xref: /linux/kernel/sched/sched.h (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 
2 #include <linux/sched.h>
3 #include <linux/mutex.h>
4 #include <linux/spinlock.h>
5 #include <linux/stop_machine.h>
6 
7 #include "cpupri.h"
8 
9 extern __read_mostly int scheduler_running;
10 
11 /*
12  * Convert user-nice values [ -20 ... 0 ... 19 ]
13  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14  * and back.
15  */
16 #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
17 #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
18 #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)
19 
20 /*
21  * 'User priority' is the nice value converted to something we
22  * can work with better when scaling various scheduler parameters,
23  * it's a [ 0 ... 39 ] range.
24  */
25 #define USER_PRIO(p)		((p)-MAX_RT_PRIO)
26 #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
27 #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))
28 
29 /*
30  * Helpers for converting nanosecond timing to jiffy resolution
31  */
32 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33 
34 #define NICE_0_LOAD		SCHED_LOAD_SCALE
35 #define NICE_0_SHIFT		SCHED_LOAD_SHIFT
36 
37 /*
38  * These are the 'tuning knobs' of the scheduler:
39  */
40 
41 /*
42  * single value that denotes runtime == period, ie unlimited time.
43  */
44 #define RUNTIME_INF	((u64)~0ULL)
45 
46 static inline int rt_policy(int policy)
47 {
48 	if (policy == SCHED_FIFO || policy == SCHED_RR)
49 		return 1;
50 	return 0;
51 }
52 
53 static inline int task_has_rt_policy(struct task_struct *p)
54 {
55 	return rt_policy(p->policy);
56 }
57 
58 /*
59  * This is the priority-queue data structure of the RT scheduling class:
60  */
61 struct rt_prio_array {
62 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 	struct list_head queue[MAX_RT_PRIO];
64 };
65 
66 struct rt_bandwidth {
67 	/* nests inside the rq lock: */
68 	raw_spinlock_t		rt_runtime_lock;
69 	ktime_t			rt_period;
70 	u64			rt_runtime;
71 	struct hrtimer		rt_period_timer;
72 };
73 
74 extern struct mutex sched_domains_mutex;
75 
76 #ifdef CONFIG_CGROUP_SCHED
77 
78 #include <linux/cgroup.h>
79 
80 struct cfs_rq;
81 struct rt_rq;
82 
83 extern struct list_head task_groups;
84 
85 struct cfs_bandwidth {
86 #ifdef CONFIG_CFS_BANDWIDTH
87 	raw_spinlock_t lock;
88 	ktime_t period;
89 	u64 quota, runtime;
90 	s64 hierarchal_quota;
91 	u64 runtime_expires;
92 
93 	int idle, timer_active;
94 	struct hrtimer period_timer, slack_timer;
95 	struct list_head throttled_cfs_rq;
96 
97 	/* statistics */
98 	int nr_periods, nr_throttled;
99 	u64 throttled_time;
100 #endif
101 };
102 
103 /* task group related information */
104 struct task_group {
105 	struct cgroup_subsys_state css;
106 
107 #ifdef CONFIG_FAIR_GROUP_SCHED
108 	/* schedulable entities of this group on each cpu */
109 	struct sched_entity **se;
110 	/* runqueue "owned" by this group on each cpu */
111 	struct cfs_rq **cfs_rq;
112 	unsigned long shares;
113 
114 	atomic_t load_weight;
115 #endif
116 
117 #ifdef CONFIG_RT_GROUP_SCHED
118 	struct sched_rt_entity **rt_se;
119 	struct rt_rq **rt_rq;
120 
121 	struct rt_bandwidth rt_bandwidth;
122 #endif
123 
124 	struct rcu_head rcu;
125 	struct list_head list;
126 
127 	struct task_group *parent;
128 	struct list_head siblings;
129 	struct list_head children;
130 
131 #ifdef CONFIG_SCHED_AUTOGROUP
132 	struct autogroup *autogroup;
133 #endif
134 
135 	struct cfs_bandwidth cfs_bandwidth;
136 };
137 
138 #ifdef CONFIG_FAIR_GROUP_SCHED
139 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
140 
141 /*
142  * A weight of 0 or 1 can cause arithmetics problems.
143  * A weight of a cfs_rq is the sum of weights of which entities
144  * are queued on this cfs_rq, so a weight of a entity should not be
145  * too large, so as the shares value of a task group.
146  * (The default weight is 1024 - so there's no practical
147  *  limitation from this.)
148  */
149 #define MIN_SHARES	(1UL <<  1)
150 #define MAX_SHARES	(1UL << 18)
151 #endif
152 
153 /* Default task group.
