xref: /linux/kernel/time/clocksource.c (revision 60063497a95e716c9a689af3be2687d261f115b4)
1 /*
2  * linux/kernel/time/clocksource.c
3  *
4  * This file contains the functions which manage clocksource drivers.
5  *
6  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  *
22  * TODO WishList:
23  *   o Allow clocksource drivers to be unregistered
24  */
25 
26 #include <linux/clocksource.h>
27 #include <linux/sysdev.h>
28 #include <linux/init.h>
29 #include <linux/module.h>
30 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
31 #include <linux/tick.h>
32 #include <linux/kthread.h>
33 
34 void timecounter_init(struct timecounter *tc,
35 		      const struct cyclecounter *cc,
36 		      u64 start_tstamp)
37 {
38 	tc->cc = cc;
39 	tc->cycle_last = cc->read(cc);
40 	tc->nsec = start_tstamp;
41 }
42 EXPORT_SYMBOL_GPL(timecounter_init);
43 
44 /**
45  * timecounter_read_delta - get nanoseconds since last call of this function
46  * @tc:         Pointer to time counter
47  *
48  * When the underlying cycle counter runs over, this will be handled
49  * correctly as long as it does not run over more than once between
50  * calls.
51  *
52  * The first call to this function for a new time counter initializes
53  * the time tracking and returns an undefined result.
54  */
55 static u64 timecounter_read_delta(struct timecounter *tc)
56 {
57 	cycle_t cycle_now, cycle_delta;
58 	u64 ns_offset;
59 
60 	/* read cycle counter: */
61 	cycle_now = tc->cc->read(tc->cc);
62 
63 	/* calculate the delta since the last timecounter_read_delta(): */
64 	cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask;
65 
66 	/* convert to nanoseconds: */
67 	ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta);
68 
69 	/* update time stamp of timecounter_read_delta() call: */
70 	tc->cycle_last = cycle_now;
71 
72 	return ns_offset;
73 }
74 
75 u64 timecounter_read(struct timecounter *tc)
76 {
77 	u64 nsec;
78 
79 	/* increment time by nanoseconds since last call */
80 	nsec = timecounter_read_delta(tc);
81 	nsec += tc->nsec;
82 	tc->nsec = nsec;
83 
84 	return nsec;
85 }
86 EXPORT_SYMBOL_GPL(timecounter_read);
87 
88 u64 timecounter_cyc2time(struct timecounter *tc,
89 			 cycle_t cycle_tstamp)
90 {
91 	u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
92 	u64 nsec;
93 
94 	/*
95 	 * Instead of always treating cycle_tstamp as more recent
96 	 * than tc->cycle_last, detect when it is too far in the
97 	 * future and treat it as old time stamp instead.
98 	 */
99 	if (cycle_delta > tc->cc->mask / 2) {
100 		cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
101 		nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta);
102 	} else {
103 		nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec;
104 	}
105 
106 	return nsec;
107 }
108 EXPORT_SYMBOL_GPL(timecounter_cyc2time);
109 
110 /**
111  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
112  * @mult:	pointer to mult variable
113  * @shift:	pointer to shift variable
114  * @from:	frequency to convert from
115  * @to:		frequency to convert to
116  * @maxsec:	guaranteed runtime conversion range in seconds
117  *
118  * The function evaluates the shift/mult pair for the scaled math
119  * operations of clocksources and clockevents.
120  *
121  * @to and @from are frequency values in HZ. For clock sources @to is
122  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
123  * event @to is the counter frequency and @from is NSEC_PER_SEC.
124  *
125  * The @maxsec conversion range argument controls the time frame in
126  * seconds which must be covered by the runtime conversion with the
127  * calculated mult and shift factors. This guarantees that no 64bit
128  * overflow happens when the input value of the conversion is
129  * multiplied with the calculated mult factor. Larger ranges may
130  * reduce the conversion accuracy by chosing smaller mult and shift
131  * factors.
