xref: /linux/kernel/time/timer.c (revision eeb9f5c2dcec90009d7cf12e780e7f9631993fc5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel internal timers
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
8  *
9  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
10  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
11  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12  *              serialize accesses to xtime/lost_ticks).
13  *                              Copyright (C) 1998  Andrea Arcangeli
14  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
15  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
16  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
17  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
18  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19  */
20 
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 #include <linux/random.h>
47 #include <linux/sysctl.h>
48 
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/div64.h>
52 #include <asm/timex.h>
53 #include <asm/io.h>
54 
55 #include "tick-internal.h"
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/timer.h>
59 
60 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
61 
62 EXPORT_SYMBOL(jiffies_64);
63 
64 /*
65  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
66  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
67  * level has a different granularity.
68  *
69  * The level granularity is:		LVL_CLK_DIV ^ lvl
70  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
71  *
72  * The array level of a newly armed timer depends on the relative expiry
73  * time. The farther the expiry time is away the higher the array level and
74  * therefor the granularity becomes.
75  *
76  * Contrary to the original timer wheel implementation, which aims for 'exact'
77  * expiry of the timers, this implementation removes the need for recascading
78  * the timers into the lower array levels. The previous 'classic' timer wheel
79  * implementation of the kernel already violated the 'exact' expiry by adding
80  * slack to the expiry time to provide batched expiration. The granularity
81  * levels provide implicit batching.
82  *
83  * This is an optimization of the original timer wheel implementation for the
84  * majority of the timer wheel use cases: timeouts. The vast majority of
85  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
86  * the timeout expires it indicates that normal operation is disturbed, so it
87  * does not matter much whether the timeout comes with a slight delay.
88  *
89  * The only exception to this are networking timers with a small expiry
90  * time. They rely on the granularity. Those fit into the first wheel level,
91  * which has HZ granularity.
92  *
93  * We don't have cascading anymore. timers with a expiry time above the
94  * capacity of the last wheel level are force expired at the maximum timeout
95  * value of the last wheel level. From data sampling we know that the maximum
96  * value observed is 5 days (network connection tracking), so this should not
97  * be an issue.
98  *
99  * The currently chosen array constants values are a good compromise between
100  * array size and granularity.
101  *
102  * This results in the following granularity and range levels:
103  *
104  * HZ 1000 steps
105  * Level Offset  Granularity            Range
106  *  0      0         1 ms                0 ms -         63 ms
107  *  1     64         8 ms               64 ms -        511 ms
108  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
109  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
110  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
111  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
112  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
113  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
114  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
115  *
116  * HZ  300
117  * Level Offset  Granularity            Range
118  *  0	   0         3 ms                0 ms -        210 ms
119  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
120  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
121  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
122  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
123  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
124  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
125  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
126  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
127  *
128  * HZ  250
129  * Level Offset  Granularity            Range
130  *  0	   0         4 ms                0 ms -        255 ms
131  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
132  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
133  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
134  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
135  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
136  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
137  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
138  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
139  *
140  * HZ  100
141  * Level Offset  Granularity            Range
142  *  0	   0         10 ms               0 ms -        630 ms
143  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
144  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
145  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
146  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
147  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
148  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
149  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
150  */
151 
152 /* Clock divisor for the next level */
153 #define LVL_CLK_SHIFT	3
154 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
155 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
156 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
157 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
158 
159 /*
160  * The time start value for each level to select the bucket at enqueue
161  * time. We start from the last possible delta of the previous level
162  * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
163  */
164 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
165 
166 /* Size of each clock level */
167 #define LVL_BITS	6
168 #define LVL_SIZE	(1UL << LVL_BITS)
169 #define LVL_MASK	(LVL_SIZE - 1)
170 #define LVL_OFFS(n)	((n) * LVL_SIZE)
171 
172 /* Level depth */
173 #if HZ > 100
174 # define LVL_DEPTH	9
175 # else
176 # define LVL_DEPTH	8
177 #endif
178 
179 /* The cutoff (max. capacity of the wheel) */
180 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
181 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
182 
183 /*
184  * The resulting wheel size. If NOHZ is configured we allocate two
185  * wheels so we have a separate storage for the deferrable timers.
186  */
187 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
188 
189 #ifdef CONFIG_NO_HZ_COMMON
190 # define NR_BASES	2
191 # define BASE_STD	0
192 # define BASE_DEF	1
193 #else
194 # define NR_BASES	1
195 # define BASE_STD	0
196 # define BASE_DEF	0
197 #endif
198 
199 /**
200  * struct timer_base - Per CPU timer base (number of base depends on config)
201  * @lock:		Lock protecting the timer_base
202  * @running_timer:	When expiring timers, the lock is dropped. To make
203  *			sure not to race agains deleting/modifying a
204  *			currently running timer, the pointer is set to the
205  *			timer, which expires at the moment. If no timer is
206  *			running, the pointer is NULL.
207  * @expiry_lock:	PREEMPT_RT only: Lock is taken in softirq around
208  *			timer expiry callback execution and when trying to
209  *			delete a running timer and it wasn't successful in
210  *			the first glance. It prevents priority inversion
211  *			when callback was preempted on a remote CPU and a
212  *			caller tries to delete the running timer. It also
213  *			prevents a life lock, when the task which tries to
214  *			delete a timer preempted the softirq thread which
215  *			is running the timer callback function.
216  * @timer_waiters:	PREEMPT_RT only: Tells, if there is a waiter
217  *			waiting for the end of the timer callback function
218  *			execution.
219  * @clk:		clock of the timer base; is updated before enqueue
220  *			of a timer; during expiry, it is 1 offset ahead of
221  *			jiffies to avoid endless requeuing to current
222  *			jiffies
223  * @next_expiry:	expiry value of the first timer; it is updated when
224  *			finding the next timer and during enqueue; the
225  *			value is not valid, when next_expiry_recalc is set
226  * @cpu:		Number of CPU the timer base belongs to
227  * @next_expiry_recalc: States, whether a recalculation of next_expiry is
228  *			required. Value is set true, when a timer was
229  *			deleted.
230  * @is_idle:		Is set, when timer_base is idle. It is triggered by NOHZ
231  *			code. This state is only used in standard
232  *			base. Deferrable timers, which are enqueued remotely
233  *			never wake up an idle CPU. So no matter of supporting it
234  *			for this base.
235  * @timers_pending:	Is set, when a timer is pending in the base. It is only
236  *			reliable when next_expiry_recalc is not set.
237  * @pending_map:	bitmap of the timer wheel; each bit reflects a
238  *			bucket of the wheel. When a bit is set, at least a
239  *			single timer is enqueued in the related bucket.
240  * @vectors:		Array of lists; Each array member reflects a bucket
241  *			of the timer wheel. The list contains all timers
242  *			which are enqueued into a specific bucket.
243  */
244 struct timer_base {
245 	raw_spinlock_t		lock;
246 	struct timer_list	*running_timer;
247 #ifdef CONFIG_PREEMPT_RT
248 	spinlock_t		expiry_lock;
249 	atomic_t		timer_waiters;
250 #endif
251 	unsigned long		clk;
252 	unsigned long		next_expiry;
253 	unsigned int		cpu;
254 	bool			next_expiry_recalc;
255 	bool			is_idle;
256 	bool			timers_pending;
257 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
258 	struct hlist_head	vectors[WHEEL_SIZE];
259 } ____cacheline_aligned;
260 
261 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
262 
263 #ifdef CONFIG_NO_HZ_COMMON
264 
265 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
266 static DEFINE_MUTEX(timer_keys_mutex);
267 
268 static void timer_update_keys(struct work_struct *work);
269 static DECLARE_WORK(timer_update_work, timer_update_keys);
270 
271 #ifdef CONFIG_SMP
272 static unsigned int sysctl_timer_migration = 1;
273 
274 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
275 
276 static void timers_update_migration(void)
277 {
278 	if (sysctl_timer_migration && tick_nohz_active)
279 		static_branch_enable(&timers_migration_enabled);
280 	else
281 		static_branch_disable(&timers_migration_enabled);
282 }
283 
284 #ifdef CONFIG_SYSCTL
285 static int timer_migration_handler(struct ctl_table *table, int write,
286 			    void *buffer, size_t *lenp, loff_t *ppos)
287 {
288 	int ret;
289 
290 	mutex_lock(&timer_keys_mutex);
291 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
292 	if (!ret && write)
293 		timers_update_migration();
294 	mutex_unlock(&timer_keys_mutex);
295 	return ret;
296 }
297 
298 static struct ctl_table timer_sysctl[] = {
299 	{
300 		.procname	= "timer_migration",
301 		.data		= &sysctl_timer_migration,
302 		.maxlen		= sizeof(unsigned int),
303 		.mode		= 0644,
304 		.proc_handler	= timer_migration_handler,
305 		.extra1		= SYSCTL_ZERO,
306 		.extra2		= SYSCTL_ONE,
307 	},
308 	{}
309 };
310 
311 static int __init timer_sysctl_init(void)
312 {
313 	register_sysctl("kernel", timer_sysctl);
314 	return 0;
315 }
316 device_initcall(timer_sysctl_init);
317 #endif /* CONFIG_SYSCTL */
318 #else /* CONFIG_SMP */
319 static inline void timers_update_migration(void) { }
320 #endif /* !CONFIG_SMP */
321 
322 static void timer_update_keys(struct work_struct *work)
323 {
324 	mutex_lock(&timer_keys_mutex);
325 	timers_update_migration();
326 	static_branch_enable(&timers_nohz_active);
327 	mutex_unlock(&timer_keys_mutex);
328 }
329 
330 void timers_update_nohz(void)
331 {
332 	schedule_work(&timer_update_work);
333 }
334 
335 static inline bool is_timers_nohz_active(void)
336 {
337 	return static_branch_unlikely(&timers_nohz_active);
338 }
339 #else
340 static inline bool is_timers_nohz_active(void) { return false; }
341 #endif /* NO_HZ_COMMON */
342 
343 static unsigned long round_jiffies_common(unsigned long j, int cpu,
344 		bool force_up)
345 {
346 	int rem;
347 	unsigned long original = j;
348 
349 	/*
350 	 * We don't want all cpus firing their timers at once hitting the
351 	 * same lock or cachelines, so we skew each extra cpu with an extra
352 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
353 	 * already did this.
