xref: /linux/kernel/time/tick-sched.c (revision a13d7201d7deedcbb6ac6efa94a1a7d34d3d79ec)
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
27 
28 #include <asm/irq_regs.h>
29 
30 #include "tick-internal.h"
31 
32 #include <trace/events/timer.h>
33 
34 /*
35  * Per cpu nohz control structure
36  */
37 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 
39 /*
40  * The time, when the last jiffy update happened. Protected by jiffies_lock.
41  */
42 static ktime_t last_jiffies_update;
43 
44 struct tick_sched *tick_get_tick_sched(int cpu)
45 {
46 	return &per_cpu(tick_cpu_sched, cpu);
47 }
48 
49 /*
50  * Must be called with interrupts disabled !
51  */
52 static void tick_do_update_jiffies64(ktime_t now)
53 {
54 	unsigned long ticks = 0;
55 	ktime_t delta;
56 
57 	/*
58 	 * Do a quick check without holding jiffies_lock:
59 	 */
60 	delta = ktime_sub(now, last_jiffies_update);
61 	if (delta.tv64 < tick_period.tv64)
62 		return;
63 
64 	/* Reevalute with jiffies_lock held */
65 	write_seqlock(&jiffies_lock);
66 
67 	delta = ktime_sub(now, last_jiffies_update);
68 	if (delta.tv64 >= tick_period.tv64) {
69 
70 		delta = ktime_sub(delta, tick_period);
71 		last_jiffies_update = ktime_add(last_jiffies_update,
72 						tick_period);
73 
74 		/* Slow path for long timeouts */
75 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 			s64 incr = ktime_to_ns(tick_period);
77 
78 			ticks = ktime_divns(delta, incr);
79 
80 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 							   incr * ticks);
82 		}
83 		do_timer(++ticks);
84 
85 		/* Keep the tick_next_period variable up to date */
86 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 	} else {
88 		write_sequnlock(&jiffies_lock);
89 		return;
90 	}
91 	write_sequnlock(&jiffies_lock);
92 	update_wall_time();
93 }
94 
95 /*
96  * Initialize and return retrieve the jiffies update.
97  */
98 static ktime_t tick_init_jiffy_update(void)
99 {
100 	ktime_t period;
101 
102 	write_seqlock(&jiffies_lock);
103 	/* Did we start the jiffies update yet ? */
104 	if (last_jiffies_update.tv64 == 0)
105 		last_jiffies_update = tick_next_period;
106 	period = last_jiffies_update;
107 	write_sequnlock(&jiffies_lock);
108 	return period;
109 }
110 
111 
112 static void tick_sched_do_timer(ktime_t now)
113 {
114 	int cpu = smp_processor_id();
115 
116 #ifdef CONFIG_NO_HZ_COMMON
117 	/*
118 	 * Check if the do_timer duty was dropped. We don't care about
119 	 * concurrency: This happens only when the cpu in charge went
120 	 * into a long sleep. If two cpus happen to assign themself to
121 	 * this duty, then the jiffies update is still serialized by
122 	 * jiffies_lock.
123 	 */
124 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 	    && !tick_nohz_full_cpu(cpu))
126 		tick_do_timer_cpu = cpu;
127 #endif
128 
129 	/* Check, if the jiffies need an update */
130 	if (tick_do_timer_cpu == cpu)
131 		tick_do_update_jiffies64(now);
132 }
133 
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135 {
136 #ifdef CONFIG_NO_HZ_COMMON
137 	/*
138 	 * When we are idle and the tick is stopped, we have to touch
139 	 * the watchdog as we might not schedule for a really long
140 	 * time. This happens on complete idle SMP systems while
141 	 * waiting on the login prompt. We also increment the "start of
142 	 * idle" jiffy stamp so the idle accounting adjustment we do
143 	 * when we go busy again does not account too much ticks.
