xref: /linux/kernel/smp.c (revision 8dd765a5d769c521d73931850d1c8708fbc490cb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic helpers for smp ipi calls
4  *
5  * (C) Jens Axboe <jens.axboe@oracle.com> 2008
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/irq_work.h>
11 #include <linux/rcupdate.h>
12 #include <linux/rculist.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/gfp.h>
19 #include <linux/smp.h>
20 #include <linux/cpu.h>
21 #include <linux/sched.h>
22 #include <linux/sched/idle.h>
23 #include <linux/hypervisor.h>
24 #include <linux/sched/clock.h>
25 #include <linux/nmi.h>
26 #include <linux/sched/debug.h>
27 #include <linux/jump_label.h>
28 
29 #include <trace/events/ipi.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/csd.h>
32 #undef CREATE_TRACE_POINTS
33 
34 #include "smpboot.h"
35 #include "sched/smp.h"
36 
37 #define CSD_TYPE(_csd)	((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK)
38 
39 struct call_function_data {
40 	call_single_data_t	__percpu *csd;
41 	cpumask_var_t		cpumask;
42 	cpumask_var_t		cpumask_ipi;
43 };
44 
45 static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data);
46 
47 static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
48 
49 static DEFINE_PER_CPU(atomic_t, trigger_backtrace) = ATOMIC_INIT(1);
50 
51 static void __flush_smp_call_function_queue(bool warn_cpu_offline);
52 
53 int smpcfd_prepare_cpu(unsigned int cpu)
54 {
55 	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
56 
57 	if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
58 				     cpu_to_node(cpu)))
59 		return -ENOMEM;
60 	if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL,
61 				     cpu_to_node(cpu))) {
62 		free_cpumask_var(cfd->cpumask);
63 		return -ENOMEM;
64 	}
65 	cfd->csd = alloc_percpu(call_single_data_t);
66 	if (!cfd->csd) {
67 		free_cpumask_var(cfd->cpumask);
68 		free_cpumask_var(cfd->cpumask_ipi);
69 		return -ENOMEM;
70 	}
71 
72 	return 0;
73 }
74 
75 int smpcfd_dead_cpu(unsigned int cpu)
76 {
77 	struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
78 
79 	free_cpumask_var(cfd->cpumask);
80 	free_cpumask_var(cfd->cpumask_ipi);
81 	free_percpu(cfd->csd);
82 	return 0;
83 }
84 
85 int smpcfd_dying_cpu(unsigned int cpu)
86 {
87 	/*
88 	 * The IPIs for the smp-call-function callbacks queued by other
89 	 * CPUs might arrive late, either due to hardware latencies or
90 	 * because this CPU disabled interrupts (inside stop-machine)
91 	 * before the IPIs were sent. So flush out any pending callbacks
92 	 * explicitly (without waiting for the IPIs to arrive), to
93 	 * ensure that the outgoing CPU doesn't go offline with work
94 	 * still pending.
95 	 */
96 	__flush_smp_call_function_queue(false);
97 	irq_work_run();
98 	return 0;
99 }
100 
101 void __init call_function_init(void)
102 {
103 	int i;
104 
105 	for_each_possible_cpu(i)
106 		init_llist_head(&per_cpu(call_single_queue, i));
107 
108 	smpcfd_prepare_cpu(smp_processor_id());
109 }
110 
111 static __always_inline void
112 send_call_function_single_ipi(int cpu)
113 {
114 	if (call_function_single_prep_ipi(cpu)) {
115 		trace_ipi_send_cpu(cpu, _RET_IP_,
116 				   generic_smp_call_function_single_interrupt);
117 		arch_send_call_function_single_ipi(cpu);
118 	}
119 }
120 
121 static __always_inline void
122 send_call_function_ipi_mask(struct cpumask *mask)
123 {
124 	trace_ipi_send_cpumask(mask, _RET_IP_,
125 			       generic_smp_call_function_single_interrupt);
126 	arch_send_call_function_ipi_mask(mask);
127 }
128 
129 static __always_inline void
130 csd_do_func(smp_call_func_t func, void *info, struct __call_single_data *csd)
131 {
132 	trace_csd_function_entry(func, csd);
133 	func(info);
134 	trace_csd_function_exit(func, csd);
135 }
136 
137 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
138 
139 static DEFINE_STATIC_KEY_MAYBE(CONFIG_CSD_LOCK_WAIT_DEBUG_DEFAULT, csdlock_debug_enabled);
140 
141 /*
142  * Parse the csdlock_debug= kernel boot parameter.
