xref: /linux/kernel/irq/timings.c (revision e5a52fd2b8cdb700b3c07b030e050a49ef3156b9)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2016, Linaro Ltd - Daniel Lezcano <daniel.lezcano@linaro.org>
3 #define pr_fmt(fmt) "irq_timings: " fmt
4 
5 #include <linux/kernel.h>
6 #include <linux/percpu.h>
7 #include <linux/slab.h>
8 #include <linux/static_key.h>
9 #include <linux/init.h>
10 #include <linux/interrupt.h>
11 #include <linux/idr.h>
12 #include <linux/irq.h>
13 #include <linux/math64.h>
14 #include <linux/log2.h>
15 
16 #include <trace/events/irq.h>
17 
18 #include "internals.h"
19 
20 DEFINE_STATIC_KEY_FALSE(irq_timing_enabled);
21 
22 DEFINE_PER_CPU(struct irq_timings, irq_timings);
23 
24 static DEFINE_IDR(irqt_stats);
25 
26 void irq_timings_enable(void)
27 {
28 	static_branch_enable(&irq_timing_enabled);
29 }
30 
31 void irq_timings_disable(void)
32 {
33 	static_branch_disable(&irq_timing_enabled);
34 }
35 
36 /*
37  * The main goal of this algorithm is to predict the next interrupt
38  * occurrence on the current CPU.
39  *
40  * Currently, the interrupt timings are stored in a circular array
41  * buffer every time there is an interrupt, as a tuple: the interrupt
42  * number and the associated timestamp when the event occurred <irq,
43  * timestamp>.
44  *
45  * For every interrupt occurring in a short period of time, we can
46  * measure the elapsed time between the occurrences for the same
47  * interrupt and we end up with a suite of intervals. The experience
48  * showed the interrupts are often coming following a periodic
49  * pattern.
50  *
51  * The objective of the algorithm is to find out this periodic pattern
52  * in a fastest way and use its period to predict the next irq event.
53  *
54  * When the next interrupt event is requested, we are in the situation
55  * where the interrupts are disabled and the circular buffer
56  * containing the timings is filled with the events which happened
57  * after the previous next-interrupt-event request.
58  *
59  * At this point, we read the circular buffer and we fill the irq
60  * related statistics structure. After this step, the circular array
61  * containing the timings is empty because all the values are
62  * dispatched in their corresponding buffers.
63  *
64  * Now for each interrupt, we can predict the next event by using the
65  * suffix array, log interval and exponential moving average
66  *
67  * 1. Suffix array
68  *
69  * Suffix array is an array of all the suffixes of a string. It is
70  * widely used as a data structure for compression, text search, ...
71  * For instance for the word 'banana', the suffixes will be: 'banana'
72  * 'anana' 'nana' 'ana' 'na' 'a'
73  *
74  * Usually, the suffix array is sorted but for our purpose it is
75  * not necessary and won't provide any improvement in the context of
76  * the solved problem where we clearly define the boundaries of the
77  * search by a max period and min period.
78  *
79  * The suffix array will build a suite of intervals of different
80  * length and will look for the repetition of each suite. If the suite
81  * is repeating then we have the period because it is the length of
82  * the suite whatever its position in the buffer.
83  *
84  * 2. Log interval
85  *
86  * We saw the irq timings allow to compute the interval of the
87  * occurrences for a specific interrupt. We can reasonibly assume the
88  * longer is the interval, the higher is the error for the next event
89  * and we can consider storing those interval values into an array
90  * where each slot in the array correspond to an interval at the power
91  * of 2 of the index. For example, index 12 will contain values
92  * between 2^11 and 2^12.
93  *
94  * At the end we have an array of values where at each index defines a
95  * [2^index - 1, 2 ^ index] interval values allowing to store a large
96  * number of values inside a small array.
97  *
98  * For example, if we have the value 1123, then we store it at
99  * ilog2(1123) = 10 index value.
100  *
101  * Storing those value at the specific index is done by computing an
102  * exponential moving average for this specific slot. For instance,
103  * for values 1800, 1123, 1453, ... fall under the same slot (10) and
104  * the exponential moving average is computed every time a new value
105  * is stored at this slot.
106  *
107  * 3. Exponential Moving Average
108  *
109  * The EMA is largely used to track a signal for stocks or as a low
110  * pass filter. The magic of the formula, is it is very simple and the
111  * reactivity of the average can be tuned with the factors called
112  * alpha.