144 	 */
145 	if (ts->tick_stopped) {
146 		touch_softlockup_watchdog();
147 		if (is_idle_task(current))
148 			ts->idle_jiffies++;
149 	}
150 #endif
151 	update_process_times(user_mode(regs));
152 	profile_tick(CPU_PROFILING);
153 }
154 
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 cpumask_var_t housekeeping_mask;
158 bool tick_nohz_full_running;
159 
160 static bool can_stop_full_tick(void)
161 {
162 	WARN_ON_ONCE(!irqs_disabled());
163 
164 	if (!sched_can_stop_tick()) {
165 		trace_tick_stop(0, "more than 1 task in runqueue\n");
166 		return false;
167 	}
168 
169 	if (!posix_cpu_timers_can_stop_tick(current)) {
170 		trace_tick_stop(0, "posix timers running\n");
171 		return false;
172 	}
173 
174 	if (!perf_event_can_stop_tick()) {
175 		trace_tick_stop(0, "perf events running\n");
176 		return false;
177 	}
178 
179 	/* sched_clock_tick() needs us? */
180 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
181 	/*
182 	 * TODO: kick full dynticks CPUs when
183 	 * sched_clock_stable is set.
184 	 */
185 	if (!sched_clock_stable()) {
186 		trace_tick_stop(0, "unstable sched clock\n");
187 		/*
188 		 * Don't allow the user to think they can get
189 		 * full NO_HZ with this machine.
190 		 */
191 		WARN_ONCE(tick_nohz_full_running,
192 			  "NO_HZ FULL will not work with unstable sched clock");
193 		return false;
194 	}
195 #endif
196 
197 	return true;
198 }
199 
200 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
201 
202 /*
203  * Re-evaluate the need for the tick on the current CPU
204  * and restart it if necessary.
205  */
206 void __tick_nohz_full_check(void)
207 {
208 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
209 
210 	if (tick_nohz_full_cpu(smp_processor_id())) {
211 		if (ts->tick_stopped && !is_idle_task(current)) {
212 			if (!can_stop_full_tick())
213 				tick_nohz_restart_sched_tick(ts, ktime_get());
214 		}
215 	}
216 }
217 
218 static void nohz_full_kick_work_func(struct irq_work *work)
219 {
220 	__tick_nohz_full_check();
221 }
222 
223 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
224 	.func = nohz_full_kick_work_func,
225 };
226 
227 /*
228  * Kick this CPU if it's full dynticks in order to force it to
229  * re-evaluate its dependency on the tick and restart it if necessary.
230  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
231  * is NMI safe.
232  */
233 void tick_nohz_full_kick(void)
234 {
235 	if (!tick_nohz_full_cpu(smp_processor_id()))
236 		return;
237 
238 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
239 }
240 
241 /*
242  * Kick the CPU if it's full dynticks in order to force it to
243  * re-evaluate its dependency on the tick and restart it if necessary.
244  */
245 void tick_nohz_full_kick_cpu(int cpu)
246 {
247 	if (!tick_nohz_full_cpu(cpu))
248 		return;
249 
250 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
251 }
252 
253 static void nohz_full_kick_ipi(void *info)
254 {
255 	__tick_nohz_full_check();
256 }
257 
258 /*
259  * Kick all full dynticks CPUs in order to force these to re-evaluate
260  * their dependency on the tick and restart it if necessary.
261  */
262 void tick_nohz_full_kick_all(void)
263 {
264 	if (!tick_nohz_full_running)
265 		return;
266 
267 	preempt_disable();
268 	smp_call_function_many(tick_nohz_full_mask,
269 			       nohz_full_kick_ipi, NULL, false);
270 	tick_nohz_full_kick();
271 	preempt_enable();
272 }
273 
274 /*
275  * Re-evaluate the need for the tick as we switch the current task.
276  * It might need the tick due to per task/process properties:
277  * perf events, posix cpu timers, ...
278  */
279 void __tick_nohz_task_switch(struct task_struct *tsk)
280 {
281 	unsigned long flags;
282 
283 	local_irq_save(flags);
284 
285 	if (!tick_nohz_full_cpu(smp_processor_id()))
286 		goto out;
287 
288 	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
289 		tick_nohz_full_kick();
290 
291 out:
292 	local_irq_restore(flags);
293 }
294 
295 /* Parse the boot-time nohz CPU list from the kernel parameters. */
296 static int __init tick_nohz_full_setup(char *str)
297 {
298 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
299 	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
300 		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
301 		free_bootmem_cpumask_var(tick_nohz_full_mask);
302 		return 1;
303 	}
304 	tick_nohz_full_running = true;
305 
306 	return 1;
307 }
308 __setup("nohz_full=", tick_nohz_full_setup);
309 
310 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
311 						 unsigned long action,
312 						 void *hcpu)
313 {
314 	unsigned int cpu = (unsigned long)hcpu;
315 
316 	switch (action & ~CPU_TASKS_FROZEN) {
317 	case CPU_DOWN_PREPARE:
318 		/*
319 		 * If we handle the timekeeping duty for full dynticks CPUs,
320 		 * we can't safely shutdown that CPU.