143  *
144  * If you need to restore the old "ext" value that once provided
145  * additional debugging information, reapply the following commits:
146  *
147  * de7b09ef658d ("locking/csd_lock: Prepare more CSD lock debugging")
148  * a5aabace5fb8 ("locking/csd_lock: Add more data to CSD lock debugging")
149  */
150 static int __init csdlock_debug(char *str)
151 {
152 	int ret;
153 	unsigned int val = 0;
154 
155 	ret = get_option(&str, &val);
156 	if (ret) {
157 		if (val)
158 			static_branch_enable(&csdlock_debug_enabled);
159 		else
160 			static_branch_disable(&csdlock_debug_enabled);
161 	}
162 
163 	return 1;
164 }
165 __setup("csdlock_debug=", csdlock_debug);
166 
167 static DEFINE_PER_CPU(call_single_data_t *, cur_csd);
168 static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func);
169 static DEFINE_PER_CPU(void *, cur_csd_info);
170 
171 static ulong csd_lock_timeout = 5000;  /* CSD lock timeout in milliseconds. */
172 module_param(csd_lock_timeout, ulong, 0444);
173 
174 static atomic_t csd_bug_count = ATOMIC_INIT(0);
175 
176 /* Record current CSD work for current CPU, NULL to erase. */
177 static void __csd_lock_record(struct __call_single_data *csd)
178 {
179 	if (!csd) {
180 		smp_mb(); /* NULL cur_csd after unlock. */
181 		__this_cpu_write(cur_csd, NULL);
182 		return;
183 	}
184 	__this_cpu_write(cur_csd_func, csd->func);
185 	__this_cpu_write(cur_csd_info, csd->info);
186 	smp_wmb(); /* func and info before csd. */
187 	__this_cpu_write(cur_csd, csd);
188 	smp_mb(); /* Update cur_csd before function call. */
189 		  /* Or before unlock, as the case may be. */
190 }
191 
192 static __always_inline void csd_lock_record(struct __call_single_data *csd)
193 {
194 	if (static_branch_unlikely(&csdlock_debug_enabled))
195 		__csd_lock_record(csd);
196 }
197 
198 static int csd_lock_wait_getcpu(struct __call_single_data *csd)
199 {
200 	unsigned int csd_type;
201 
202 	csd_type = CSD_TYPE(csd);
203 	if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC)
204 		return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */
205 	return -1;
206 }
207 
208 /*
209  * Complain if too much time spent waiting.  Note that only
210  * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU,
211  * so waiting on other types gets much less information.
212  */
213 static bool csd_lock_wait_toolong(struct __call_single_data *csd, u64 ts0, u64 *ts1, int *bug_id)
214 {
215 	int cpu = -1;
216 	int cpux;
217 	bool firsttime;
218 	u64 ts2, ts_delta;
219 	call_single_data_t *cpu_cur_csd;
220 	unsigned int flags = READ_ONCE(csd->node.u_flags);
221 	unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC;
222 
223 	if (!(flags & CSD_FLAG_LOCK)) {
224 		if (!unlikely(*bug_id))
225 			return true;
226 		cpu = csd_lock_wait_getcpu(csd);
227 		pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n",
228 			 *bug_id, raw_smp_processor_id(), cpu);
229 		return true;
230 	}
231 
232 	ts2 = sched_clock();
233 	ts_delta = ts2 - *ts1;
234 	if (likely(ts_delta <= csd_lock_timeout_ns || csd_lock_timeout_ns == 0))
235 		return false;
236 
237 	firsttime = !*bug_id;
238 	if (firsttime)
239 		*bug_id = atomic_inc_return(&csd_bug_count);
240 	cpu = csd_lock_wait_getcpu(csd);
241 	if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu))
242 		cpux = 0;
243 	else
244 		cpux = cpu;
245 	cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */
246 	pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n",
247 		 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts2 - ts0,
248 		 cpu, csd->func, csd->info);
249 	if (cpu_cur_csd && csd != cpu_cur_csd) {
250 		pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n",
251 			 *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)),
252 			 READ_ONCE(per_cpu(cur_csd_info, cpux)));
253 	} else {
254 		pr_alert("\tcsd: CSD lock (#%d) %s.\n",
255 			 *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request");
256 	}
257 	if (cpu >= 0) {
258 		if (atomic_cmpxchg_acquire(&per_cpu(trigger_backtrace, cpu), 1, 0))
259 			dump_cpu_task(cpu);
260 		if (!cpu_cur_csd) {
261 			pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu);
262 			arch_send_call_function_single_ipi(cpu);
263 		}
264 	}
265 	if (firsttime)
266 		dump_stack();
267 	*ts1 = ts2;
268 
269 	return false;
270 }
271 
272 /*
273  * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
274  *
275  * For non-synchronous ipi calls the csd can still be in use by the
276  * previous function call. For multi-cpu calls its even more interesting
277  * as we'll have to ensure no other cpu is observing our csd.