132  */
133 void
134 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
135 {
136 	u64 tmp;
137 	u32 sft, sftacc= 32;
138 
139 	/*
140 	 * Calculate the shift factor which is limiting the conversion
141 	 * range:
142 	 */
143 	tmp = ((u64)maxsec * from) >> 32;
144 	while (tmp) {
145 		tmp >>=1;
146 		sftacc--;
147 	}
148 
149 	/*
150 	 * Find the conversion shift/mult pair which has the best
151 	 * accuracy and fits the maxsec conversion range:
152 	 */
153 	for (sft = 32; sft > 0; sft--) {
154 		tmp = (u64) to << sft;
155 		tmp += from / 2;
156 		do_div(tmp, from);
157 		if ((tmp >> sftacc) == 0)
158 			break;
159 	}
160 	*mult = tmp;
161 	*shift = sft;
162 }
163 
164 /*[Clocksource internal variables]---------
165  * curr_clocksource:
166  *	currently selected clocksource.
167  * clocksource_list:
168  *	linked list with the registered clocksources
169  * clocksource_mutex:
170  *	protects manipulations to curr_clocksource and the clocksource_list
171  * override_name:
172  *	Name of the user-specified clocksource.
173  */
174 static struct clocksource *curr_clocksource;
175 static LIST_HEAD(clocksource_list);
176 static DEFINE_MUTEX(clocksource_mutex);
177 static char override_name[32];
178 static int finished_booting;
179 
180 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
181 static void clocksource_watchdog_work(struct work_struct *work);
182 
183 static LIST_HEAD(watchdog_list);
184 static struct clocksource *watchdog;
185 static struct timer_list watchdog_timer;
186 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
187 static DEFINE_SPINLOCK(watchdog_lock);
188 static int watchdog_running;
189 
190 static int clocksource_watchdog_kthread(void *data);
191 static void __clocksource_change_rating(struct clocksource *cs, int rating);
192 
193 /*
194  * Interval: 0.5sec Threshold: 0.0625s
195  */
196 #define WATCHDOG_INTERVAL (HZ >> 1)
197 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
198 
199 static void clocksource_watchdog_work(struct work_struct *work)
200 {
201 	/*
202 	 * If kthread_run fails the next watchdog scan over the
203 	 * watchdog_list will find the unstable clock again.
204 	 */
205 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
206 }
207 
208 static void __clocksource_unstable(struct clocksource *cs)
209 {
210 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
211 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
212 	if (finished_booting)
213 		schedule_work(&watchdog_work);
214 }
215 
216 static void clocksource_unstable(struct clocksource *cs, int64_t delta)
217 {
218 	printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
219 	       cs->name, delta);
220 	__clocksource_unstable(cs);
221 }
222 
223 /**
224  * clocksource_mark_unstable - mark clocksource unstable via watchdog
225  * @cs:		clocksource to be marked unstable
226  *
227  * This function is called instead of clocksource_change_rating from
228  * cpu hotplug code to avoid a deadlock between the clocksource mutex
229  * and the cpu hotplug mutex. It defers the update of the clocksource
230  * to the watchdog thread.
231  */
232 void clocksource_mark_unstable(struct clocksource *cs)
233 {
234 	unsigned long flags;
235 
236 	spin_lock_irqsave(&watchdog_lock, flags);
237 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
238 		if (list_empty(&cs->wd_list))
239 			list_add(&cs->wd_list, &watchdog_list);
240 		__clocksource_unstable(cs);
241 	}
242 	spin_unlock_irqrestore(&watchdog_lock, flags);
243 }
244 
245 static void clocksource_watchdog(unsigned long data)
246 {
247 	struct clocksource *cs;
248 	cycle_t csnow, wdnow;
249 	int64_t wd_nsec, cs_nsec;
250 	int next_cpu;
251 
252 	spin_lock(&watchdog_lock);
253 	if (!watchdog_running)
254 		goto out;
255 
256 	list_for_each_entry(cs, &watchdog_list, wd_list) {
257 
258 		/* Clocksource already marked unstable? */
259 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
260 			if (finished_booting)
261 				schedule_work(&watchdog_work);
262 			continue;
263 		}
264 
265 		local_irq_disable();
266 		csnow = cs->read(cs);
267 		wdnow = watchdog->read(watchdog);
268 		local_irq_enable();
269 
270 		/* Clocksource initialized ? */
271 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) {
272 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
273 			cs->wd_last = wdnow;
274 			cs->cs_last = csnow;
275 			continue;
276 		}
277 
278 		wd_nsec = clocksource_cyc2ns((wdnow - cs->wd_last) & watchdog->mask,
279 					     watchdog->mult, watchdog->shift);
280 
281 		cs_nsec = clocksource_cyc2ns((csnow - cs->cs_last) &
282 					     cs->mask, cs->mult, cs->shift);
283 		cs->cs_last = csnow;
284 		cs->wd_last = wdnow;
285 
286 		/* Check the deviation from the watchdog clocksource. */
287 		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
288 			clocksource_unstable(cs, cs_nsec - wd_nsec);
289 			continue;
290 		}
291 
292 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
293 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
294 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
295 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
296 			/*
297 			 * We just marked the clocksource as highres-capable,
298 			 * notify the rest of the system as well so that we
299 			 * transition into high-res mode:
300 			 */
301 			tick_clock_notify();
302 		}
303 	}
304 
305 	/*
306 	 * Cycle through CPUs to check if the CPUs stay synchronized
307 	 * to each other.
