xref: /linux/kernel/livepatch/transition.c (revision e2be04c7f9958dde770eeb8b30e829ca969b37bb)
1 /*
2  * transition.c - Kernel Live Patching transition functions
3  *
4  * Copyright (C) 2015-2016 Josh Poimboeuf <jpoimboe@redhat.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/cpu.h>
23 #include <linux/stacktrace.h>
24 #include "core.h"
25 #include "patch.h"
26 #include "transition.h"
27 #include "../sched/sched.h"
28 
29 #define MAX_STACK_ENTRIES  100
30 #define STACK_ERR_BUF_SIZE 128
31 
32 struct klp_patch *klp_transition_patch;
33 
34 static int klp_target_state = KLP_UNDEFINED;
35 
36 /*
37  * This work can be performed periodically to finish patching or unpatching any
38  * "straggler" tasks which failed to transition in the first attempt.
39  */
40 static void klp_transition_work_fn(struct work_struct *work)
41 {
42 	mutex_lock(&klp_mutex);
43 
44 	if (klp_transition_patch)
45 		klp_try_complete_transition();
46 
47 	mutex_unlock(&klp_mutex);
48 }
49 static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn);
50 
51 /*
52  * This function is just a stub to implement a hard force
53  * of synchronize_sched(). This requires synchronizing
54  * tasks even in userspace and idle.
55  */
56 static void klp_sync(struct work_struct *work)
57 {
58 }
59 
60 /*
61  * We allow to patch also functions where RCU is not watching,
62  * e.g. before user_exit(). We can not rely on the RCU infrastructure
63  * to do the synchronization. Instead hard force the sched synchronization.
64  *
65  * This approach allows to use RCU functions for manipulating func_stack
66  * safely.
67  */
68 static void klp_synchronize_transition(void)
69 {
70 	schedule_on_each_cpu(klp_sync);
71 }
72 
73 /*
74  * The transition to the target patch state is complete.  Clean up the data
75  * structures.
76  */
77 static void klp_complete_transition(void)
78 {
79 	struct klp_object *obj;
80 	struct klp_func *func;
81 	struct task_struct *g, *task;
82 	unsigned int cpu;
83 	bool immediate_func = false;
84 
85 	if (klp_target_state == KLP_UNPATCHED) {
86 		/*
87 		 * All tasks have transitioned to KLP_UNPATCHED so we can now
88 		 * remove the new functions from the func_stack.
89 		 */
90 		klp_unpatch_objects(klp_transition_patch);
91 
92 		/*
93 		 * Make sure klp_ftrace_handler() can no longer see functions
94 		 * from this patch on the ops->func_stack.  Otherwise, after
95 		 * func->transition gets cleared, the handler may choose a
96 		 * removed function.
97 		 */
98 		klp_synchronize_transition();
99 	}
100 
101 	if (klp_transition_patch->immediate)
102 		goto done;
103 
104 	klp_for_each_object(klp_transition_patch, obj) {
105 		klp_for_each_func(obj, func) {
106 			func->transition = false;
107 			if (func->immediate)
108 				immediate_func = true;
109 		}
110 	}
111 
112 	if (klp_target_state == KLP_UNPATCHED && !immediate_func)
113 		module_put(klp_transition_patch->mod);
114 
115 	/* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */
116 	if (klp_target_state == KLP_PATCHED)
117 		klp_synchronize_transition();
118 
119 	read_lock(&tasklist_lock);
120 	for_each_process_thread(g, task) {
121 		WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
122 		task->patch_state = KLP_UNDEFINED;
123 	}
124 	read_unlock(&tasklist_lock);
125 
126 	for_each_possible_cpu(cpu) {
127 		task = idle_task(cpu);
128 		WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
129 		task->patch_state = KLP_UNDEFINED;
130 	}
131 
132 done:
133 	klp_target_state = KLP_UNDEFINED;
134 	klp_transition_patch = NULL;
135 }
136 
137 /*
138  * This is called in the error path, to cancel a transition before it has
139  * started, i.e. klp_init_transition() has been called but
140  * klp_start_transition() hasn't.  If the transition *has* been started,
141  * klp_reverse_transition() should be used instead.
142  */
143 void klp_cancel_transition(void)
144 {
145 	if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED))
146 		return;
147 
148 	klp_target_state = KLP_UNPATCHED;
149 	klp_complete_transition();
150 }
151 
152 /*
153  * Switch the patched state of the task to the set of functions in the target
154  * patch state.
155  *
156  * NOTE: If task is not 'current', the caller must ensure the task is inactive.
157  * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value.