278  */
279 static void __csd_lock_wait(struct __call_single_data *csd)
280 {
281 	int bug_id = 0;
282 	u64 ts0, ts1;
283 
284 	ts1 = ts0 = sched_clock();
285 	for (;;) {
286 		if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id))
287 			break;
288 		cpu_relax();
289 	}
290 	smp_acquire__after_ctrl_dep();
291 }
292 
293 static __always_inline void csd_lock_wait(struct __call_single_data *csd)
294 {
295 	if (static_branch_unlikely(&csdlock_debug_enabled)) {
296 		__csd_lock_wait(csd);
297 		return;
298 	}
299 
300 	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
301 }
302 #else
303 static void csd_lock_record(struct __call_single_data *csd)
304 {
305 }
306 
307 static __always_inline void csd_lock_wait(struct __call_single_data *csd)
308 {
309 	smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
310 }
311 #endif
312 
313 static __always_inline void csd_lock(struct __call_single_data *csd)
314 {
315 	csd_lock_wait(csd);
316 	csd->node.u_flags |= CSD_FLAG_LOCK;
317 
318 	/*
319 	 * prevent CPU from reordering the above assignment
320 	 * to ->flags with any subsequent assignments to other
321 	 * fields of the specified call_single_data_t structure:
322 	 */
323 	smp_wmb();
324 }
325 
326 static __always_inline void csd_unlock(struct __call_single_data *csd)
327 {
328 	WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK));
329 
330 	/*
331 	 * ensure we're all done before releasing data:
332 	 */
333 	smp_store_release(&csd->node.u_flags, 0);
334 }
335 
336 static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
337 
338 void __smp_call_single_queue(int cpu, struct llist_node *node)
339 {
340 	/*
341 	 * We have to check the type of the CSD before queueing it, because
342 	 * once queued it can have its flags cleared by
343 	 *   flush_smp_call_function_queue()
344 	 * even if we haven't sent the smp_call IPI yet (e.g. the stopper
345 	 * executes migration_cpu_stop() on the remote CPU).
346 	 */
347 	if (trace_csd_queue_cpu_enabled()) {
348 		call_single_data_t *csd;
349 		smp_call_func_t func;
350 
351 		csd = container_of(node, call_single_data_t, node.llist);
352 		func = CSD_TYPE(csd) == CSD_TYPE_TTWU ?
353 			sched_ttwu_pending : csd->func;
354 
355 		trace_csd_queue_cpu(cpu, _RET_IP_, func, csd);
356 	}
357 
358 	/*
359 	 * The list addition should be visible to the target CPU when it pops
360 	 * the head of the list to pull the entry off it in the IPI handler
361 	 * because of normal cache coherency rules implied by the underlying
362 	 * llist ops.
363 	 *
364 	 * If IPIs can go out of order to the cache coherency protocol
365 	 * in an architecture, sufficient synchronisation should be added
366 	 * to arch code to make it appear to obey cache coherency WRT
367 	 * locking and barrier primitives. Generic code isn't really
368 	 * equipped to do the right thing...
369 	 */
370 	if (llist_add(node, &per_cpu(call_single_queue, cpu)))
371 		send_call_function_single_ipi(cpu);
372 }
373 
374 /*
375  * Insert a previously allocated call_single_data_t element
376  * for execution on the given CPU. data must already have
377  * ->func, ->info, and ->flags set.
378  */
379 static int generic_exec_single(int cpu, struct __call_single_data *csd)
380 {
381 	if (cpu == smp_processor_id()) {
382 		smp_call_func_t func = csd->func;
383 		void *info = csd->info;
384 		unsigned long flags;
385 
386 		/*
387 		 * We can unlock early even for the synchronous on-stack case,
388 		 * since we're doing this from the same CPU..
389 		 */
390 		csd_lock_record(csd);
391 		csd_unlock(csd);
392 		local_irq_save(flags);
393 		csd_do_func(func, info, NULL);
394 		csd_lock_record(NULL);
395 		local_irq_restore(flags);
396 		return 0;
397 	}
398 
399 	if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
400 		csd_unlock(csd);
401 		return -ENXIO;
402 	}
403 
404 	__smp_call_single_queue(cpu, &csd->node.llist);
405 
406 	return 0;
407 }
408 
409 /**
410  * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
411  *
412  * Invoked by arch to handle an IPI for call function single.
413  * Must be called with interrupts disabled.
414  */
415 void generic_smp_call_function_single_interrupt(void)
416 {
417 	__flush_smp_call_function_queue(true);
418 }
419 
420 /**
421  * __flush_smp_call_function_queue - Flush pending smp-call-function callbacks
422  *
423  * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
424  *		      offline CPU. Skip this check if set to 'false'.
425  *
426  * Flush any pending smp-call-function callbacks queued on this CPU. This is
427  * invoked by the generic IPI handler, as well as by a CPU about to go offline,
428  * to ensure that all pending IPI callbacks are run before it goes completely
429  * offline.