354 	 * The skew is done by adding 3*cpunr, then round, then subtract this
355 	 * extra offset again.
356 	 */
357 	j += cpu * 3;
358 
359 	rem = j % HZ;
360 
361 	/*
362 	 * If the target jiffie is just after a whole second (which can happen
363 	 * due to delays of the timer irq, long irq off times etc etc) then
364 	 * we should round down to the whole second, not up. Use 1/4th second
365 	 * as cutoff for this rounding as an extreme upper bound for this.
366 	 * But never round down if @force_up is set.
367 	 */
368 	if (rem < HZ/4 && !force_up) /* round down */
369 		j = j - rem;
370 	else /* round up */
371 		j = j - rem + HZ;
372 
373 	/* now that we have rounded, subtract the extra skew again */
374 	j -= cpu * 3;
375 
376 	/*
377 	 * Make sure j is still in the future. Otherwise return the
378 	 * unmodified value.
379 	 */
380 	return time_is_after_jiffies(j) ? j : original;
381 }
382 
383 /**
384  * __round_jiffies - function to round jiffies to a full second
385  * @j: the time in (absolute) jiffies that should be rounded
386  * @cpu: the processor number on which the timeout will happen
387  *
388  * __round_jiffies() rounds an absolute time in the future (in jiffies)
389  * up or down to (approximately) full seconds. This is useful for timers
390  * for which the exact time they fire does not matter too much, as long as
391  * they fire approximately every X seconds.
392  *
393  * By rounding these timers to whole seconds, all such timers will fire
394  * at the same time, rather than at various times spread out. The goal
395  * of this is to have the CPU wake up less, which saves power.
396  *
397  * The exact rounding is skewed for each processor to avoid all
398  * processors firing at the exact same time, which could lead
399  * to lock contention or spurious cache line bouncing.
400  *
401  * The return value is the rounded version of the @j parameter.
402  */
403 unsigned long __round_jiffies(unsigned long j, int cpu)
404 {
405 	return round_jiffies_common(j, cpu, false);
406 }
407 EXPORT_SYMBOL_GPL(__round_jiffies);
408 
409 /**
410  * __round_jiffies_relative - function to round jiffies to a full second
411  * @j: the time in (relative) jiffies that should be rounded
412  * @cpu: the processor number on which the timeout will happen
413  *
414  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
415  * up or down to (approximately) full seconds. This is useful for timers
416  * for which the exact time they fire does not matter too much, as long as
417  * they fire approximately every X seconds.
418  *
419  * By rounding these timers to whole seconds, all such timers will fire
420  * at the same time, rather than at various times spread out. The goal
421  * of this is to have the CPU wake up less, which saves power.
422  *
423  * The exact rounding is skewed for each processor to avoid all
424  * processors firing at the exact same time, which could lead
425  * to lock contention or spurious cache line bouncing.
426  *
427  * The return value is the rounded version of the @j parameter.
428  */
429 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
430 {
431 	unsigned long j0 = jiffies;
432 
433 	/* Use j0 because jiffies might change while we run */
434 	return round_jiffies_common(j + j0, cpu, false) - j0;
435 }
436 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
437 
438 /**
439  * round_jiffies - function to round jiffies to a full second
440  * @j: the time in (absolute) jiffies that should be rounded
441  *
442  * round_jiffies() rounds an absolute time in the future (in jiffies)
443  * up or down to (approximately) full seconds. This is useful for timers
444  * for which the exact time they fire does not matter too much, as long as
445  * they fire approximately every X seconds.
446  *
447  * By rounding these timers to whole seconds, all such timers will fire
448  * at the same time, rather than at various times spread out. The goal
449  * of this is to have the CPU wake up less, which saves power.
450  *
451  * The return value is the rounded version of the @j parameter.
452  */
453 unsigned long round_jiffies(unsigned long j)
454 {
455 	return round_jiffies_common(j, raw_smp_processor_id(), false);
456 }
457 EXPORT_SYMBOL_GPL(round_jiffies);
458 
459 /**
460  * round_jiffies_relative - function to round jiffies to a full second
461  * @j: the time in (relative) jiffies that should be rounded
462  *
463  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
464  * up or down to (approximately) full seconds. This is useful for timers
465  * for which the exact time they fire does not matter too much, as long as
466  * they fire approximately every X seconds.
467  *
468  * By rounding these timers to whole seconds, all such timers will fire
469  * at the same time, rather than at various times spread out. The goal
470  * of this is to have the CPU wake up less, which saves power.
471  *
472  * The return value is the rounded version of the @j parameter.
473  */
474 unsigned long round_jiffies_relative(unsigned long j)
475 {
476 	return __round_jiffies_relative(j, raw_smp_processor_id());
477 }
478 EXPORT_SYMBOL_GPL(round_jiffies_relative);
479 
480 /**
481  * __round_jiffies_up - function to round jiffies up to a full second
482  * @j: the time in (absolute) jiffies that should be rounded
483  * @cpu: the processor number on which the timeout will happen
484  *
485  * This is the same as __round_jiffies() except that it will never
486  * round down.  This is useful for timeouts for which the exact time
487  * of firing does not matter too much, as long as they don't fire too
488  * early.
489  */
490 unsigned long __round_jiffies_up(unsigned long j, int cpu)
491 {
492 	return round_jiffies_common(j, cpu, true);
493 }
494 EXPORT_SYMBOL_GPL(__round_jiffies_up);
495 
496 /**
497  * __round_jiffies_up_relative - function to round jiffies up to a full second
498  * @j: the time in (relative) jiffies that should be rounded
499  * @cpu: the processor number on which the timeout will happen
500  *
501  * This is the same as __round_jiffies_relative() except that it will never
502  * round down.  This is useful for timeouts for which the exact time
503  * of firing does not matter too much, as long as they don't fire too
504  * early.
505  */
506 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
507 {
508 	unsigned long j0 = jiffies;
509 
510 	/* Use j0 because jiffies might change while we run */
511 	return round_jiffies_common(j + j0, cpu, true) - j0;
512 }
513 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
514 
515 /**
516  * round_jiffies_up - function to round jiffies up to a full second
517  * @j: the time in (absolute) jiffies that should be rounded
518  *
519  * This is the same as round_jiffies() except that it will never
520  * round down.  This is useful for timeouts for which the exact time
521  * of firing does not matter too much, as long as they don't fire too
522  * early.
523  */
524 unsigned long round_jiffies_up(unsigned long j)
525 {
526 	return round_jiffies_common(j, raw_smp_processor_id(), true);
527 }
528 EXPORT_SYMBOL_GPL(round_jiffies_up);
529 
530 /**
531  * round_jiffies_up_relative - function to round jiffies up to a full second
532  * @j: the time in (relative) jiffies that should be rounded
533  *
534  * This is the same as round_jiffies_relative() except that it will never
535  * round down.  This is useful for timeouts for which the exact time
536  * of firing does not matter too much, as long as they don't fire too
537  * early.
538  */
539 unsigned long round_jiffies_up_relative(unsigned long j)
540 {
541 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
542 }
543 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
544 
545 
546 static inline unsigned int timer_get_idx(struct timer_list *timer)
547 {
548 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
549 }
550 
551 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
552 {
553 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
554 			idx << TIMER_ARRAYSHIFT;
555 }
556 
557 /*
558  * Helper function to calculate the array index for a given expiry
559  * time.
560  */
561 static inline unsigned calc_index(unsigned long expires, unsigned lvl,
562 				  unsigned long *bucket_expiry)
563 {
564 
565 	/*
566 	 * The timer wheel has to guarantee that a timer does not fire
567 	 * early. Early expiry can happen due to:
568 	 * - Timer is armed at the edge of a tick
569 	 * - Truncation of the expiry time in the outer wheel levels
570 	 *
571 	 * Round up with level granularity to prevent this.
572 	 */
573 	expires = (expires >> LVL_SHIFT(lvl)) + 1;
574 	*bucket_expiry = expires << LVL_SHIFT(lvl);
575 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
576 }
577 
578 static int calc_wheel_index(unsigned long expires, unsigned long clk,
579 			    unsigned long *bucket_expiry)
580 {
581 	unsigned long delta = expires - clk;
582 	unsigned int idx;
583 
584 	if (delta < LVL_START(1)) {
585 		idx = calc_index(expires, 0, bucket_expiry);
586 	} else if (delta < LVL_START(2)) {
587 		idx = calc_index(expires, 1, bucket_expiry);
588 	} else if (delta < LVL_START(3)) {
589 		idx = calc_index(expires, 2, bucket_expiry);
590 	} else if (delta < LVL_START(4)) {
591 		idx = calc_index(expires, 3, bucket_expiry);
592 	} else if (delta < LVL_START(5)) {
593 		idx = calc_index(expires, 4, bucket_expiry);
594 	} else if (delta < LVL_START(6)) {
595 		idx = calc_index(expires, 5, bucket_expiry);
596 	} else if (delta < LVL_START(7)) {
597 		idx = calc_index(expires, 6, bucket_expiry);
598 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
599 		idx = calc_index(expires, 7, bucket_expiry);
600 	} else if ((long) delta < 0) {
601 		idx = clk & LVL_MASK;
602 		*bucket_expiry = clk;
603 	} else {
604 		/*
605 		 * Force expire obscene large timeouts to expire at the
606 		 * capacity limit of the wheel.
607 		 */
608 		if (delta >= WHEEL_TIMEOUT_CUTOFF)
609 			expires = clk + WHEEL_TIMEOUT_MAX;
610 
611 		idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
612 	}
613 	return idx;
614 }
615 
616 static void
617 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
618 {
619 	/*
620 	 * Deferrable timers do not prevent the CPU from entering dynticks and
621 	 * are not taken into account on the idle/nohz_full path. An IPI when a
622 	 * new deferrable timer is enqueued will wake up the remote CPU but
623 	 * nothing will be done with the deferrable timer base. Therefore skip
624 	 * the remote IPI for deferrable timers completely.