321 		 */
322 		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
323 			return NOTIFY_BAD;
324 		break;
325 	}
326 	return NOTIFY_OK;
327 }
328 
329 static int tick_nohz_init_all(void)
330 {
331 	int err = -1;
332 
333 #ifdef CONFIG_NO_HZ_FULL_ALL
334 	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
335 		WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
336 		return err;
337 	}
338 	err = 0;
339 	cpumask_setall(tick_nohz_full_mask);
340 	tick_nohz_full_running = true;
341 #endif
342 	return err;
343 }
344 
345 void __init tick_nohz_init(void)
346 {
347 	int cpu;
348 
349 	if (!tick_nohz_full_running) {
350 		if (tick_nohz_init_all() < 0)
351 			return;
352 	}
353 
354 	if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
355 		WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
356 		cpumask_clear(tick_nohz_full_mask);
357 		tick_nohz_full_running = false;
358 		return;
359 	}
360 
361 	/*
362 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
363 	 * locking contexts. But then we need irq work to raise its own
364 	 * interrupts to avoid circular dependency on the tick
365 	 */
366 	if (!arch_irq_work_has_interrupt()) {
367 		pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
368 			   "support irq work self-IPIs\n");
369 		cpumask_clear(tick_nohz_full_mask);
370 		cpumask_copy(housekeeping_mask, cpu_possible_mask);
371 		tick_nohz_full_running = false;
372 		return;
373 	}
374 
375 	cpu = smp_processor_id();
376 
377 	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
378 		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
379 		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
380 	}
381 
382 	cpumask_andnot(housekeeping_mask,
383 		       cpu_possible_mask, tick_nohz_full_mask);
384 
385 	for_each_cpu(cpu, tick_nohz_full_mask)
386 		context_tracking_cpu_set(cpu);
387 
388 	cpu_notifier(tick_nohz_cpu_down_callback, 0);
389 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
390 		cpumask_pr_args(tick_nohz_full_mask));
391 }
392 #endif
393 
394 /*
395  * NOHZ - aka dynamic tick functionality
396  */
397 #ifdef CONFIG_NO_HZ_COMMON
398 /*
399  * NO HZ enabled ?
400  */
401 static int tick_nohz_enabled __read_mostly  = 1;
402 unsigned long tick_nohz_active  __read_mostly;
403 /*
404  * Enable / Disable tickless mode
405  */
406 static int __init setup_tick_nohz(char *str)
407 {
408 	if (!strcmp(str, "off"))
409 		tick_nohz_enabled = 0;
410 	else if (!strcmp(str, "on"))
411 		tick_nohz_enabled = 1;
412 	else
413 		return 0;
414 	return 1;
415 }
416 
417 __setup("nohz=", setup_tick_nohz);
418 
419 int tick_nohz_tick_stopped(void)
420 {
421 	return __this_cpu_read(tick_cpu_sched.tick_stopped);
422 }
423 
424 /**
425  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
426  *
427  * Called from interrupt entry when the CPU was idle
428  *
429  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
430  * must be updated. Otherwise an interrupt handler could use a stale jiffy
431  * value. We do this unconditionally on any cpu, as we don't know whether the
432  * cpu, which has the update task assigned is in a long sleep.
433  */
434 static void tick_nohz_update_jiffies(ktime_t now)
435 {
436 	unsigned long flags;
437 
438 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
439 
440 	local_irq_save(flags);
441 	tick_do_update_jiffies64(now);
442 	local_irq_restore(flags);
443 
444 	touch_softlockup_watchdog();
445 }
446 
447 /*
448  * Updates the per cpu time idle statistics counters
449  */
450 static void
451 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
452 {
453 	ktime_t delta;
454 
455 	if (ts->idle_active) {
456 		delta = ktime_sub(now, ts->idle_entrytime);
457 		if (nr_iowait_cpu(cpu) > 0)
458 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
459 		else
460 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
461 		ts->idle_entrytime = now;
462 	}
463 
464 	if (last_update_time)
465 		*last_update_time = ktime_to_us(now);
466 
467 }
468 
469 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
470 {
471 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
472 	ts->idle_active = 0;
473 
474 	sched_clock_idle_wakeup_event(0);
475 }
476 
477 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
478 {
479 	ktime_t now = ktime_get();
480 
481 	ts->idle_entrytime = now;
482 	ts->idle_active = 1;
483 	sched_clock_idle_sleep_event();
484 	return now;
485 }
486 
487 /**
488  * get_cpu_idle_time_us - get the total idle time of a cpu
489  * @cpu: CPU number to query
490  * @last_update_time: variable to store update time in. Do not update
491  * counters if NULL.