430  *
431  * Loop through the call_single_queue and run all the queued callbacks.
432  * Must be called with interrupts disabled.
433  */
434 static void __flush_smp_call_function_queue(bool warn_cpu_offline)
435 {
436 	call_single_data_t *csd, *csd_next;
437 	struct llist_node *entry, *prev;
438 	struct llist_head *head;
439 	static bool warned;
440 	atomic_t *tbt;
441 
442 	lockdep_assert_irqs_disabled();
443 
444 	/* Allow waiters to send backtrace NMI from here onwards */
445 	tbt = this_cpu_ptr(&trigger_backtrace);
446 	atomic_set_release(tbt, 1);
447 
448 	head = this_cpu_ptr(&call_single_queue);
449 	entry = llist_del_all(head);
450 	entry = llist_reverse_order(entry);
451 
452 	/* There shouldn't be any pending callbacks on an offline CPU. */
453 	if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
454 		     !warned && entry != NULL)) {
455 		warned = true;
456 		WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
457 
458 		/*
459 		 * We don't have to use the _safe() variant here
460 		 * because we are not invoking the IPI handlers yet.
461 		 */
462 		llist_for_each_entry(csd, entry, node.llist) {
463 			switch (CSD_TYPE(csd)) {
464 			case CSD_TYPE_ASYNC:
465 			case CSD_TYPE_SYNC:
466 			case CSD_TYPE_IRQ_WORK:
467 				pr_warn("IPI callback %pS sent to offline CPU\n",
468 					csd->func);
469 				break;
470 
471 			case CSD_TYPE_TTWU:
472 				pr_warn("IPI task-wakeup sent to offline CPU\n");
473 				break;
474 
475 			default:
476 				pr_warn("IPI callback, unknown type %d, sent to offline CPU\n",
477 					CSD_TYPE(csd));
478 				break;
479 			}
480 		}
481 	}
482 
483 	/*
484 	 * First; run all SYNC callbacks, people are waiting for us.
485 	 */
486 	prev = NULL;
487 	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
488 		/* Do we wait until *after* callback? */
489 		if (CSD_TYPE(csd) == CSD_TYPE_SYNC) {
490 			smp_call_func_t func = csd->func;
491 			void *info = csd->info;
492 
493 			if (prev) {
494 				prev->next = &csd_next->node.llist;
495 			} else {
496 				entry = &csd_next->node.llist;
497 			}
498 
499 			csd_lock_record(csd);
500 			csd_do_func(func, info, csd);
501 			csd_unlock(csd);
502 			csd_lock_record(NULL);
503 		} else {
504 			prev = &csd->node.llist;
505 		}
506 	}
507 
508 	if (!entry)
509 		return;
510 
511 	/*
512 	 * Second; run all !SYNC callbacks.
513 	 */
514 	prev = NULL;
515 	llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
516 		int type = CSD_TYPE(csd);
517 
518 		if (type != CSD_TYPE_TTWU) {
519 			if (prev) {
520 				prev->next = &csd_next->node.llist;
521 			} else {
522 				entry = &csd_next->node.llist;
523 			}
524 
525 			if (type == CSD_TYPE_ASYNC) {
526 				smp_call_func_t func = csd->func;
527 				void *info = csd->info;
528 
529 				csd_lock_record(csd);
530 				csd_unlock(csd);
531 				csd_do_func(func, info, csd);
532 				csd_lock_record(NULL);
533 			} else if (type == CSD_TYPE_IRQ_WORK) {
534 				irq_work_single(csd);
535 			}
536 
537 		} else {
538 			prev = &csd->node.llist;
539 		}
540 	}
541 
542 	/*
543 	 * Third; only CSD_TYPE_TTWU is left, issue those.
544 	 */
545 	if (entry) {
546 		csd = llist_entry(entry, typeof(*csd), node.llist);
547 		csd_do_func(sched_ttwu_pending, entry, csd);
548 	}
549 }
550 
551 
552 /**
553  * flush_smp_call_function_queue - Flush pending smp-call-function callbacks
554  *				   from task context (idle, migration thread)
555  *
556  * When TIF_POLLING_NRFLAG is supported and a CPU is in idle and has it
557  * set, then remote CPUs can avoid sending IPIs and wake the idle CPU by
558  * setting TIF_NEED_RESCHED. The idle task on the woken up CPU has to
559  * handle queued SMP function calls before scheduling.
560  *
561  * The migration thread has to ensure that an eventually pending wakeup has
562  * been handled before it migrates a task.