158  */
159 void klp_update_patch_state(struct task_struct *task)
160 {
161 	/*
162 	 * A variant of synchronize_sched() is used to allow patching functions
163 	 * where RCU is not watching, see klp_synchronize_transition().
164 	 */
165 	preempt_disable_notrace();
166 
167 	/*
168 	 * This test_and_clear_tsk_thread_flag() call also serves as a read
169 	 * barrier (smp_rmb) for two cases:
170 	 *
171 	 * 1) Enforce the order of the TIF_PATCH_PENDING read and the
172 	 *    klp_target_state read.  The corresponding write barrier is in
173 	 *    klp_init_transition().
174 	 *
175 	 * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read
176 	 *    of func->transition, if klp_ftrace_handler() is called later on
177 	 *    the same CPU.  See __klp_disable_patch().
178 	 */
179 	if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING))
180 		task->patch_state = READ_ONCE(klp_target_state);
181 
182 	preempt_enable_notrace();
183 }
184 
185 /*
186  * Determine whether the given stack trace includes any references to a
187  * to-be-patched or to-be-unpatched function.
188  */
189 static int klp_check_stack_func(struct klp_func *func,
190 				struct stack_trace *trace)
191 {
192 	unsigned long func_addr, func_size, address;
193 	struct klp_ops *ops;
194 	int i;
195 
196 	if (func->immediate)
197 		return 0;
198 
199 	for (i = 0; i < trace->nr_entries; i++) {
200 		address = trace->entries[i];
201 
202 		if (klp_target_state == KLP_UNPATCHED) {
203 			 /*
204 			  * Check for the to-be-unpatched function
205 			  * (the func itself).
206 			  */
207 			func_addr = (unsigned long)func->new_func;
208 			func_size = func->new_size;
209 		} else {
210 			/*
211 			 * Check for the to-be-patched function
212 			 * (the previous func).
213 			 */
214 			ops = klp_find_ops(func->old_addr);
215 
216 			if (list_is_singular(&ops->func_stack)) {
217 				/* original function */
218 				func_addr = func->old_addr;
219 				func_size = func->old_size;
220 			} else {
221 				/* previously patched function */
222 				struct klp_func *prev;
223 
224 				prev = list_next_entry(func, stack_node);
225 				func_addr = (unsigned long)prev->new_func;
226 				func_size = prev->new_size;
227 			}
228 		}
229 
230 		if (address >= func_addr && address < func_addr + func_size)
231 			return -EAGAIN;
232 	}
233 
234 	return 0;
235 }
236 
237 /*
238  * Determine whether it's safe to transition the task to the target patch state
239  * by looking for any to-be-patched or to-be-unpatched functions on its stack.
240  */
241 static int klp_check_stack(struct task_struct *task, char *err_buf)
242 {
243 	static unsigned long entries[MAX_STACK_ENTRIES];
244 	struct stack_trace trace;
245 	struct klp_object *obj;
246 	struct klp_func *func;
247 	int ret;
248 
249 	trace.skip = 0;
250 	trace.nr_entries = 0;
251 	trace.max_entries = MAX_STACK_ENTRIES;
252 	trace.entries = entries;
253 	ret = save_stack_trace_tsk_reliable(task, &trace);
254 	WARN_ON_ONCE(ret == -ENOSYS);
255 	if (ret) {
256 		snprintf(err_buf, STACK_ERR_BUF_SIZE,
257 			 "%s: %s:%d has an unreliable stack\n",
258 			 __func__, task->comm, task->pid);
259 		return ret;
260 	}
261 
262 	klp_for_each_object(klp_transition_patch, obj) {
263 		if (!obj->patched)
264 			continue;
265 		klp_for_each_func(obj, func) {
266 			ret = klp_check_stack_func(func, &trace);
267 			if (ret) {
268 				snprintf(err_buf, STACK_ERR_BUF_SIZE,
269 					 "%s: %s:%d is sleeping on function %s\n",
270 					 __func__, task->comm, task->pid,
271 					 func->old_name);
272 				return ret;
273 			}
274 		}
275 	}
276 
277 	return 0;
278 }
279 
280 /*
281  * Try to safely switch a task to the target patch state.  If it's currently
282  * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or
283  * if the stack is unreliable, return false.
284  */
285 static bool klp_try_switch_task(struct task_struct *task)
286 {
287 	struct rq *rq;
288 	struct rq_flags flags;
289 	int ret;
290 	bool success = false;
291 	char err_buf[STACK_ERR_BUF_SIZE];
292 
293 	err_buf[0] = '\0';
294 
295 	/* check if this task has already switched over */
296 	if (task->patch_state == klp_target_state)
297 		return true;
298 
299 	/*
300 	 * For arches which don't have reliable stack traces, we have to rely
301 	 * on other methods (e.g., switching tasks at kernel exit).
