xref: /linux/kernel/bpf/helpers.c (revision eeb9f5c2dcec90009d7cf12e780e7f9631993fc5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25 #include <linux/kasan.h>
26 
27 #include "../../lib/kstrtox.h"
28 
29 /* If kernel subsystem is allowing eBPF programs to call this function,
30  * inside its own verifier_ops->get_func_proto() callback it should return
31  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
32  *
33  * Different map implementations will rely on rcu in map methods
34  * lookup/update/delete, therefore eBPF programs must run under rcu lock
35  * if program is allowed to access maps, so check rcu_read_lock_held() or
36  * rcu_read_lock_trace_held() in all three functions.
37  */
38 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
39 {
40 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
41 		     !rcu_read_lock_bh_held());
42 	return (unsigned long) map->ops->map_lookup_elem(map, key);
43 }
44 
45 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
46 	.func		= bpf_map_lookup_elem,
47 	.gpl_only	= false,
48 	.pkt_access	= true,
49 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
50 	.arg1_type	= ARG_CONST_MAP_PTR,
51 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
52 };
53 
54 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
55 	   void *, value, u64, flags)
56 {
57 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
58 		     !rcu_read_lock_bh_held());
59 	return map->ops->map_update_elem(map, key, value, flags);
60 }
61 
62 const struct bpf_func_proto bpf_map_update_elem_proto = {
63 	.func		= bpf_map_update_elem,
64 	.gpl_only	= false,
65 	.pkt_access	= true,
66 	.ret_type	= RET_INTEGER,
67 	.arg1_type	= ARG_CONST_MAP_PTR,
68 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
69 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
70 	.arg4_type	= ARG_ANYTHING,
71 };
72 
73 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
74 {
75 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
76 		     !rcu_read_lock_bh_held());
77 	return map->ops->map_delete_elem(map, key);
78 }
79 
80 const struct bpf_func_proto bpf_map_delete_elem_proto = {
81 	.func		= bpf_map_delete_elem,
82 	.gpl_only	= false,
83 	.pkt_access	= true,
84 	.ret_type	= RET_INTEGER,
85 	.arg1_type	= ARG_CONST_MAP_PTR,
86 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
87 };
88 
89 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
90 {
91 	return map->ops->map_push_elem(map, value, flags);
92 }
93 
94 const struct bpf_func_proto bpf_map_push_elem_proto = {
95 	.func		= bpf_map_push_elem,
96 	.gpl_only	= false,
97 	.pkt_access	= true,
98 	.ret_type	= RET_INTEGER,
99 	.arg1_type	= ARG_CONST_MAP_PTR,
100 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
101 	.arg3_type	= ARG_ANYTHING,
102 };
103 
104 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
105 {
106 	return map->ops->map_pop_elem(map, value);
107 }
108 
109 const struct bpf_func_proto bpf_map_pop_elem_proto = {
110 	.func		= bpf_map_pop_elem,
111 	.gpl_only	= false,
112 	.ret_type	= RET_INTEGER,
113 	.arg1_type	= ARG_CONST_MAP_PTR,
114 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
115 };
116 
117 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
118 {
119 	return map->ops->map_peek_elem(map, value);
120 }
121 
122 const struct bpf_func_proto bpf_map_peek_elem_proto = {
123 	.func		= bpf_map_peek_elem,
124 	.gpl_only	= false,
125 	.ret_type	= RET_INTEGER,
126 	.arg1_type	= ARG_CONST_MAP_PTR,
127 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
128 };
129 
130 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
131 {
132 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
133 	return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
134 }
135 
136 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
137 	.func		= bpf_map_lookup_percpu_elem,
138 	.gpl_only	= false,
139 	.pkt_access	= true,
140 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
141 	.arg1_type	= ARG_CONST_MAP_PTR,
142 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
143 	.arg3_type	= ARG_ANYTHING,
144 };
145 
146 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
147 	.func		= bpf_user_rnd_u32,
148 	.gpl_only	= false,
149 	.ret_type	= RET_INTEGER,
150 };
151 
152 BPF_CALL_0(bpf_get_smp_processor_id)
153 {
154 	return smp_processor_id();
155 }
156 
157 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
158 	.func		= bpf_get_smp_processor_id,
159 	.gpl_only	= false,
160 	.ret_type	= RET_INTEGER,
161 };
162 
163 BPF_CALL_0(bpf_get_numa_node_id)
164 {
165 	return numa_node_id();
166 }
167 
168 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
169 	.func		= bpf_get_numa_node_id,
170 	.gpl_only	= false,
171 	.ret_type	= RET_INTEGER,
172 };
173 
174 BPF_CALL_0(bpf_ktime_get_ns)
175 {
176 	/* NMI safe access to clock monotonic */
177 	return ktime_get_mono_fast_ns();
178 }
179 
180 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
181 	.func		= bpf_ktime_get_ns,
182 	.gpl_only	= false,
183 	.ret_type	= RET_INTEGER,
184 };
185 
186 BPF_CALL_0(bpf_ktime_get_boot_ns)
187 {
188 	/* NMI safe access to clock boottime */
189 	return ktime_get_boot_fast_ns();
190 }
191 
192 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
193 	.func		= bpf_ktime_get_boot_ns,
194 	.gpl_only	= false,
195 	.ret_type	= RET_INTEGER,
196 };
197 
198 BPF_CALL_0(bpf_ktime_get_coarse_ns)
199 {
200 	return ktime_get_coarse_ns();
201 }
202 
203 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
204 	.func		= bpf_ktime_get_coarse_ns,
205 	.gpl_only	= false,
206 	.ret_type	= RET_INTEGER,
207 };
208 
209 BPF_CALL_0(bpf_ktime_get_tai_ns)
210 {
211 	/* NMI safe access to clock tai */
212 	return ktime_get_tai_fast_ns();
213 }
214 
215 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
216 	.func		= bpf_ktime_get_tai_ns,
217 	.gpl_only	= false,
218 	.ret_type	= RET_INTEGER,
219 };
220 
221 BPF_CALL_0(bpf_get_current_pid_tgid)
222 {
223 	struct task_struct *task = current;
224 
225 	if (unlikely(!task))
226 		return -EINVAL;
227 
228 	return (u64) task->tgid << 32 | task->pid;
229 }
230 
231 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
232 	.func		= bpf_get_current_pid_tgid,
233 	.gpl_only	= false,
234 	.ret_type	= RET_INTEGER,
235 };
236 
237 BPF_CALL_0(bpf_get_current_uid_gid)
238 {
239 	struct task_struct *task = current;
240 	kuid_t uid;
241 	kgid_t gid;
242 
243 	if (unlikely(!task))
244 		return -EINVAL;
245 
246 	current_uid_gid(&uid, &gid);
247 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
248 		     from_kuid(&init_user_ns, uid);
249 }
250 
251 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
252 	.func		= bpf_get_current_uid_gid,
253 	.gpl_only	= false,