563  */
564 void flush_smp_call_function_queue(void)
565 {
566 	unsigned int was_pending;
567 	unsigned long flags;
568 
569 	if (llist_empty(this_cpu_ptr(&call_single_queue)))
570 		return;
571 
572 	local_irq_save(flags);
573 	/* Get the already pending soft interrupts for RT enabled kernels */
574 	was_pending = local_softirq_pending();
575 	__flush_smp_call_function_queue(true);
576 	if (local_softirq_pending())
577 		do_softirq_post_smp_call_flush(was_pending);
578 
579 	local_irq_restore(flags);
580 }
581 
582 /*
583  * smp_call_function_single - Run a function on a specific CPU
584  * @func: The function to run. This must be fast and non-blocking.
585  * @info: An arbitrary pointer to pass to the function.
586  * @wait: If true, wait until function has completed on other CPUs.
587  *
588  * Returns 0 on success, else a negative status code.
589  */
590 int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
591 			     int wait)
592 {
593 	call_single_data_t *csd;
594 	call_single_data_t csd_stack = {
595 		.node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, },
596 	};
597 	int this_cpu;
598 	int err;
599 
600 	/*
601 	 * prevent preemption and reschedule on another processor,
602 	 * as well as CPU removal
603 	 */
604 	this_cpu = get_cpu();
605 
606 	/*
607 	 * Can deadlock when called with interrupts disabled.
608 	 * We allow cpu's that are not yet online though, as no one else can
609 	 * send smp call function interrupt to this cpu and as such deadlocks
610 	 * can't happen.
611 	 */
612 	WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
613 		     && !oops_in_progress);
614 
615 	/*
616 	 * When @wait we can deadlock when we interrupt between llist_add() and
617 	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
618 	 * csd_lock() on because the interrupt context uses the same csd
619 	 * storage.
620 	 */
621 	WARN_ON_ONCE(!in_task());
622 
623 	csd = &csd_stack;
624 	if (!wait) {
625 		csd = this_cpu_ptr(&csd_data);
626 		csd_lock(csd);
627 	}
628 
629 	csd->func = func;
630 	csd->info = info;
631 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
632 	csd->node.src = smp_processor_id();
633 	csd->node.dst = cpu;
634 #endif
635 
636 	err = generic_exec_single(cpu, csd);
637 
638 	if (wait)
639 		csd_lock_wait(csd);
640 
641 	put_cpu();
642 
643 	return err;
644 }
645 EXPORT_SYMBOL(smp_call_function_single);
646 
647 /**
648  * smp_call_function_single_async() - Run an asynchronous function on a
649  * 			         specific CPU.
650  * @cpu: The CPU to run on.
651  * @csd: Pre-allocated and setup data structure
652  *
653  * Like smp_call_function_single(), but the call is asynchonous and
654  * can thus be done from contexts with disabled interrupts.
655  *
656  * The caller passes his own pre-allocated data structure
657  * (ie: embedded in an object) and is responsible for synchronizing it
658  * such that the IPIs performed on the @csd are strictly serialized.
659  *
660  * If the function is called with one csd which has not yet been
661  * processed by previous call to smp_call_function_single_async(), the
662  * function will return immediately with -EBUSY showing that the csd
663  * object is still in progress.
664  *
665  * NOTE: Be careful, there is unfortunately no current debugging facility to
666  * validate the correctness of this serialization.
667  *
668  * Return: %0 on success or negative errno value on error
669  */
670 int smp_call_function_single_async(int cpu, struct __call_single_data *csd)
671 {
672 	int err = 0;
673 
674 	preempt_disable();
675 
676 	if (csd->node.u_flags & CSD_FLAG_LOCK) {
677 		err = -EBUSY;
678 		goto out;
679 	}
680 
681 	csd->node.u_flags = CSD_FLAG_LOCK;
682 	smp_wmb();
683 
684 	err = generic_exec_single(cpu, csd);
685 
686 out:
687 	preempt_enable();
688 
689 	return err;
690 }
691 EXPORT_SYMBOL_GPL(smp_call_function_single_async);
692 
693 /*
694  * smp_call_function_any - Run a function on any of the given cpus
695  * @mask: The mask of cpus it can run on.
696  * @func: The function to run. This must be fast and non-blocking.
697  * @info: An arbitrary pointer to pass to the function.
698  * @wait: If true, wait until function has completed.
699  *
700  * Returns 0 on success, else a negative status code (if no cpus were online).