154  *	Every task in system belong to this group at bootup.
155  */
156 extern struct task_group root_task_group;
157 
158 typedef int (*tg_visitor)(struct task_group *, void *);
159 
160 extern int walk_tg_tree_from(struct task_group *from,
161 			     tg_visitor down, tg_visitor up, void *data);
162 
163 /*
164  * Iterate the full tree, calling @down when first entering a node and @up when
165  * leaving it for the final time.
166  *
167  * Caller must hold rcu_lock or sufficient equivalent.
168  */
169 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
170 {
171 	return walk_tg_tree_from(&root_task_group, down, up, data);
172 }
173 
174 extern int tg_nop(struct task_group *tg, void *data);
175 
176 extern void free_fair_sched_group(struct task_group *tg);
177 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
178 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
179 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
180 			struct sched_entity *se, int cpu,
181 			struct sched_entity *parent);
182 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
183 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
184 
185 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
186 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
187 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
188 
189 extern void free_rt_sched_group(struct task_group *tg);
190 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
191 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
192 		struct sched_rt_entity *rt_se, int cpu,
193 		struct sched_rt_entity *parent);
194 
195 #else /* CONFIG_CGROUP_SCHED */
196 
197 struct cfs_bandwidth { };
198 
199 #endif	/* CONFIG_CGROUP_SCHED */
200 
201 /* CFS-related fields in a runqueue */
202 struct cfs_rq {
203 	struct load_weight load;
204 	unsigned int nr_running, h_nr_running;
205 
206 	u64 exec_clock;
207 	u64 min_vruntime;
208 #ifndef CONFIG_64BIT
209 	u64 min_vruntime_copy;
210 #endif
211 
212 	struct rb_root tasks_timeline;
213 	struct rb_node *rb_leftmost;
214 
215 	/*
216 	 * 'curr' points to currently running entity on this cfs_rq.
217 	 * It is set to NULL otherwise (i.e when none are currently running).
218 	 */
219 	struct sched_entity *curr, *next, *last, *skip;
220 
221 #ifdef	CONFIG_SCHED_DEBUG
222 	unsigned int nr_spread_over;
223 #endif
224 
225 #ifdef CONFIG_FAIR_GROUP_SCHED
226 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
227 
228 	/*
229 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
230 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
231 	 * (like users, containers etc.)
232 	 *
233 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
234 	 * list is used during load balance.
235 	 */
236 	int on_list;
237 	struct list_head leaf_cfs_rq_list;
238 	struct task_group *tg;	/* group that "owns" this runqueue */
239 
240 #ifdef CONFIG_SMP
241 	/*
242 	 *   h_load = weight * f(tg)
243 	 *
244 	 * Where f(tg) is the recursive weight fraction assigned to
245 	 * this group.
246 	 */
247 	unsigned long h_load;
248 
249 	/*
250 	 * Maintaining per-cpu shares distribution for group scheduling
251 	 *
252 	 * load_stamp is the last time we updated the load average
253 	 * load_last is the last time we updated the load average and saw load
254 	 * load_unacc_exec_time is currently unaccounted execution time
255 	 */
256 	u64 load_avg;
257 	u64 load_period;
258 	u64 load_stamp, load_last, load_unacc_exec_time;
259 
260 	unsigned long load_contribution;
261 #endif /* CONFIG_SMP */
262 #ifdef CONFIG_CFS_BANDWIDTH
263 	int runtime_enabled;
264 	u64 runtime_expires;
265 	s64 runtime_remaining;
266 
267 	u64 throttled_timestamp;
268 	int throttled, throttle_count;
269 	struct list_head throttled_list;
270 #endif /* CONFIG_CFS_BANDWIDTH */
271 #endif /* CONFIG_FAIR_GROUP_SCHED */
272 };
273 
274 static inline int rt_bandwidth_enabled(void)
275 {
276 	return sysctl_sched_rt_runtime >= 0;
277 }
278 
279 /* Real-Time classes' related field in a runqueue: */
280 struct rt_rq {
281 	struct rt_prio_array active;
282 	unsigned int rt_nr_running;
283 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
284 	struct {
285 		int curr; /* highest queued rt task prio */
286 #ifdef CONFIG_SMP
287 		int next; /* next highest */
288 #endif
289 	} highest_prio;
290 #endif
291 #ifdef CONFIG_SMP
292 	unsigned long rt_nr_migratory;
293 	unsigned long rt_nr_total;
294 	int overloaded;
295 	struct plist_head pushable_tasks;
296 #endif
297 	int rt_throttled;
298 	u64 rt_time;
299 	u64 rt_runtime;
300 	/* Nests inside the rq lock: */
301 	raw_spinlock_t rt_runtime_lock;
302 
303 #ifdef CONFIG_RT_GROUP_SCHED
304 	unsigned long rt_nr_boosted;
305 
306 	struct rq *rq;
307 	struct list_head leaf_rt_rq_list;
308 	struct task_group *tg;
309 #endif
310 };
311 
312 #ifdef CONFIG_SMP
313 
314 /*
315  * We add the notion of a root-domain which will be used to define per-domain
316  * variables. Each exclusive cpuset essentially defines an island domain by
317  * fully partitioning the member cpus from any other cpuset. Whenever a new
318  * exclusive cpuset is created, we also create and attach a new root-domain
319  * object.