254 	.ret_type	= RET_INTEGER,
255 };
256 
257 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
258 {
259 	struct task_struct *task = current;
260 
261 	if (unlikely(!task))
262 		goto err_clear;
263 
264 	/* Verifier guarantees that size > 0 */
265 	strscpy_pad(buf, task->comm, size);
266 	return 0;
267 err_clear:
268 	memset(buf, 0, size);
269 	return -EINVAL;
270 }
271 
272 const struct bpf_func_proto bpf_get_current_comm_proto = {
273 	.func		= bpf_get_current_comm,
274 	.gpl_only	= false,
275 	.ret_type	= RET_INTEGER,
276 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
277 	.arg2_type	= ARG_CONST_SIZE,
278 };
279 
280 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
281 
282 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
283 {
284 	arch_spinlock_t *l = (void *)lock;
285 	union {
286 		__u32 val;
287 		arch_spinlock_t lock;
288 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
289 
290 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
291 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
292 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
293 	preempt_disable();
294 	arch_spin_lock(l);
295 }
296 
297 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
298 {
299 	arch_spinlock_t *l = (void *)lock;
300 
301 	arch_spin_unlock(l);
302 	preempt_enable();
303 }
304 
305 #else
306 
307 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
308 {
309 	atomic_t *l = (void *)lock;
310 
311 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
312 	do {
313 		atomic_cond_read_relaxed(l, !VAL);
314 	} while (atomic_xchg(l, 1));
315 }
316 
317 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
318 {
319 	atomic_t *l = (void *)lock;
320 
321 	atomic_set_release(l, 0);
322 }
323 
324 #endif
325 
326 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
327 
328 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
329 {
330 	unsigned long flags;
331 
332 	local_irq_save(flags);
333 	__bpf_spin_lock(lock);
334 	__this_cpu_write(irqsave_flags, flags);
335 }
336 
337 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
338 {
339 	__bpf_spin_lock_irqsave(lock);
340 	return 0;
341 }
342 
343 const struct bpf_func_proto bpf_spin_lock_proto = {
344 	.func		= bpf_spin_lock,
345 	.gpl_only	= false,
346 	.ret_type	= RET_VOID,
347 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
348 	.arg1_btf_id    = BPF_PTR_POISON,
349 };
350 
351 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
352 {
353 	unsigned long flags;
354 
355 	flags = __this_cpu_read(irqsave_flags);
356 	__bpf_spin_unlock(lock);
357 	local_irq_restore(flags);
358 }
359 
360 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
361 {
362 	__bpf_spin_unlock_irqrestore(lock);
363 	return 0;
364 }
365 
366 const struct bpf_func_proto bpf_spin_unlock_proto = {
367 	.func		= bpf_spin_unlock,
368 	.gpl_only	= false,
369 	.ret_type	= RET_VOID,
370 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
371 	.arg1_btf_id    = BPF_PTR_POISON,
372 };
373 
374 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
375 			   bool lock_src)
376 {
377 	struct bpf_spin_lock *lock;
378 
379 	if (lock_src)
380 		lock = src + map->record->spin_lock_off;
381 	else
382 		lock = dst + map->record->spin_lock_off;
383 	preempt_disable();
384 	__bpf_spin_lock_irqsave(lock);
385 	copy_map_value(map, dst, src);
386 	__bpf_spin_unlock_irqrestore(lock);
387 	preempt_enable();
388 }
389 
390 BPF_CALL_0(bpf_jiffies64)
391 {
392 	return get_jiffies_64();
393 }
394 
395 const struct bpf_func_proto bpf_jiffies64_proto = {
396 	.func		= bpf_jiffies64,
397 	.gpl_only	= false,
398 	.ret_type	= RET_INTEGER,
399 };
400 
401 #ifdef CONFIG_CGROUPS
402 BPF_CALL_0(bpf_get_current_cgroup_id)
403 {
404 	struct cgroup *cgrp;
405 	u64 cgrp_id;
406 
407 	rcu_read_lock();
408 	cgrp = task_dfl_cgroup(current);
409 	cgrp_id = cgroup_id(cgrp);
410 	rcu_read_unlock();
411 
412 	return cgrp_id;
413 }
414 
415 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
416 	.func		= bpf_get_current_cgroup_id,
417 	.gpl_only	= false,
418 	.ret_type	= RET_INTEGER,
419 };
420 
421 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
422 {
423 	struct cgroup *cgrp;
424 	struct cgroup *ancestor;
425 	u64 cgrp_id;
426 
427 	rcu_read_lock();
428 	cgrp = task_dfl_cgroup(current);
429 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
430 	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
431 	rcu_read_unlock();
432 
433 	return cgrp_id;
434 }
435 
436 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
437 	.func		= bpf_get_current_ancestor_cgroup_id,
438 	.gpl_only	= false,
439 	.ret_type	= RET_INTEGER,
440 	.arg1_type	= ARG_ANYTHING,
441 };
442 #endif /* CONFIG_CGROUPS */
443 
444 #define BPF_STRTOX_BASE_MASK 0x1F
445 
446 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
447 			  unsigned long long *res, bool *is_negative)
448 {
449 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
450 	const char *cur_buf = buf;
451 	size_t cur_len = buf_len;
452 	unsigned int consumed;
453 	size_t val_len;
454 	char str[64];
455 
456 	if (!buf || !buf_len || !res || !is_negative)
457 		return -EINVAL;
458 
459 	if (base != 0 && base != 8 && base != 10 && base != 16)
460 		return -EINVAL;
461 
462 	if (flags & ~BPF_STRTOX_BASE_MASK)
463 		return -EINVAL;
464 
465 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
466 		++cur_buf;
467 
468 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
469 	if (*is_negative)
470 		++cur_buf;
471 
472 	consumed = cur_buf - buf;
473 	cur_len -= consumed;
474 	if (!cur_len)
475 		return -EINVAL;
476 
477 	cur_len = min(cur_len, sizeof(str) - 1);
478 	memcpy(str, cur_buf, cur_len);
479 	str[cur_len] = '\0';
480 	cur_buf = str;
481 
482 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
483 	val_len = _parse_integer(cur_buf, base, res);
484 
485 	if (val_len & KSTRTOX_OVERFLOW)
486 		return -ERANGE;
487 
488 	if (val_len == 0)
489 		return -EINVAL;
490 
491 	cur_buf += val_len;
492 	consumed += cur_buf - str;
493 
494 	return consumed;
495 }
496 
497 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
498 			 long long *res)
499 {
500 	unsigned long long _res;
501 	bool is_negative;
502 	int err;
503 
504 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
505 	if (err < 0)
506 		return err;
507 	if (is_negative) {
508 		if ((long long)-_res > 0)
509 			return -ERANGE;
510 		*res = -_res;
511 	} else {
512 		if ((long long)_res < 0)
513 			return -ERANGE;
514 		*res = _res;
515 	}
516 	return err;
517 }
518 
519 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
520 	   long *, res)
521 {
522 	long long _res;
523 	int err;
524 
525 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