308 	 */
309 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
310 	if (next_cpu >= nr_cpu_ids)
311 		next_cpu = cpumask_first(cpu_online_mask);
312 	watchdog_timer.expires += WATCHDOG_INTERVAL;
313 	add_timer_on(&watchdog_timer, next_cpu);
314 out:
315 	spin_unlock(&watchdog_lock);
316 }
317 
318 static inline void clocksource_start_watchdog(void)
319 {
320 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
321 		return;
322 	init_timer(&watchdog_timer);
323 	watchdog_timer.function = clocksource_watchdog;
324 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
325 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
326 	watchdog_running = 1;
327 }
328 
329 static inline void clocksource_stop_watchdog(void)
330 {
331 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
332 		return;
333 	del_timer(&watchdog_timer);
334 	watchdog_running = 0;
335 }
336 
337 static inline void clocksource_reset_watchdog(void)
338 {
339 	struct clocksource *cs;
340 
341 	list_for_each_entry(cs, &watchdog_list, wd_list)
342 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
343 }
344 
345 static void clocksource_resume_watchdog(void)
346 {
347 	unsigned long flags;
348 
349 	/*
350 	 * We use trylock here to avoid a potential dead lock when
351 	 * kgdb calls this code after the kernel has been stopped with
352 	 * watchdog_lock held. When watchdog_lock is held we just
353 	 * return and accept, that the watchdog might trigger and mark
354 	 * the monitored clock source (usually TSC) unstable.
355 	 *
356 	 * This does not affect the other caller clocksource_resume()
357 	 * because at this point the kernel is UP, interrupts are
358 	 * disabled and nothing can hold watchdog_lock.
359 	 */
360 	if (!spin_trylock_irqsave(&watchdog_lock, flags))
361 		return;
362 	clocksource_reset_watchdog();
363 	spin_unlock_irqrestore(&watchdog_lock, flags);
364 }
365 
366 static void clocksource_enqueue_watchdog(struct clocksource *cs)
367 {
368 	unsigned long flags;
369 
370 	spin_lock_irqsave(&watchdog_lock, flags);
371 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
372 		/* cs is a clocksource to be watched. */
373 		list_add(&cs->wd_list, &watchdog_list);
374 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
375 	} else {
376 		/* cs is a watchdog. */
377 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
378 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
379 		/* Pick the best watchdog. */
380 		if (!watchdog || cs->rating > watchdog->rating) {
381 			watchdog = cs;
382 			/* Reset watchdog cycles */
383 			clocksource_reset_watchdog();
384 		}
385 	}
386 	/* Check if the watchdog timer needs to be started. */
387 	clocksource_start_watchdog();
388 	spin_unlock_irqrestore(&watchdog_lock, flags);
389 }
390 
391 static void clocksource_dequeue_watchdog(struct clocksource *cs)
392 {
393 	struct clocksource *tmp;
394 	unsigned long flags;
395 
396 	spin_lock_irqsave(&watchdog_lock, flags);
397 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
398 		/* cs is a watched clocksource. */
399 		list_del_init(&cs->wd_list);
400 	} else if (cs == watchdog) {
401 		/* Reset watchdog cycles */
402 		clocksource_reset_watchdog();
403 		/* Current watchdog is removed. Find an alternative. */
404 		watchdog = NULL;
405 		list_for_each_entry(tmp, &clocksource_list, list) {
406 			if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY)
407 				continue;
408 			if (!watchdog || tmp->rating > watchdog->rating)
409 				watchdog = tmp;
410 		}
411 	}
412 	cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
413 	/* Check if the watchdog timer needs to be stopped. */
414 	clocksource_stop_watchdog();
415 	spin_unlock_irqrestore(&watchdog_lock, flags);
416 }
417 
418 static int clocksource_watchdog_kthread(void *data)
419 {
420 	struct clocksource *cs, *tmp;
