xref: /linux/kernel/kcmp.c (revision 564eb714f5f09ac733c26860d5f0831f213fbdf1)
1 #include <linux/kernel.h>
2 #include <linux/syscalls.h>
3 #include <linux/fdtable.h>
4 #include <linux/string.h>
5 #include <linux/random.h>
6 #include <linux/module.h>
7 #include <linux/ptrace.h>
8 #include <linux/init.h>
9 #include <linux/errno.h>
10 #include <linux/cache.h>
11 #include <linux/bug.h>
12 #include <linux/err.h>
13 #include <linux/kcmp.h>
14 
15 #include <asm/unistd.h>
16 
17 /*
18  * We don't expose the real in-memory order of objects for security reasons.
19  * But still the comparison results should be suitable for sorting. So we
20  * obfuscate kernel pointers values and compare the production instead.
21  *
22  * The obfuscation is done in two steps. First we xor the kernel pointer with
23  * a random value, which puts pointer into a new position in a reordered space.
24  * Secondly we multiply the xor production with a large odd random number to
25  * permute its bits even more (the odd multiplier guarantees that the product
26  * is unique ever after the high bits are truncated, since any odd number is
27  * relative prime to 2^n).
28  *
29  * Note also that the obfuscation itself is invisible to userspace and if needed
30  * it can be changed to an alternate scheme.
31  */
32 static unsigned long cookies[KCMP_TYPES][2] __read_mostly;
33 
34 static long kptr_obfuscate(long v, int type)
35 {
36 	return (v ^ cookies[type][0]) * cookies[type][1];
37 }
38 
39 /*
40  * 0 - equal, i.e. v1 = v2
41  * 1 - less than, i.e. v1 < v2
42  * 2 - greater than, i.e. v1 > v2
43  * 3 - not equal but ordering unavailable (reserved for future)
44  */
45 static int kcmp_ptr(void *v1, void *v2, enum kcmp_type type)
46 {
47 	long ret;
48 
49 	ret = kptr_obfuscate((long)v1, type) - kptr_obfuscate((long)v2, type);
50 
51 	return (ret < 0) | ((ret > 0) << 1);
52 }
53 
54 /* The caller must have pinned the task */
55 static struct file *
56 get_file_raw_ptr(struct task_struct *task, unsigned int idx)
57 {
58 	struct file *file = NULL;
59 
60 	task_lock(task);
61 	rcu_read_lock();
62 
63 	if (task->files)
64 		file = fcheck_files(task->files, idx);
65 
66 	rcu_read_unlock();
67 	task_unlock(task);
68 
69 	return file;
70 }
71 
72 static void kcmp_unlock(struct mutex *m1, struct mutex *m2)
73 {
74 	if (likely(m2 != m1))
75 		mutex_unlock(m2);
76 	mutex_unlock(m1);
77 }
78 
79 static int kcmp_lock(struct mutex *m1, struct mutex *m2)
80 {
81 	int err;
82 
83 	if (m2 > m1)
84 		swap(m1, m2);
85 
86 	err = mutex_lock_killable(m1);
87 	if (!err && likely(m1 != m2)) {
88 		err = mutex_lock_killable_nested(m2, SINGLE_DEPTH_NESTING);
89 		if (err)
90 			mutex_unlock(m1);
91 	}
92 
93 	return err;
94 }
95 
96 SYSCALL_DEFINE5(kcmp, pid_t, pid1, pid_t, pid2, int, type,
97 		unsigned long, idx1, unsigned long, idx2)
98 {
99 	struct task_struct *task1, *task2;
100 	int ret;
101 
102 	rcu_read_lock();
103 
104 	/*
105 	 * Tasks are looked up in caller's PID namespace only.
106 	 */
107 	task1 = find_task_by_vpid(pid1);
108 	task2 = find_task_by_vpid(pid2);
109 	if (!task1 || !task2)
110 		goto err_no_task;
111 
112 	get_task_struct(task1);
113 	get_task_struct(task2);
114 
115 	rcu_read_unlock();
116 
117 	/*
118 	 * One should have enough rights to inspect task details.
119 	 */
120 	ret = kcmp_lock(&task1->signal->cred_guard_mutex,
121 			&task2->signal->cred_guard_mutex);
122 	if (ret)
123 		goto err;
124 	if (!ptrace_may_access(task1, PTRACE_MODE_READ) ||
125 	    !ptrace_may_access(task2, PTRACE_MODE_READ)) {
126 		ret = -EPERM;
127 		goto err_unlock;
128 	}
129 
130 	switch (type) {
131 	case KCMP_FILE: {
132 		struct file *filp1, *filp2;
133 
134 		filp1 = get_file_raw_ptr(task1, idx1);
135 		filp2 = get_file_raw_ptr(task2, idx2);
136 
137 		if (filp1 && filp2)
138 			ret = kcmp_ptr(filp1, filp2, KCMP_FILE);
139 		else
140 			ret = -EBADF;
141 		break;
142 	}
143 	case KCMP_VM:
144 		ret = kcmp_ptr(task1->mm, task2->mm, KCMP_VM);
145 		break;
146 	case KCMP_FILES:
147 		ret = kcmp_ptr(task1->files, task2->files, KCMP_FILES);
148 		break;
149 	case KCMP_FS:
150 		ret = kcmp_ptr(task1->fs, task2->fs, KCMP_FS);
151 		break;
152 	case KCMP_SIGHAND:
153 		ret = kcmp_ptr(task1->sighand, task2->sighand, KCMP_SIGHAND);
154 		break;
155 	case KCMP_IO:
156 		ret = kcmp_ptr(task1->io_context, task2->io_context, KCMP_IO);
157 		break;
158 	case KCMP_SYSVSEM:
159 #ifdef CONFIG_SYSVIPC
160 		ret = kcmp_ptr(task1->sysvsem.undo_list,
161 			       task2->sysvsem.undo_list,
162 			       KCMP_SYSVSEM);
163 #else
164 		ret = -EOPNOTSUPP;
165 #endif
166 		break;
167 	default:
168 		ret = -EINVAL;
169 		break;
170 	}
171 
172 err_unlock:
173 	kcmp_unlock(&task1->signal->cred_guard_mutex,
174 		    &task2->signal->cred_guard_mutex);
175 err:
176 	put_task_struct(task1);
177 	put_task_struct(task2);
178 
179 	return ret;
180 
181 err_no_task:
182 	rcu_read_unlock();
183 	return -ESRCH;
184 }
185 
186 static __init int kcmp_cookies_init(void)
187 {
188 	int i;
189 
190 	get_random_bytes(cookies, sizeof(cookies));
191 
192 	for (i = 0; i < KCMP_TYPES; i++)
193 		cookies[i][1] |= (~(~0UL >>  1) | 1);
194 
195 	return 0;
196 }
197 arch_initcall(kcmp_cookies_init);
198