526 	if (err < 0)
527 		return err;
528 	if (_res != (long)_res)
529 		return -ERANGE;
530 	*res = _res;
531 	return err;
532 }
533 
534 const struct bpf_func_proto bpf_strtol_proto = {
535 	.func		= bpf_strtol,
536 	.gpl_only	= false,
537 	.ret_type	= RET_INTEGER,
538 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
539 	.arg2_type	= ARG_CONST_SIZE,
540 	.arg3_type	= ARG_ANYTHING,
541 	.arg4_type	= ARG_PTR_TO_LONG,
542 };
543 
544 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
545 	   unsigned long *, res)
546 {
547 	unsigned long long _res;
548 	bool is_negative;
549 	int err;
550 
551 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
552 	if (err < 0)
553 		return err;
554 	if (is_negative)
555 		return -EINVAL;
556 	if (_res != (unsigned long)_res)
557 		return -ERANGE;
558 	*res = _res;
559 	return err;
560 }
561 
562 const struct bpf_func_proto bpf_strtoul_proto = {
563 	.func		= bpf_strtoul,
564 	.gpl_only	= false,
565 	.ret_type	= RET_INTEGER,
566 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
567 	.arg2_type	= ARG_CONST_SIZE,
568 	.arg3_type	= ARG_ANYTHING,
569 	.arg4_type	= ARG_PTR_TO_LONG,
570 };
571 
572 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
573 {
574 	return strncmp(s1, s2, s1_sz);
575 }
576 
577 static const struct bpf_func_proto bpf_strncmp_proto = {
578 	.func		= bpf_strncmp,
579 	.gpl_only	= false,
580 	.ret_type	= RET_INTEGER,
581 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
582 	.arg2_type	= ARG_CONST_SIZE,
583 	.arg3_type	= ARG_PTR_TO_CONST_STR,
584 };
585 
586 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
587 	   struct bpf_pidns_info *, nsdata, u32, size)
588 {
589 	struct task_struct *task = current;
590 	struct pid_namespace *pidns;
591 	int err = -EINVAL;
592 
593 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
594 		goto clear;
595 
596 	if (unlikely((u64)(dev_t)dev != dev))
597 		goto clear;
598 
599 	if (unlikely(!task))
600 		goto clear;
601 
602 	pidns = task_active_pid_ns(task);
603 	if (unlikely(!pidns)) {
604 		err = -ENOENT;
605 		goto clear;
606 	}
607 
608 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
609 		goto clear;
610 
611 	nsdata->pid = task_pid_nr_ns(task, pidns);
612 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
613 	return 0;
614 clear:
615 	memset((void *)nsdata, 0, (size_t) size);
616 	return err;
617 }
618 
619 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
620 	.func		= bpf_get_ns_current_pid_tgid,
621 	.gpl_only	= false,
622 	.ret_type	= RET_INTEGER,
623 	.arg1_type	= ARG_ANYTHING,
624 	.arg2_type	= ARG_ANYTHING,
625 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
626 	.arg4_type      = ARG_CONST_SIZE,
627 };
628 
629 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
630 	.func		= bpf_get_raw_cpu_id,
631 	.gpl_only	= false,
632 	.ret_type	= RET_INTEGER,
633 };
634 
635 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
636 	   u64, flags, void *, data, u64, size)
637 {
638 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
639 		return -EINVAL;
640 
641 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
642 }
643 
644 const struct bpf_func_proto bpf_event_output_data_proto =  {
645 	.func		= bpf_event_output_data,
646 	.gpl_only       = true,
647 	.ret_type       = RET_INTEGER,
648 	.arg1_type      = ARG_PTR_TO_CTX,
649 	.arg2_type      = ARG_CONST_MAP_PTR,
650 	.arg3_type      = ARG_ANYTHING,
651 	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
652 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
653 };
654 
655 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
656 	   const void __user *, user_ptr)
657 {
658 	int ret = copy_from_user(dst, user_ptr, size);
659 
660 	if (unlikely(ret)) {
661 		memset(dst, 0, size);
662 		ret = -EFAULT;
663 	}
664 
665 	return ret;
666 }
667 
668 const struct bpf_func_proto bpf_copy_from_user_proto = {
669 	.func		= bpf_copy_from_user,
670 	.gpl_only	= false,
671 	.might_sleep	= true,
672 	.ret_type	= RET_INTEGER,
673 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
674 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
675 	.arg3_type	= ARG_ANYTHING,
676 };
677 
678 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
679 	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
680 {
681 	int ret;
682 
683 	/* flags is not used yet */
684 	if (unlikely(flags))
685 		return -EINVAL;
686 
687 	if (unlikely(!size))
688 		return 0;
689 
690 	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
691 	if (ret == size)
692 		return 0;
693 
694 	memset(dst, 0, size);
695 	/* Return -EFAULT for partial read */
696 	return ret < 0 ? ret : -EFAULT;
697 }
698 
699 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
700 	.func		= bpf_copy_from_user_task,
701 	.gpl_only	= true,
702 	.might_sleep	= true,
703 	.ret_type	= RET_INTEGER,
704 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
705 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
706 	.arg3_type	= ARG_ANYTHING,
707 	.arg4_type	= ARG_PTR_TO_BTF_ID,
708 	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
709 	.arg5_type	= ARG_ANYTHING
710 };
711 
712 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
713 {
714 	if (cpu >= nr_cpu_ids)
715 		return (unsigned long)NULL;
716 
717 	return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
718 }
719 
720 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
721 	.func		= bpf_per_cpu_ptr,
722 	.gpl_only	= false,
723 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
724 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
725 	.arg2_type	= ARG_ANYTHING,
726 };
727 
728 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
729 {
730 	return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
731 }
732 
733 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
734 	.func		= bpf_this_cpu_ptr,
735 	.gpl_only	= false,
736 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
737 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
738 };
739 
740 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
741 		size_t bufsz)
742 {
743 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
744 
745 	buf[0] = 0;
746 
747 	switch (fmt_ptype) {
748 	case 's':
749 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
750 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
751 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
752 		fallthrough;
753 #endif
754 	case 'k':
755 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
756 	case 'u':
757 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
758 	}
759 
760 	return -EINVAL;
761 }
762 
763 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
764  * arguments representation.