113  *
114  * The higher the alphas are, the faster the average respond to the
115  * signal change. In our case, if a slot in the array is a big
116  * interval, we can have numbers with a big difference between
117  * them. The impact of those differences in the average computation
118  * can be tuned by changing the alpha value.
119  *
120  *
121  *  -- The algorithm --
122  *
123  * We saw the different processing above, now let's see how they are
124  * used together.
125  *
126  * For each interrupt:
127  *	For each interval:
128  *		Compute the index = ilog2(interval)
129  *		Compute a new_ema(buffer[index], interval)
130  *		Store the index in a circular buffer
131  *
132  *	Compute the suffix array of the indexes
133  *
134  *	For each suffix:
135  *		If the suffix is reverse-found 3 times
136  *			Return suffix
137  *
138  *	Return Not found
139  *
140  * However we can not have endless suffix array to be build, it won't
141  * make sense and it will add an extra overhead, so we can restrict
142  * this to a maximum suffix length of 5 and a minimum suffix length of
143  * 2. The experience showed 5 is the majority of the maximum pattern
144  * period found for different devices.
145  *
146  * The result is a pattern finding less than 1us for an interrupt.
147  *
148  * Example based on real values:
149  *
150  * Example 1 : MMC write/read interrupt interval:
151  *
152  *	223947, 1240, 1384, 1386, 1386,
153  *	217416, 1236, 1384, 1386, 1387,
154  *	214719, 1241, 1386, 1387, 1384,
155  *	213696, 1234, 1384, 1386, 1388,
156  *	219904, 1240, 1385, 1389, 1385,
157  *	212240, 1240, 1386, 1386, 1386,
158  *	214415, 1236, 1384, 1386, 1387,
159  *	214276, 1234, 1384, 1388, ?
160  *
161  * For each element, apply ilog2(value)
162  *
163  *	15, 8, 8, 8, 8,
164  *	15, 8, 8, 8, 8,
165  *	15, 8, 8, 8, 8,
166  *	15, 8, 8, 8, 8,
167  *	15, 8, 8, 8, 8,
168  *	15, 8, 8, 8, 8,
169  *	15, 8, 8, 8, 8,
170  *	15, 8, 8, 8, ?
171  *
172  * Max period of 5, we take the last (max_period * 3) 15 elements as
173  * we can be confident if the pattern repeats itself three times it is
174  * a repeating pattern.
175  *
176  *	             8,
177  *	15, 8, 8, 8, 8,
178  *	15, 8, 8, 8, 8,
179  *	15, 8, 8, 8, ?
180  *
181  * Suffixes are:
182  *
183  *  1) 8, 15, 8, 8, 8  <- max period
184  *  2) 8, 15, 8, 8
185  *  3) 8, 15, 8
186  *  4) 8, 15           <- min period
187  *
188  * From there we search the repeating pattern for each suffix.
189  *
190  * buffer: 8, 15, 8, 8, 8, 8, 15, 8, 8, 8, 8, 15, 8, 8, 8
191  *         |   |  |  |  |  |   |  |  |  |  |   |  |  |  |
192  *         8, 15, 8, 8, 8  |   |  |  |  |  |   |  |  |  |
193  *                         8, 15, 8, 8, 8  |   |  |  |  |
194  *                                         8, 15, 8, 8, 8
195  *
196  * When moving the suffix, we found exactly 3 matches.
197  *
198  * The first suffix with period 5 is repeating.