492  *
493  * Return the cummulative idle time (since boot) for a given
494  * CPU, in microseconds.
495  *
496  * This time is measured via accounting rather than sampling,
497  * and is as accurate as ktime_get() is.
498  *
499  * This function returns -1 if NOHZ is not enabled.
500  */
501 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
502 {
503 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
504 	ktime_t now, idle;
505 
506 	if (!tick_nohz_active)
507 		return -1;
508 
509 	now = ktime_get();
510 	if (last_update_time) {
511 		update_ts_time_stats(cpu, ts, now, last_update_time);
512 		idle = ts->idle_sleeptime;
513 	} else {
514 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
515 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
516 
517 			idle = ktime_add(ts->idle_sleeptime, delta);
518 		} else {
519 			idle = ts->idle_sleeptime;
520 		}
521 	}
522 
523 	return ktime_to_us(idle);
524 
525 }
526 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
527 
528 /**
529  * get_cpu_iowait_time_us - get the total iowait time of a cpu
530  * @cpu: CPU number to query
531  * @last_update_time: variable to store update time in. Do not update
532  * counters if NULL.
533  *
534  * Return the cummulative iowait time (since boot) for a given
535  * CPU, in microseconds.
536  *
537  * This time is measured via accounting rather than sampling,
538  * and is as accurate as ktime_get() is.
539  *
540  * This function returns -1 if NOHZ is not enabled.
541  */
542 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
543 {
544 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
545 	ktime_t now, iowait;
546 
547 	if (!tick_nohz_active)
548 		return -1;
549 
550 	now = ktime_get();
551 	if (last_update_time) {
552 		update_ts_time_stats(cpu, ts, now, last_update_time);
553 		iowait = ts->iowait_sleeptime;
554 	} else {
555 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
556 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
557 
558 			iowait = ktime_add(ts->iowait_sleeptime, delta);
559 		} else {
560 			iowait = ts->iowait_sleeptime;
561 		}
562 	}
563 
564 	return ktime_to_us(iowait);
565 }
566 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
567 
568 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
569 {
570 	hrtimer_cancel(&ts->sched_timer);
571 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
572 
573 	/* Forward the time to expire in the future */
574 	hrtimer_forward(&ts->sched_timer, now, tick_period);
575 
576 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
577 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
578 	else
579 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
580 }
581 
582 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
583 					 ktime_t now, int cpu)
584 {
585 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
586 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
587 	unsigned long seq, basejiff;
588 	ktime_t	tick;
589 
590 	/* Read jiffies and the time when jiffies were updated last */
591 	do {
592 		seq = read_seqbegin(&jiffies_lock);
593 		basemono = last_jiffies_update.tv64;
594 		basejiff = jiffies;
595 	} while (read_seqretry(&jiffies_lock, seq));
596 	ts->last_jiffies = basejiff;
597 
598 	if (rcu_needs_cpu(basemono, &next_rcu) ||
599 	    arch_needs_cpu() || irq_work_needs_cpu()) {
600 		next_tick = basemono + TICK_NSEC;
601 	} else {
602 		/*
603 		 * Get the next pending timer. If high resolution
604 		 * timers are enabled this only takes the timer wheel
605 		 * timers into account. If high resolution timers are
606 		 * disabled this also looks at the next expiring
607 		 * hrtimer.
608 		 */
609 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
610 		ts->next_timer = next_tmr;
611 		/* Take the next rcu event into account */
612 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
613 	}
614 
615 	/*
616 	 * If the tick is due in the next period, keep it ticking or
617 	 * restart it proper.