701  *
702  * Selection preference:
703  *	1) current cpu if in @mask
704  *	2) any cpu of current node if in @mask
705  *	3) any other online cpu in @mask
706  */
707 int smp_call_function_any(const struct cpumask *mask,
708 			  smp_call_func_t func, void *info, int wait)
709 {
710 	unsigned int cpu;
711 	const struct cpumask *nodemask;
712 	int ret;
713 
714 	/* Try for same CPU (cheapest) */
715 	cpu = get_cpu();
716 	if (cpumask_test_cpu(cpu, mask))
717 		goto call;
718 
719 	/* Try for same node. */
720 	nodemask = cpumask_of_node(cpu_to_node(cpu));
721 	for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
722 	     cpu = cpumask_next_and(cpu, nodemask, mask)) {
723 		if (cpu_online(cpu))
724 			goto call;
725 	}
726 
727 	/* Any online will do: smp_call_function_single handles nr_cpu_ids. */
728 	cpu = cpumask_any_and(mask, cpu_online_mask);
729 call:
730 	ret = smp_call_function_single(cpu, func, info, wait);
731 	put_cpu();
732 	return ret;
733 }
734 EXPORT_SYMBOL_GPL(smp_call_function_any);
735 
736 /*
737  * Flags to be used as scf_flags argument of smp_call_function_many_cond().
738  *
739  * %SCF_WAIT:		Wait until function execution is completed
740  * %SCF_RUN_LOCAL:	Run also locally if local cpu is set in cpumask
741  */
742 #define SCF_WAIT	(1U << 0)
743 #define SCF_RUN_LOCAL	(1U << 1)
744 
745 static void smp_call_function_many_cond(const struct cpumask *mask,
746 					smp_call_func_t func, void *info,
747 					unsigned int scf_flags,
748 					smp_cond_func_t cond_func)
749 {
750 	int cpu, last_cpu, this_cpu = smp_processor_id();
751 	struct call_function_data *cfd;
752 	bool wait = scf_flags & SCF_WAIT;
753 	int nr_cpus = 0;
754 	bool run_remote = false;
755 	bool run_local = false;
756 
757 	lockdep_assert_preemption_disabled();
758 
759 	/*
760 	 * Can deadlock when called with interrupts disabled.
761 	 * We allow cpu's that are not yet online though, as no one else can
762 	 * send smp call function interrupt to this cpu and as such deadlocks
763 	 * can't happen.
764 	 */
765 	if (cpu_online(this_cpu) && !oops_in_progress &&
766 	    !early_boot_irqs_disabled)
767 		lockdep_assert_irqs_enabled();
768 
769 	/*
770 	 * When @wait we can deadlock when we interrupt between llist_add() and
771 	 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
772 	 * csd_lock() on because the interrupt context uses the same csd
773 	 * storage.
774 	 */
775 	WARN_ON_ONCE(!in_task());
776 
777 	/* Check if we need local execution. */
778 	if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask))
779 		run_local = true;
780 
781 	/* Check if we need remote execution, i.e., any CPU excluding this one. */
782 	cpu = cpumask_first_and(mask, cpu_online_mask);
783 	if (cpu == this_cpu)
784 		cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
785 	if (cpu < nr_cpu_ids)
786 		run_remote = true;
787 
788 	if (run_remote) {
789 		cfd = this_cpu_ptr(&cfd_data);
790 		cpumask_and(cfd->cpumask, mask, cpu_online_mask);
791 		__cpumask_clear_cpu(this_cpu, cfd->cpumask);
792 
793 		cpumask_clear(cfd->cpumask_ipi);
794 		for_each_cpu(cpu, cfd->cpumask) {
795 			call_single_data_t *csd = per_cpu_ptr(cfd->csd, cpu);
796 
797 			if (cond_func && !cond_func(cpu, info)) {
798 				__cpumask_clear_cpu(cpu, cfd->cpumask);
799 				continue;
800 			}
801 
802 			csd_lock(csd);
803 			if (wait)
804 				csd->node.u_flags |= CSD_TYPE_SYNC;
805 			csd->func = func;
806 			csd->info = info;
807 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
808 			csd->node.src = smp_processor_id();
809 			csd->node.dst = cpu;
810 #endif
811 			trace_csd_queue_cpu(cpu, _RET_IP_, func, csd);
812 
813 			if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) {
814 				__cpumask_set_cpu(cpu, cfd->cpumask_ipi);
815 				nr_cpus++;
816 				last_cpu = cpu;
817 			}
818 		}
819 
820 		/*
821 		 * Choose the most efficient way to send an IPI. Note that the
822 		 * number of CPUs might be zero due to concurrent changes to the
823 		 * provided mask.
824 		 */
825 		if (nr_cpus == 1)
826 			send_call_function_single_ipi(last_cpu);
827 		else if (likely(nr_cpus > 1))
828 			send_call_function_ipi_mask(cfd->cpumask_ipi);
829 	}
830 
831 	if (run_local && (!cond_func || cond_func(this_cpu, info))) {
832 		unsigned long flags;
833 
834 		local_irq_save(flags);
835 		csd_do_func(func, info, NULL);
836 		local_irq_restore(flags);
837 	}
838 
839 	if (run_remote && wait) {
840 		for_each_cpu(cpu, cfd->cpumask) {
841 			call_single_data_t *csd;
842 
843 			csd = per_cpu_ptr(cfd->csd, cpu);
844 			csd_lock_wait(csd);
845 		}
846 	}
847 }
848 
849 /**
850  * smp_call_function_many(): Run a function on a set of CPUs.