199  *
200  * The next event is (3 * max_period) % suffix_period
201  *
202  * In this example, the result 0, so the next event is suffix[0] => 8
203  *
204  * However, 8 is the index in the array of exponential moving average
205  * which was calculated on the fly when storing the values, so the
206  * interval is ema[8] = 1366
207  *
208  *
209  * Example 2:
210  *
211  *	4, 3, 5, 100,
212  *	3, 3, 5, 117,
213  *	4, 4, 5, 112,
214  *	4, 3, 4, 110,
215  *	3, 5, 3, 117,
216  *	4, 4, 5, 112,
217  *	4, 3, 4, 110,
218  *	3, 4, 5, 112,
219  *	4, 3, 4, 110
220  *
221  * ilog2
222  *
223  *	0, 0, 0, 4,
224  *	0, 0, 0, 4,
225  *	0, 0, 0, 4,
226  *	0, 0, 0, 4,
227  *	0, 0, 0, 4,
228  *	0, 0, 0, 4,
229  *	0, 0, 0, 4,
230  *	0, 0, 0, 4,
231  *	0, 0, 0, 4
232  *
233  * Max period 5:
234  *	   0, 0, 4,
235  *	0, 0, 0, 4,
236  *	0, 0, 0, 4,
237  *	0, 0, 0, 4
238  *
239  * Suffixes:
240  *
241  *  1) 0, 0, 4, 0, 0
242  *  2) 0, 0, 4, 0
243  *  3) 0, 0, 4
244  *  4) 0, 0
245  *
246  * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4
247  *         |  |  |  |  |  |  X
248  *         0, 0, 4, 0, 0, |  X
249  *                        0, 0
250  *
251  * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4
252  *         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
253  *         0, 0, 4, 0, |  |  |  |  |  |  |  |  |  |  |
254  *                     0, 0, 4, 0, |  |  |  |  |  |  |
255  *                                 0, 0, 4, 0, |  |  |
256  *                                             0  0  4
257  *
258  * Pattern is found 3 times, the remaining is 1 which results from
259  * (max_period * 3) % suffix_period. This value is the index in the
260  * suffix arrays. The suffix array for a period 4 has the value 4
261  * at index 1.
262  */
263 #define EMA_ALPHA_VAL		64
264 #define EMA_ALPHA_SHIFT		7
265 
266 #define PREDICTION_PERIOD_MIN	3
267 #define PREDICTION_PERIOD_MAX	5
268 #define PREDICTION_FACTOR	4
269 #define PREDICTION_MAX		10 /* 2 ^ PREDICTION_MAX useconds */
270 #define PREDICTION_BUFFER_SIZE	16 /* slots for EMAs, hardly more than 16 */
271 
272 /*
273  * Number of elements in the circular buffer: If it happens it was
274  * flushed before, then the number of elements could be smaller than
275  * IRQ_TIMINGS_SIZE, so the count is used, otherwise the array size is
276  * used as we wrapped. The index begins from zero when we did not
277  * wrap. That could be done in a nicer way with the proper circular
278  * array structure type but with the cost of extra computation in the
279  * interrupt handler hot path. We choose efficiency.
280  */
281 #define for_each_irqts(i, irqts)					\
282 	for (i = irqts->count < IRQ_TIMINGS_SIZE ?			\
283 		     0 : irqts->count & IRQ_TIMINGS_MASK,		\
284 		     irqts->count = min(IRQ_TIMINGS_SIZE,		\
285 					irqts->count);			\
286 	     irqts->count > 0; irqts->count--,				\
287 		     i = (i + 1) & IRQ_TIMINGS_MASK)
288 
289 struct irqt_stat {
290 	u64	last_ts;
291 	u64	ema_time[PREDICTION_BUFFER_SIZE];
292 	int	timings[IRQ_TIMINGS_SIZE];
293 	int	circ_timings[IRQ_TIMINGS_SIZE];
294 	int	count;
295 };
296 
297 /*
298  * Exponential moving average computation
299  */
300 static u64 irq_timings_ema_new(u64 value, u64 ema_old)
301 {
302 	s64 diff;
303 
304 	if (unlikely(!ema_old))
305 		return value;
306 
307 	diff = (value - ema_old) * EMA_ALPHA_VAL;
308 	/*
309 	 * We can use a s64 type variable to be added with the u64
310 	 * ema_old variable as this one will never have its topmost
311 	 * bit set, it will be always smaller than 2^63 nanosec
312 	 * interrupt interval (292 years).
313 	 */
314 	return ema_old + (diff >> EMA_ALPHA_SHIFT);
315 }
316 
317 static int irq_timings_next_event_index(int *buffer, size_t len, int period_max)
318 {
319 	int period;
320 
321 	/*
322 	 * Move the beginning pointer to the end minus the max period x 3.
323 	 * We are at the point we can begin searching the pattern
324 	 */
325 	buffer = &buffer[len - (period_max * 3)];
326 
327 	/* Adjust the length to the maximum allowed period x 3 */
328 	len = period_max * 3;
329 
330 	/*
331 	 * The buffer contains the suite of intervals, in a ilog2
332 	 * basis, we are looking for a repetition. We point the
333 	 * beginning of the search three times the length of the
334 	 * period beginning at the end of the buffer. We do that for
335 	 * each suffix.