618 	 */
619 	delta = next_tick - basemono;
620 	if (delta <= (u64)TICK_NSEC) {
621 		tick.tv64 = 0;
622 		if (!ts->tick_stopped)
623 			goto out;
624 		if (delta == 0) {
625 			/* Tick is stopped, but required now. Enforce it */
626 			tick_nohz_restart(ts, now);
627 			goto out;
628 		}
629 	}
630 
631 	/*
632 	 * If this cpu is the one which updates jiffies, then give up
633 	 * the assignment and let it be taken by the cpu which runs
634 	 * the tick timer next, which might be this cpu as well. If we
635 	 * don't drop this here the jiffies might be stale and
636 	 * do_timer() never invoked. Keep track of the fact that it
637 	 * was the one which had the do_timer() duty last. If this cpu
638 	 * is the one which had the do_timer() duty last, we limit the
639 	 * sleep time to the timekeeping max_deferement value.
640 	 * Otherwise we can sleep as long as we want.
641 	 */
642 	delta = timekeeping_max_deferment();
643 	if (cpu == tick_do_timer_cpu) {
644 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
645 		ts->do_timer_last = 1;
646 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
647 		delta = KTIME_MAX;
648 		ts->do_timer_last = 0;
649 	} else if (!ts->do_timer_last) {
650 		delta = KTIME_MAX;
651 	}
652 
653 #ifdef CONFIG_NO_HZ_FULL
654 	/* Limit the tick delta to the maximum scheduler deferment */
655 	if (!ts->inidle)
656 		delta = min(delta, scheduler_tick_max_deferment());
657 #endif
658 
659 	/* Calculate the next expiry time */
660 	if (delta < (KTIME_MAX - basemono))
661 		expires = basemono + delta;
662 	else
663 		expires = KTIME_MAX;
664 
665 	expires = min_t(u64, expires, next_tick);
666 	tick.tv64 = expires;
667 
668 	/* Skip reprogram of event if its not changed */
669 	if (ts->tick_stopped && (expires == dev->next_event.tv64))
670 		goto out;
671 
672 	/*
673 	 * nohz_stop_sched_tick can be called several times before
674 	 * the nohz_restart_sched_tick is called. This happens when
675 	 * interrupts arrive which do not cause a reschedule. In the
676 	 * first call we save the current tick time, so we can restart
677 	 * the scheduler tick in nohz_restart_sched_tick.
678 	 */
679 	if (!ts->tick_stopped) {
680 		nohz_balance_enter_idle(cpu);
681 		calc_load_enter_idle();
682 
683 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
684 		ts->tick_stopped = 1;
685 		trace_tick_stop(1, " ");
686 	}
687 
688 	/*
689 	 * If the expiration time == KTIME_MAX, then we simply stop
690 	 * the tick timer.
691 	 */
692 	if (unlikely(expires == KTIME_MAX)) {
693 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
694 			hrtimer_cancel(&ts->sched_timer);
695 		goto out;
696 	}
697 
698 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
699 		hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
700 	else
701 		tick_program_event(tick, 1);
702 out:
703 	/* Update the estimated sleep length */
704 	ts->sleep_length = ktime_sub(dev->next_event, now);
705 	return tick;
706 }
707 
708 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
709 {
710 #ifdef CONFIG_NO_HZ_FULL
711 	int cpu = smp_processor_id();
712 
713 	if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
714 		return;
715 
716 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
717 		return;
718 
719 	if (!can_stop_full_tick())
720 		return;
721 
722 	tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
723 #endif
724 }
725 
726 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
727 {
728 	/*
729 	 * If this cpu is offline and it is the one which updates
730 	 * jiffies, then give up the assignment and let it be taken by
731 	 * the cpu which runs the tick timer next. If we don't drop
732 	 * this here the jiffies might be stale and do_timer() never
733 	 * invoked.
