUEUE(wait, current);
164 
165 			__set_current_state(TASK_UNINTERRUPTIBLE);
166 			add_wait_queue(&pkmap_map_wait, &wait);
167 			unlock_kmap();
168 			schedule();
169 			remove_wait_queue(&pkmap_map_wait, &wait);
170 			lock_kmap();
171 
172 			/* Somebody else might have mapped it while we slept */
173 			if (page_address(page))
174 				return (unsigned long)page_address(page);
175 
176 			/* Re-start */
177 			goto start;
178 		}
179 	}
180 	vaddr = PKMAP_ADDR(last_pkmap_nr);
181 	set_pte_at(&init_mm, vaddr,
182 		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
183 
184 	pkmap_count[last_pkmap_nr] = 1;
185 	set_page_address(page, (void *)vaddr);
186 
187 	return vaddr;
188 }
189 
190 /**
191  * kmap_high - map a highmem page into memory
192  * @page: &struct page to map
193  *
194  * Returns the page's virtual memory address.
195  *
196  * We cannot call this from interrupts, as it may block.
197  */
198 void *kmap_high(struct page *page)
199 {
200 	unsigned long vaddr;
201 
202 	/*
203 	 * For highmem pages, we can't trust "virtual" until
204 	 * after we have the lock.
205 	 */
206 	lock_kmap();
207 	vaddr = (unsigned long)page_address(page);
208 	if (!vaddr)
209 		vaddr = map_new_virtual(page);
210 	pkmap_count[PKMAP_NR(vaddr)]++;
211 	BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
212 	unlock_kmap();
213 	return (void*) vaddr;
214 }
215 
216 EXPORT_SYMBOL(kmap_high);
217 
218 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
219 /**
220  * kmap_high_get - pin a highmem page into memory
221  * @page: &struct page to pin
222  *
223  * Returns the page's current virtual memory address, or NULL if no mapping
224  * exists.  If and only if a non null address is returned then a
225  * matching call to kunmap_high() is necessary.
226  *
227  * This can be called from any context.
228  */
229 void *kmap_high_get(struct page *page)
230 {
231 	unsigned long vaddr, flags;
232 
233 	lock_kmap_any(flags);
234 	vaddr = (unsigned long)page_address(page);
235 	if (vaddr) {
236 		BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
237 		pkmap_count[PKMAP_NR(vaddr)]++;
238 	}
239 	unlock_kmap_any(flags);
240 	return (void*) vaddr;
241 }
242 #endif
243 
244 /**
245  * kunmap_high - map a highmem page into memory
246  * @page: &struct page to unmap
247  *
248  * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
249  * only from user context.
250  */
251 void kunmap_high(struct page *page)
252 {
253 	unsigned long vaddr;
254 	unsigned long nr;
255 	unsigned long flags;
256 	int need_wakeup;
257 
258 	lock_kmap_any(flags);
259 	vaddr = (unsigned long)page_address(page);
260 	BUG_ON(!vaddr);
261 	nr = PKMAP_NR(vaddr);
262 
263 	/*
264 	 * A count must never go down to zero
265 	 * without a TLB flush!
266 	 */
267 	need_wakeup = 0;
268 	switch (--pkmap_count[nr]) {
269 	case 0:
270 		BUG();
271 	case 1:
272 		/*
273 		 * Avoid an unnecessary wake_up() function call.
274 		 * The common case is pkmap_count[] == 1, but
275 		 * no waiters.
276 		 * The tasks queued in the wait-queue are guarded
277 		 * by both the lock in the wait-queue-head and by
278 		 * the kmap_lock.  As the kmap_lock is held here,
279 		 * no need for the wait-queue-head's lock.  Simply
280 		 * test if the queue is empty.
281 		 */
282 		need_wakeup = waitqueue_active(&pkmap_map_wait);
283 	}
284 	unlock_kmap_any(flags);
285 
286 	/* do wake-up, if needed, race-free outside of the spin lock */
287 	if (need_wakeup)
288 		wake_up(&pkmap_map_wait);
289 }
290 
291 EXPORT_SYMBOL(kunmap_high);
292 #endif
293 
294 #if defined(HASHED_PAGE_VIRTUAL)
295 
296 #define PA_HASH_ORDER	7
297 
298 /*
299  * Describes one page->virtual association
300  */
301 struct page_address_map {
302 	struct page *page;
303 	void *virtual;
304 	struct list_head list;
305 };
306 
307 /*
308  * page_address_map freelist, allocated from page_address_maps.
309  */
310 static struct list_head page_address_pool;	/* freelist */
311 static spinlock_t pool_lock;			/* protects page_address_pool */
312 
313 /*
314  * Hash table bucket
315  */
316 static struct page_address_slot {
317 	struct list_head lh;			/* List of page_address_maps */
318 	spinlock_t lock;			/* Protect this bucket's list */
319 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
320 
321 static struct page_address_slot *page_slot(struct page *page)
322 {
323 	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
324 }
325 
326 /**
327  * page_address - get the mapped virtual address of a page
328  * @page: &struct page to get the virtual address of
329  *
330  * Returns the page's virtual address.