320  *
321  */
322 struct root_domain {
323 	atomic_t refcount;
324 	atomic_t rto_count;
325 	struct rcu_head rcu;
326 	cpumask_var_t span;
327 	cpumask_var_t online;
328 
329 	/*
330 	 * The "RT overload" flag: it gets set if a CPU has more than
331 	 * one runnable RT task.
332 	 */
333 	cpumask_var_t rto_mask;
334 	struct cpupri cpupri;
335 };
336 
337 extern struct root_domain def_root_domain;
338 
339 #endif /* CONFIG_SMP */
340 
341 /*
342  * This is the main, per-CPU runqueue data structure.
343  *
344  * Locking rule: those places that want to lock multiple runqueues
345  * (such as the load balancing or the thread migration code), lock
346  * acquire operations must be ordered by ascending &runqueue.
347  */
348 struct rq {
349 	/* runqueue lock: */
350 	raw_spinlock_t lock;
351 
352 	/*
353 	 * nr_running and cpu_load should be in the same cacheline because
354 	 * remote CPUs use both these fields when doing load calculation.
355 	 */
356 	unsigned int nr_running;
357 	#define CPU_LOAD_IDX_MAX 5
358 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
359 	unsigned long last_load_update_tick;
360 #ifdef CONFIG_NO_HZ
361 	u64 nohz_stamp;
362 	unsigned long nohz_flags;
363 #endif
364 	int skip_clock_update;
365 
366 	/* capture load from *all* tasks on this cpu: */
367 	struct load_weight load;
368 	unsigned long nr_load_updates;
369 	u64 nr_switches;
370 
371 	struct cfs_rq cfs;
372 	struct rt_rq rt;
373 
374 #ifdef CONFIG_FAIR_GROUP_SCHED
375 	/* list of leaf cfs_rq on this cpu: */
376 	struct list_head leaf_cfs_rq_list;
377 #ifdef CONFIG_SMP
378 	unsigned long h_load_throttle;
379 #endif /* CONFIG_SMP */
380 #endif /* CONFIG_FAIR_GROUP_SCHED */
381 
382 #ifdef CONFIG_RT_GROUP_SCHED
383 	struct list_head leaf_rt_rq_list;
384 #endif
385 
386 	/*
387 	 * This is part of a global counter where only the total sum
388 	 * over all CPUs matters. A task can increase this counter on
389 	 * one CPU and if it got migrated afterwards it may decrease
390 	 * it on another CPU. Always updated under the runqueue lock:
391 	 */
392 	unsigned long nr_uninterruptible;
393 
394 	struct task_struct *curr, *idle, *stop;
395 	unsigned long next_balance;
396 	struct mm_struct *prev_mm;
397 
398 	u64 clock;
399 	u64 clock_task;
400 
401 	atomic_t nr_iowait;
402 
403 #ifdef CONFIG_SMP
404 	struct root_domain *rd;
405 	struct sched_domain *sd;
406 
407 	unsigned long cpu_power;
408 
409 	unsigned char idle_balance;
410 	/* For active balancing */
411 	int post_schedule;
412 	int active_balance;
413 	int push_cpu;
414 	struct cpu_stop_work active_balance_work;
415 	/* cpu of this runqueue: */
416 	int cpu;
417 	int online;
418 
419 	struct list_head cfs_tasks;
420 
421 	u64 rt_avg;
422 	u64 age_stamp;
423 	u64 idle_stamp;
424 	u64 avg_idle;
425 #endif
426 
427 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
428 	u64 prev_irq_time;
429 #endif
430 #ifdef CONFIG_PARAVIRT
431 	u64 prev_steal_time;
432 #endif
433 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
434 	u64 prev_steal_time_rq;
435 #endif
436 
437 	/* calc_load related fields */
438 	unsigned long calc_load_update;
439 	long calc_load_active;
440 
441 #ifdef CONFIG_SCHED_HRTICK
442 #ifdef CONFIG_SMP
443 	int hrtick_csd_pending;
444 	struct call_single_data hrtick_csd;
445 #endif
446 	struct hrtimer hrtick_timer;
447 #endif
448 
449 #ifdef CONFIG_SCHEDSTATS
450 	/* latency stats */
451 	struct sched_info rq_sched_info;
452 	unsigned long long rq_cpu_time;
453 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
454 
455 	/* sys_sched_yield() stats */
456 	unsigned int yld_count;
457 
458 	/* schedule() stats */
459 	unsigned int sched_count;
460 	unsigned int sched_goidle;
461 
462 	/* try_to_wake_up() stats */
463 	unsigned int ttwu_count;
464 	unsigned int ttwu_local;