734 	 */
735 	if (unlikely(!cpu_online(cpu))) {
736 		if (cpu == tick_do_timer_cpu)
737 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
738 		return false;
739 	}
740 
741 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
742 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
743 		return false;
744 	}
745 
746 	if (need_resched())
747 		return false;
748 
749 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
750 		static int ratelimit;
751 
752 		if (ratelimit < 10 &&
753 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
754 			pr_warn("NOHZ: local_softirq_pending %02x\n",
755 				(unsigned int) local_softirq_pending());
756 			ratelimit++;
757 		}
758 		return false;
759 	}
760 
761 	if (tick_nohz_full_enabled()) {
762 		/*
763 		 * Keep the tick alive to guarantee timekeeping progression
764 		 * if there are full dynticks CPUs around
765 		 */
766 		if (tick_do_timer_cpu == cpu)
767 			return false;
768 		/*
769 		 * Boot safety: make sure the timekeeping duty has been
770 		 * assigned before entering dyntick-idle mode,
771 		 */
772 		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
773 			return false;
774 	}
775 
776 	return true;
777 }
778 
779 static void __tick_nohz_idle_enter(struct tick_sched *ts)
780 {
781 	ktime_t now, expires;
782 	int cpu = smp_processor_id();
783 
784 	now = tick_nohz_start_idle(ts);
785 
786 	if (can_stop_idle_tick(cpu, ts)) {
787 		int was_stopped = ts->tick_stopped;
788 
789 		ts->idle_calls++;
790 
791 		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
792 		if (expires.tv64 > 0LL) {
793 			ts->idle_sleeps++;
794 			ts->idle_expires = expires;
795 		}
796 
797 		if (!was_stopped && ts->tick_stopped)
798 			ts->idle_jiffies = ts->last_jiffies;
799 	}
800 }
801 
802 /**
803  * tick_nohz_idle_enter - stop the idle tick from the idle task
804  *
805  * When the next event is more than a tick into the future, stop the idle tick
806  * Called when we start the idle loop.
807  *
808  * The arch is responsible of calling:
809  *
810  * - rcu_idle_enter() after its last use of RCU before the CPU is put
811  *  to sleep.
812  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
813  */
814 void tick_nohz_idle_enter(void)
815 {
816 	struct tick_sched *ts;
817 
818 	WARN_ON_ONCE(irqs_disabled());
819 
820 	/*
821  	 * Update the idle state in the scheduler domain hierarchy
822  	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
823  	 * State will be updated to busy during the first busy tick after
824  	 * exiting idle.
825  	 */
826 	set_cpu_sd_state_idle();
827 
828 	local_irq_disable();
829 
830 	ts = this_cpu_ptr(&tick_cpu_sched);
831 	ts->inidle = 1;
832 	__tick_nohz_idle_enter(ts);
833 
834 	local_irq_enable();
835 }
836 
837 /**
838  * tick_nohz_irq_exit - update next tick event from interrupt exit
839  *
840  * When an interrupt fires while we are idle and it doesn't cause
841  * a reschedule, it may still add, modify or delete a timer, enqueue
842  * an RCU callback, etc...
843  * So we need to re-calculate and reprogram the next tick event.
844  */
845 void tick_nohz_irq_exit(void)
846 {
847 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
848 
849 	if (ts->inidle)
850 		__tick_nohz_idle_enter(ts);
851 	else
852 		tick_nohz_full_stop_tick(ts);
853 }
854 
855 /**
856  * tick_nohz_get_sleep_length - return the length of the current sleep
857  *
858  * Called from power state control code with interrupts disabled
859  */
860 ktime_t tick_nohz_get_sleep_length(void)
861 {
862 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
863 
864 	return ts->sleep_length;
865 }
866 
867 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
868 {
869 	/* Update jiffies first */
870 	tick_do_update_jiffies64(now);
871 	update_cpu_load_nohz();
872 
873 	calc_load_exit_idle();
874 	touch_softlockup_watchdog();
875 	/*
876 	 * Cancel the scheduled timer and restore the tick
877 	 */
878 	ts->tick_stopped  = 0;
879 	ts->idle_exittime = now;
880 
881 	tick_nohz_restart(ts, now);
882 }
883 
884 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
885 {
886 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
887 	unsigned long ticks;
888 
889 	if (vtime_accounting_enabled())
890 		return;
891 	/*
892 	 * We stopped the tick in idle. Update process times would miss the
893 	 * time we slept as update_process_times does only a 1 tick
894 	 * accounting. Enforce that this is accounted to idle !
895 	 */
896 	ticks = jiffies - ts->idle_jiffies;
897 	/*
898 	 * We might be one off. Do not randomly account a huge number of ticks!
899 	 */
900 	if (ticks && ticks < LONG_MAX)
901 		account_idle_ticks(ticks);
902 #endif
903 }
904 
905 /**
906  * tick_nohz_idle_exit - restart the idle tick from the idle task
907  *
908  * Restart the idle tick when the CPU is woken up from idle
909  * This also exit the RCU extended quiescent state. The CPU
910  * can use RCU again after this function is called.
