xref: /linux/kernel/time/clockevents.c (revision 72503791edffe516848d0f01d377fa9cd0711970)
1 /*
2  * linux/kernel/time/clockevents.c
3  *
4  * This file contains functions which manage clock event devices.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  *
10  * This code is licenced under the GPL version 2. For details see
11  * kernel-base/COPYING.
12  */
13 
14 #include <linux/clockchips.h>
15 #include <linux/hrtimer.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/notifier.h>
19 #include <linux/smp.h>
20 
21 #include "tick-internal.h"
22 
23 /* The registered clock event devices */
24 static LIST_HEAD(clockevent_devices);
25 static LIST_HEAD(clockevents_released);
26 
27 /* Notification for clock events */
28 static RAW_NOTIFIER_HEAD(clockevents_chain);
29 
30 /* Protection for the above */
31 static DEFINE_RAW_SPINLOCK(clockevents_lock);
32 
33 /**
34  * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
35  * @latch:	value to convert
36  * @evt:	pointer to clock event device descriptor
37  *
38  * Math helper, returns latch value converted to nanoseconds (bound checked)
39  */
40 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
41 {
42 	u64 clc = (u64) latch << evt->shift;
43 
44 	if (unlikely(!evt->mult)) {
45 		evt->mult = 1;
46 		WARN_ON(1);
47 	}
48 
49 	do_div(clc, evt->mult);
50 	if (clc < 1000)
51 		clc = 1000;
52 	if (clc > KTIME_MAX)
53 		clc = KTIME_MAX;
54 
55 	return clc;
56 }
57 EXPORT_SYMBOL_GPL(clockevent_delta2ns);
58 
59 /**
60  * clockevents_set_mode - set the operating mode of a clock event device
61  * @dev:	device to modify
62  * @mode:	new mode
63  *
64  * Must be called with interrupts disabled !
65  */
66 void clockevents_set_mode(struct clock_event_device *dev,
67 				 enum clock_event_mode mode)
68 {
69 	if (dev->mode != mode) {
70 		dev->set_mode(mode, dev);
71 		dev->mode = mode;
72 
73 		/*
74 		 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
75 		 * on it, so fix it up and emit a warning:
76 		 */
77 		if (mode == CLOCK_EVT_MODE_ONESHOT) {
78 			if (unlikely(!dev->mult)) {
79 				dev->mult = 1;
80 				WARN_ON(1);
81 			}
82 		}
83 	}
84 }
85 
86 /**
87  * clockevents_shutdown - shutdown the device and clear next_event
88  * @dev:	device to shutdown
89  */
90 void clockevents_shutdown(struct clock_event_device *dev)
91 {
92 	clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
93 	dev->next_event.tv64 = KTIME_MAX;
94 }
95 
96 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
97 
98 /* Limit min_delta to a jiffie */
99 #define MIN_DELTA_LIMIT		(NSEC_PER_SEC / HZ)
100 
101 /**
102  * clockevents_increase_min_delta - raise minimum delta of a clock event device
103  * @dev:       device to increase the minimum delta
104  *
105  * Returns 0 on success, -ETIME when the minimum delta reached the limit.
106  */
107 static int clockevents_increase_min_delta(struct clock_event_device *dev)
108 {
109 	/* Nothing to do if we already reached the limit */
110 	if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
111 		printk(KERN_WARNING "CE: Reprogramming failure. Giving up\n");
112 		dev->next_event.tv64 = KTIME_MAX;
113 		return -ETIME;
114 	}
115 
116 	if (dev->min_delta_ns < 5000)
117 		dev->min_delta_ns = 5000;
118 	else
119 		dev->min_delta_ns += dev->min_delta_ns >> 1;
120 
121 	if (dev->min_delta_ns > MIN_DELTA_LIMIT)
122 		dev->min_delta_ns = MIN_DELTA_LIMIT;
123 
124 	printk(KERN_WARNING "CE: %s increased min_delta_ns to %llu nsec\n",
125 	       dev->name ? dev->name : "?",
126 	       (unsigned long long) dev->min_delta_ns);
127 	return 0;
128 }
129 
130 /**
131  * clockevents_program_min_delta - Set clock event device to the minimum delay.
132  * @dev:	device to program
133  *
134  * Returns 0 on success, -ETIME when the retry loop failed.
135  */
136 static int clockevents_program_min_delta(struct clock_event_device *dev)
137 {
138 	unsigned long long clc;
139 	int64_t delta;
140 	int i;
141 
142 	for (i = 0;;) {
143 		delta = dev->min_delta_ns;
144 		dev->next_event = ktime_add_ns(ktime_get(), delta);
145 
146 		if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
147 			return 0;
148 
149 		dev->retries++;
150 		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
151 		if (dev->set_next_event((unsigned long) clc, dev) == 0)
152 			return 0;
153 
154 		if (++i > 2) {
155 			/*
156 			 * We tried 3 times to program the device with the
157 			 * given min_delta_ns. Try to increase the minimum
158 			 * delta, if that fails as well get out of here.