625 	 */
626 	if (!is_timers_nohz_active() || timer->flags & TIMER_DEFERRABLE)
627 		return;
628 
629 	/*
630 	 * We might have to IPI the remote CPU if the base is idle and the
631 	 * timer is not deferrable. If the other CPU is on the way to idle
632 	 * then it can't set base->is_idle as we hold the base lock:
633 	 */
634 	if (base->is_idle)
635 		wake_up_nohz_cpu(base->cpu);
636 }
637 
638 /*
639  * Enqueue the timer into the hash bucket, mark it pending in
640  * the bitmap, store the index in the timer flags then wake up
641  * the target CPU if needed.
642  */
643 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
644 			  unsigned int idx, unsigned long bucket_expiry)
645 {
646 
647 	hlist_add_head(&timer->entry, base->vectors + idx);
648 	__set_bit(idx, base->pending_map);
649 	timer_set_idx(timer, idx);
650 
651 	trace_timer_start(timer, bucket_expiry);
652 
653 	/*
654 	 * Check whether this is the new first expiring timer. The
655 	 * effective expiry time of the timer is required here
656 	 * (bucket_expiry) instead of timer->expires.
657 	 */
658 	if (time_before(bucket_expiry, base->next_expiry)) {
659 		/*
660 		 * Set the next expiry time and kick the CPU so it
661 		 * can reevaluate the wheel:
662 		 */
663 		base->next_expiry = bucket_expiry;
664 		base->timers_pending = true;
665 		base->next_expiry_recalc = false;
666 		trigger_dyntick_cpu(base, timer);
667 	}
668 }
669 
670 static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
671 {
672 	unsigned long bucket_expiry;
673 	unsigned int idx;
674 
675 	idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
676 	enqueue_timer(base, timer, idx, bucket_expiry);
677 }
678 
679 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
680 
681 static const struct debug_obj_descr timer_debug_descr;
682 
683 struct timer_hint {
684 	void	(*function)(struct timer_list *t);
685 	long	offset;
686 };
687 
688 #define TIMER_HINT(fn, container, timr, hintfn)			\
689 	{							\
690 		.function = fn,					\
691 		.offset	  = offsetof(container, hintfn) -	\
692 			    offsetof(container, timr)		\
693 	}
694 
695 static const struct timer_hint timer_hints[] = {
696 	TIMER_HINT(delayed_work_timer_fn,
697 		   struct delayed_work, timer, work.func),
698 	TIMER_HINT(kthread_delayed_work_timer_fn,
699 		   struct kthread_delayed_work, timer, work.func),
700 };
701 
702 static void *timer_debug_hint(void *addr)
703 {
704 	struct timer_list *timer = addr;
705 	int i;
706 
707 	for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
708 		if (timer_hints[i].function == timer->function) {
709 			void (**fn)(void) = addr + timer_hints[i].offset;
710 
711 			return *fn;
712 		}
713 	}
714 
715 	return timer->function;
716 }
717 
718 static bool timer_is_static_object(void *addr)
719 {
720 	struct timer_list *timer = addr;
721 
722 	return (timer->entry.pprev == NULL &&
723 		timer->entry.next == TIMER_ENTRY_STATIC);
724 }
725 
726 /*
727  * fixup_init is called when:
728  * - an active object is initialized
729  */
730 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
731 {
732 	struct timer_list *timer = addr;
733 
734 	switch (state) {
735 	case ODEBUG_STATE_ACTIVE:
736 		del_timer_sync(timer);
737 		debug_object_init(timer, &timer_debug_descr);
738 		return true;
739 	default:
740 		return false;
741 	}
742 }
743 
744 /* Stub timer callback for improperly used timers. */
745 static void stub_timer(struct timer_list *unused)
746 {
747 	WARN_ON(1);
748 }
749 
750 /*
751  * fixup_activate is called when:
752  * - an active object is activated
753  * - an unknown non-static object is activated
754  */
755 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
756 {
757 	struct timer_list *timer = addr;
758 
759 	switch (state) {
760 	case ODEBUG_STATE_NOTAVAILABLE:
761 		timer_setup(timer, stub_timer, 0);
762 		return true;
763 
764 	case ODEBUG_STATE_ACTIVE:
765 		WARN_ON(1);
766 		fallthrough;
767 	default:
768 		return false;
769 	}
770 }
771 
772 /*
773  * fixup_free is called when:
774  * - an active object is freed
775  */
776 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
777 {
778 	struct timer_list *timer = addr;
779 
780 	switch (state) {
781 	case ODEBUG_STATE_ACTIVE:
782 		del_timer_sync(timer);
783 		debug_object_free(timer, &timer_debug_descr);
784 		return true;
785 	default:
786 		return false;
787 	}
788 }
789 
790 /*
791  * fixup_assert_init is called when:
792  * - an untracked/uninit-ed object is found
793  */
794 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
795 {
796 	struct timer_list *timer = addr;
797 
798 	switch (state) {
799 	case ODEBUG_STATE_NOTAVAILABLE:
800 		timer_setup(timer, stub_timer, 0);
801 		return true;
802 	default:
803 		return false;
804 	}
805 }
806 
807 static const struct debug_obj_descr timer_debug_descr = {
808 	.name			= "timer_list",
809 	.debug_hint		= timer_debug_hint,
810 	.is_static_object	= timer_is_static_object,
811 	.fixup_init		= timer_fixup_init,
812 	.fixup_activate		= timer_fixup_activate,
813 	.fixup_free		= timer_fixup_free,
814 	.fixup_assert_init	= timer_fixup_assert_init,
815 };
816 
817 static inline void debug_timer_init(struct timer_list *timer)
818 {
819 	debug_object_init(timer, &timer_debug_descr);
820 }
821 
822 static inline void debug_timer_activate(struct timer_list *timer)
823 {
824 	debug_object_activate(timer, &timer_debug_descr);
825 }
826 
827 static inline void debug_timer_deactivate(struct timer_list *timer)
828 {
829 	debug_object_deactivate(timer, &timer_debug_descr);
830 }
831 
832 static inline void debug_timer_assert_init(struct timer_list *timer)
833 {
834 	debug_object_assert_init(timer, &timer_debug_descr);
835 }
836 
837 static void do_init_timer(struct timer_list *timer,
838 			  void (*func)(struct timer_list *),
839 			  unsigned int flags,
840 			  const char *name, struct lock_class_key *key);
841 
842 void init_timer_on_stack_key(struct timer_list *timer,
843 			     void (*func)(struct timer_list *),
844 			     unsigned int flags,
845 			     const char *name, struct lock_class_key *key)
846 {
847 	debug_object_init_on_stack(timer, &timer_debug_descr);
848 	do_init_timer(timer, func, flags, name, key);
849 }
850 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
851 
852 void destroy_timer_on_stack(struct timer_list *timer)
853 {
854 	debug_object_free(timer, &timer_debug_descr);
855 }
856 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
857 
858 #else
859 static inline void debug_timer_init(struct timer_list *timer) { }
860 static inline void debug_timer_activate(struct timer_list *timer) { }
861 static inline void debug_timer_deactivate(struct timer_list *timer) { }
862 static inline void debug_timer_assert_init(struct timer_list *timer) { }
863 #endif
864 
865 static inline void debug_init(struct timer_list *timer)
866 {
867 	debug_timer_init(timer);
868 	trace_timer_init(timer);
869 }
870 
871 static inline void debug_deactivate(struct timer_list *timer)
872 {
873 	debug_timer_deactivate(timer);
874 	trace_timer_cancel(timer);
875 }
876 
877 static inline void debug_assert_init(struct timer_list *timer)
878 {
879 	debug_timer_assert_init(timer);
880 }
881 
882 static void do_init_timer(struct timer_list *timer,
883 			  void (*func)(struct timer_list *),
884 			  unsigned int flags,
885 			  const char *name, struct lock_class_key *key)
886 {
887 	timer->entry.pprev = NULL;
888 	timer->function = func;
889 	if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
890 		flags &= TIMER_INIT_FLAGS;
891 	timer->flags = flags | raw_smp_processor_id();
892 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
893 }
894 
895 /**
896  * init_timer_key - initialize a timer
897  * @timer: the timer to be initialized
898  * @func: timer callback function
899  * @flags: timer flags
900  * @name: name of the timer
901  * @key: lockdep class key of the fake lock used for tracking timer
902  *       sync lock dependencies
903  *
904  * init_timer_key() must be done to a timer prior calling *any* of the
905  * other timer functions.
906  */
907 void init_timer_key(struct timer_list *timer,
908 		    void (*func)(struct timer_list *), unsigned int flags,
909 		    const char *name, struct lock_class_key *key)
910 {
911 	debug_init(timer);
912 	do_init_timer(timer, func, flags, name, key);
913 }
914 EXPORT_SYMBOL(init_timer_key);
915 
916 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
917 {
918 	struct hlist_node *entry = &timer->entry;
919 
920 	debug_deactivate(timer);
921 
922 	__hlist_del(entry);
923 	if (clear_pending)
924 		entry->pprev = NULL;
925 	entry->next = LIST_POISON2;
926 }
927 
928 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
929 			     bool clear_pending)
930 {
931 	unsigned idx = timer_get_idx(timer);
932 
933 	if (!timer_pending(timer))
934 		return 0;
935 
936 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
937 		__clear_bit(idx, base->pending_map);
938 		base->next_expiry_recalc = true;
939 	}
940 
941 	detach_timer(timer, clear_pending);
942 	return 1;
943 }
944 
945 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
946 {
947 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
948 
949 	/*
950 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
951 	 * to use the deferrable base.
952 	 */
953 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
954 		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
955 	return base;
956 }
957 
958 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
959 {
960 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
961 
962 	/*
963 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
964 	 * to use the deferrable base.
965 	 */
966 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
967 		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
968 	return base;
969 }
970 
971 static inline struct timer_base *get_timer_base(u32 tflags)
972 {
973 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
974 }
975 
976 static inline struct timer_base *
977 get_target_base(struct timer_base *base, unsigned tflags)
978 {
979 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
980 	if (static_branch_likely(&timers_migration_enabled) &&
981 	    !(tflags & TIMER_PINNED))
982 		return get_timer_cpu_base(tflags, get_nohz_timer_target());
983 #endif
984 	return get_timer_this_cpu_base(tflags);
985 }
986 
987 static inline void __forward_timer_base(struct timer_base *base,
988 					unsigned long basej)
989 {
990 	/*
991 	 * Check whether we can forward the base. We can only do that when
992 	 * @basej is past base->clk otherwise we might rewind base->clk.