302 	 */
303 	if (!klp_have_reliable_stack())
304 		return false;
305 
306 	/*
307 	 * Now try to check the stack for any to-be-patched or to-be-unpatched
308 	 * functions.  If all goes well, switch the task to the target patch
309 	 * state.
310 	 */
311 	rq = task_rq_lock(task, &flags);
312 
313 	if (task_running(rq, task) && task != current) {
314 		snprintf(err_buf, STACK_ERR_BUF_SIZE,
315 			 "%s: %s:%d is running\n", __func__, task->comm,
316 			 task->pid);
317 		goto done;
318 	}
319 
320 	ret = klp_check_stack(task, err_buf);
321 	if (ret)
322 		goto done;
323 
324 	success = true;
325 
326 	clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
327 	task->patch_state = klp_target_state;
328 
329 done:
330 	task_rq_unlock(rq, task, &flags);
331 
332 	/*
333 	 * Due to console deadlock issues, pr_debug() can't be used while
334 	 * holding the task rq lock.  Instead we have to use a temporary buffer
335 	 * and print the debug message after releasing the lock.
336 	 */
337 	if (err_buf[0] != '\0')
338 		pr_debug("%s", err_buf);
339 
340 	return success;
341 
342 }
343 
344 /*
345  * Try to switch all remaining tasks to the target patch state by walking the
346  * stacks of sleeping tasks and looking for any to-be-patched or
347  * to-be-unpatched functions.  If such functions are found, the task can't be
348  * switched yet.
349  *
350  * If any tasks are still stuck in the initial patch state, schedule a retry.
351  */
352 void klp_try_complete_transition(void)
353 {
354 	unsigned int cpu;
355 	struct task_struct *g, *task;
356 	bool complete = true;
357 
358 	WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
359 
360 	/*
361 	 * If the patch can be applied or reverted immediately, skip the
362 	 * per-task transitions.
363 	 */
364 	if (klp_transition_patch->immediate)
365 		goto success;
366 
367 	/*
368 	 * Try to switch the tasks to the target patch state by walking their
369 	 * stacks and looking for any to-be-patched or to-be-unpatched
370 	 * functions.  If such functions are found on a stack, or if the stack
371 	 * is deemed unreliable, the task can't be switched yet.
372 	 *
373 	 * Usually this will transition most (or all) of the tasks on a system
374 	 * unless the patch includes changes to a very common function.
375 	 */
376 	read_lock(&tasklist_lock);
377 	for_each_process_thread(g, task)
378 		if (!klp_try_switch_task(task))
379 			complete = false;
380 	read_unlock(&tasklist_lock);
381 
382 	/*
383 	 * Ditto for the idle "swapper" tasks.
384 	 */
385 	get_online_cpus();
386 	for_each_possible_cpu(cpu) {
387 		task = idle_task(cpu);
388 		if (cpu_online(cpu)) {
389 			if (!klp_try_switch_task(task))
390 				complete = false;
391 		} else if (task->patch_state != klp_target_state) {
392 			/* offline idle tasks can be switched immediately */
393 			clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
394 			task->patch_state = klp_target_state;
395 		}
396 	}
397 	put_online_cpus();
398 
399 	if (!complete) {
400 		/*
401 		 * Some tasks weren't able to be switched over.  Try again
402 		 * later and/or wait for other methods like kernel exit
403 		 * switching.
404 		 */
405 		schedule_delayed_work(&klp_transition_work,
406 				      round_jiffies_relative(HZ));
407 		return;
408 	}
409 
410 success:
411 	pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
412 		  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
413 
414 	/* we're done, now cleanup the data structures */
415 	klp_complete_transition();
416 }
417 
418 /*
419  * Start the transition to the specified target patch state so tasks can begin
420  * switching to it.
421  */
422 void klp_start_transition(void)
423 {
424 	struct task_struct *g, *task;
425 	unsigned int cpu;
426 
427 	WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
428 
429 	pr_notice("'%s': %s...\n", klp_transition_patch->mod->name,
430 		  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
431 
432 	/*
433 	 * If the patch can be applied or reverted immediately, skip the
434 	 * per-task transitions.
435 	 */
436 	if (klp_transition_patch->immediate)
437 		return;
438 
439 	/*
440 	 * Mark all normal tasks as needing a patch state update.  They'll
441 	 * switch either in klp_try_complete_transition() or as they exit the
442 	 * kernel.