465 #endif
466 
467 #ifdef CONFIG_SMP
468 	struct llist_head wake_list;
469 #endif
470 };
471 
472 static inline int cpu_of(struct rq *rq)
473 {
474 #ifdef CONFIG_SMP
475 	return rq->cpu;
476 #else
477 	return 0;
478 #endif
479 }
480 
481 DECLARE_PER_CPU(struct rq, runqueues);
482 
483 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
484 #define this_rq()		(&__get_cpu_var(runqueues))
485 #define task_rq(p)		cpu_rq(task_cpu(p))
486 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
487 #define raw_rq()		(&__raw_get_cpu_var(runqueues))
488 
489 #ifdef CONFIG_SMP
490 
491 #define rcu_dereference_check_sched_domain(p) \
492 	rcu_dereference_check((p), \
493 			      lockdep_is_held(&sched_domains_mutex))
494 
495 /*
496  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
497  * See detach_destroy_domains: synchronize_sched for details.
498  *
499  * The domain tree of any CPU may only be accessed from within
500  * preempt-disabled sections.
501  */
502 #define for_each_domain(cpu, __sd) \
503 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
504 			__sd; __sd = __sd->parent)
505 
506 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
507 
508 /**
509  * highest_flag_domain - Return highest sched_domain containing flag.
510  * @cpu:	The cpu whose highest level of sched domain is to
511  *		be returned.
512  * @flag:	The flag to check for the highest sched_domain
513  *		for the given cpu.
514  *
515  * Returns the highest sched_domain of a cpu which contains the given flag.
516  */
517 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
518 {
519 	struct sched_domain *sd, *hsd = NULL;
520 
521 	for_each_domain(cpu, sd) {
522 		if (!(sd->flags & flag))
523 			break;
524 		hsd = sd;
525 	}
526 
527 	return hsd;
528 }
529 
530 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
531 DECLARE_PER_CPU(int, sd_llc_id);
532 
533 extern int group_balance_cpu(struct sched_group *sg);
534 
535 #endif /* CONFIG_SMP */
536 
537 #include "stats.h"
538 #include "auto_group.h"
539 
540 #ifdef CONFIG_CGROUP_SCHED
541 
542 /*
543  * Return the group to which this tasks belongs.
544  *
545  * We cannot use task_subsys_state() and friends because the cgroup
546  * subsystem changes that value before the cgroup_subsys::attach() method
547  * is called, therefore we cannot pin it and might observe the wrong value.
548  *
549  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
550  * core changes this before calling sched_move_task().
551  *
552  * Instead we use a 'copy' which is updated from sched_move_task() while
553  * holding both task_struct::pi_lock and rq::lock.
554  */
555 static inline struct task_group *task_group(struct task_struct *p)
556 {
557 	return p->sched_task_group;
558 }
559 
560 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
561 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
562 {
563 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
564 	struct task_group *tg = task_group(p);
565 #endif
566 
567 #ifdef CONFIG_FAIR_GROUP_SCHED
568 	p->se.cfs_rq = tg->cfs_rq[cpu];
569 	p->se.parent = tg->se[cpu];
570 #endif
571 
572 #ifdef CONFIG_RT_GROUP_SCHED
573 	p->rt.rt_rq  = tg->rt_rq[cpu];
574 	p->rt.parent = tg->rt_se[cpu];
575 #endif
576 }
577 
578 #else /* CONFIG_CGROUP_SCHED */
579 
580 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
581 static inline struct task_group *task_group(struct task_struct *p)
582 {
583 	return NULL;
584 }
585 
586 #endif /* CONFIG_CGROUP_SCHED */
587 
588 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
589 {
590 	set_task_rq(p, cpu);
591 #ifdef CONFIG_SMP
592 	/*
593 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
594 	 * successfuly executed on another CPU. We must ensure that updates of
595 	 * per-task data have been completed by this moment.