993 	 */
994 	if (time_before_eq(basej, base->clk))
995 		return;
996 
997 	/*
998 	 * If the next expiry value is > jiffies, then we fast forward to
999 	 * jiffies otherwise we forward to the next expiry value.
1000 	 */
1001 	if (time_after(base->next_expiry, basej)) {
1002 		base->clk = basej;
1003 	} else {
1004 		if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
1005 			return;
1006 		base->clk = base->next_expiry;
1007 	}
1008 
1009 }
1010 
1011 static inline void forward_timer_base(struct timer_base *base)
1012 {
1013 	__forward_timer_base(base, READ_ONCE(jiffies));
1014 }
1015 
1016 /*
1017  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
1018  * that all timers which are tied to this base are locked, and the base itself
1019  * is locked too.
1020  *
1021  * So __run_timers/migrate_timers can safely modify all timers which could
1022  * be found in the base->vectors array.
1023  *
1024  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
1025  * to wait until the migration is done.
1026  */
1027 static struct timer_base *lock_timer_base(struct timer_list *timer,
1028 					  unsigned long *flags)
1029 	__acquires(timer->base->lock)
1030 {
1031 	for (;;) {
1032 		struct timer_base *base;
1033 		u32 tf;
1034 
1035 		/*
1036 		 * We need to use READ_ONCE() here, otherwise the compiler
1037 		 * might re-read @tf between the check for TIMER_MIGRATING
1038 		 * and spin_lock().
1039 		 */
1040 		tf = READ_ONCE(timer->flags);
1041 
1042 		if (!(tf & TIMER_MIGRATING)) {
1043 			base = get_timer_base(tf);
1044 			raw_spin_lock_irqsave(&base->lock, *flags);
1045 			if (timer->flags == tf)
1046 				return base;
1047 			raw_spin_unlock_irqrestore(&base->lock, *flags);
1048 		}
1049 		cpu_relax();
1050 	}
1051 }
1052 
1053 #define MOD_TIMER_PENDING_ONLY		0x01
1054 #define MOD_TIMER_REDUCE		0x02
1055 #define MOD_TIMER_NOTPENDING		0x04
1056 
1057 static inline int
1058 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1059 {
1060 	unsigned long clk = 0, flags, bucket_expiry;
1061 	struct timer_base *base, *new_base;
1062 	unsigned int idx = UINT_MAX;
1063 	int ret = 0;
1064 
1065 	debug_assert_init(timer);
1066 
1067 	/*
1068 	 * This is a common optimization triggered by the networking code - if
1069 	 * the timer is re-modified to have the same timeout or ends up in the
1070 	 * same array bucket then just return:
1071 	 */
1072 	if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
1073 		/*
1074 		 * The downside of this optimization is that it can result in
1075 		 * larger granularity than you would get from adding a new
1076 		 * timer with this expiry.
1077 		 */
1078 		long diff = timer->expires - expires;
1079 
1080 		if (!diff)
1081 			return 1;
1082 		if (options & MOD_TIMER_REDUCE && diff <= 0)
1083 			return 1;
1084 
1085 		/*
1086 		 * We lock timer base and calculate the bucket index right
1087 		 * here. If the timer ends up in the same bucket, then we
1088 		 * just update the expiry time and avoid the whole
1089 		 * dequeue/enqueue dance.
1090 		 */
1091 		base = lock_timer_base(timer, &flags);
1092 		/*
1093 		 * Has @timer been shutdown? This needs to be evaluated
1094 		 * while holding base lock to prevent a race against the
1095 		 * shutdown code.
1096 		 */
1097 		if (!timer->function)
1098 			goto out_unlock;
1099 
1100 		forward_timer_base(base);
1101 
1102 		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1103 		    time_before_eq(timer->expires, expires)) {
1104 			ret = 1;
1105 			goto out_unlock;
1106 		}
1107 
1108 		clk = base->clk;
1109 		idx = calc_wheel_index(expires, clk, &bucket_expiry);
1110 
1111 		/*
1112 		 * Retrieve and compare the array index of the pending
1113 		 * timer. If it matches set the expiry to the new value so a
1114 		 * subsequent call will exit in the expires check above.
1115 		 */
1116 		if (idx == timer_get_idx(timer)) {
1117 			if (!(options & MOD_TIMER_REDUCE))
1118 				timer->expires = expires;
1119 			else if (time_after(timer->expires, expires))
1120 				timer->expires = expires;
1121 			ret = 1;
1122 			goto out_unlock;
1123 		}
1124 	} else {
1125 		base = lock_timer_base(timer, &flags);
1126 		/*
1127 		 * Has @timer been shutdown? This needs to be evaluated
1128 		 * while holding base lock to prevent a race against the
1129 		 * shutdown code.
1130 		 */
1131 		if (!timer->function)
1132 			goto out_unlock;
1133 
1134 		forward_timer_base(base);
1135 	}
1136 
1137 	ret = detach_if_pending(timer, base, false);
1138 	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1139 		goto out_unlock;
1140 
1141 	new_base = get_target_base(base, timer->flags);
1142 
1143 	if (base != new_base) {
1144 		/*
1145 		 * We are trying to schedule the timer on the new base.
1146 		 * However we can't change timer's base while it is running,
1147 		 * otherwise timer_delete_sync() can't detect that the timer's
1148 		 * handler yet has not finished. This also guarantees that the
1149 		 * timer is serialized wrt itself.
1150 		 */
1151 		if (likely(base->running_timer != timer)) {
1152 			/* See the comment in lock_timer_base() */
1153 			timer->flags |= TIMER_MIGRATING;
1154 
1155 			raw_spin_unlock(&base->lock);
1156 			base = new_base;
1157 			raw_spin_lock(&base->lock);
1158 			WRITE_ONCE(timer->flags,
1159 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1160 			forward_timer_base(base);
1161 		}
1162 	}
1163 
1164 	debug_timer_activate(timer);
1165 
1166 	timer->expires = expires;
1167 	/*
1168 	 * If 'idx' was calculated above and the base time did not advance
1169 	 * between calculating 'idx' and possibly switching the base, only
1170 	 * enqueue_timer() is required. Otherwise we need to (re)calculate
1171 	 * the wheel index via internal_add_timer().
1172 	 */
1173 	if (idx != UINT_MAX && clk == base->clk)
1174 		enqueue_timer(base, timer, idx, bucket_expiry);
1175 	else
1176 		internal_add_timer(base, timer);
1177 
1178 out_unlock:
1179 	raw_spin_unlock_irqrestore(&base->lock, flags);
1180 
1181 	return ret;
1182 }
1183 
1184 /**
1185  * mod_timer_pending - Modify a pending timer's timeout
1186  * @timer:	The pending timer to be modified
1187  * @expires:	New absolute timeout in jiffies
1188  *
1189  * mod_timer_pending() is the same for pending timers as mod_timer(), but
1190  * will not activate inactive timers.
1191  *
1192  * If @timer->function == NULL then the start operation is silently
1193  * discarded.
1194  *
1195  * Return:
1196  * * %0 - The timer was inactive and not modified or was in
1197  *	  shutdown state and the operation was discarded
1198  * * %1 - The timer was active and requeued to expire at @expires
1199  */
1200 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1201 {
1202 	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1203 }
1204 EXPORT_SYMBOL(mod_timer_pending);
1205 
1206 /**
1207  * mod_timer - Modify a timer's timeout
1208  * @timer:	The timer to be modified
1209  * @expires:	New absolute timeout in jiffies
1210  *
1211  * mod_timer(timer, expires) is equivalent to:
1212  *
1213  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1214  *
1215  * mod_timer() is more efficient than the above open coded sequence. In
1216  * case that the timer is inactive, the del_timer() part is a NOP. The
1217  * timer is in any case activated with the new expiry time @expires.
1218  *
1219  * Note that if there are multiple unserialized concurrent users of the
1220  * same timer, then mod_timer() is the only safe way to modify the timeout,
1221  * since add_timer() cannot modify an already running timer.
1222  *
1223  * If @timer->function == NULL then the start operation is silently
1224  * discarded. In this case the return value is 0 and meaningless.
1225  *
1226  * Return:
1227  * * %0 - The timer was inactive and started or was in shutdown
1228  *	  state and the operation was discarded
1229  * * %1 - The timer was active and requeued to expire at @expires or
1230  *	  the timer was active and not modified because @expires did
1231  *	  not change the effective expiry time
1232  */
1233 int mod_timer(struct timer_list *timer, unsigned long expires)
1234 {
1235 	return __mod_timer(timer, expires, 0);
1236 }
1237 EXPORT_SYMBOL(mod_timer);
1238 
1239 /**
1240  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1241  * @timer:	The timer to be modified
1242  * @expires:	New absolute timeout in jiffies
1243  *
1244  * timer_reduce() is very similar to mod_timer(), except that it will only
1245  * modify an enqueued timer if that would reduce the expiration time. If
1246  * @timer is not enqueued it starts the timer.
1247  *
1248  * If @timer->function == NULL then the start operation is silently
1249  * discarded.
1250  *
1251  * Return:
1252  * * %0 - The timer was inactive and started or was in shutdown
1253  *	  state and the operation was discarded
1254  * * %1 - The timer was active and requeued to expire at @expires or
1255  *	  the timer was active and not modified because @expires
1256  *	  did not change the effective expiry time such that the
1257  *	  timer would expire earlier than already scheduled
1258  */
1259 int timer_reduce(struct timer_list *timer, unsigned long expires)
1260 {
1261 	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1262 }
1263 EXPORT_SYMBOL(timer_reduce);
1264 
1265 /**
1266  * add_timer - Start a timer
1267  * @timer:	The timer to be started
1268  *
1269  * Start @timer to expire at @timer->expires in the future. @timer->expires
1270  * is the absolute expiry time measured in 'jiffies'. When the timer expires
1271  * timer->function(timer) will be invoked from soft interrupt context.
1272  *
1273  * The @timer->expires and @timer->function fields must be set prior
1274  * to calling this function.