336 	 */
337 	for (period = period_max; period >= PREDICTION_PERIOD_MIN; period--) {
338 
339 		/*
340 		 * The first comparison always succeed because the
341 		 * suffix is deduced from the first n-period bytes of
342 		 * the buffer and we compare the initial suffix with
343 		 * itself, so we can skip the first iteration.
344 		 */
345 		int idx = period;
346 		size_t size = period;
347 
348 		/*
349 		 * We look if the suite with period 'i' repeat
350 		 * itself. If it is truncated at the end, as it
351 		 * repeats we can use the period to find out the next
352 		 * element with the modulo.
353 		 */
354 		while (!memcmp(buffer, &buffer[idx], size * sizeof(int))) {
355 
356 			/*
357 			 * Move the index in a period basis
358 			 */
359 			idx += size;
360 
361 			/*
362 			 * If this condition is reached, all previous
363 			 * memcmp were successful, so the period is
364 			 * found.
365 			 */
366 			if (idx == len)
367 				return buffer[len % period];
368 
369 			/*
370 			 * If the remaining elements to compare are
371 			 * smaller than the period, readjust the size
372 			 * of the comparison for the last iteration.
373 			 */
374 			if (len - idx < period)
375 				size = len - idx;
376 		}
377 	}
378 
379 	return -1;
380 }
381 
382 static u64 __irq_timings_next_event(struct irqt_stat *irqs, int irq, u64 now)
383 {
384 	int index, i, period_max, count, start, min = INT_MAX;
385 
386 	if ((now - irqs->last_ts) >= NSEC_PER_SEC) {
387 		irqs->count = irqs->last_ts = 0;
388 		return U64_MAX;
389 	}
390 
391 	/*
392 	 * As we want to find three times the repetition, we need a
393 	 * number of intervals greater or equal to three times the
394 	 * maximum period, otherwise we truncate the max period.
395 	 */
396 	period_max = irqs->count > (3 * PREDICTION_PERIOD_MAX) ?
397 		PREDICTION_PERIOD_MAX : irqs->count / 3;
398 
399 	/*
400 	 * If we don't have enough irq timings for this prediction,
401 	 * just bail out.
402 	 */
403 	if (period_max <= PREDICTION_PERIOD_MIN)
404 		return U64_MAX;
405 
406 	/*
407 	 * 'count' will depends if the circular buffer wrapped or not
408 	 */
409 	count = irqs->count < IRQ_TIMINGS_SIZE ?
410 		irqs->count : IRQ_TIMINGS_SIZE;
411 
412 	start = irqs->count < IRQ_TIMINGS_SIZE ?
413 		0 : (irqs->count & IRQ_TIMINGS_MASK);
414 
415 	/*
416 	 * Copy the content of the circular buffer into another buffer
417 	 * in order to linearize the buffer instead of dealing with
418 	 * wrapping indexes and shifted array which will be prone to
419 	 * error and extremelly difficult to debug.
420 	 */
421 	for (i = 0; i < count; i++) {
422 		int index = (start + i) & IRQ_TIMINGS_MASK;
423 
424 		irqs->timings[i] = irqs->circ_timings[index];
425 		min = min_t(int, irqs->timings[i], min);
426 	}
427 
428 	index = irq_timings_next_event_index(irqs->timings, count, period_max);
429 	if (index < 0)
430 		return irqs->last_ts + irqs->ema_time[min];
431 
432 	return irqs->last_ts + irqs->ema_time[index];
433 }
434 
435 static __always_inline int irq_timings_interval_index(u64 interval)
436 {
437 	/*
438 	 * The PREDICTION_FACTOR increase the interval size for the
439 	 * array of exponential average.
440 	 */
441 	u64 interval_us = (interval >> 10) / PREDICTION_FACTOR;
442 
443 	return likely(interval_us) ? ilog2(interval_us) : 0;
444 }
445 
446 static __always_inline void __irq_timings_store(int irq, struct irqt_stat *irqs,
447 						u64 interval)
448 {
449 	int index;
450 
451 	/*
452 	 * Get the index in the ema table for this interrupt.
453 	 */
454 	index = irq_timings_interval_index(interval);
455 
456 	/*
457 	 * Store the index as an element of the pattern in another
458 	 * circular array.