765  */
766 #define MAX_BPRINTF_BIN_ARGS	512
767 
768 /* Support executing three nested bprintf helper calls on a given CPU */
769 #define MAX_BPRINTF_NEST_LEVEL	3
770 struct bpf_bprintf_buffers {
771 	char bin_args[MAX_BPRINTF_BIN_ARGS];
772 	char buf[MAX_BPRINTF_BUF];
773 };
774 
775 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
776 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
777 
778 static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
779 {
780 	int nest_level;
781 
782 	preempt_disable();
783 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
784 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
785 		this_cpu_dec(bpf_bprintf_nest_level);
786 		preempt_enable();
787 		return -EBUSY;
788 	}
789 	*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
790 
791 	return 0;
792 }
793 
794 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
795 {
796 	if (!data->bin_args && !data->buf)
797 		return;
798 	if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
799 		return;
800 	this_cpu_dec(bpf_bprintf_nest_level);
801 	preempt_enable();
802 }
803 
804 /*
805  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
806  *
807  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
808  *
809  * This can be used in two ways:
810  * - Format string verification only: when data->get_bin_args is false
811  * - Arguments preparation: in addition to the above verification, it writes in
812  *   data->bin_args a binary representation of arguments usable by bstr_printf
813  *   where pointers from BPF have been sanitized.
814  *
815  * In argument preparation mode, if 0 is returned, safe temporary buffers are
816  * allocated and bpf_bprintf_cleanup should be called to free them after use.
817  */
818 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
819 			u32 num_args, struct bpf_bprintf_data *data)
820 {
821 	bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
822 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
823 	struct bpf_bprintf_buffers *buffers = NULL;
824 	size_t sizeof_cur_arg, sizeof_cur_ip;
825 	int err, i, num_spec = 0;
826 	u64 cur_arg;
827 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
828 
829 	fmt_end = strnchr(fmt, fmt_size, 0);
830 	if (!fmt_end)
831 		return -EINVAL;
832 	fmt_size = fmt_end - fmt;
833 
834 	if (get_buffers && try_get_buffers(&buffers))
835 		return -EBUSY;
836 
837 	if (data->get_bin_args) {
838 		if (num_args)
839 			tmp_buf = buffers->bin_args;
840 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
841 		data->bin_args = (u32 *)tmp_buf;
842 	}
843 
844 	if (data->get_buf)
845 		data->buf = buffers->buf;
846 
847 	for (i = 0; i < fmt_size; i++) {
848 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
849 			err = -EINVAL;
850 			goto out;
851 		}
852 
853 		if (fmt[i] != '%')
854 			continue;
855 
856 		if (fmt[i + 1] == '%') {
857 			i++;
858 			continue;
859 		}
860 
861 		if (num_spec >= num_args) {
862 			err = -EINVAL;
863 			goto out;
864 		}
865 
866 		/* The string is zero-terminated so if fmt[i] != 0, we can
867 		 * always access fmt[i + 1], in the worst case it will be a 0
868 		 */
869 		i++;
870 
871 		/* skip optional "[0 +-][num]" width formatting field */
872 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
873 		       fmt[i] == ' ')
874 			i++;
875 		if (fmt[i] >= '1' && fmt[i] <= '9') {
876 			i++;
877 			while (fmt[i] >= '0' && fmt[i] <= '9')
878 				i++;
879 		}
880 
881 		if (fmt[i] == 'p') {
882 			sizeof_cur_arg = sizeof(long);
883 
884 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
885 			    fmt[i + 2] == 's') {
886 				fmt_ptype = fmt[i + 1];
887 				i += 2;
888 				goto fmt_str;
889 			}
890 
891 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
892 			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
893 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
894 			    fmt[i + 1] == 'S') {
895 				/* just kernel pointers */
896 				if (tmp_buf)
897 					cur_arg = raw_args[num_spec];
898 				i++;
899 				goto nocopy_fmt;
900 			}
901 
902 			if (fmt[i + 1] == 'B') {
903 				if (tmp_buf)  {
904 					err = snprintf(tmp_buf,
905 						       (tmp_buf_end - tmp_buf),
906 						       "%pB",
907 						       (void *)(long)raw_args[num_spec]);
908 					tmp_buf += (err + 1);
909 				}
910 
911 				i++;
912 				num_spec++;
913 				continue;
914 			}
915 
916 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
917 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
918 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
919 				err = -EINVAL;
920 				goto out;
921 			}
922 
923 			i += 2;
924 			if (!tmp_buf)
925 				goto nocopy_fmt;
926 
927 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
928 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
929 				err = -ENOSPC;
930 				goto out;
931 			}
932 
933 			unsafe_ptr = (char *)(long)raw_args[num_spec];
934 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
935 						       sizeof_cur_ip);
936 			if (err < 0)
937 				memset(cur_ip, 0, sizeof_cur_ip);
938 
939 			/* hack: bstr_printf expects IP addresses to be
940 			 * pre-formatted as strings, ironically, the easiest way
941 			 * to do that is to call snprintf.