331  */
332 void *page_address(struct page *page)
333 {
334 	unsigned long flags;
335 	void *ret;
336 	struct page_address_slot *pas;
337 
338 	if (!PageHighMem(page))
339 		return lowmem_page_address(page);
340 
341 	pas = page_slot(page);
342 	ret = NULL;
343 	spin_lock_irqsave(&pas->lock, flags);
344 	if (!list_empty(&pas->lh)) {
345 		struct page_address_map *pam;
346 
347 		list_for_each_entry(pam, &pas->lh, list) {
348 			if (pam->page == page) {
349 				ret = pam->virtual;
350 				goto done;
351 			}
352 		}
353 	}
354 done:
355 	spin_unlock_irqrestore(&pas->lock, flags);
356 	return ret;
357 }
358 
359 EXPORT_SYMBOL(page_address);
360 
361 /**
362  * set_page_address - set a page's virtual address
363  * @page: &struct page to set
364  * @virtual: virtual address to use
365  */
366 void set_page_address(struct page *page, void *virtual)
367 {
368 	unsigned long flags;
369 	struct page_address_slot *pas;
370 	struct page_address_map *pam;
371 
372 	BUG_ON(!PageHighMem(page));
373 
374 	pas = page_slot(page);
375 	if (virtual) {		/* Add */
376 		BUG_ON(list_empty(&page_address_pool));
377 
378 		spin_lock_irqsave(&pool_lock, flags);
379 		pam = list_entry(page_address_pool.next,
380 				struct page_address_map, list);
381 		list_del(&pam->list);
382 		spin_unlock_irqrestore(&pool_lock, flags);
383 
384 		pam->page = page;
385 		pam->virtual = virtual;
386 
387 		spin_lock_irqsave(&pas->lock, flags);
388 		list_add_tail(&pam->list, &pas->lh);
389 		spin_unlock_irqrestore(&pas->lock, flags);
390 	} else {		/* Remove */
391 		spin_lock_irqsave(&pas->lock, flags);
392 		list_for_each_entry(pam, &pas->lh, list) {
393 			if (pam->page == page) {
394 				list_del(&pam->list);
395 				spin_unlock_irqrestore(&pas->lock, flags);
396 				spin_lock_irqsave(&pool_lock, flags);
397 				list_add_tail(&pam->list, &page_address_pool);
398 				spin_unlock_irqrestore(&pool_lock, flags);
399 				goto done;
400 			}
401 		}
402 		spin_unlock_irqrestore(&pas->lock, flags);
403 	}
404 done:
405 	return;
406 }
407 
408 static struct page_address_map page_address_maps[LAST_PKMAP];
409 
410 void __init page_address_init(void)
411 {
412 	int i;
413 
414 	INIT_LIST_HEAD(&page_address_pool);
415 	for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)
416 		list_add(&page_address_maps[i].list, &page_address_pool);
417 	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
418 		INIT_LIST_HEAD(&page_address_htable[i].lh);
419 		spin_lock_init(&page_address_htable[i].lock);
420 	}
421 	spin_lock_init(&pool_lock);
422 }
423 
424 #endif	/* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */
425 
426 #ifdef CONFIG_DEBUG_HIGHMEM
427 
428 void debug_kmap_atomic(enum km_type type)
429 {
430 	static int warn_count = 10;
431 
432 	if (unlikely(warn_count < 0))
433 		return;
434 
435 	if (unlikely(in_interrupt())) {
436 		if (in_nmi()) {
437 			if (type != KM_NMI && type != KM_NMI_PTE) {
438 				WARN_ON(1);
439 				warn_count--;
440 			}
441 		} else if (in_irq()) {
442 			if (type != KM_IRQ0 && type != KM_IRQ1 &&
443 			    type != KM_BIO_SRC_IRQ && type != KM_BIO_DST_IRQ &&
444 			    type != KM_BOUNCE_READ && type != KM_IRQ_PTE) {
445 				WARN_ON(1);
446 				warn_count--;
447 			}
448 		} else if (!irqs_disabled()) {	/* softirq */
449 			if (type != KM_IRQ0 && type != KM_IRQ1 &&
450 			    type != KM_SOFTIRQ0 && type != KM_SOFTIRQ1 &&
451 			    type != KM_SKB_SUNRPC_DATA &&
452 			    type != KM_SKB_DATA_SOFTIRQ &&
453 			    type != KM_BOUNCE_READ) {
454 				WARN_ON(1);
455 				warn_count--;
456 			}
457 		}
458 	}
459 
460 	if (type == KM_IRQ0 || type == KM_IRQ1 || type == KM_BOUNCE_READ ||
461 			type == KM_BIO_SRC_IRQ || type == KM_BIO_DST_IRQ ||
462 			type == KM_IRQ_PTE || type == KM_NMI ||
463 			type == KM_NMI_PTE ) {
464 		if (!irqs_disabled()) {
465 			WARN_ON(1);
466 			warn_count--;
467 		}
468 	} else if (type == KM_SOFTIRQ0 || type == KM_SOFTIRQ1) {
469 		if (irq_count() == 0 && !irqs_disabled()) {
470 			WARN_ON(1);
471 			warn_count--;
472 		}
473 	}
474 #ifdef CONFIG_KGDB_KDB
475 	if (unlikely(type == KM_KDB && atomic_read(&kgdb_active) == -1)) {
476 		WARN_ON(1);
477 		warn_count--;
478 	}
479 #endif /* CONFIG_KGDB_KDB */
480 }
481 
482 #endif
483