459 	 */
460 	irqs->circ_timings[irqs->count & IRQ_TIMINGS_MASK] = index;
461 
462 	irqs->ema_time[index] = irq_timings_ema_new(interval,
463 						    irqs->ema_time[index]);
464 
465 	irqs->count++;
466 }
467 
468 static inline void irq_timings_store(int irq, struct irqt_stat *irqs, u64 ts)
469 {
470 	u64 old_ts = irqs->last_ts;
471 	u64 interval;
472 
473 	/*
474 	 * The timestamps are absolute time values, we need to compute
475 	 * the timing interval between two interrupts.
476 	 */
477 	irqs->last_ts = ts;
478 
479 	/*
480 	 * The interval type is u64 in order to deal with the same
481 	 * type in our computation, that prevent mindfuck issues with
482 	 * overflow, sign and division.
483 	 */
484 	interval = ts - old_ts;
485 
486 	/*
487 	 * The interrupt triggered more than one second apart, that
488 	 * ends the sequence as predictible for our purpose. In this
489 	 * case, assume we have the beginning of a sequence and the
490 	 * timestamp is the first value. As it is impossible to
491 	 * predict anything at this point, return.
492 	 *
493 	 * Note the first timestamp of the sequence will always fall
494 	 * in this test because the old_ts is zero. That is what we
495 	 * want as we need another timestamp to compute an interval.
496 	 */
497 	if (interval >= NSEC_PER_SEC) {
498 		irqs->count = 0;
499 		return;
500 	}
501 
502 	__irq_timings_store(irq, irqs, interval);
503 }
504 
505 /**
506  * irq_timings_next_event - Return when the next event is supposed to arrive
507  *
508  * During the last busy cycle, the number of interrupts is incremented
509  * and stored in the irq_timings structure. This information is
510  * necessary to:
511  *
512  * - know if the index in the table wrapped up:
513  *
514  *      If more than the array size interrupts happened during the
515  *      last busy/idle cycle, the index wrapped up and we have to
516  *      begin with the next element in the array which is the last one
517  *      in the sequence, otherwise it is a the index 0.
518  *
519  * - have an indication of the interrupts activity on this CPU
520  *   (eg. irq/sec)
521  *
522  * The values are 'consumed' after inserting in the statistical model,
523  * thus the count is reinitialized.
524  *
525  * The array of values **must** be browsed in the time direction, the
526  * timestamp must increase between an element and the next one.
527  *
528  * Returns a nanosec time based estimation of the earliest interrupt,
529  * U64_MAX otherwise.
530  */
531 u64 irq_timings_next_event(u64 now)
532 {
533 	struct irq_timings *irqts = this_cpu_ptr(&irq_timings);
534 	struct irqt_stat *irqs;
535 	struct irqt_stat __percpu *s;
536 	u64 ts, next_evt = U64_MAX;
537 	int i, irq = 0;
538 
539 	/*
540 	 * This function must be called with the local irq disabled in
541 	 * order to prevent the timings circular buffer to be updated
542 	 * while we are reading it.
543 	 */
544 	lockdep_assert_irqs_disabled();
545 
546 	if (!irqts->count)
547 		return next_evt;
548 
549 	/*
550 	 * Number of elements in the circular buffer: If it happens it
551 	 * was flushed before, then the number of elements could be
552 	 * smaller than IRQ_TIMINGS_SIZE, so the count is used,
553 	 * otherwise the array size is used as we wrapped. The index
554 	 * begins from zero when we did not wrap. That could be done
555 	 * in a nicer way with the proper circular array structure
556 	 * type but with the cost of extra computation in the
557 	 * interrupt handler hot path. We choose efficiency.
558 	 *
559 	 * Inject measured irq/timestamp to the pattern prediction
560 	 * model while decrementing the counter because we consume the
561 	 * data from our circular buffer.
562 	 */
563 	for_each_irqts(i, irqts) {
564 		irq = irq_timing_decode(irqts->values[i], &ts);
565 		s = idr_find(&irqt_stats, irq);
566 		if (s)
567 			irq_timings_store(irq, this_cpu_ptr(s), ts);
568 	}
569 
570 	/*
571 	 * Look in the list of interrupts' statistics, the earliest
572 	 * next event.