911  */
912 void tick_nohz_idle_exit(void)
913 {
914 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
915 	ktime_t now;
916 
917 	local_irq_disable();
918 
919 	WARN_ON_ONCE(!ts->inidle);
920 
921 	ts->inidle = 0;
922 
923 	if (ts->idle_active || ts->tick_stopped)
924 		now = ktime_get();
925 
926 	if (ts->idle_active)
927 		tick_nohz_stop_idle(ts, now);
928 
929 	if (ts->tick_stopped) {
930 		tick_nohz_restart_sched_tick(ts, now);
931 		tick_nohz_account_idle_ticks(ts);
932 	}
933 
934 	local_irq_enable();
935 }
936 
937 /*
938  * The nohz low res interrupt handler
939  */
940 static void tick_nohz_handler(struct clock_event_device *dev)
941 {
942 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
943 	struct pt_regs *regs = get_irq_regs();
944 	ktime_t now = ktime_get();
945 
946 	dev->next_event.tv64 = KTIME_MAX;
947 
948 	tick_sched_do_timer(now);
949 	tick_sched_handle(ts, regs);
950 
951 	/* No need to reprogram if we are running tickless  */
952 	if (unlikely(ts->tick_stopped))
953 		return;
954 
955 	hrtimer_forward(&ts->sched_timer, now, tick_period);
956 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
957 }
958 
959 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
960 {
961 	if (!tick_nohz_enabled)
962 		return;
963 	ts->nohz_mode = mode;
964 	/* One update is enough */
965 	if (!test_and_set_bit(0, &tick_nohz_active))
966 		timers_update_migration(true);
967 }
968 
969 /**
970  * tick_nohz_switch_to_nohz - switch to nohz mode
971  */
972 static void tick_nohz_switch_to_nohz(void)
973 {
974 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
975 	ktime_t next;
976 
977 	if (!tick_nohz_enabled)
978 		return;
979 
980 	if (tick_switch_to_oneshot(tick_nohz_handler))
981 		return;
982 
983 	/*
984 	 * Recycle the hrtimer in ts, so we can share the
985 	 * hrtimer_forward with the highres code.
986 	 */
987 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
988 	/* Get the next period */
989 	next = tick_init_jiffy_update();
990 
991 	hrtimer_forward_now(&ts->sched_timer, tick_period);
992 	hrtimer_set_expires(&ts->sched_timer, next);
993 	tick_program_event(next, 1);
994 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
995 }
996 
997 /*
998  * When NOHZ is enabled and the tick is stopped, we need to kick the
999  * tick timer from irq_enter() so that the jiffies update is kept
1000  * alive during long running softirqs. That's ugly as hell, but
1001  * correctness is key even if we need to fix the offending softirq in
1002  * the first place.
1003  *
1004  * Note, this is different to tick_nohz_restart. We just kick the
1005  * timer and do not touch the other magic bits which need to be done
1006  * when idle is left.
1007  */
1008 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1009 {
1010 #if 0
1011 	/* Switch back to 2.6.27 behaviour */
1012 	ktime_t delta;
1013 
1014 	/*
1015 	 * Do not touch the tick device, when the next expiry is either
1016 	 * already reached or less/equal than the tick period.
1017 	 */
1018 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1019 	if (delta.tv64 <= tick_period.tv64)
1020 		return;
1021 
1022 	tick_nohz_restart(ts, now);
1023 #endif
1024 }
1025 
1026 static inline void tick_nohz_irq_enter(void)
1027 {
1028 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1029 	ktime_t now;
1030 
1031 	if (!ts->idle_active && !ts->tick_stopped)
1032 		return;
1033 	now = ktime_get();
1034 	if (ts->idle_active)
1035 		tick_nohz_stop_idle(ts, now);
1036 	if (ts->tick_stopped) {
1037 		tick_nohz_update_jiffies(now);
1038 		tick_nohz_kick_tick(ts, now);
1039 	}
1040 }
1041 
1042 #else
1043 
1044 static inline void tick_nohz_switch_to_nohz(void) { }
1045 static inline void tick_nohz_irq_enter(void) { }
1046 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1047 
1048 #endif /* CONFIG_NO_HZ_COMMON */
1049 
1050 /*
1051  * Called from irq_enter to notify about the possible interruption of idle()
1052  */
1053 void tick_irq_enter(void)
1054 {
1055 	tick_check_oneshot_broadcast_this_cpu();
1056 	tick_nohz_irq_enter();
1057 }
1058 
1059 /*
1060  * High resolution timer specific code
1061  */
1062 #ifdef CONFIG_HIGH_RES_TIMERS
1063 /*
1064  * We rearm the timer until we get disabled by the idle code.