159 			 */
160 			if (clockevents_increase_min_delta(dev))
161 				return -ETIME;
162 			i = 0;
163 		}
164 	}
165 }
166 
167 #else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
168 
169 /**
170  * clockevents_program_min_delta - Set clock event device to the minimum delay.
171  * @dev:	device to program
172  *
173  * Returns 0 on success, -ETIME when the retry loop failed.
174  */
175 static int clockevents_program_min_delta(struct clock_event_device *dev)
176 {
177 	unsigned long long clc;
178 	int64_t delta;
179 
180 	delta = dev->min_delta_ns;
181 	dev->next_event = ktime_add_ns(ktime_get(), delta);
182 
183 	if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
184 		return 0;
185 
186 	dev->retries++;
187 	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
188 	return dev->set_next_event((unsigned long) clc, dev);
189 }
190 
191 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
192 
193 /**
194  * clockevents_program_event - Reprogram the clock event device.
195  * @dev:	device to program
196  * @expires:	absolute expiry time (monotonic clock)
197  * @force:	program minimum delay if expires can not be set
198  *
199  * Returns 0 on success, -ETIME when the event is in the past.
200  */
201 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
202 			      bool force)
203 {
204 	unsigned long long clc;
205 	int64_t delta;
206 	int rc;
207 
208 	if (unlikely(expires.tv64 < 0)) {
209 		WARN_ON_ONCE(1);
210 		return -ETIME;
211 	}
212 
213 	dev->next_event = expires;
214 
215 	if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
216 		return 0;
217 
218 	/* Shortcut for clockevent devices that can deal with ktime. */
219 	if (dev->features & CLOCK_EVT_FEAT_KTIME)
220 		return dev->set_next_ktime(expires, dev);
221 
222 	delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
223 	if (delta <= 0)
224 		return force ? clockevents_program_min_delta(dev) : -ETIME;
225 
226 	delta = min(delta, (int64_t) dev->max_delta_ns);
227 	delta = max(delta, (int64_t) dev->min_delta_ns);
228 
229 	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
230 	rc = dev->set_next_event((unsigned long) clc, dev);
231 
232 	return (rc && force) ? clockevents_program_min_delta(dev) : rc;
233 }
234 
235 /**
236  * clockevents_register_notifier - register a clock events change listener
237  */
238 int clockevents_register_notifier(struct notifier_block *nb)
239 {
240 	unsigned long flags;
241 	int ret;
242 
243 	raw_spin_lock_irqsave(&clockevents_lock, flags);
244 	ret = raw_notifier_chain_register(&clockevents_chain, nb);
245 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
246 
247 	return ret;
248 }
249 
250 /*
251  * Notify about a clock event change. Called with clockevents_lock
252  * held.
253  */
254 static void clockevents_do_notify(unsigned long reason, void *dev)
255 {
256 	raw_notifier_call_chain(&clockevents_chain, reason, dev);
257 }
258 
259 /*
260  * Called after a notify add to make devices available which were
261  * released from the notifier call.
262  */
263 static void clockevents_notify_released(void)
264 {
265 	struct clock_event_device *dev;
266 
267 	while (!list_empty(&clockevents_released)) {
268 		dev = list_entry(clockevents_released.next,
269 				 struct clock_event_device, list);
270 		list_del(&dev->list);
271 		list_add(&dev->list, &clockevent_devices);
272 		clockevents_do_notify(CLOCK_EVT_NOTIFY_ADD, dev);
273 	}
274 }
275 
276 /**
277  * clockevents_register_device - register a clock event device
278  * @dev:	device to register
279  */
280 void clockevents_register_device(struct clock_event_device *dev)
281 {
282 	unsigned long flags;
283 
284 	BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
285 	if (!dev->cpumask) {
286 		WARN_ON(num_possible_cpus() > 1);
287 		dev->cpumask = cpumask_of(smp_processor_id());
288 	}
289 
290 	raw_spin_lock_irqsave(&clockevents_lock, flags);
291 
292 	list_add(&dev->list, &clockevent_devices);
293 	clockevents_do_notify(CLOCK_EVT_NOTIFY_ADD, dev);
294 	clockevents_notify_released();
295 
296 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
297 }
298 EXPORT_SYMBOL_GPL(clockevents_register_device);
299 
300 void clockevents_config(struct clock_event_device *dev, u32 freq)
301 {
302 	u64 sec;
303 
304 	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
305 		return;
306 
307 	/*
308 	 * Calculate the maximum number of seconds we can sleep. Limit
309 	 * to 10 minutes for hardware which can program more than
310 	 * 32bit ticks so we still get reasonable conversion values.