421 	unsigned long flags;
422 	LIST_HEAD(unstable);
423 
424 	mutex_lock(&clocksource_mutex);
425 	spin_lock_irqsave(&watchdog_lock, flags);
426 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list)
427 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
428 			list_del_init(&cs->wd_list);
429 			list_add(&cs->wd_list, &unstable);
430 		}
431 	/* Check if the watchdog timer needs to be stopped. */
432 	clocksource_stop_watchdog();
433 	spin_unlock_irqrestore(&watchdog_lock, flags);
434 
435 	/* Needs to be done outside of watchdog lock */
436 	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
437 		list_del_init(&cs->wd_list);
438 		__clocksource_change_rating(cs, 0);
439 	}
440 	mutex_unlock(&clocksource_mutex);
441 	return 0;
442 }
443 
444 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
445 
446 static void clocksource_enqueue_watchdog(struct clocksource *cs)
447 {
448 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
449 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
450 }
451 
452 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
453 static inline void clocksource_resume_watchdog(void) { }
454 static inline int clocksource_watchdog_kthread(void *data) { return 0; }
455 
456 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
457 
458 /**
459  * clocksource_suspend - suspend the clocksource(s)
460  */
461 void clocksource_suspend(void)
462 {
463 	struct clocksource *cs;
464 
465 	list_for_each_entry_reverse(cs, &clocksource_list, list)
466 		if (cs->suspend)
467 			cs->suspend(cs);
468 }
469 
470 /**
471  * clocksource_resume - resume the clocksource(s)
472  */
473 void clocksource_resume(void)
474 {
475 	struct clocksource *cs;
476 
477 	list_for_each_entry(cs, &clocksource_list, list)
478 		if (cs->resume)
479 			cs->resume(cs);
480 
481 	clocksource_resume_watchdog();
482 }
483 
484 /**
485  * clocksource_touch_watchdog - Update watchdog
486  *
487  * Update the watchdog after exception contexts such as kgdb so as not
488  * to incorrectly trip the watchdog. This might fail when the kernel
489  * was stopped in code which holds watchdog_lock.
490  */
491 void clocksource_touch_watchdog(void)
492 {
493 	clocksource_resume_watchdog();
494 }
495 
496 /**
497  * clocksource_max_deferment - Returns max time the clocksource can be deferred
498  * @cs:         Pointer to clocksource
499  *
500  */
501 static u64 clocksource_max_deferment(struct clocksource *cs)
502 {
503 	u64 max_nsecs, max_cycles;
504 
505 	/*
506 	 * Calculate the maximum number of cycles that we can pass to the
507 	 * cyc2ns function without overflowing a 64-bit signed result. The
508 	 * maximum number of cycles is equal to ULLONG_MAX/cs->mult which
509 	 * is equivalent to the below.
510 	 * max_cycles < (2^63)/cs->mult
511 	 * max_cycles < 2^(log2((2^63)/cs->mult))
512 	 * max_cycles < 2^(log2(2^63) - log2(cs->mult))
513 	 * max_cycles < 2^(63 - log2(cs->mult))
514 	 * max_cycles < 1 << (63 - log2(cs->mult))
515 	 * Please note that we add 1 to the result of the log2 to account for
516 	 * any rounding errors, ensure the above inequality is satisfied and
517 	 * no overflow will occur.
518 	 */
519 	max_cycles = 1ULL << (63 - (ilog2(cs->mult) + 1));
520 
521 	/*
522 	 * The actual maximum number of cycles we can defer the clocksource is
523 	 * determined by the minimum of max_cycles and cs->mask.
524 	 */
525 	max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
526 	max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult, cs->shift);
527 
528 	/*
529 	 * To ensure that the clocksource does not wrap whilst we are idle,
530 	 * limit the time the clocksource can be deferred by 12.5%. Please
531 	 * note a margin of 12.5% is used because this can be computed with
532 	 * a shift, versus say 10% which would require division.