573 	 */
574 	idr_for_each_entry(&irqt_stats, s, i) {
575 
576 		irqs = this_cpu_ptr(s);
577 
578 		ts = __irq_timings_next_event(irqs, i, now);
579 		if (ts <= now)
580 			return now;
581 
582 		if (ts < next_evt)
583 			next_evt = ts;
584 	}
585 
586 	return next_evt;
587 }
588 
589 void irq_timings_free(int irq)
590 {
591 	struct irqt_stat __percpu *s;
592 
593 	s = idr_find(&irqt_stats, irq);
594 	if (s) {
595 		free_percpu(s);
596 		idr_remove(&irqt_stats, irq);
597 	}
598 }
599 
600 int irq_timings_alloc(int irq)
601 {
602 	struct irqt_stat __percpu *s;
603 	int id;
604 
605 	/*
606 	 * Some platforms can have the same private interrupt per cpu,
607 	 * so this function may be be called several times with the
608 	 * same interrupt number. Just bail out in case the per cpu
609 	 * stat structure is already allocated.
610 	 */
611 	s = idr_find(&irqt_stats, irq);
612 	if (s)
613 		return 0;
614 
615 	s = alloc_percpu(*s);
616 	if (!s)
617 		return -ENOMEM;
618 
619 	idr_preload(GFP_KERNEL);
620 	id = idr_alloc(&irqt_stats, s, irq, irq + 1, GFP_NOWAIT);
621 	idr_preload_end();
622 
623 	if (id < 0) {
624 		free_percpu(s);
625 		return id;
626 	}
627 
628 	return 0;
629 }
630 
631 #ifdef CONFIG_TEST_IRQ_TIMINGS
632 struct timings_intervals {
633 	u64 *intervals;
634 	size_t count;
635 };
636 
637 /*
638  * Intervals are given in nanosecond base
639  */
640 static u64 intervals0[] __initdata = {
641 	10000, 50000, 200000, 500000,
642 	10000, 50000, 200000, 500000,
643 	10000, 50000, 200000, 500000,
644 	10000, 50000, 200000, 500000,
645 	10000, 50000, 200000, 500000,
646 	10000, 50000, 200000, 500000,
647 	10000, 50000, 200000, 500000,
648 	10000, 50000, 200000, 500000,
649 	10000, 50000, 200000,
650 };
651 
652 static u64 intervals1[] __initdata = {
653 	223947000, 1240000, 1384000, 1386000, 1386000,
654 	217416000, 1236000, 1384000, 1386000, 1387000,
655 	214719000, 1241000, 1386000, 1387000, 1384000,
656 	213696000, 1234000, 1384000, 1386000, 1388000,
657 	219904000, 1240000, 1385000, 1389000, 1385000,
658 	212240000, 1240000, 1386000, 1386000, 1386000,
659 	214415000, 1236000, 1384000, 1386000, 1387000,
660 	214276000, 1234000,
661 };
662 
663 static u64 intervals2[] __initdata = {
664 	4000, 3000, 5000, 100000,
665 	3000, 3000, 5000, 117000,
666 	4000, 4000, 5000, 112000,
667 	4000, 3000, 4000, 110000,
668 	3000, 5000, 3000, 117000,
669 	4000, 4000, 5000, 112000,
670 	4000, 3000, 4000, 110000,
671 	3000, 4000, 5000, 112000,
672 	4000,
673 };
674 
675 static u64 intervals3[] __initdata = {
676 	1385000, 212240000, 1240000,
677 	1386000, 214415000, 1236000,
678 	1384000, 214276000, 1234000,
679 	1386000, 214415000, 1236000,
680 	1385000, 212240000, 1240000,
681 	1386000, 214415000, 1236000,
682 	1384000, 214276000, 1234000,
683 	1386000, 214415000, 1236000,
684 	1385000, 212240000, 1240000,
685 };
686 
687 static u64 intervals4[] __initdata = {
688 	10000, 50000, 10000, 50000,
689 	10000, 50000, 10000, 50000,
690 	10000, 50000, 10000, 50000,
691 	10000, 50000, 10000, 50000,
692 	10000, 50000, 10000, 50000,
693 	10000, 50000, 10000, 50000,
694 	10000, 50000, 10000, 50000,
695 	10000, 50000, 10000, 50000,
696 	10000,
697 };
698 
699 static struct timings_intervals tis[] __initdata = {
700 	{ intervals0, ARRAY_SIZE(intervals0) },
701 	{ intervals1, ARRAY_SIZE(intervals1) },
702 	{ intervals2, ARRAY_SIZE(intervals2) },
703 	{ intervals3, ARRAY_SIZE(intervals3) },
704 	{ intervals4, ARRAY_SIZE(intervals4) },
705 };
706 
707 static int __init irq_timings_test_next_index(struct timings_intervals *ti)
708 {
709 	int _buffer[IRQ_TIMINGS_SIZE];
710 	int buffer[IRQ_TIMINGS_SIZE];
711 	int index, start, i, count, period_max;
712 
713 	count = ti->count - 1;
714 
715 	period_max = count > (3 * PREDICTION_PERIOD_MAX) ?