1275  *
1276  * If @timer->function == NULL then the start operation is silently
1277  * discarded.
1278  *
1279  * If @timer->expires is already in the past @timer will be queued to
1280  * expire at the next timer tick.
1281  *
1282  * This can only operate on an inactive timer. Attempts to invoke this on
1283  * an active timer are rejected with a warning.
1284  */
1285 void add_timer(struct timer_list *timer)
1286 {
1287 	if (WARN_ON_ONCE(timer_pending(timer)))
1288 		return;
1289 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1290 }
1291 EXPORT_SYMBOL(add_timer);
1292 
1293 /**
1294  * add_timer_on - Start a timer on a particular CPU
1295  * @timer:	The timer to be started
1296  * @cpu:	The CPU to start it on
1297  *
1298  * Same as add_timer() except that it starts the timer on the given CPU.
1299  *
1300  * See add_timer() for further details.
1301  */
1302 void add_timer_on(struct timer_list *timer, int cpu)
1303 {
1304 	struct timer_base *new_base, *base;
1305 	unsigned long flags;
1306 
1307 	debug_assert_init(timer);
1308 
1309 	if (WARN_ON_ONCE(timer_pending(timer)))
1310 		return;
1311 
1312 	new_base = get_timer_cpu_base(timer->flags, cpu);
1313 
1314 	/*
1315 	 * If @timer was on a different CPU, it should be migrated with the
1316 	 * old base locked to prevent other operations proceeding with the
1317 	 * wrong base locked.  See lock_timer_base().
1318 	 */
1319 	base = lock_timer_base(timer, &flags);
1320 	/*
1321 	 * Has @timer been shutdown? This needs to be evaluated while
1322 	 * holding base lock to prevent a race against the shutdown code.
1323 	 */
1324 	if (!timer->function)
1325 		goto out_unlock;
1326 
1327 	if (base != new_base) {
1328 		timer->flags |= TIMER_MIGRATING;
1329 
1330 		raw_spin_unlock(&base->lock);
1331 		base = new_base;
1332 		raw_spin_lock(&base->lock);
1333 		WRITE_ONCE(timer->flags,
1334 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1335 	}
1336 	forward_timer_base(base);
1337 
1338 	debug_timer_activate(timer);
1339 	internal_add_timer(base, timer);
1340 out_unlock:
1341 	raw_spin_unlock_irqrestore(&base->lock, flags);
1342 }
1343 EXPORT_SYMBOL_GPL(add_timer_on);
1344 
1345 /**
1346  * __timer_delete - Internal function: Deactivate a timer
1347  * @timer:	The timer to be deactivated
1348  * @shutdown:	If true, this indicates that the timer is about to be
1349  *		shutdown permanently.
1350  *
1351  * If @shutdown is true then @timer->function is set to NULL under the
1352  * timer base lock which prevents further rearming of the time. In that
1353  * case any attempt to rearm @timer after this function returns will be
1354  * silently ignored.
1355  *
1356  * Return:
1357  * * %0 - The timer was not pending
1358  * * %1 - The timer was pending and deactivated
1359  */
1360 static int __timer_delete(struct timer_list *timer, bool shutdown)
1361 {
1362 	struct timer_base *base;
1363 	unsigned long flags;
1364 	int ret = 0;
1365 
1366 	debug_assert_init(timer);
1367 
1368 	/*
1369 	 * If @shutdown is set then the lock has to be taken whether the
1370 	 * timer is pending or not to protect against a concurrent rearm
1371 	 * which might hit between the lockless pending check and the lock
1372 	 * aquisition. By taking the lock it is ensured that such a newly
1373 	 * enqueued timer is dequeued and cannot end up with
1374 	 * timer->function == NULL in the expiry code.
1375 	 *
1376 	 * If timer->function is currently executed, then this makes sure
1377 	 * that the callback cannot requeue the timer.
1378 	 */
1379 	if (timer_pending(timer) || shutdown) {
1380 		base = lock_timer_base(timer, &flags);
1381 		ret = detach_if_pending(timer, base, true);
1382 		if (shutdown)
1383 			timer->function = NULL;
1384 		raw_spin_unlock_irqrestore(&base->lock, flags);
1385 	}
1386 
1387 	return ret;
1388 }
1389 
1390 /**
1391  * timer_delete - Deactivate a timer
1392  * @timer:	The timer to be deactivated
1393  *
1394  * The function only deactivates a pending timer, but contrary to
1395  * timer_delete_sync() it does not take into account whether the timer's
1396  * callback function is concurrently executed on a different CPU or not.
1397  * It neither prevents rearming of the timer.  If @timer can be rearmed
1398  * concurrently then the return value of this function is meaningless.
1399  *
1400  * Return:
1401  * * %0 - The timer was not pending
1402  * * %1 - The timer was pending and deactivated
1403  */
1404 int timer_delete(struct timer_list *timer)
1405 {
1406 	return __timer_delete(timer, false);
1407 }
1408 EXPORT_SYMBOL(timer_delete);
1409 
1410 /**
1411  * timer_shutdown - Deactivate a timer and prevent rearming
1412  * @timer:	The timer to be deactivated
1413  *
1414  * The function does not wait for an eventually running timer callback on a
1415  * different CPU but it prevents rearming of the timer. Any attempt to arm
1416  * @timer after this function returns will be silently ignored.
1417  *
1418  * This function is useful for teardown code and should only be used when
1419  * timer_shutdown_sync() cannot be invoked due to locking or context constraints.
1420  *
1421  * Return:
1422  * * %0 - The timer was not pending
1423  * * %1 - The timer was pending
1424  */
1425 int timer_shutdown(struct timer_list *timer)
1426 {
1427 	return __timer_delete(timer, true);
1428 }
1429 EXPORT_SYMBOL_GPL(timer_shutdown);
1430 
1431 /**
1432  * __try_to_del_timer_sync - Internal function: Try to deactivate a timer
1433  * @timer:	Timer to deactivate
1434  * @shutdown:	If true, this indicates that the timer is about to be
1435  *		shutdown permanently.
1436  *
1437  * If @shutdown is true then @timer->function is set to NULL under the
1438  * timer base lock which prevents further rearming of the timer. Any
1439  * attempt to rearm @timer after this function returns will be silently
1440  * ignored.
1441  *
1442  * This function cannot guarantee that the timer cannot be rearmed
1443  * right after dropping the base lock if @shutdown is false. That
1444  * needs to be prevented by the calling code if necessary.
1445  *
1446  * Return:
1447  * * %0  - The timer was not pending
1448  * * %1  - The timer was pending and deactivated
1449  * * %-1 - The timer callback function is running on a different CPU
1450  */
1451 static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown)
1452 {
1453 	struct timer_base *base;
1454 	unsigned long flags;
1455 	int ret = -1;
1456 
1457 	debug_assert_init(timer);
1458 
1459 	base = lock_timer_base(timer, &flags);
1460 
1461 	if (base->running_timer != timer)
1462 		ret = detach_if_pending(timer, base, true);
1463 	if (shutdown)
1464 		timer->function = NULL;
1465 
1466 	raw_spin_unlock_irqrestore(&base->lock, flags);
1467 
1468 	return ret;
1469 }
1470 
1471 /**
1472  * try_to_del_timer_sync - Try to deactivate a timer
1473  * @timer:	Timer to deactivate
1474  *
1475  * This function tries to deactivate a timer. On success the timer is not
1476  * queued and the timer callback function is not running on any CPU.
1477  *
1478  * This function does not guarantee that the timer cannot be rearmed right
1479  * after dropping the base lock. That needs to be prevented by the calling
1480  * code if necessary.
1481  *
1482  * Return:
1483  * * %0  - The timer was not pending
1484  * * %1  - The timer was pending and deactivated
1485  * * %-1 - The timer callback function is running on a different CPU
1486  */
1487 int try_to_del_timer_sync(struct timer_list *timer)
1488 {
1489 	return __try_to_del_timer_sync(timer, false);
1490 }
1491 EXPORT_SYMBOL(try_to_del_timer_sync);
1492 
1493 #ifdef CONFIG_PREEMPT_RT
1494 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1495 {
1496 	spin_lock_init(&base->expiry_lock);
1497 }
1498 
1499 static inline void timer_base_lock_expiry(struct timer_base *base)
1500 {
1501 	spin_lock(&base->expiry_lock);
1502 }
1503 
1504 static inline void timer_base_unlock_expiry(struct timer_base *base)
1505 {
1506 	spin_unlock(&base->expiry_lock);
1507 }
1508 
1509 /*
1510  * The counterpart to del_timer_wait_running().
1511  *
1512  * If there is a waiter for base->expiry_lock, then it was waiting for the
1513  * timer callback to finish. Drop expiry_lock and reacquire it. That allows
1514  * the waiter to acquire the lock and make progress.
1515  */
1516 static void timer_sync_wait_running(struct timer_base *base)
1517 {
1518 	if (atomic_read(&base->timer_waiters)) {
1519 		raw_spin_unlock_irq(&base->lock);
1520 		spin_unlock(&base->expiry_lock);
1521 		spin_lock(&base->expiry_lock);
1522 		raw_spin_lock_irq(&base->lock);
1523 	}
1524 }
1525 
1526 /*
1527  * This function is called on PREEMPT_RT kernels when the fast path
1528  * deletion of a timer failed because the timer callback function was
1529  * running.
1530  *
1531  * This prevents priority inversion, if the softirq thread on a remote CPU
1532  * got preempted, and it prevents a life lock when the task which tries to
1533  * delete a timer preempted the softirq thread running the timer callback
1534  * function.
1535  */
1536 static void del_timer_wait_running(struct timer_list *timer)
1537 {
1538 	u32 tf;
1539 
1540 	tf = READ_ONCE(timer->flags);
1541 	if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1542 		struct timer_base *base = get_timer_base(tf);
1543 
1544 		/*
1545 		 * Mark the base as contended and grab the expiry lock,
1546 		 * which is held by the softirq across the timer
1547 		 * callback. Drop the lock immediately so the softirq can
1548 		 * expire the next timer. In theory the timer could already
1549 		 * be running again, but that's more than unlikely and just
1550 		 * causes another wait loop.