942 			 */
943 			ip_spec[2] = fmt[i - 1];
944 			ip_spec[3] = fmt[i];
945 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
946 				       ip_spec, &cur_ip);
947 
948 			tmp_buf += err + 1;
949 			num_spec++;
950 
951 			continue;
952 		} else if (fmt[i] == 's') {
953 			fmt_ptype = fmt[i];
954 fmt_str:
955 			if (fmt[i + 1] != 0 &&
956 			    !isspace(fmt[i + 1]) &&
957 			    !ispunct(fmt[i + 1])) {
958 				err = -EINVAL;
959 				goto out;
960 			}
961 
962 			if (!tmp_buf)
963 				goto nocopy_fmt;
964 
965 			if (tmp_buf_end == tmp_buf) {
966 				err = -ENOSPC;
967 				goto out;
968 			}
969 
970 			unsafe_ptr = (char *)(long)raw_args[num_spec];
971 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
972 						    fmt_ptype,
973 						    tmp_buf_end - tmp_buf);
974 			if (err < 0) {
975 				tmp_buf[0] = '\0';
976 				err = 1;
977 			}
978 
979 			tmp_buf += err;
980 			num_spec++;
981 
982 			continue;
983 		} else if (fmt[i] == 'c') {
984 			if (!tmp_buf)
985 				goto nocopy_fmt;
986 
987 			if (tmp_buf_end == tmp_buf) {
988 				err = -ENOSPC;
989 				goto out;
990 			}
991 
992 			*tmp_buf = raw_args[num_spec];
993 			tmp_buf++;
994 			num_spec++;
995 
996 			continue;
997 		}
998 
999 		sizeof_cur_arg = sizeof(int);
1000 
1001 		if (fmt[i] == 'l') {
1002 			sizeof_cur_arg = sizeof(long);
1003 			i++;
1004 		}
1005 		if (fmt[i] == 'l') {
1006 			sizeof_cur_arg = sizeof(long long);
1007 			i++;
1008 		}
1009 
1010 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1011 		    fmt[i] != 'x' && fmt[i] != 'X') {
1012 			err = -EINVAL;
1013 			goto out;
1014 		}
1015 
1016 		if (tmp_buf)
1017 			cur_arg = raw_args[num_spec];
1018 nocopy_fmt:
1019 		if (tmp_buf) {
1020 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1021 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1022 				err = -ENOSPC;
1023 				goto out;
1024 			}
1025 
1026 			if (sizeof_cur_arg == 8) {
1027 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1028 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1029 			} else {
1030 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1031 			}
1032 			tmp_buf += sizeof_cur_arg;
1033 		}
1034 		num_spec++;
1035 	}
1036 
1037 	err = 0;
1038 out:
1039 	if (err)
1040 		bpf_bprintf_cleanup(data);
1041 	return err;
1042 }
1043 
1044 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1045 	   const void *, args, u32, data_len)
1046 {
1047 	struct bpf_bprintf_data data = {
1048 		.get_bin_args	= true,
1049 	};
1050 	int err, num_args;
1051 
1052 	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1053 	    (data_len && !args))
1054 		return -EINVAL;
1055 	num_args = data_len / 8;
1056 
1057 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1058 	 * can safely give an unbounded size.
1059 	 */
1060 	err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1061 	if (err < 0)
1062 		return err;
1063 
1064 	err = bstr_printf(str, str_size, fmt, data.bin_args);
1065 
1066 	bpf_bprintf_cleanup(&data);
1067 
1068 	return err + 1;
1069 }
1070 
1071 const struct bpf_func_proto bpf_snprintf_proto = {
1072 	.func		= bpf_snprintf,
1073 	.gpl_only	= true,
1074 	.ret_type	= RET_INTEGER,
1075 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1076 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1077 	.arg3_type	= ARG_PTR_TO_CONST_STR,
1078 	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1079 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1080 };
1081 
1082 /* BPF map elements can contain 'struct bpf_timer'.
1083  * Such map owns all of its BPF timers.
1084  * 'struct bpf_timer' is allocated as part of map element allocation
1085  * and it's zero initialized.
1086  * That space is used to keep 'struct bpf_timer_kern'.
1087  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1088  * remembers 'struct bpf_map *' pointer it's part of.
1089  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1090  * bpf_timer_start() arms the timer.
1091  * If user space reference to a map goes to zero at this point
1092  * ops->map_release_uref callback is responsible for cancelling the timers,
1093  * freeing their memory, and decrementing prog's refcnts.
1094  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1095  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1096  * freeing the timers when inner map is replaced or deleted by user space.
1097  */
1098 struct bpf_hrtimer {
1099 	struct hrtimer timer;
1100 	struct bpf_map *map;
1101 	struct bpf_prog *prog;
1102 	void __rcu *callback_fn;
1103 	void *value;
1104 };
1105 
1106 /* the actual struct hidden inside uapi struct bpf_timer */
1107 struct bpf_timer_kern {
1108 	struct bpf_hrtimer *timer;
1109 	/* bpf_spin_lock is used here instead of spinlock_t to make
1110 	 * sure that it always fits into space reserved by struct bpf_timer
1111 	 * regardless of LOCKDEP and spinlock debug flags.
1112 	 */
1113 	struct bpf_spin_lock lock;
1114 } __attribute__((aligned(8)));
1115 
1116 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1117 
1118 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1119 {
1120 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1121 	struct bpf_map *map = t->map;
1122 	void *value = t->value;
1123 	bpf_callback_t callback_fn;
1124 	void *key;
1125 	u32 idx;
1126 
1127 	BTF_TYPE_EMIT(struct bpf_timer);
1128 	callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1129 	if (!callback_fn)
1130 		goto out;
1131 
1132 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1133 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1134 	 * Remember the timer this callback is servicing to prevent
1135 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1136 	 * bpf_map_delete_elem() on the same timer.