596 	 */
597 	smp_wmb();
598 	task_thread_info(p)->cpu = cpu;
599 #endif
600 }
601 
602 /*
603  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
604  */
605 #ifdef CONFIG_SCHED_DEBUG
606 # include <linux/static_key.h>
607 # define const_debug __read_mostly
608 #else
609 # define const_debug const
610 #endif
611 
612 extern const_debug unsigned int sysctl_sched_features;
613 
614 #define SCHED_FEAT(name, enabled)	\
615 	__SCHED_FEAT_##name ,
616 
617 enum {
618 #include "features.h"
619 	__SCHED_FEAT_NR,
620 };
621 
622 #undef SCHED_FEAT
623 
624 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
625 static __always_inline bool static_branch__true(struct static_key *key)
626 {
627 	return static_key_true(key); /* Not out of line branch. */
628 }
629 
630 static __always_inline bool static_branch__false(struct static_key *key)
631 {
632 	return static_key_false(key); /* Out of line branch. */
633 }
634 
635 #define SCHED_FEAT(name, enabled)					\
636 static __always_inline bool static_branch_##name(struct static_key *key) \
637 {									\
638 	return static_branch__##enabled(key);				\
639 }
640 
641 #include "features.h"
642 
643 #undef SCHED_FEAT
644 
645 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
646 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
647 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
648 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
649 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
650 
651 static inline u64 global_rt_period(void)
652 {
653 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
654 }
655 
656 static inline u64 global_rt_runtime(void)
657 {
658 	if (sysctl_sched_rt_runtime < 0)
659 		return RUNTIME_INF;
660 
661 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
662 }
663 
664 
665 
666 static inline int task_current(struct rq *rq, struct task_struct *p)
667 {
668 	return rq->curr == p;
669 }
670 
671 static inline int task_running(struct rq *rq, struct task_struct *p)
672 {
673 #ifdef CONFIG_SMP
674 	return p->on_cpu;
675 #else
676 	return task_current(rq, p);
677 #endif
678 }
679 
680 
681 #ifndef prepare_arch_switch
682 # define prepare_arch_switch(next)	do { } while (0)
683 #endif
684 #ifndef finish_arch_switch
685 # define finish_arch_switch(prev)	do { } while (0)
686 #endif
687 #ifndef finish_arch_post_lock_switch
688 # define finish_arch_post_lock_switch()	do { } while (0)
689 #endif
690 
691 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
692 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
693 {
694 #ifdef CONFIG_SMP
695 	/*
696 	 * We can optimise this out completely for !SMP, because the
697 	 * SMP rebalancing from interrupt is the only thing that cares
698 	 * here.
699 	 */
700 	next->on_cpu = 1;
701 #endif
702 }
703 
704 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
705 {
706 #ifdef CONFIG_SMP
707 	/*
708 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
709 	 * We must ensure this doesn't happen until the switch is completely
710 	 * finished.
711 	 */
712 	smp_wmb();
713 	prev->on_cpu = 0;
714 #endif
715 #ifdef CONFIG_DEBUG_SPINLOCK
716 	/* this is a valid case when another task releases the spinlock */
717 	rq->lock.owner = current;
718 #endif
719 	/*
720 	 * If we are tracking spinlock dependencies then we have to
721 	 * fix up the runqueue lock - which gets 'carried over' from
722 	 * prev into current:
723 	 */
724 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
725 
726 	raw_spin_unlock_irq(&rq->lock);
727 }
728 
729 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
730 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
731 {
732 #ifdef CONFIG_SMP
733 	/*
734 	 * We can optimise this out completely for !SMP, because the
735 	 * SMP rebalancing from interrupt is the only thing that cares
736 	 * here.
737 	 */
738 	next->on_cpu = 1;
739 #endif
740 	raw_spin_unlock(&rq->lock);
741 }
742 
743 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
744 {
745 #ifdef CONFIG_SMP
746 	/*
747 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
748 	 * We must ensure this doesn't happen until the switch is completely
749 	 * finished.
750 	 */
751 	smp_wmb();
752 	prev->on_cpu = 0;
753 #endif
754 	local_irq_enable();
755 }
756 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
757 
758 
759 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
760 {
761 	lw->weight += inc;
762 	lw->inv_weight = 0;
763 }
764 
765 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
766 {
767 	lw->weight -= dec;
768 	lw->inv_weight = 0;
769 }
770 
771 static inline void update_load_set(struct load_weight *lw, unsigned long w)
772 {
773 	lw->weight = w;
774 	lw->inv_weight = 0;
775 }
776 
777 /*
778  * To aid in avoiding the subversion of "niceness" due to uneven distribution
779  * of tasks with abnormal "nice" values across CPUs the contribution that
780  * each task makes to its run queue's load is weighted according to its
781  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
782  * scaled version of the new time slice allocation that they receive on time
783  * slice expiry etc.