1551 		 */
1552 		atomic_inc(&base->timer_waiters);
1553 		spin_lock_bh(&base->expiry_lock);
1554 		atomic_dec(&base->timer_waiters);
1555 		spin_unlock_bh(&base->expiry_lock);
1556 	}
1557 }
1558 #else
1559 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1560 static inline void timer_base_lock_expiry(struct timer_base *base) { }
1561 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1562 static inline void timer_sync_wait_running(struct timer_base *base) { }
1563 static inline void del_timer_wait_running(struct timer_list *timer) { }
1564 #endif
1565 
1566 /**
1567  * __timer_delete_sync - Internal function: Deactivate a timer and wait
1568  *			 for the handler to finish.
1569  * @timer:	The timer to be deactivated
1570  * @shutdown:	If true, @timer->function will be set to NULL under the
1571  *		timer base lock which prevents rearming of @timer
1572  *
1573  * If @shutdown is not set the timer can be rearmed later. If the timer can
1574  * be rearmed concurrently, i.e. after dropping the base lock then the
1575  * return value is meaningless.
1576  *
1577  * If @shutdown is set then @timer->function is set to NULL under timer
1578  * base lock which prevents rearming of the timer. Any attempt to rearm
1579  * a shutdown timer is silently ignored.
1580  *
1581  * If the timer should be reused after shutdown it has to be initialized
1582  * again.
1583  *
1584  * Return:
1585  * * %0	- The timer was not pending
1586  * * %1	- The timer was pending and deactivated
1587  */
1588 static int __timer_delete_sync(struct timer_list *timer, bool shutdown)
1589 {
1590 	int ret;
1591 
1592 #ifdef CONFIG_LOCKDEP
1593 	unsigned long flags;
1594 
1595 	/*
1596 	 * If lockdep gives a backtrace here, please reference
1597 	 * the synchronization rules above.
1598 	 */
1599 	local_irq_save(flags);
1600 	lock_map_acquire(&timer->lockdep_map);
1601 	lock_map_release(&timer->lockdep_map);
1602 	local_irq_restore(flags);
1603 #endif
1604 	/*
1605 	 * don't use it in hardirq context, because it
1606 	 * could lead to deadlock.
1607 	 */
1608 	WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE));
1609 
1610 	/*
1611 	 * Must be able to sleep on PREEMPT_RT because of the slowpath in
1612 	 * del_timer_wait_running().
1613 	 */
1614 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1615 		lockdep_assert_preemption_enabled();
1616 
1617 	do {
1618 		ret = __try_to_del_timer_sync(timer, shutdown);
1619 
1620 		if (unlikely(ret < 0)) {
1621 			del_timer_wait_running(timer);
1622 			cpu_relax();
1623 		}
1624 	} while (ret < 0);
1625 
1626 	return ret;
1627 }
1628 
1629 /**
1630  * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
1631  * @timer:	The timer to be deactivated
1632  *
1633  * Synchronization rules: Callers must prevent restarting of the timer,
1634  * otherwise this function is meaningless. It must not be called from
1635  * interrupt contexts unless the timer is an irqsafe one. The caller must
1636  * not hold locks which would prevent completion of the timer's callback
1637  * function. The timer's handler must not call add_timer_on(). Upon exit
1638  * the timer is not queued and the handler is not running on any CPU.
1639  *
1640  * For !irqsafe timers, the caller must not hold locks that are held in
1641  * interrupt context. Even if the lock has nothing to do with the timer in
1642  * question.  Here's why::
1643  *
1644  *    CPU0                             CPU1
1645  *    ----                             ----
1646  *                                     <SOFTIRQ>
1647  *                                       call_timer_fn();
1648  *                                       base->running_timer = mytimer;
1649  *    spin_lock_irq(somelock);
1650  *                                     <IRQ>
1651  *                                        spin_lock(somelock);
1652  *    timer_delete_sync(mytimer);
1653  *    while (base->running_timer == mytimer);
1654  *
1655  * Now timer_delete_sync() will never return and never release somelock.
1656  * The interrupt on the other CPU is waiting to grab somelock but it has
1657  * interrupted the softirq that CPU0 is waiting to finish.
1658  *
1659  * This function cannot guarantee that the timer is not rearmed again by
1660  * some concurrent or preempting code, right after it dropped the base
1661  * lock. If there is the possibility of a concurrent rearm then the return
1662  * value of the function is meaningless.
1663  *
1664  * If such a guarantee is needed, e.g. for teardown situations then use
1665  * timer_shutdown_sync() instead.
1666  *
1667  * Return:
1668  * * %0	- The timer was not pending
1669  * * %1	- The timer was pending and deactivated
1670  */
1671 int timer_delete_sync(struct timer_list *timer)
1672 {
1673 	return __timer_delete_sync(timer, false);
1674 }
1675 EXPORT_SYMBOL(timer_delete_sync);
1676 
1677 /**
1678  * timer_shutdown_sync - Shutdown a timer and prevent rearming
1679  * @timer: The timer to be shutdown
1680  *
1681  * When the function returns it is guaranteed that:
1682  *   - @timer is not queued
1683  *   - The callback function of @timer is not running
1684  *   - @timer cannot be enqueued again. Any attempt to rearm
1685  *     @timer is silently ignored.
1686  *
1687  * See timer_delete_sync() for synchronization rules.
1688  *
1689  * This function is useful for final teardown of an infrastructure where
1690  * the timer is subject to a circular dependency problem.
1691  *
1692  * A common pattern for this is a timer and a workqueue where the timer can
1693  * schedule work and work can arm the timer. On shutdown the workqueue must
1694  * be destroyed and the timer must be prevented from rearming. Unless the
1695  * code has conditionals like 'if (mything->in_shutdown)' to prevent that
1696  * there is no way to get this correct with timer_delete_sync().
1697  *
1698  * timer_shutdown_sync() is solving the problem. The correct ordering of
1699  * calls in this case is:
1700  *
1701  *	timer_shutdown_sync(&mything->timer);
1702  *	workqueue_destroy(&mything->workqueue);
1703  *
1704  * After this 'mything' can be safely freed.
1705  *
1706  * This obviously implies that the timer is not required to be functional
1707  * for the rest of the shutdown operation.
1708  *
1709  * Return:
1710  * * %0 - The timer was not pending
1711  * * %1 - The timer was pending
1712  */
1713 int timer_shutdown_sync(struct timer_list *timer)
1714 {
1715 	return __timer_delete_sync(timer, true);
1716 }
1717 EXPORT_SYMBOL_GPL(timer_shutdown_sync);
1718 
1719 static void call_timer_fn(struct timer_list *timer,
1720 			  void (*fn)(struct timer_list *),
1721 			  unsigned long baseclk)
1722 {
1723 	int count = preempt_count();
1724 
1725 #ifdef CONFIG_LOCKDEP
1726 	/*
1727 	 * It is permissible to free the timer from inside the
1728 	 * function that is called from it, this we need to take into
1729 	 * account for lockdep too. To avoid bogus "held lock freed"
1730 	 * warnings as well as problems when looking into
1731 	 * timer->lockdep_map, make a copy and use that here.
1732 	 */
1733 	struct lockdep_map lockdep_map;
1734 
1735 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1736 #endif
1737 	/*
1738 	 * Couple the lock chain with the lock chain at
1739 	 * timer_delete_sync() by acquiring the lock_map around the fn()
1740 	 * call here and in timer_delete_sync().
1741 	 */
1742 	lock_map_acquire(&lockdep_map);
1743 
1744 	trace_timer_expire_entry(timer, baseclk);
1745 	fn(timer);
1746 	trace_timer_expire_exit(timer);
1747 
1748 	lock_map_release(&lockdep_map);
1749 
1750 	if (count != preempt_count()) {
1751 		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1752 			  fn, count, preempt_count());
1753 		/*
1754 		 * Restore the preempt count. That gives us a decent
1755 		 * chance to survive and extract information. If the
1756 		 * callback kept a lock held, bad luck, but not worse
1757 		 * than the BUG() we had.
1758 		 */
1759 		preempt_count_set(count);
1760 	}
1761 }
1762 
1763 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1764 {
1765 	/*
1766 	 * This value is required only for tracing. base->clk was
1767 	 * incremented directly before expire_timers was called. But expiry
1768 	 * is related to the old base->clk value.
1769 	 */
1770 	unsigned long baseclk = base->clk - 1;
1771 
1772 	while (!hlist_empty(head)) {
1773 		struct timer_list *timer;
1774 		void (*fn)(struct timer_list *);
1775 
1776 		timer = hlist_entry(head->first, struct timer_list, entry);
1777 
1778 		base->running_timer = timer;
1779 		detach_timer(timer, true);
1780 
1781 		fn = timer->function;
1782 
1783 		if (WARN_ON_ONCE(!fn)) {
1784 			/* Should never happen. Emphasis on should! */
1785 			base->running_timer = NULL;
1786 			continue;
1787 		}
1788 
1789 		if (timer->flags & TIMER_IRQSAFE) {
1790 			raw_spin_unlock(&base->lock);
1791 			call_timer_fn(timer, fn, baseclk);
1792 			raw_spin_lock(&base->lock);
1793 			base->running_timer = NULL;
1794 		} else {
1795 			raw_spin_unlock_irq(&base->lock);
1796 			call_timer_fn(timer, fn, baseclk);
1797 			raw_spin_lock_irq(&base->lock);
1798 			base->running_timer = NULL;
1799 			timer_sync_wait_running(base);
1800 		}
1801 	}
1802 }
1803 
1804 static int collect_expired_timers(struct timer_base *base,
1805 				  struct hlist_head *heads)
1806 {
1807 	unsigned long clk = base->clk = base->next_expiry;
1808 	struct hlist_head *vec;
1809 	int i, levels = 0;
1810 	unsigned int idx;
1811 
1812 	for (i = 0; i < LVL_DEPTH; i++) {
1813 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1814 
1815 		if (__test_and_clear_bit(idx, base->pending_map)) {
1816 			vec = base->vectors + idx;
1817 			hlist_move_list(vec, heads++);
1818 			levels++;
1819 		}
1820 		/* Is it time to look at the next level? */
1821 		if (clk & LVL_CLK_MASK)
1822 			break;
1823 		/* Shift clock for the next level granularity */
1824 		clk >>= LVL_CLK_SHIFT;
1825 	}
1826 	return levels;
1827 }
1828 
1829 /*
1830  * Find the next pending bucket of a level. Search from level start (@offset)
1831  * + @clk upwards and if nothing there, search from start of the level
1832  * (@offset) up to @offset + clk.