1137 	 */
1138 	this_cpu_write(hrtimer_running, t);
1139 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1140 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1141 
1142 		/* compute the key */
1143 		idx = ((char *)value - array->value) / array->elem_size;
1144 		key = &idx;
1145 	} else { /* hash or lru */
1146 		key = value - round_up(map->key_size, 8);
1147 	}
1148 
1149 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1150 	/* The verifier checked that return value is zero. */
1151 
1152 	this_cpu_write(hrtimer_running, NULL);
1153 out:
1154 	return HRTIMER_NORESTART;
1155 }
1156 
1157 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1158 	   u64, flags)
1159 {
1160 	clockid_t clockid = flags & (MAX_CLOCKS - 1);
1161 	struct bpf_hrtimer *t;
1162 	int ret = 0;
1163 
1164 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1165 	BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1166 	BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1167 
1168 	if (in_nmi())
1169 		return -EOPNOTSUPP;
1170 
1171 	if (flags >= MAX_CLOCKS ||
1172 	    /* similar to timerfd except _ALARM variants are not supported */
1173 	    (clockid != CLOCK_MONOTONIC &&
1174 	     clockid != CLOCK_REALTIME &&
1175 	     clockid != CLOCK_BOOTTIME))
1176 		return -EINVAL;
1177 	__bpf_spin_lock_irqsave(&timer->lock);
1178 	t = timer->timer;
1179 	if (t) {
1180 		ret = -EBUSY;
1181 		goto out;
1182 	}
1183 	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1184 	t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1185 	if (!t) {
1186 		ret = -ENOMEM;
1187 		goto out;
1188 	}
1189 	t->value = (void *)timer - map->record->timer_off;
1190 	t->map = map;
1191 	t->prog = NULL;
1192 	rcu_assign_pointer(t->callback_fn, NULL);
1193 	hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1194 	t->timer.function = bpf_timer_cb;
1195 	WRITE_ONCE(timer->timer, t);
1196 	/* Guarantee the order between timer->timer and map->usercnt. So
1197 	 * when there are concurrent uref release and bpf timer init, either
1198 	 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1199 	 * timer or atomic64_read() below returns a zero usercnt.
1200 	 */
1201 	smp_mb();
1202 	if (!atomic64_read(&map->usercnt)) {
1203 		/* maps with timers must be either held by user space
1204 		 * or pinned in bpffs.
1205 		 */
1206 		WRITE_ONCE(timer->timer, NULL);
1207 		kfree(t);
1208 		ret = -EPERM;
1209 	}
1210 out:
1211 	__bpf_spin_unlock_irqrestore(&timer->lock);
1212 	return ret;
1213 }
1214 
1215 static const struct bpf_func_proto bpf_timer_init_proto = {
1216 	.func		= bpf_timer_init,
1217 	.gpl_only	= true,
1218 	.ret_type	= RET_INTEGER,
1219 	.arg1_type	= ARG_PTR_TO_TIMER,
1220 	.arg2_type	= ARG_CONST_MAP_PTR,
1221 	.arg3_type	= ARG_ANYTHING,
1222 };
1223 
1224 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1225 	   struct bpf_prog_aux *, aux)
1226 {
1227 	struct bpf_prog *prev, *prog = aux->prog;
1228 	struct bpf_hrtimer *t;
1229 	int ret = 0;
1230 
1231 	if (in_nmi())
1232 		return -EOPNOTSUPP;
1233 	__bpf_spin_lock_irqsave(&timer->lock);
1234 	t = timer->timer;
1235 	if (!t) {
1236 		ret = -EINVAL;
1237 		goto out;
1238 	}
1239 	if (!atomic64_read(&t->map->usercnt)) {
1240 		/* maps with timers must be either held by user space
1241 		 * or pinned in bpffs. Otherwise timer might still be
1242 		 * running even when bpf prog is detached and user space
1243 		 * is gone, since map_release_uref won't ever be called.
1244 		 */
1245 		ret = -EPERM;
1246 		goto out;
1247 	}
1248 	prev = t->prog;
1249 	if (prev != prog) {
1250 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1251 		 * can pick different callback_fn-s within the same prog.
1252 		 */
1253 		prog = bpf_prog_inc_not_zero(prog);
1254 		if (IS_ERR(prog)) {
1255 			ret = PTR_ERR(prog);
1256 			goto out;
1257 		}
1258 		if (prev)
1259 			/* Drop prev prog refcnt when swapping with new prog */
1260 			bpf_prog_put(prev);
1261 		t->prog = prog;
1262 	}
1263 	rcu_assign_pointer(t->callback_fn, callback_fn);
1264 out:
1265 	__bpf_spin_unlock_irqrestore(&timer->lock);
1266 	return ret;
1267 }
1268 
1269 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1270 	.func		= bpf_timer_set_callback,
1271 	.gpl_only	= true,
1272 	.ret_type	= RET_INTEGER,
1273 	.arg1_type	= ARG_PTR_TO_TIMER,
1274 	.arg2_type	= ARG_PTR_TO_FUNC,
1275 };
1276 
1277 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1278 {
1279 	struct bpf_hrtimer *t;
1280 	int ret = 0;
1281 	enum hrtimer_mode mode;
1282 
1283 	if (in_nmi())
1284 		return -EOPNOTSUPP;
1285 	if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1286 		return -EINVAL;
1287 	__bpf_spin_lock_irqsave(&timer->lock);
1288 	t = timer->timer;
1289 	if (!t || !t->prog) {
1290 		ret = -EINVAL;
1291 		goto out;
1292 	}
1293 
1294 	if (flags & BPF_F_TIMER_ABS)
1295 		mode = HRTIMER_MODE_ABS_SOFT;
1296 	else
1297 		mode = HRTIMER_MODE_REL_SOFT;
1298 
1299 	if (flags & BPF_F_TIMER_CPU_PIN)
1300 		mode |= HRTIMER_MODE_PINNED;
1301 
1302 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1303 out:
1304 	__bpf_spin_unlock_irqrestore(&timer->lock);
1305 	return ret;
1306 }
1307 
1308 static const struct bpf_func_proto bpf_timer_start_proto = {
1309 	.func		= bpf_timer_start,
1310 	.gpl_only	= true,
1311 	.ret_type	= RET_INTEGER,
1312 	.arg1_type	= ARG_PTR_TO_TIMER,
1313 	.arg2_type	= ARG_ANYTHING,
1314 	.arg3_type	= ARG_ANYTHING,
1315 };
1316 
1317 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1318 {
1319 	struct bpf_prog *prog = t->prog;
1320 
1321 	if (prog) {
1322 		bpf_prog_put(prog);
1323 		t->prog = NULL;
1324 		rcu_assign_pointer(t->callback_fn, NULL);
1325 	}
1326 }
1327 
1328 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1329 {
1330 	struct bpf_hrtimer *t;
1331 	int ret = 0;
1332 
1333 	if (in_nmi())
1334 		return -EOPNOTSUPP;
1335 	__bpf_spin_lock_irqsave(&timer->lock);
1336 	t = timer->timer;
1337 	if (!t) {
1338 		ret = -EINVAL;
1339 		goto out;
1340 	}
1341 	if (this_cpu_read(hrtimer_running) == t) {
1342 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1343 		 * its own timer the hrtimer_cancel() will deadlock
1344 		 * since it waits for callback_fn to finish
1345 		 */
1346 		ret = -EDEADLK;
1347 		goto out;
1348 	}
1349 	drop_prog_refcnt(t);
1350 out:
1351 	__bpf_spin_unlock_irqrestore(&timer->lock);
1352 	/* Cancel the timer and wait for associated callback to finish
1353 	 * if it was running.