716 		PREDICTION_PERIOD_MAX : count / 3;
717 
718 	/*
719 	 * Inject all values except the last one which will be used
720 	 * to compare with the next index result.
721 	 */
722 	pr_debug("index suite: ");
723 
724 	for (i = 0; i < count; i++) {
725 		index = irq_timings_interval_index(ti->intervals[i]);
726 		_buffer[i & IRQ_TIMINGS_MASK] = index;
727 		pr_cont("%d ", index);
728 	}
729 
730 	start = count < IRQ_TIMINGS_SIZE ? 0 :
731 		count & IRQ_TIMINGS_MASK;
732 
733 	count = min_t(int, count, IRQ_TIMINGS_SIZE);
734 
735 	for (i = 0; i < count; i++) {
736 		int index = (start + i) & IRQ_TIMINGS_MASK;
737 		buffer[i] = _buffer[index];
738 	}
739 
740 	index = irq_timings_next_event_index(buffer, count, period_max);
741 	i = irq_timings_interval_index(ti->intervals[ti->count - 1]);
742 
743 	if (index != i) {
744 		pr_err("Expected (%d) and computed (%d) next indexes differ\n",
745 		       i, index);
746 		return -EINVAL;
747 	}
748 
749 	return 0;
750 }
751 
752 static int __init irq_timings_next_index_selftest(void)
753 {
754 	int i, ret;
755 
756 	for (i = 0; i < ARRAY_SIZE(tis); i++) {
757 
758 		pr_info("---> Injecting intervals number #%d (count=%zd)\n",
759 			i, tis[i].count);
760 
761 		ret = irq_timings_test_next_index(&tis[i]);
762 		if (ret)
763 			break;
764 	}
765 
766 	return ret;
767 }
768 
769 static int __init irq_timings_test_irqs(struct timings_intervals *ti)
770 {
771 	struct irqt_stat __percpu *s;
772 	struct irqt_stat *irqs;
773 	int i, index, ret, irq = 0xACE5;
774 
775 	ret = irq_timings_alloc(irq);
776 	if (ret) {
777 		pr_err("Failed to allocate irq timings\n");
778 		return ret;
779 	}
780 
781 	s = idr_find(&irqt_stats, irq);
782 	if (!s) {
783 		ret = -EIDRM;
784 		goto out;
785 	}
786 
787 	irqs = this_cpu_ptr(s);
788 
789 	for (i = 0; i < ti->count; i++) {
790 
791 		index = irq_timings_interval_index(ti->intervals[i]);
792 		pr_debug("%d: interval=%llu ema_index=%d\n",
793 			 i, ti->intervals[i], index);
794 
795 		__irq_timings_store(irq, irqs, ti->intervals[i]);
796 		if (irqs->circ_timings[i & IRQ_TIMINGS_MASK] != index) {
797 			pr_err("Failed to store in the circular buffer\n");
798 			goto out;
799 		}
800 	}
801 
802 	if (irqs->count != ti->count) {
803 		pr_err("Count differs\n");
804 		goto out;
805 	}
806 
807 	ret = 0;
808 out:
809 	irq_timings_free(irq);
810 
811 	return ret;
812 }
813 
814 static int __init irq_timings_irqs_selftest(void)
815 {
816 	int i, ret;
817 
818 	for (i = 0; i < ARRAY_SIZE(tis); i++) {
819 		pr_info("---> Injecting intervals number #%d (count=%zd)\n",
820 			i, tis[i].count);
821 		ret = irq_timings_test_irqs(&tis[i]);
822 		if (ret)
823 			break;
824 	}
825 
826 	return ret;
827 }
828 
829 static int __init irq_timings_test_irqts(struct irq_timings *irqts,
830 					 unsigned count)
831 {
832 	int start = count >= IRQ_TIMINGS_SIZE ? count - IRQ_TIMINGS_SIZE : 0;
833 	int i, irq, oirq = 0xBEEF;
834 	u64 ots = 0xDEAD, ts;
835 
836 	/*
837 	 * Fill the circular buffer by using the dedicated function.