784  */
785 
786 #define WEIGHT_IDLEPRIO                3
787 #define WMULT_IDLEPRIO         1431655765
788 
789 /*
790  * Nice levels are multiplicative, with a gentle 10% change for every
791  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
792  * nice 1, it will get ~10% less CPU time than another CPU-bound task
793  * that remained on nice 0.
794  *
795  * The "10% effect" is relative and cumulative: from _any_ nice level,
796  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
797  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
798  * If a task goes up by ~10% and another task goes down by ~10% then
799  * the relative distance between them is ~25%.)
800  */
801 static const int prio_to_weight[40] = {
802  /* -20 */     88761,     71755,     56483,     46273,     36291,
803  /* -15 */     29154,     23254,     18705,     14949,     11916,
804  /* -10 */      9548,      7620,      6100,      4904,      3906,
805  /*  -5 */      3121,      2501,      1991,      1586,      1277,
806  /*   0 */      1024,       820,       655,       526,       423,
807  /*   5 */       335,       272,       215,       172,       137,
808  /*  10 */       110,        87,        70,        56,        45,
809  /*  15 */        36,        29,        23,        18,        15,
810 };
811 
812 /*
813  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
814  *
815  * In cases where the weight does not change often, we can use the
816  * precalculated inverse to speed up arithmetics by turning divisions
817  * into multiplications:
818  */
819 static const u32 prio_to_wmult[40] = {
820  /* -20 */     48388,     59856,     76040,     92818,    118348,
821  /* -15 */    147320,    184698,    229616,    287308,    360437,
822  /* -10 */    449829,    563644,    704093,    875809,   1099582,
823  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
824  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
825  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
826  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
827  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
828 };
829 
830 /* Time spent by the tasks of the cpu accounting group executing in ... */
831 enum cpuacct_stat_index {
832 	CPUACCT_STAT_USER,	/* ... user mode */
833 	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */
834 
835 	CPUACCT_STAT_NSTATS,
836 };
837 
838 
839 #define sched_class_highest (&stop_sched_class)
840 #define for_each_class(class) \
841    for (class = sched_class_highest; class; class = class->next)
842 
843 extern const struct sched_class stop_sched_class;
844 extern const struct sched_class rt_sched_class;
845 extern const struct sched_class fair_sched_class;
846 extern const struct sched_class idle_sched_class;
847 
848 
849 #ifdef CONFIG_SMP
850 
851 extern void trigger_load_balance(struct rq *rq, int cpu);
852 extern void idle_balance(int this_cpu, struct rq *this_rq);
853 
854 #else	/* CONFIG_SMP */
855 
856 static inline void idle_balance(int cpu, struct rq *rq)
857 {
858 }
859 
860 #endif
861 
862 extern void sysrq_sched_debug_show(void);
863 extern void sched_init_granularity(void);
864 extern void update_max_interval(void);
865 extern void update_group_power(struct sched_domain *sd, int cpu);
866 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
867 extern void init_sched_rt_class(void);
868 extern void init_sched_fair_class(void);
869 
870 extern void resched_task(struct task_struct *p);
871 extern void resched_cpu(int cpu);
872 
873 extern struct rt_bandwidth def_rt_bandwidth;
874 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
875 
876 extern void update_idle_cpu_load(struct rq *this_rq);
877 
878 #ifdef CONFIG_CGROUP_CPUACCT
879 #include <linux/cgroup.h>
880 /* track cpu usage of a group of tasks and its child groups */
881 struct cpuacct {
882 	struct cgroup_subsys_state css;
883 	/* cpuusage holds pointer to a u64-type object on every cpu */
884 	u64 __percpu *cpuusage;
885 	struct kernel_cpustat __percpu *cpustat;
886 };
887 
888 extern struct cgroup_subsys cpuacct_subsys;
889 extern struct cpuacct root_cpuacct;
890 
891 /* return cpu accounting group corresponding to this container */
892 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
893 {
894 	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
895 			    struct cpuacct, css);
896 }
897 
898 /* return cpu accounting group to which this task belongs */
899 static inline struct cpuacct *task_ca(struct task_struct *tsk)
900 {
901 	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
902 			    struct cpuacct, css);
903 }
904 
905 static inline struct cpuacct *parent_ca(struct cpuacct *ca)
906 {
907 	if (!ca || !ca->css.cgroup->parent)
908 		return NULL;