311 	 */
312 	sec = dev->max_delta_ticks;
313 	do_div(sec, freq);
314 	if (!sec)
315 		sec = 1;
316 	else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
317 		sec = 600;
318 
319 	clockevents_calc_mult_shift(dev, freq, sec);
320 	dev->min_delta_ns = clockevent_delta2ns(dev->min_delta_ticks, dev);
321 	dev->max_delta_ns = clockevent_delta2ns(dev->max_delta_ticks, dev);
322 }
323 
324 /**
325  * clockevents_config_and_register - Configure and register a clock event device
326  * @dev:	device to register
327  * @freq:	The clock frequency
328  * @min_delta:	The minimum clock ticks to program in oneshot mode
329  * @max_delta:	The maximum clock ticks to program in oneshot mode
330  *
331  * min/max_delta can be 0 for devices which do not support oneshot mode.
332  */
333 void clockevents_config_and_register(struct clock_event_device *dev,
334 				     u32 freq, unsigned long min_delta,
335 				     unsigned long max_delta)
336 {
337 	dev->min_delta_ticks = min_delta;
338 	dev->max_delta_ticks = max_delta;
339 	clockevents_config(dev, freq);
340 	clockevents_register_device(dev);
341 }
342 
343 /**
344  * clockevents_update_freq - Update frequency and reprogram a clock event device.
345  * @dev:	device to modify
346  * @freq:	new device frequency
347  *
348  * Reconfigure and reprogram a clock event device in oneshot
349  * mode. Must be called on the cpu for which the device delivers per
350  * cpu timer events with interrupts disabled!  Returns 0 on success,
351  * -ETIME when the event is in the past.
352  */
353 int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
354 {
355 	clockevents_config(dev, freq);
356 
357 	if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
358 		return 0;
359 
360 	return clockevents_program_event(dev, dev->next_event, false);
361 }
362 
363 /*
364  * Noop handler when we shut down an event device
365  */
366 void clockevents_handle_noop(struct clock_event_device *dev)
367 {
368 }
369 
370 /**
371  * clockevents_exchange_device - release and request clock devices
372  * @old:	device to release (can be NULL)
373  * @new:	device to request (can be NULL)
374  *
375  * Called from the notifier chain. clockevents_lock is held already
376  */
377 void clockevents_exchange_device(struct clock_event_device *old,
378 				 struct clock_event_device *new)
379 {
380 	unsigned long flags;
381 
382 	local_irq_save(flags);
383 	/*
384 	 * Caller releases a clock event device. We queue it into the
385 	 * released list and do a notify add later.
386 	 */
387 	if (old) {
388 		clockevents_set_mode(old, CLOCK_EVT_MODE_UNUSED);
389 		list_del(&old->list);
390 		list_add(&old->list, &clockevents_released);
391 	}
392 
393 	if (new) {
394 		BUG_ON(new->mode != CLOCK_EVT_MODE_UNUSED);
395 		clockevents_shutdown(new);
396 	}
397 	local_irq_restore(flags);
398 }
399 
400 /**
401  * clockevents_suspend - suspend clock devices
402  */
403 void clockevents_suspend(void)
404 {
405 	struct clock_event_device *dev;
406 
407 	list_for_each_entry_reverse(dev, &clockevent_devices, list)
408 		if (dev->suspend)
409 			dev->suspend(dev);
410 }
411 
412 /**
413  * clockevents_resume - resume clock devices
414  */
415 void clockevents_resume(void)
416 {
417 	struct clock_event_device *dev;
418 
419 	list_for_each_entry(dev, &clockevent_devices, list)
420 		if (dev->resume)
421 			dev->resume(dev);
422 }
423 
424 #ifdef CONFIG_GENERIC_CLOCKEVENTS
425 /**
426  * clockevents_notify - notification about relevant events
427  */
428 void clockevents_notify(unsigned long reason, void *arg)
429 {
430 	struct clock_event_device *dev, *tmp;
431 	unsigned long flags;
432 	int cpu;
433 
434 	raw_spin_lock_irqsave(&clockevents_lock, flags);
435 	clockevents_do_notify(reason, arg);
436 
437 	switch (reason) {
438 	case CLOCK_EVT_NOTIFY_CPU_DEAD:
439 		/*
440 		 * Unregister the clock event devices which were
441 		 * released from the users in the notify chain.
442 		 */
443 		list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
444 			list_del(&dev->list);
445 		/*
446 		 * Now check whether the CPU has left unused per cpu devices
447 		 */
448 		cpu = *((int *)arg);
449 		list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
450 			if (cpumask_test_cpu(cpu, dev->cpumask) &&
451 			    cpumask_weight(dev->cpumask) == 1 &&
452 			    !tick_is_broadcast_device(dev)) {
453 				BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
454 				list_del(&dev->list);
455 			}
456 		}
457 		break;
458 	default:
459 		break;
460 	}
461 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
462 }
463 EXPORT_SYMBOL_GPL(clockevents_notify);
464 #endif
465