533 	 */
534 	return max_nsecs - (max_nsecs >> 5);
535 }
536 
537 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
538 
539 /**
540  * clocksource_select - Select the best clocksource available
541  *
542  * Private function. Must hold clocksource_mutex when called.
543  *
544  * Select the clocksource with the best rating, or the clocksource,
545  * which is selected by userspace override.
546  */
547 static void clocksource_select(void)
548 {
549 	struct clocksource *best, *cs;
550 
551 	if (!finished_booting || list_empty(&clocksource_list))
552 		return;
553 	/* First clocksource on the list has the best rating. */
554 	best = list_first_entry(&clocksource_list, struct clocksource, list);
555 	/* Check for the override clocksource. */
556 	list_for_each_entry(cs, &clocksource_list, list) {
557 		if (strcmp(cs->name, override_name) != 0)
558 			continue;
559 		/*
560 		 * Check to make sure we don't switch to a non-highres
561 		 * capable clocksource if the tick code is in oneshot
562 		 * mode (highres or nohz)
563 		 */
564 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
565 		    tick_oneshot_mode_active()) {
566 			/* Override clocksource cannot be used. */
567 			printk(KERN_WARNING "Override clocksource %s is not "
568 			       "HRT compatible. Cannot switch while in "
569 			       "HRT/NOHZ mode\n", cs->name);
570 			override_name[0] = 0;
571 		} else
572 			/* Override clocksource can be used. */
573 			best = cs;
574 		break;
575 	}
576 	if (curr_clocksource != best) {
577 		printk(KERN_INFO "Switching to clocksource %s\n", best->name);
578 		curr_clocksource = best;
579 		timekeeping_notify(curr_clocksource);
580 	}
581 }
582 
583 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
584 
585 static inline void clocksource_select(void) { }
586 
587 #endif
588 
589 /*
590  * clocksource_done_booting - Called near the end of core bootup
591  *
592  * Hack to avoid lots of clocksource churn at boot time.
593  * We use fs_initcall because we want this to start before
594  * device_initcall but after subsys_initcall.
595  */
596 static int __init clocksource_done_booting(void)
597 {
598 	mutex_lock(&clocksource_mutex);
599 	curr_clocksource = clocksource_default_clock();
600 	mutex_unlock(&clocksource_mutex);
601 
602 	finished_booting = 1;
603 
604 	/*
605 	 * Run the watchdog first to eliminate unstable clock sources
606 	 */
607 	clocksource_watchdog_kthread(NULL);
608 
609 	mutex_lock(&clocksource_mutex);
610 	clocksource_select();
611 	mutex_unlock(&clocksource_mutex);
612 	return 0;
613 }
614 fs_initcall(clocksource_done_booting);
615 
616 /*
617  * Enqueue the clocksource sorted by rating
618  */
619 static void clocksource_enqueue(struct clocksource *cs)
620 {
621 	struct list_head *entry = &clocksource_list;
622 	struct clocksource *tmp;
623 
624 	list_for_each_entry(tmp, &clocksource_list, list)
625 		/* Keep track of the place, where to insert */
626 		if (tmp->rating >= cs->rating)
627 			entry = &tmp->list;
628 	list_add(&cs->list, entry);
629 }
630 
631 /**
632  * __clocksource_updatefreq_scale - Used update clocksource with new freq
633  * @t:		clocksource to be registered
634  * @scale:	Scale factor multiplied against freq to get clocksource hz
635  * @freq:	clocksource frequency (cycles per second) divided by scale
636  *
637  * This should only be called from the clocksource->enable() method.
638  *
639  * This *SHOULD NOT* be called directly! Please use the
640  * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions.