1065  * Called with interrupts disabled.
1066  */
1067 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1068 {
1069 	struct tick_sched *ts =
1070 		container_of(timer, struct tick_sched, sched_timer);
1071 	struct pt_regs *regs = get_irq_regs();
1072 	ktime_t now = ktime_get();
1073 
1074 	tick_sched_do_timer(now);
1075 
1076 	/*
1077 	 * Do not call, when we are not in irq context and have
1078 	 * no valid regs pointer
1079 	 */
1080 	if (regs)
1081 		tick_sched_handle(ts, regs);
1082 
1083 	/* No need to reprogram if we are in idle or full dynticks mode */
1084 	if (unlikely(ts->tick_stopped))
1085 		return HRTIMER_NORESTART;
1086 
1087 	hrtimer_forward(timer, now, tick_period);
1088 
1089 	return HRTIMER_RESTART;
1090 }
1091 
1092 static int sched_skew_tick;
1093 
1094 static int __init skew_tick(char *str)
1095 {
1096 	get_option(&str, &sched_skew_tick);
1097 
1098 	return 0;
1099 }
1100 early_param("skew_tick", skew_tick);
1101 
1102 /**
1103  * tick_setup_sched_timer - setup the tick emulation timer
1104  */
1105 void tick_setup_sched_timer(void)
1106 {
1107 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1108 	ktime_t now = ktime_get();
1109 
1110 	/*
1111 	 * Emulate tick processing via per-CPU hrtimers:
1112 	 */
1113 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1114 	ts->sched_timer.function = tick_sched_timer;
1115 
1116 	/* Get the next period (per cpu) */
1117 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1118 
1119 	/* Offset the tick to avert jiffies_lock contention. */
1120 	if (sched_skew_tick) {
1121 		u64 offset = ktime_to_ns(tick_period) >> 1;
1122 		do_div(offset, num_possible_cpus());
1123 		offset *= smp_processor_id();
1124 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1125 	}
1126 
1127 	hrtimer_forward(&ts->sched_timer, now, tick_period);
1128 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1129 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1130 }
1131 #endif /* HIGH_RES_TIMERS */
1132 
1133 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1134 void tick_cancel_sched_timer(int cpu)
1135 {
1136 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1137 
1138 # ifdef CONFIG_HIGH_RES_TIMERS
1139 	if (ts->sched_timer.base)
1140 		hrtimer_cancel(&ts->sched_timer);
1141 # endif
1142 
1143 	memset(ts, 0, sizeof(*ts));
1144 }
1145 #endif
1146 
1147 /**
1148  * Async notification about clocksource changes
1149  */
1150 void tick_clock_notify(void)
1151 {
1152 	int cpu;
1153 
1154 	for_each_possible_cpu(cpu)
1155 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1156 }
1157 
1158 /*
1159  * Async notification about clock event changes
1160  */
1161 void tick_oneshot_notify(void)
1162 {
1163 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1164 
1165 	set_bit(0, &ts->check_clocks);
1166 }
1167 
1168 /**
1169  * Check, if a change happened, which makes oneshot possible.
1170  *
1171  * Called cyclic from the hrtimer softirq (driven by the timer
1172  * softirq) allow_nohz signals, that we can switch into low-res nohz
1173  * mode, because high resolution timers are disabled (either compile
1174  * or runtime). Called with interrupts disabled.
1175  */
1176 int tick_check_oneshot_change(int allow_nohz)
1177 {
1178 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1179 
1180 	if (!test_and_clear_bit(0, &ts->check_clocks))
1181 		return 0;
1182 
1183 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1184 		return 0;
1185 
1186 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1187 		return 0;
1188 
1189 	if (!allow_nohz)
1190 		return 1;
1191 
1192 	tick_nohz_switch_to_nohz();
1193 	return 0;
1194 }
1195