909 	return cgroup_ca(ca->css.cgroup->parent);
910 }
911 
912 extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
913 #else
914 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
915 #endif
916 
917 #ifdef CONFIG_PARAVIRT
918 static inline u64 steal_ticks(u64 steal)
919 {
920 	if (unlikely(steal > NSEC_PER_SEC))
921 		return div_u64(steal, TICK_NSEC);
922 
923 	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
924 }
925 #endif
926 
927 static inline void inc_nr_running(struct rq *rq)
928 {
929 	rq->nr_running++;
930 }
931 
932 static inline void dec_nr_running(struct rq *rq)
933 {
934 	rq->nr_running--;
935 }
936 
937 extern void update_rq_clock(struct rq *rq);
938 
939 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
940 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
941 
942 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
943 
944 extern const_debug unsigned int sysctl_sched_time_avg;
945 extern const_debug unsigned int sysctl_sched_nr_migrate;
946 extern const_debug unsigned int sysctl_sched_migration_cost;
947 
948 static inline u64 sched_avg_period(void)
949 {
950 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
951 }
952 
953 #ifdef CONFIG_SCHED_HRTICK
954 
955 /*
956  * Use hrtick when:
957  *  - enabled by features
958  *  - hrtimer is actually high res
959  */
960 static inline int hrtick_enabled(struct rq *rq)
961 {
962 	if (!sched_feat(HRTICK))
963 		return 0;
964 	if (!cpu_active(cpu_of(rq)))
965 		return 0;
966 	return hrtimer_is_hres_active(&rq->hrtick_timer);
967 }
968 
969 void hrtick_start(struct rq *rq, u64 delay);
970 
971 #else
972 
973 static inline int hrtick_enabled(struct rq *rq)
974 {
975 	return 0;
976 }
977 
978 #endif /* CONFIG_SCHED_HRTICK */
979 
980 #ifdef CONFIG_SMP
981 extern void sched_avg_update(struct rq *rq);
982 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
983 {
984 	rq->rt_avg += rt_delta;
985 	sched_avg_update(rq);
986 }
987 #else
988 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
989 static inline void sched_avg_update(struct rq *rq) { }
990 #endif
991 
992 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
993 
994 #ifdef CONFIG_SMP
995 #ifdef CONFIG_PREEMPT
996 
997 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
998 
999 /*
1000  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1001  * way at the expense of forcing extra atomic operations in all
1002  * invocations.  This assures that the double_lock is acquired using the
1003  * same underlying policy as the spinlock_t on this architecture, which
1004  * reduces latency compared to the unfair variant below.  However, it
1005  * also adds more overhead and therefore may reduce throughput.
1006  */
1007 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1008 	__releases(this_rq->lock)
1009 	__acquires(busiest->lock)
1010 	__acquires(this_rq->lock)
1011 {
1012 	raw_spin_unlock(&this_rq->lock);
1013 	double_rq_lock(this_rq, busiest);
1014 
1015 	return 1;
1016 }
1017 
1018 #else
1019 /*
1020  * Unfair double_lock_balance: Optimizes throughput at the expense of
1021  * latency by eliminating extra atomic operations when the locks are
1022  * already in proper order on entry.  This favors lower cpu-ids and will
1023  * grant the double lock to lower cpus over higher ids under contention,
1024  * regardless of entry order into the function.
1025  */
1026 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1027 	__releases(this_rq->lock)
1028 	__acquires(busiest->lock)
1029 	__acquires(this_rq->lock)
1030 {
1031 	int ret = 0;
1032 
1033 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1034 		if (busiest < this_rq) {
1035 			raw_spin_unlock(&this_rq->lock);
1036 			raw_spin_lock(&busiest->lock);
1037 			raw_spin_lock_nested(&this_rq->lock,
1038 					      SINGLE_DEPTH_NESTING);
1039 			ret = 1;
1040 		} else
1041 			raw_spin_lock_nested(&busiest->lock,
1042 					      SINGLE_DEPTH_NESTING);
1043 	}
1044 	return ret;
1045 }
1046 
1047 #endif /* CONFIG_PREEMPT */
1048 
1049 /*
1050  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1051  */
1052 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1053 {
1054 	if (unlikely(!irqs_disabled())) {
1055 		/* printk() doesn't work good under rq->lock */
1056 		raw_spin_unlock(&this_rq->lock);
1057 		BUG_ON(1);
1058 	}
1059 
1060 	return _double_lock_balance(this_rq, busiest);
1061 }
1062 
1063 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1064 	__releases(busiest->lock)
1065 {
1066 	raw_spin_unlock(&busiest->lock);
1067 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1068 }
1069 
1070 /*
1071  * double_rq_lock - safely lock two runqueues
1072  *
1073  * Note this does not disable interrupts like task_rq_lock,
1074  * you need to do so manually before calling.