641  */
642 void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
643 {
644 	u64 sec;
645 
646 	/*
647 	 * Calc the maximum number of seconds which we can run before
648 	 * wrapping around. For clocksources which have a mask > 32bit
649 	 * we need to limit the max sleep time to have a good
650 	 * conversion precision. 10 minutes is still a reasonable
651 	 * amount. That results in a shift value of 24 for a
652 	 * clocksource with mask >= 40bit and f >= 4GHz. That maps to
653 	 * ~ 0.06ppm granularity for NTP. We apply the same 12.5%
654 	 * margin as we do in clocksource_max_deferment()
655 	 */
656 	sec = (cs->mask - (cs->mask >> 5));
657 	do_div(sec, freq);
658 	do_div(sec, scale);
659 	if (!sec)
660 		sec = 1;
661 	else if (sec > 600 && cs->mask > UINT_MAX)
662 		sec = 600;
663 
664 	clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
665 			       NSEC_PER_SEC / scale, sec * scale);
666 	cs->max_idle_ns = clocksource_max_deferment(cs);
667 }
668 EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
669 
670 /**
671  * __clocksource_register_scale - Used to install new clocksources
672  * @t:		clocksource to be registered
673  * @scale:	Scale factor multiplied against freq to get clocksource hz
674  * @freq:	clocksource frequency (cycles per second) divided by scale
675  *
676  * Returns -EBUSY if registration fails, zero otherwise.
677  *
678  * This *SHOULD NOT* be called directly! Please use the
679  * clocksource_register_hz() or clocksource_register_khz helper functions.
680  */
681 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
682 {
683 
684 	/* Initialize mult/shift and max_idle_ns */
685 	__clocksource_updatefreq_scale(cs, scale, freq);
686 
687 	/* Add clocksource to the clcoksource list */
688 	mutex_lock(&clocksource_mutex);
689 	clocksource_enqueue(cs);
690 	clocksource_enqueue_watchdog(cs);
691 	clocksource_select();
692 	mutex_unlock(&clocksource_mutex);
693 	return 0;
694 }
695 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
696 
697 
698 /**
699  * clocksource_register - Used to install new clocksources
700  * @t:		clocksource to be registered
701  *
702  * Returns -EBUSY if registration fails, zero otherwise.
703  */
704 int clocksource_register(struct clocksource *cs)
705 {
706 	/* calculate max idle time permitted for this clocksource */
707 	cs->max_idle_ns = clocksource_max_deferment(cs);
708 
709 	mutex_lock(&clocksource_mutex);
710 	clocksource_enqueue(cs);
711 	clocksource_enqueue_watchdog(cs);
712 	clocksource_select();
713 	mutex_unlock(&clocksource_mutex);
714 	return 0;
715 }
716 EXPORT_SYMBOL(clocksource_register);
717 
718 static void __clocksource_change_rating(struct clocksource *cs, int rating)
719 {
720 	list_del(&cs->list);
721 	cs->rating = rating;
722 	clocksource_enqueue(cs);
723 	clocksource_select();
724 }
725 
726 /**
727  * clocksource_change_rating - Change the rating of a registered clocksource
728  */
729 void clocksource_change_rating(struct clocksource *cs, int rating)
730 {
731 	mutex_lock(&clocksource_mutex);
732 	__clocksource_change_rating(cs, rating);
733 	mutex_unlock(&clocksource_mutex);
734 }
735 EXPORT_SYMBOL(clocksource_change_rating);
736 
737 /**
738  * clocksource_unregister - remove a registered clocksource
739  */
740 void clocksource_unregister(struct clocksource *cs)
741 {
742 	mutex_lock(&clocksource_mutex);
743 	clocksource_dequeue_watchdog(cs);
744 	list_del(&cs->list);
745 	clocksource_select();
746 	mutex_unlock(&clocksource_mutex);
747 }
748 EXPORT_SYMBOL(clocksource_unregister);
749 
750 #ifdef CONFIG_SYSFS
751 /**
752  * sysfs_show_current_clocksources - sysfs interface for current clocksource
753  * @dev:	unused
754  * @buf:	char buffer to be filled with clocksource list
755  *
756  * Provides sysfs interface for listing current clocksource.
757  */
758 static ssize_t
759 sysfs_show_current_clocksources(struct sys_device *dev,
760 				struct sysdev_attribute *attr, char *buf)
761 {
762 	ssize_t count = 0;
763 
764 	mutex_lock(&clocksource_mutex);
765 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
766 	mutex_unlock(&clocksource_mutex);
767 
768 	return count;
769 }
770 
771 /**
772  * sysfs_override_clocksource - interface for manually overriding clocksource
773  * @dev:	unused
774  * @buf:	name of override clocksource
775  * @count:	length of buffer
776  *
777  * Takes input from sysfs interface for manually overriding the default
778  * clocksource selection.