851  * @mask: The set of cpus to run on (only runs on online subset).
852  * @func: The function to run. This must be fast and non-blocking.
853  * @info: An arbitrary pointer to pass to the function.
854  * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait
855  *        (atomically) until function has completed on other CPUs. If
856  *        %SCF_RUN_LOCAL is set, the function will also be run locally
857  *        if the local CPU is set in the @cpumask.
858  *
859  * If @wait is true, then returns once @func has returned.
860  *
861  * You must not call this function with disabled interrupts or from a
862  * hardware interrupt handler or from a bottom half handler. Preemption
863  * must be disabled when calling this function.
864  */
865 void smp_call_function_many(const struct cpumask *mask,
866 			    smp_call_func_t func, void *info, bool wait)
867 {
868 	smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL);
869 }
870 EXPORT_SYMBOL(smp_call_function_many);
871 
872 /**
873  * smp_call_function(): Run a function on all other CPUs.
874  * @func: The function to run. This must be fast and non-blocking.
875  * @info: An arbitrary pointer to pass to the function.
876  * @wait: If true, wait (atomically) until function has completed
877  *        on other CPUs.
878  *
879  * Returns 0.
880  *
881  * If @wait is true, then returns once @func has returned; otherwise
882  * it returns just before the target cpu calls @func.
883  *
884  * You must not call this function with disabled interrupts or from a
885  * hardware interrupt handler or from a bottom half handler.
886  */
887 void smp_call_function(smp_call_func_t func, void *info, int wait)
888 {
889 	preempt_disable();
890 	smp_call_function_many(cpu_online_mask, func, info, wait);
891 	preempt_enable();
892 }
893 EXPORT_SYMBOL(smp_call_function);
894 
895 /* Setup configured maximum number of CPUs to activate */
896 unsigned int setup_max_cpus = NR_CPUS;
897 EXPORT_SYMBOL(setup_max_cpus);
898 
899 
900 /*
901  * Setup routine for controlling SMP activation
902  *
903  * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
904  * activation entirely (the MPS table probe still happens, though).
905  *
906  * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
907  * greater than 0, limits the maximum number of CPUs activated in
908  * SMP mode to <NUM>.
909  */
910 
911 void __weak __init arch_disable_smp_support(void) { }
912 
913 static int __init nosmp(char *str)
914 {
915 	setup_max_cpus = 0;
916 	arch_disable_smp_support();
917 
918 	return 0;
919 }
920 
921 early_param("nosmp", nosmp);
922 
923 /* this is hard limit */
924 static int __init nrcpus(char *str)
925 {
926 	int nr_cpus;
927 
928 	if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids)
929 		set_nr_cpu_ids(nr_cpus);
930 
931 	return 0;
932 }
933 
934 early_param("nr_cpus", nrcpus);
935 
936 static int __init maxcpus(char *str)
937 {
938 	get_option(&str, &setup_max_cpus);
939 	if (setup_max_cpus == 0)
940 		arch_disable_smp_support();
941 
942 	return 0;
943 }
944 
945 early_param("maxcpus", maxcpus);
946 
947 #if (NR_CPUS > 1) && !defined(CONFIG_FORCE_NR_CPUS)
948 /* Setup number of possible processor ids */
949 unsigned int nr_cpu_ids __read_mostly = NR_CPUS;
950 EXPORT_SYMBOL(nr_cpu_ids);
951 #endif
952 
953 /* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
954 void __init setup_nr_cpu_ids(void)
955 {
956 	set_nr_cpu_ids(find_last_bit(cpumask_bits(cpu_possible_mask), NR_CPUS) + 1);
957 }
958 
959 /* Called by boot processor to activate the rest. */
960 void __init smp_init(void)
961 {
962 	int num_nodes, num_cpus;
963 
964 	idle_threads_init();
965 	cpuhp_threads_init();
966 
967 	pr_info("Bringing up secondary CPUs ...\n");
968 
969 	bringup_nonboot_cpus(setup_max_cpus);
970 
971 	num_nodes = num_online_nodes();
972 	num_cpus  = num_online_cpus();
973 	pr_info("Brought up %d node%s, %d CPU%s\n",
974 		num_nodes, (num_nodes > 1 ? "s" : ""),
975 		num_cpus,  (num_cpus  > 1 ? "s" : ""));
976 
977 	/* Any cleanup work */
978 	smp_cpus_done(setup_max_cpus);
979 }
980 
981 /*
982  * on_each_cpu_cond(): Call a function on each processor for which
983  * the supplied function cond_func returns true, optionally waiting
984  * for all the required CPUs to finish. This may include the local
985  * processor.