443 	 */
444 	read_lock(&tasklist_lock);
445 	for_each_process_thread(g, task)
446 		if (task->patch_state != klp_target_state)
447 			set_tsk_thread_flag(task, TIF_PATCH_PENDING);
448 	read_unlock(&tasklist_lock);
449 
450 	/*
451 	 * Mark all idle tasks as needing a patch state update.  They'll switch
452 	 * either in klp_try_complete_transition() or at the idle loop switch
453 	 * point.
454 	 */
455 	for_each_possible_cpu(cpu) {
456 		task = idle_task(cpu);
457 		if (task->patch_state != klp_target_state)
458 			set_tsk_thread_flag(task, TIF_PATCH_PENDING);
459 	}
460 }
461 
462 /*
463  * Initialize the global target patch state and all tasks to the initial patch
464  * state, and initialize all function transition states to true in preparation
465  * for patching or unpatching.
466  */
467 void klp_init_transition(struct klp_patch *patch, int state)
468 {
469 	struct task_struct *g, *task;
470 	unsigned int cpu;
471 	struct klp_object *obj;
472 	struct klp_func *func;
473 	int initial_state = !state;
474 
475 	WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED);
476 
477 	klp_transition_patch = patch;
478 
479 	/*
480 	 * Set the global target patch state which tasks will switch to.  This
481 	 * has no effect until the TIF_PATCH_PENDING flags get set later.
482 	 */
483 	klp_target_state = state;
484 
485 	/*
486 	 * If the patch can be applied or reverted immediately, skip the
487 	 * per-task transitions.
488 	 */
489 	if (patch->immediate)
490 		return;
491 
492 	/*
493 	 * Initialize all tasks to the initial patch state to prepare them for
494 	 * switching to the target state.
495 	 */
496 	read_lock(&tasklist_lock);
497 	for_each_process_thread(g, task) {
498 		WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
499 		task->patch_state = initial_state;
500 	}
501 	read_unlock(&tasklist_lock);
502 
503 	/*
504 	 * Ditto for the idle "swapper" tasks.
505 	 */
506 	for_each_possible_cpu(cpu) {
507 		task = idle_task(cpu);
508 		WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
509 		task->patch_state = initial_state;
510 	}
511 
512 	/*
513 	 * Enforce the order of the task->patch_state initializations and the
514 	 * func->transition updates to ensure that klp_ftrace_handler() doesn't
515 	 * see a func in transition with a task->patch_state of KLP_UNDEFINED.
516 	 *
517 	 * Also enforce the order of the klp_target_state write and future
518 	 * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't
519 	 * set a task->patch_state to KLP_UNDEFINED.
520 	 */
521 	smp_wmb();
522 
523 	/*
524 	 * Set the func transition states so klp_ftrace_handler() will know to
525 	 * switch to the transition logic.
526 	 *
527 	 * When patching, the funcs aren't yet in the func_stack and will be
528 	 * made visible to the ftrace handler shortly by the calls to
529 	 * klp_patch_object().
530 	 *
531 	 * When unpatching, the funcs are already in the func_stack and so are
532 	 * already visible to the ftrace handler.
533 	 */
534 	klp_for_each_object(patch, obj)
535 		klp_for_each_func(obj, func)
536 			func->transition = true;
537 }
538 
539 /*
540  * This function can be called in the middle of an existing transition to
541  * reverse the direction of the target patch state.  This can be done to
542  * effectively cancel an existing enable or disable operation if there are any
543  * tasks which are stuck in the initial patch state.
544  */
545 void klp_reverse_transition(void)
546 {
547 	unsigned int cpu;
548 	struct task_struct *g, *task;
549 
550 	klp_transition_patch->enabled = !klp_transition_patch->enabled;
551 
552 	klp_target_state = !klp_target_state;
553 
554 	/*
555 	 * Clear all TIF_PATCH_PENDING flags to prevent races caused by
556 	 * klp_update_patch_state() running in parallel with
557 	 * klp_start_transition().
558 	 */
559 	read_lock(&tasklist_lock);
560 	for_each_process_thread(g, task)
561 		clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
562 	read_unlock(&tasklist_lock);
563 
564 	for_each_possible_cpu(cpu)
565 		clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING);
566 
567 	/* Let any remaining calls to klp_update_patch_state() complete */
568 	klp_synchronize_transition();
569 
570 	klp_start_transition();
571 }
572 
573 /* Called from copy_process() during fork */
574 void klp_copy_process(struct task_struct *child)
575 {
576 	child->patch_state = current->patch_state;
577 
578 	/* TIF_PATCH_PENDING gets copied in setup_thread_stack() */
579 }
580