1075  */
1076 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1077 	__acquires(rq1->lock)
1078 	__acquires(rq2->lock)
1079 {
1080 	BUG_ON(!irqs_disabled());
1081 	if (rq1 == rq2) {
1082 		raw_spin_lock(&rq1->lock);
1083 		__acquire(rq2->lock);	/* Fake it out ;) */
1084 	} else {
1085 		if (rq1 < rq2) {
1086 			raw_spin_lock(&rq1->lock);
1087 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1088 		} else {
1089 			raw_spin_lock(&rq2->lock);
1090 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1091 		}
1092 	}
1093 }
1094 
1095 /*
1096  * double_rq_unlock - safely unlock two runqueues
1097  *
1098  * Note this does not restore interrupts like task_rq_unlock,
1099  * you need to do so manually after calling.
1100  */
1101 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1102 	__releases(rq1->lock)
1103 	__releases(rq2->lock)
1104 {
1105 	raw_spin_unlock(&rq1->lock);
1106 	if (rq1 != rq2)
1107 		raw_spin_unlock(&rq2->lock);
1108 	else
1109 		__release(rq2->lock);
1110 }
1111 
1112 #else /* CONFIG_SMP */
1113 
1114 /*
1115  * double_rq_lock - safely lock two runqueues
1116  *
1117  * Note this does not disable interrupts like task_rq_lock,
1118  * you need to do so manually before calling.
1119  */
1120 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1121 	__acquires(rq1->lock)
1122 	__acquires(rq2->lock)
1123 {
1124 	BUG_ON(!irqs_disabled());
1125 	BUG_ON(rq1 != rq2);
1126 	raw_spin_lock(&rq1->lock);
1127 	__acquire(rq2->lock);	/* Fake it out ;) */
1128 }
1129 
1130 /*
1131  * double_rq_unlock - safely unlock two runqueues
1132  *
1133  * Note this does not restore interrupts like task_rq_unlock,
1134  * you need to do so manually after calling.
1135  */
1136 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1137 	__releases(rq1->lock)
1138 	__releases(rq2->lock)
1139 {
1140 	BUG_ON(rq1 != rq2);
1141 	raw_spin_unlock(&rq1->lock);
1142 	__release(rq2->lock);
1143 }
1144 
1145 #endif
1146 
1147 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1148 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1149 extern void print_cfs_stats(struct seq_file *m, int cpu);
1150 extern void print_rt_stats(struct seq_file *m, int cpu);
1151 
1152 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1153 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1154 
1155 extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1156 
1157 #ifdef CONFIG_NO_HZ
1158 enum rq_nohz_flag_bits {
1159 	NOHZ_TICK_STOPPED,
1160 	NOHZ_BALANCE_KICK,
1161 	NOHZ_IDLE,
1162 };
1163 
1164 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1165 #endif
1166 
1167 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1168 
1169 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1170 DECLARE_PER_CPU(u64, cpu_softirq_time);
1171 
1172 #ifndef CONFIG_64BIT
1173 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1174 
1175 static inline void irq_time_write_begin(void)
1176 {
1177 	__this_cpu_inc(irq_time_seq.sequence);
1178 	smp_wmb();
1179 }
1180 
1181 static inline void irq_time_write_end(void)
1182 {
1183 	smp_wmb();
1184 	__this_cpu_inc(irq_time_seq.sequence);
1185 }
1186 
1187 static inline u64 irq_time_read(int cpu)
1188 {
1189 	u64 irq_time;
1190 	unsigned seq;
1191 
1192 	do {
1193 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1194 		irq_time = per_cpu(cpu_softirq_time, cpu) +
1195 			   per_cpu(cpu_hardirq_time, cpu);
1196 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1197 
1198 	return irq_time;
1199 }
1200 #else /* CONFIG_64BIT */
1201 static inline void irq_time_write_begin(void)
1202 {
1203 }
1204 
1205 static inline void irq_time_write_end(void)
1206 {
1207 }
1208 
1209 static inline u64 irq_time_read(int cpu)
1210 {
1211 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1212 }
1213 #endif /* CONFIG_64BIT */
1214 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1215 
1216