1833  */
1834 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1835 			       unsigned clk)
1836 {
1837 	unsigned pos, start = offset + clk;
1838 	unsigned end = offset + LVL_SIZE;
1839 
1840 	pos = find_next_bit(base->pending_map, end, start);
1841 	if (pos < end)
1842 		return pos - start;
1843 
1844 	pos = find_next_bit(base->pending_map, start, offset);
1845 	return pos < start ? pos + LVL_SIZE - start : -1;
1846 }
1847 
1848 /*
1849  * Search the first expiring timer in the various clock levels. Caller must
1850  * hold base->lock.
1851  *
1852  * Store next expiry time in base->next_expiry.
1853  */
1854 static void next_expiry_recalc(struct timer_base *base)
1855 {
1856 	unsigned long clk, next, adj;
1857 	unsigned lvl, offset = 0;
1858 
1859 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1860 	clk = base->clk;
1861 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1862 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1863 		unsigned long lvl_clk = clk & LVL_CLK_MASK;
1864 
1865 		if (pos >= 0) {
1866 			unsigned long tmp = clk + (unsigned long) pos;
1867 
1868 			tmp <<= LVL_SHIFT(lvl);
1869 			if (time_before(tmp, next))
1870 				next = tmp;
1871 
1872 			/*
1873 			 * If the next expiration happens before we reach
1874 			 * the next level, no need to check further.
1875 			 */
1876 			if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1877 				break;
1878 		}
1879 		/*
1880 		 * Clock for the next level. If the current level clock lower
1881 		 * bits are zero, we look at the next level as is. If not we
1882 		 * need to advance it by one because that's going to be the
1883 		 * next expiring bucket in that level. base->clk is the next
1884 		 * expiring jiffie. So in case of:
1885 		 *
1886 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1887 		 *  0    0    0    0    0    0
1888 		 *
1889 		 * we have to look at all levels @index 0. With
1890 		 *
1891 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1892 		 *  0    0    0    0    0    2
1893 		 *
1894 		 * LVL0 has the next expiring bucket @index 2. The upper
1895 		 * levels have the next expiring bucket @index 1.
1896 		 *
1897 		 * In case that the propagation wraps the next level the same
1898 		 * rules apply:
1899 		 *
1900 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1901 		 *  0    0    0    0    F    2
1902 		 *
1903 		 * So after looking at LVL0 we get:
1904 		 *
1905 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1906 		 *  0    0    0    1    0
1907 		 *
1908 		 * So no propagation from LVL1 to LVL2 because that happened
1909 		 * with the add already, but then we need to propagate further
1910 		 * from LVL2 to LVL3.
1911 		 *
1912 		 * So the simple check whether the lower bits of the current
1913 		 * level are 0 or not is sufficient for all cases.
1914 		 */
1915 		adj = lvl_clk ? 1 : 0;
1916 		clk >>= LVL_CLK_SHIFT;
1917 		clk += adj;
1918 	}
1919 
1920 	base->next_expiry = next;
1921 	base->next_expiry_recalc = false;
1922 	base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
1923 }
1924 
1925 #ifdef CONFIG_NO_HZ_COMMON
1926 /*
1927  * Check, if the next hrtimer event is before the next timer wheel
1928  * event:
1929  */
1930 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1931 {
1932 	u64 nextevt = hrtimer_get_next_event();
1933 
1934 	/*
1935 	 * If high resolution timers are enabled
1936 	 * hrtimer_get_next_event() returns KTIME_MAX.
1937 	 */
1938 	if (expires <= nextevt)
1939 		return expires;
1940 
1941 	/*
1942 	 * If the next timer is already expired, return the tick base
1943 	 * time so the tick is fired immediately.
1944 	 */
1945 	if (nextevt <= basem)
1946 		return basem;
1947 
1948 	/*
1949 	 * Round up to the next jiffie. High resolution timers are
1950 	 * off, so the hrtimers are expired in the tick and we need to
1951 	 * make sure that this tick really expires the timer to avoid
1952 	 * a ping pong of the nohz stop code.
1953 	 *
1954 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1955 	 */
1956 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1957 }
1958 
1959 /**
1960  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1961  * @basej:	base time jiffies
1962  * @basem:	base time clock monotonic
1963  *
1964  * Returns the tick aligned clock monotonic time of the next pending
1965  * timer or KTIME_MAX if no timer is pending.
1966  */
1967 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1968 {
1969 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1970 	unsigned long nextevt = basej + NEXT_TIMER_MAX_DELTA;
1971 	u64 expires = KTIME_MAX;
1972 	bool was_idle;
1973 
1974 	/*
1975 	 * Pretend that there is no timer pending if the cpu is offline.
1976 	 * Possible pending timers will be migrated later to an active cpu.
1977 	 */
1978 	if (cpu_is_offline(smp_processor_id()))
1979 		return expires;
1980 
1981 	raw_spin_lock(&base->lock);
1982 	if (base->next_expiry_recalc)
1983 		next_expiry_recalc(base);
1984 
1985 	/*
1986 	 * We have a fresh next event. Check whether we can forward the
1987 	 * base.
1988 	 */
1989 	__forward_timer_base(base, basej);
1990 
1991 	if (base->timers_pending) {
1992 		nextevt = base->next_expiry;
1993 
1994 		/* If we missed a tick already, force 0 delta */
1995 		if (time_before(nextevt, basej))
1996 			nextevt = basej;
1997 		expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1998 	} else {
1999 		/*
2000 		 * Move next_expiry for the empty base into the future to
2001 		 * prevent a unnecessary raise of the timer softirq when the
2002 		 * next_expiry value will be reached even if there is no timer
2003 		 * pending.
2004 		 */
2005 		base->next_expiry = nextevt;
2006 	}
2007 
2008 	/*
2009 	 * Base is idle if the next event is more than a tick away.
2010 	 *
2011 	 * If the base is marked idle then any timer add operation must forward
2012 	 * the base clk itself to keep granularity small. This idle logic is
2013 	 * only maintained for the BASE_STD base, deferrable timers may still
2014 	 * see large granularity skew (by design).
2015 	 */
2016 	was_idle = base->is_idle;
2017 	base->is_idle = time_after(nextevt, basej + 1);
2018 	if (was_idle != base->is_idle)
2019 		trace_timer_base_idle(base->is_idle, base->cpu);
2020 
2021 	raw_spin_unlock(&base->lock);
2022 
2023 	return cmp_next_hrtimer_event(basem, expires);
2024 }
2025 
2026 /**
2027  * timer_clear_idle - Clear the idle state of the timer base
2028  *
2029  * Called with interrupts disabled
2030  */
2031 void timer_clear_idle(void)
2032 {
2033 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
2034 
2035 	/*
2036 	 * We do this unlocked. The worst outcome is a remote enqueue sending
2037 	 * a pointless IPI, but taking the lock would just make the window for
2038 	 * sending the IPI a few instructions smaller for the cost of taking
2039 	 * the lock in the exit from idle path.
2040 	 */
2041 	if (base->is_idle) {
2042 		base->is_idle = false;
2043 		trace_timer_base_idle(false, smp_processor_id());
2044 	}
2045 }
2046 #endif
2047 
2048 /**
2049  * __run_timers - run all expired timers (if any) on this CPU.
2050  * @base: the timer vector to be processed.
2051  */
2052 static inline void __run_timers(struct timer_base *base)
2053 {
2054 	struct hlist_head heads[LVL_DEPTH];
2055 	int levels;
2056 
2057 	if (time_before(jiffies, base->next_expiry))
2058 		return;
2059 
2060 	timer_base_lock_expiry(base);
2061 	raw_spin_lock_irq(&base->lock);
2062 
2063 	while (time_after_eq(jiffies, base->clk) &&
2064 	       time_after_eq(jiffies, base->next_expiry)) {
2065 		levels = collect_expired_timers(base, heads);
2066 		/*
2067 		 * The two possible reasons for not finding any expired
2068 		 * timer at this clk are that all matching timers have been
2069 		 * dequeued or no timer has been queued since
2070 		 * base::next_expiry was set to base::clk +
2071 		 * NEXT_TIMER_MAX_DELTA.
2072 		 */
2073 		WARN_ON_ONCE(!levels && !base->next_expiry_recalc
2074 			     && base->timers_pending);
2075 		/*
2076 		 * While executing timers, base->clk is set 1 offset ahead of
2077 		 * jiffies to avoid endless requeuing to current jiffies.
2078 		 */
2079 		base->clk++;
2080 		next_expiry_recalc(base);
2081 
2082 		while (levels--)
2083 			expire_timers(base, heads + levels);
2084 	}
2085 	raw_spin_unlock_irq(&base->lock);
2086 	timer_base_unlock_expiry(base);
2087 }
2088 
2089 /*
2090  * This function runs timers and the timer-tq in bottom half context.
2091  */
2092 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
2093 {
2094 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
2095 
2096 	__run_timers(base);
2097 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
2098 		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
2099 }
2100 
2101 /*
2102  * Called by the local, per-CPU timer interrupt on SMP.
2103  */
2104 static void run_local_timers(void)
2105 {
2106 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
2107 
2108 	hrtimer_run_queues();
2109 	/* Raise the softirq only if required. */
2110 	if (time_before(jiffies, base->next_expiry)) {
2111 		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
2112 			return;
2113 		/* CPU is awake, so check the deferrable base. */
2114 		base++;
2115 		if (time_before(jiffies, base->next_expiry))
2116 			return;
2117 	}
2118 	raise_softirq(TIMER_SOFTIRQ);
2119 }
2120 
2121 /*
2122  * Called from the timer interrupt handler to charge one tick to the current
2123  * process.  user_tick is 1 if the tick is user time, 0 for system.