838 	 */
839 	for (i = 0; i < count; i++) {
840 		pr_debug("%d: index=%d, ts=%llX irq=%X\n",
841 			 i, i & IRQ_TIMINGS_MASK, ots + i, oirq + i);
842 
843 		irq_timings_push(ots + i, oirq + i);
844 	}
845 
846 	/*
847 	 * Compute the first elements values after the index wrapped
848 	 * up or not.
849 	 */
850 	ots += start;
851 	oirq += start;
852 
853 	/*
854 	 * Test the circular buffer count is correct.
855 	 */
856 	pr_debug("---> Checking timings array count (%d) is right\n", count);
857 	if (WARN_ON(irqts->count != count))
858 		return -EINVAL;
859 
860 	/*
861 	 * Test the macro allowing to browse all the irqts.
862 	 */
863 	pr_debug("---> Checking the for_each_irqts() macro\n");
864 	for_each_irqts(i, irqts) {
865 
866 		irq = irq_timing_decode(irqts->values[i], &ts);
867 
868 		pr_debug("index=%d, ts=%llX / %llX, irq=%X / %X\n",
869 			 i, ts, ots, irq, oirq);
870 
871 		if (WARN_ON(ts != ots || irq != oirq))
872 			return -EINVAL;
873 
874 		ots++; oirq++;
875 	}
876 
877 	/*
878 	 * The circular buffer should have be flushed when browsed
879 	 * with for_each_irqts
880 	 */
881 	pr_debug("---> Checking timings array is empty after browsing it\n");
882 	if (WARN_ON(irqts->count))
883 		return -EINVAL;
884 
885 	return 0;
886 }
887 
888 static int __init irq_timings_irqts_selftest(void)
889 {
890 	struct irq_timings *irqts = this_cpu_ptr(&irq_timings);
891 	int i, ret;
892 
893 	/*
894 	 * Test the circular buffer with different number of
895 	 * elements. The purpose is to test at the limits (empty, half
896 	 * full, full, wrapped with the cursor at the boundaries,
897 	 * wrapped several times, etc ...
898 	 */
899 	int count[] = { 0,
900 			IRQ_TIMINGS_SIZE >> 1,
901 			IRQ_TIMINGS_SIZE,
902 			IRQ_TIMINGS_SIZE + (IRQ_TIMINGS_SIZE >> 1),
903 			2 * IRQ_TIMINGS_SIZE,
904 			(2 * IRQ_TIMINGS_SIZE) + 3,
905 	};
906 
907 	for (i = 0; i < ARRAY_SIZE(count); i++) {
908 
909 		pr_info("---> Checking the timings with %d/%d values\n",
910 			count[i], IRQ_TIMINGS_SIZE);
911 
912 		ret = irq_timings_test_irqts(irqts, count[i]);
913 		if (ret)
914 			break;
915 	}
916 
917 	return ret;
918 }
919 
920 static int __init irq_timings_selftest(void)
921 {
922 	int ret;
923 
924 	pr_info("------------------- selftest start -----------------\n");
925 
926 	/*
927 	 * At this point, we don't except any subsystem to use the irq
928 	 * timings but us, so it should not be enabled.
929 	 */
930 	if (static_branch_unlikely(&irq_timing_enabled)) {
931 		pr_warn("irq timings already initialized, skipping selftest\n");
932 		return 0;
933 	}
934 
935 	ret = irq_timings_irqts_selftest();
936 	if (ret)
937 		goto out;
938 
939 	ret = irq_timings_irqs_selftest();
940 	if (ret)
941 		goto out;
942 
943 	ret = irq_timings_next_index_selftest();
944 out:
945 	pr_info("---------- selftest end with %s -----------\n",
946 		ret ? "failure" : "success");
947 
948 	return ret;
949 }
950 early_initcall(irq_timings_selftest);
951 #endif
952