779  */
780 static ssize_t sysfs_override_clocksource(struct sys_device *dev,
781 					  struct sysdev_attribute *attr,
782 					  const char *buf, size_t count)
783 {
784 	size_t ret = count;
785 
786 	/* strings from sysfs write are not 0 terminated! */
787 	if (count >= sizeof(override_name))
788 		return -EINVAL;
789 
790 	/* strip of \n: */
791 	if (buf[count-1] == '\n')
792 		count--;
793 
794 	mutex_lock(&clocksource_mutex);
795 
796 	if (count > 0)
797 		memcpy(override_name, buf, count);
798 	override_name[count] = 0;
799 	clocksource_select();
800 
801 	mutex_unlock(&clocksource_mutex);
802 
803 	return ret;
804 }
805 
806 /**
807  * sysfs_show_available_clocksources - sysfs interface for listing clocksource
808  * @dev:	unused
809  * @buf:	char buffer to be filled with clocksource list
810  *
811  * Provides sysfs interface for listing registered clocksources
812  */
813 static ssize_t
814 sysfs_show_available_clocksources(struct sys_device *dev,
815 				  struct sysdev_attribute *attr,
816 				  char *buf)
817 {
818 	struct clocksource *src;
819 	ssize_t count = 0;
820 
821 	mutex_lock(&clocksource_mutex);
822 	list_for_each_entry(src, &clocksource_list, list) {
823 		/*
824 		 * Don't show non-HRES clocksource if the tick code is
825 		 * in one shot mode (highres=on or nohz=on)
826 		 */
827 		if (!tick_oneshot_mode_active() ||
828 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
829 			count += snprintf(buf + count,
830 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
831 				  "%s ", src->name);
832 	}
833 	mutex_unlock(&clocksource_mutex);
834 
835 	count += snprintf(buf + count,
836 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
837 
838 	return count;
839 }
840 
841 /*
842  * Sysfs setup bits:
843  */
844 static SYSDEV_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
845 		   sysfs_override_clocksource);
846 
847 static SYSDEV_ATTR(available_clocksource, 0444,
848 		   sysfs_show_available_clocksources, NULL);
849 
850 static struct sysdev_class clocksource_sysclass = {
851 	.name = "clocksource",
852 };
853 
854 static struct sys_device device_clocksource = {
855 	.id	= 0,
856 	.cls	= &clocksource_sysclass,
857 };
858 
859 static int __init init_clocksource_sysfs(void)
860 {
861 	int error = sysdev_class_register(&clocksource_sysclass);
862 
863 	if (!error)
864 		error = sysdev_register(&device_clocksource);
865 	if (!error)
866 		error = sysdev_create_file(
867 				&device_clocksource,
868 				&attr_current_clocksource);
869 	if (!error)
870 		error = sysdev_create_file(
871 				&device_clocksource,
872 				&attr_available_clocksource);
873 	return error;
874 }
875 
876 device_initcall(init_clocksource_sysfs);
877 #endif /* CONFIG_SYSFS */
878 
879 /**
880  * boot_override_clocksource - boot clock override
881  * @str:	override name
882  *
883  * Takes a clocksource= boot argument and uses it
884  * as the clocksource override name.
885  */
886 static int __init boot_override_clocksource(char* str)
887 {
888 	mutex_lock(&clocksource_mutex);
889 	if (str)
890 		strlcpy(override_name, str, sizeof(override_name));
891 	mutex_unlock(&clocksource_mutex);
892 	return 1;
893 }
894 
895 __setup("clocksource=", boot_override_clocksource);
896 
897 /**
898  * boot_override_clock - Compatibility layer for deprecated boot option
899  * @str:	override name
900  *
901  * DEPRECATED! Takes a clock= boot argument and uses it
902  * as the clocksource override name
903  */
904 static int __init boot_override_clock(char* str)
905 {
906 	if (!strcmp(str, "pmtmr")) {
907 		printk("Warning: clock=pmtmr is deprecated. "
908 			"Use clocksource=acpi_pm.\n");
909 		return boot_override_clocksource("acpi_pm");
910 	}
911 	printk("Warning! clock= boot option is deprecated. "
912 		"Use clocksource=xyz\n");
913 	return boot_override_clocksource(str);
914 }
915 
916 __setup("clock=", boot_override_clock);
917