986  * @cond_func:	A callback function that is passed a cpu id and
987  *		the info parameter. The function is called
988  *		with preemption disabled. The function should
989  *		return a blooean value indicating whether to IPI
990  *		the specified CPU.
991  * @func:	The function to run on all applicable CPUs.
992  *		This must be fast and non-blocking.
993  * @info:	An arbitrary pointer to pass to both functions.
994  * @wait:	If true, wait (atomically) until function has
995  *		completed on other CPUs.
996  *
997  * Preemption is disabled to protect against CPUs going offline but not online.
998  * CPUs going online during the call will not be seen or sent an IPI.
999  *
1000  * You must not call this function with disabled interrupts or
1001  * from a hardware interrupt handler or from a bottom half handler.
1002  */
1003 void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func,
1004 			   void *info, bool wait, const struct cpumask *mask)
1005 {
1006 	unsigned int scf_flags = SCF_RUN_LOCAL;
1007 
1008 	if (wait)
1009 		scf_flags |= SCF_WAIT;
1010 
1011 	preempt_disable();
1012 	smp_call_function_many_cond(mask, func, info, scf_flags, cond_func);
1013 	preempt_enable();
1014 }
1015 EXPORT_SYMBOL(on_each_cpu_cond_mask);
1016 
1017 static void do_nothing(void *unused)
1018 {
1019 }
1020 
1021 /**
1022  * kick_all_cpus_sync - Force all cpus out of idle
1023  *
1024  * Used to synchronize the update of pm_idle function pointer. It's
1025  * called after the pointer is updated and returns after the dummy
1026  * callback function has been executed on all cpus. The execution of
1027  * the function can only happen on the remote cpus after they have
1028  * left the idle function which had been called via pm_idle function
1029  * pointer. So it's guaranteed that nothing uses the previous pointer
1030  * anymore.
1031  */
1032 void kick_all_cpus_sync(void)
1033 {
1034 	/* Make sure the change is visible before we kick the cpus */
1035 	smp_mb();
1036 	smp_call_function(do_nothing, NULL, 1);
1037 }
1038 EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
1039 
1040 /**
1041  * wake_up_all_idle_cpus - break all cpus out of idle
1042  * wake_up_all_idle_cpus try to break all cpus which is in idle state even
1043  * including idle polling cpus, for non-idle cpus, we will do nothing
1044  * for them.
1045  */
1046 void wake_up_all_idle_cpus(void)
1047 {
1048 	int cpu;
1049 
1050 	for_each_possible_cpu(cpu) {
1051 		preempt_disable();
1052 		if (cpu != smp_processor_id() && cpu_online(cpu))
1053 			wake_up_if_idle(cpu);
1054 		preempt_enable();
1055 	}
1056 }
1057 EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
1058 
1059 /**
1060  * struct smp_call_on_cpu_struct - Call a function on a specific CPU
1061  * @work: &work_struct
1062  * @done: &completion to signal
1063  * @func: function to call
1064  * @data: function's data argument
1065  * @ret: return value from @func
1066  * @cpu: target CPU (%-1 for any CPU)
1067  *
1068  * Used to call a function on a specific cpu and wait for it to return.
1069  * Optionally make sure the call is done on a specified physical cpu via vcpu
1070  * pinning in order to support virtualized environments.
1071  */
1072 struct smp_call_on_cpu_struct {
1073 	struct work_struct	work;
1074 	struct completion	done;
1075 	int			(*func)(void *);
1076 	void			*data;
1077 	int			ret;
1078 	int			cpu;
1079 };
1080 
1081 static void smp_call_on_cpu_callback(struct work_struct *work)
1082 {
1083 	struct smp_call_on_cpu_struct *sscs;
1084 
1085 	sscs = container_of(work, struct smp_call_on_cpu_struct, work);
1086 	if (sscs->cpu >= 0)
1087 		hypervisor_pin_vcpu(sscs->cpu);
1088 	sscs->ret = sscs->func(sscs->data);
1089 	if (sscs->cpu >= 0)
1090 		hypervisor_pin_vcpu(-1);
1091 
1092 	complete(&sscs->done);
1093 }
1094 
1095 int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
1096 {
1097 	struct smp_call_on_cpu_struct sscs = {
1098 		.done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
1099 		.func = func,
1100 		.data = par,
1101 		.cpu  = phys ? cpu : -1,
1102 	};
1103 
1104 	INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
1105 
1106 	if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1107 		return -ENXIO;
1108 
1109 	queue_work_on(cpu, system_wq, &sscs.work);
1110 	wait_for_completion(&sscs.done);
1111 
1112 	return sscs.ret;
1113 }
1114 EXPORT_SYMBOL_GPL(smp_call_on_cpu);
1115