2124  */
2125 void update_process_times(int user_tick)
2126 {
2127 	struct task_struct *p = current;
2128 
2129 	/* Note: this timer irq context must be accounted for as well. */
2130 	account_process_tick(p, user_tick);
2131 	run_local_timers();
2132 	rcu_sched_clock_irq(user_tick);
2133 #ifdef CONFIG_IRQ_WORK
2134 	if (in_irq())
2135 		irq_work_tick();
2136 #endif
2137 	scheduler_tick();
2138 	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2139 		run_posix_cpu_timers();
2140 }
2141 
2142 /*
2143  * Since schedule_timeout()'s timer is defined on the stack, it must store
2144  * the target task on the stack as well.
2145  */
2146 struct process_timer {
2147 	struct timer_list timer;
2148 	struct task_struct *task;
2149 };
2150 
2151 static void process_timeout(struct timer_list *t)
2152 {
2153 	struct process_timer *timeout = from_timer(timeout, t, timer);
2154 
2155 	wake_up_process(timeout->task);
2156 }
2157 
2158 /**
2159  * schedule_timeout - sleep until timeout
2160  * @timeout: timeout value in jiffies
2161  *
2162  * Make the current task sleep until @timeout jiffies have elapsed.
2163  * The function behavior depends on the current task state
2164  * (see also set_current_state() description):
2165  *
2166  * %TASK_RUNNING - the scheduler is called, but the task does not sleep
2167  * at all. That happens because sched_submit_work() does nothing for
2168  * tasks in %TASK_RUNNING state.
2169  *
2170  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
2171  * pass before the routine returns unless the current task is explicitly
2172  * woken up, (e.g. by wake_up_process()).
2173  *
2174  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2175  * delivered to the current task or the current task is explicitly woken
2176  * up.
2177  *
2178  * The current task state is guaranteed to be %TASK_RUNNING when this
2179  * routine returns.
2180  *
2181  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
2182  * the CPU away without a bound on the timeout. In this case the return
2183  * value will be %MAX_SCHEDULE_TIMEOUT.
2184  *
2185  * Returns 0 when the timer has expired otherwise the remaining time in
2186  * jiffies will be returned. In all cases the return value is guaranteed
2187  * to be non-negative.
2188  */
2189 signed long __sched schedule_timeout(signed long timeout)
2190 {
2191 	struct process_timer timer;
2192 	unsigned long expire;
2193 
2194 	switch (timeout)
2195 	{
2196 	case MAX_SCHEDULE_TIMEOUT:
2197 		/*
2198 		 * These two special cases are useful to be comfortable
2199 		 * in the caller. Nothing more. We could take
2200 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
2201 		 * but I' d like to return a valid offset (>=0) to allow
2202 		 * the caller to do everything it want with the retval.
2203 		 */
2204 		schedule();
2205 		goto out;
2206 	default:
2207 		/*
2208 		 * Another bit of PARANOID. Note that the retval will be
2209 		 * 0 since no piece of kernel is supposed to do a check
2210 		 * for a negative retval of schedule_timeout() (since it
2211 		 * should never happens anyway). You just have the printk()
2212 		 * that will tell you if something is gone wrong and where.
2213 		 */
2214 		if (timeout < 0) {
2215 			printk(KERN_ERR "schedule_timeout: wrong timeout "
2216 				"value %lx\n", timeout);
2217 			dump_stack();
2218 			__set_current_state(TASK_RUNNING);
2219 			goto out;
2220 		}
2221 	}
2222 
2223 	expire = timeout + jiffies;
2224 
2225 	timer.task = current;
2226 	timer_setup_on_stack(&timer.timer, process_timeout, 0);
2227 	__mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
2228 	schedule();
2229 	del_timer_sync(&timer.timer);
2230 
2231 	/* Remove the timer from the object tracker */
2232 	destroy_timer_on_stack(&timer.timer);
2233 
2234 	timeout = expire - jiffies;
2235 
2236  out:
2237 	return timeout < 0 ? 0 : timeout;
2238 }
2239 EXPORT_SYMBOL(schedule_timeout);
2240 
2241 /*
2242  * We can use __set_current_state() here because schedule_timeout() calls
2243  * schedule() unconditionally.
2244  */
2245 signed long __sched schedule_timeout_interruptible(signed long timeout)
2246 {
2247 	__set_current_state(TASK_INTERRUPTIBLE);
2248 	return schedule_timeout(timeout);
2249 }
2250 EXPORT_SYMBOL(schedule_timeout_interruptible);
2251 
2252 signed long __sched schedule_timeout_killable(signed long timeout)
2253 {
2254 	__set_current_state(TASK_KILLABLE);
2255 	return schedule_timeout(timeout);
2256 }
2257 EXPORT_SYMBOL(schedule_timeout_killable);
2258 
2259 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
2260 {
2261 	__set_current_state(TASK_UNINTERRUPTIBLE);
2262 	return schedule_timeout(timeout);
2263 }
2264 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
2265 
2266 /*
2267  * Like schedule_timeout_uninterruptible(), except this task will not contribute
2268  * to load average.
2269  */
2270 signed long __sched schedule_timeout_idle(signed long timeout)
2271 {
2272 	__set_current_state(TASK_IDLE);
2273 	return schedule_timeout(timeout);
2274 }
2275 EXPORT_SYMBOL(schedule_timeout_idle);
2276 
2277 #ifdef CONFIG_HOTPLUG_CPU
2278 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
2279 {
2280 	struct timer_list *timer;
2281 	int cpu = new_base->cpu;
2282 
2283 	while (!hlist_empty(head)) {
2284 		timer = hlist_entry(head->first, struct timer_list, entry);
2285 		detach_timer(timer, false);
2286 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2287 		internal_add_timer(new_base, timer);
2288 	}
2289 }
2290 
2291 int timers_prepare_cpu(unsigned int cpu)
2292 {
2293 	struct timer_base *base;
2294 	int b;
2295 
2296 	for (b = 0; b < NR_BASES; b++) {
2297 		base = per_cpu_ptr(&timer_bases[b], cpu);
2298 		base->clk = jiffies;
2299 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2300 		base->next_expiry_recalc = false;
2301 		base->timers_pending = false;
2302 		base->is_idle = false;
2303 	}
2304 	return 0;
2305 }
2306 
2307 int timers_dead_cpu(unsigned int cpu)
2308 {
2309 	struct timer_base *old_base;
2310 	struct timer_base *new_base;
2311 	int b, i;
2312 
2313 	for (b = 0; b < NR_BASES; b++) {
2314 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
2315 		new_base = get_cpu_ptr(&timer_bases[b]);
2316 		/*
2317 		 * The caller is globally serialized and nobody else
2318 		 * takes two locks at once, deadlock is not possible.
2319 		 */
2320 		raw_spin_lock_irq(&new_base->lock);
2321 		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2322 
2323 		/*
2324 		 * The current CPUs base clock might be stale. Update it
2325 		 * before moving the timers over.
2326 		 */
2327 		forward_timer_base(new_base);
2328 
2329 		WARN_ON_ONCE(old_base->running_timer);
2330 		old_base->running_timer = NULL;
2331 
2332 		for (i = 0; i < WHEEL_SIZE; i++)
2333 			migrate_timer_list(new_base, old_base->vectors + i);
2334 
2335 		raw_spin_unlock(&old_base->lock);
2336 		raw_spin_unlock_irq(&new_base->lock);
2337 		put_cpu_ptr(&timer_bases);
2338 	}
2339 	return 0;
2340 }
2341 
2342 #endif /* CONFIG_HOTPLUG_CPU */
2343 
2344 static void __init init_timer_cpu(int cpu)
2345 {
2346 	struct timer_base *base;
2347 	int i;
2348 
2349 	for (i = 0; i < NR_BASES; i++) {
2350 		base = per_cpu_ptr(&timer_bases[i], cpu);
2351 		base->cpu = cpu;
2352 		raw_spin_lock_init(&base->lock);
2353 		base->clk = jiffies;
2354 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2355 		timer_base_init_expiry_lock(base);
2356 	}
2357 }
2358 
2359 static void __init init_timer_cpus(void)
2360 {
2361 	int cpu;
2362 
2363 	for_each_possible_cpu(cpu)
2364 		init_timer_cpu(cpu);
2365 }
2366 
2367 void __init init_timers(void)
2368 {
2369 	init_timer_cpus();
2370 	posix_cputimers_init_work();
2371 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2372 }
2373 
2374 /**
2375  * msleep - sleep safely even with waitqueue interruptions
2376  * @msecs: Time in milliseconds to sleep for
2377  */
2378 void msleep(unsigned int msecs)
2379 {
2380 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2381 
2382 	while (timeout)
2383 		timeout = schedule_timeout_uninterruptible(timeout);
2384 }
2385 
2386 EXPORT_SYMBOL(msleep);
2387 
2388 /**
2389  * msleep_interruptible - sleep waiting for signals
2390  * @msecs: Time in milliseconds to sleep for
2391  */
2392 unsigned long msleep_interruptible(unsigned int msecs)
2393 {
2394 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2395 
2396 	while (timeout && !signal_pending(current))
2397 		timeout = schedule_timeout_interruptible(timeout);
2398 	return jiffies_to_msecs(timeout);
2399 }
2400 
2401 EXPORT_SYMBOL(msleep_interruptible);
2402 
2403 /**
2404  * usleep_range_state - Sleep for an approximate time in a given state
2405  * @min:	Minimum time in usecs to sleep
2406  * @max:	Maximum time in usecs to sleep
2407  * @state:	State of the current task that will be while sleeping
2408  *
2409  * In non-atomic context where the exact wakeup time is flexible, use
2410  * usleep_range_state() instead of udelay().  The sleep improves responsiveness
2411  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2412  * power usage by allowing hrtimers to take advantage of an already-
2413  * scheduled interrupt instead of scheduling a new one just for this sleep.
2414  */
2415 void __sched usleep_range_state(unsigned long min, unsigned long max,
2416 				unsigned int state)
2417 {
2418 	ktime_t exp = ktime_add_us(ktime_get(), min);
2419 	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2420 
2421 	for (;;) {
2422 		__set_current_state(state);
2423 		/* Do not return before the requested sleep time has elapsed */
2424 		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2425 			break;
2426 	}
2427 }
2428 EXPORT_SYMBOL(usleep_range_state);
2429