1354 	 */
1355 	ret = ret ?: hrtimer_cancel(&t->timer);
1356 	return ret;
1357 }
1358 
1359 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1360 	.func		= bpf_timer_cancel,
1361 	.gpl_only	= true,
1362 	.ret_type	= RET_INTEGER,
1363 	.arg1_type	= ARG_PTR_TO_TIMER,
1364 };
1365 
1366 /* This function is called by map_delete/update_elem for individual element and
1367  * by ops->map_release_uref when the user space reference to a map reaches zero.
1368  */
1369 void bpf_timer_cancel_and_free(void *val)
1370 {
1371 	struct bpf_timer_kern *timer = val;
1372 	struct bpf_hrtimer *t;
1373 
1374 	/* Performance optimization: read timer->timer without lock first. */
1375 	if (!READ_ONCE(timer->timer))
1376 		return;
1377 
1378 	__bpf_spin_lock_irqsave(&timer->lock);
1379 	/* re-read it under lock */
1380 	t = timer->timer;
1381 	if (!t)
1382 		goto out;
1383 	drop_prog_refcnt(t);
1384 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1385 	 * this timer, since it won't be initialized.
1386 	 */
1387 	WRITE_ONCE(timer->timer, NULL);
1388 out:
1389 	__bpf_spin_unlock_irqrestore(&timer->lock);
1390 	if (!t)
1391 		return;
1392 	/* Cancel the timer and wait for callback to complete if it was running.
1393 	 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1394 	 * right after for both preallocated and non-preallocated maps.
1395 	 * The timer->timer = NULL was already done and no code path can
1396 	 * see address 't' anymore.
1397 	 *
1398 	 * Check that bpf_map_delete/update_elem() wasn't called from timer
1399 	 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1400 	 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1401 	 * return -1). Though callback_fn is still running on this cpu it's
1402 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1403 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1404 	 * since timer->timer = NULL was already done. The timer will be
1405 	 * effectively cancelled because bpf_timer_cb() will return
1406 	 * HRTIMER_NORESTART.
1407 	 */
1408 	if (this_cpu_read(hrtimer_running) != t)
1409 		hrtimer_cancel(&t->timer);
1410 	kfree(t);
1411 }
1412 
1413 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1414 {
1415 	unsigned long *kptr = map_value;
1416 
1417 	return xchg(kptr, (unsigned long)ptr);
1418 }
1419 
1420 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1421  * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1422  * denote type that verifier will determine.
1423  */
1424 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1425 	.func         = bpf_kptr_xchg,
1426 	.gpl_only     = false,
1427 	.ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1428 	.ret_btf_id   = BPF_PTR_POISON,
1429 	.arg1_type    = ARG_PTR_TO_KPTR,
1430 	.arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1431 	.arg2_btf_id  = BPF_PTR_POISON,
1432 };
1433 
1434 /* Since the upper 8 bits of dynptr->size is reserved, the
1435  * maximum supported size is 2^24 - 1.
1436  */
1437 #define DYNPTR_MAX_SIZE	((1UL << 24) - 1)
1438 #define DYNPTR_TYPE_SHIFT	28
1439 #define DYNPTR_SIZE_MASK	0xFFFFFF
1440 #define DYNPTR_RDONLY_BIT	BIT(31)
1441 
1442 static bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1443 {
1444 	return ptr->size & DYNPTR_RDONLY_BIT;
1445 }
1446 
1447 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1448 {
1449 	ptr->size |= DYNPTR_RDONLY_BIT;
1450 }
1451 
1452 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1453 {
1454 	ptr->size |= type << DYNPTR_TYPE_SHIFT;
1455 }
1456 
1457 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1458 {
1459 	return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1460 }
1461 
1462 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1463 {
1464 	return ptr->size & DYNPTR_SIZE_MASK;
1465 }
1466 
1467 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1468 {
1469 	u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1470 
1471 	ptr->size = new_size | metadata;
1472 }
1473 
1474 int bpf_dynptr_check_size(u32 size)
1475 {
1476 	return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1477 }
1478 
1479 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1480 		     enum bpf_dynptr_type type, u32 offset, u32 size)
1481 {
1482 	ptr->data = data;
1483 	ptr->offset = offset;
1484 	ptr->size = size;
1485 	bpf_dynptr_set_type(ptr, type);
1486 }
1487 
1488 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1489 {
1490 	memset(ptr, 0, sizeof(*ptr));
1491 }
1492 
1493 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1494 {
1495 	u32 size = __bpf_dynptr_size(ptr);
1496 
1497 	if (len > size || offset > size - len)
1498 		return -E2BIG;
1499 
1500 	return 0;
1501 }
1502 
1503 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1504 {
1505 	int err;
1506 
1507 	BTF_TYPE_EMIT(struct bpf_dynptr);
1508 
1509 	err = bpf_dynptr_check_size(size);
1510 	if (err)
1511 		goto error;
1512 
1513 	/* flags is currently unsupported */
1514 	if (flags) {
1515 		err = -EINVAL;
1516 		goto error;
1517 	}
1518 
1519 	bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1520 
1521 	return 0;
1522 
1523 error:
1524 	bpf_dynptr_set_null(ptr);
1525 	return err;
1526 }
1527 
1528 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1529 	.func		= bpf_dynptr_from_mem,
1530 	.gpl_only	= false,
1531 	.ret_type	= RET_INTEGER,
1532 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1533 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1534 	.arg3_type	= ARG_ANYTHING,
1535 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1536 };
1537 
1538 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1539 	   u32, offset, u64, flags)
1540 {
1541 	enum bpf_dynptr_type type;
1542 	int err;
1543 
1544 	if (!src->data || flags)
1545 		return -EINVAL;
1546 
1547 	err = bpf_dynptr_check_off_len(src, offset, len);
1548 	if (err)
1549 		return err;
1550 
1551 	type = bpf_dynptr_get_type(src);
1552 
1553 	switch (type) {
1554 	case BPF_DYNPTR_TYPE_LOCAL:
1555 	case BPF_DYNPTR_TYPE_RINGBUF:
1556 		/* Source and destination may possibly overlap, hence use memmove to
1557 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1558 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1559 		 */
1560 		memmove(dst, src->data + src->offset + offset, len);
1561 		return 0;
1562 	case BPF_DYNPTR_TYPE_SKB:
1563 		return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1564 	case BPF_DYNPTR_TYPE_XDP:
1565 		return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1566 	default:
1567 		WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1568 		return -EFAULT;
1569 	}
1570 }
1571 
1572 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1573 	.func		= bpf_dynptr_read,
1574 	.gpl_only	= false,
1575 	.ret_type	= RET_INTEGER,
1576 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1577 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1578 	.arg3_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1579 	.arg4_type	= ARG_ANYTHING,
1580 	.arg5_type	= ARG_ANYTHING,
1581 };
1582 
1583 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1584 	   u32, len, u64, flags)
1585 {
1586 	enum bpf_dynptr_type type;
1587 	int err;
1588 
1589 	if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1590 		return -EINVAL;
1591 
1592 	err = bpf_dynptr_check_off_len(dst, offset, len);
1593 	if (err)
1594 		return err;
1595 
1596 	type = bpf_dynptr_get_type(dst);
1597 
1598 	switch (type) {
1599 	case BPF_DYNPTR_TYPE_LOCAL:
1600 	case BPF_DYNPTR_TYPE_RINGBUF:
1601 		if (flags)
1602 			return -EINVAL;
1603 		/* Source and destination may possibly overlap, hence use memmove to
1604 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1605 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1606 		 */
1607 		memmove(dst->data + dst->offset + offset, src, len);
1608 		return 0;
1609 	case BPF_DYNPTR_TYPE_SKB:
1610 		return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1611 					     flags);
1612 	case BPF_DYNPTR_TYPE_XDP:
1613 		if (flags)
1614 			return -EINVAL;
1615 		return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1616 	default:
1617 		WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1618 		return -EFAULT;
1619 	}
1620 }
1621 
1622 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1623 	.func		= bpf_dynptr_write,
1624 	.gpl_only	= false,
1625 	.ret_type	= RET_INTEGER,
1626 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1627 	.arg2_type	= ARG_ANYTHING,
1628 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1629 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1630 	.arg5_type	= ARG_ANYTHING,
1631 };
1632 
1633 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1634 {
1635 	enum bpf_dynptr_type type;
1636 	int err;
1637 
1638 	if (!ptr->data)
1639 		return 0;
1640 
1641 	err = bpf_dynptr_check_off_len(ptr, offset, len);
1642 	if (err)
1643 		return 0;
1644 
1645 	if (__bpf_dynptr_is_rdonly(ptr))
1646 		return 0;
1647 
1648 	type = bpf_dynptr_get_type(ptr);
1649 
1650 	switch (type) {
1651 	case BPF_DYNPTR_TYPE_LOCAL:
1652 	case BPF_DYNPTR_TYPE_RINGBUF:
1653 		return (unsigned long)(ptr->data + ptr->offset + offset);
1654 	case BPF_DYNPTR_TYPE_SKB:
1655 	case BPF_DYNPTR_TYPE_XDP:
1656 		/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1657 		return 0;
1658 	default:
1659 		WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1660 		return 0;
1661 	}
1662 }
1663 
1664 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1665 	.func		= bpf_dynptr_data,
1666 	.gpl_only	= false,
1667 	.ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1668 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1669 	.arg2_type	= ARG_ANYTHING,
1670 	.arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
1671 };
1672 
1673 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1674 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1675 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1676 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1677 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1678 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1679 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1680 
1681 const struct bpf_func_proto *
1682 bpf_base_func_proto(enum bpf_func_id func_id)
1683 {
1684 	switch (func_id) {
1685 	case BPF_FUNC_map_lookup_elem:
1686 		return &bpf_map_lookup_elem_proto;
1687 	case BPF_FUNC_map_update_elem:
1688 		return &bpf_map_update_elem_proto;
1689 	case BPF_FUNC_map_delete_elem:
1690 		return &bpf_map_delete_elem_proto;
1691 	case BPF_FUNC_map_push_elem:
1692 		return &bpf_map_push_elem_proto;
1693 	case BPF_FUNC_map_pop_elem:
1694 		return &bpf_map_pop_elem_proto;
1695 	case BPF_FUNC_map_peek_elem:
1696 		return &bpf_map_peek_elem_proto;
1697 	case BPF_FUNC_map_lookup_percpu_elem:
1698 		return &bpf_map_lookup_percpu_elem_proto;
1699 	case BPF_FUNC_get_prandom_u32:
1700 		return &bpf_get_prandom_u32_proto;
1701 	case BPF_FUNC_get_smp_processor_id:
1702 		return &bpf_get_raw_smp_processor_id_proto;
1703 	case BPF_FUNC_get_numa_node_id:
1704 		return &bpf_get_numa_node_id_proto;
1705 	case BPF_FUNC_tail_call:
1706 		return &bpf_tail_call_proto;
1707 	case BPF_FUNC_ktime_get_ns:
1708 		return &bpf_ktime_get_ns_proto;
1709 	case BPF_FUNC_ktime_get_boot_ns:
1710 		return &bpf_ktime_get_boot_ns_proto;
1711 	case BPF_FUNC_ktime_get_tai_ns:
1712 		return &bpf_ktime_get_tai_ns_proto;
1713 	case BPF_FUNC_ringbuf_output:
1714 		return &bpf_ringbuf_output_proto;
1715 	case BPF_FUNC_ringbuf_reserve:
1716 		return &bpf_ringbuf_reserve_proto;
1717 	case BPF_FUNC_ringbuf_submit:
1718 		return &bpf_ringbuf_submit_proto;
1719 	case BPF_FUNC_ringbuf_discard:
1720 		return &bpf_ringbuf_discard_proto;
1721 	case BPF_FUNC_ringbuf_query:
1722 		return &bpf_ringbuf_query_proto;
1723 	case BPF_FUNC_strncmp:
1724 		return &bpf_strncmp_proto;
1725 	case BPF_FUNC_strtol:
1726 		return &bpf_strtol_proto;
1727 	case BPF_FUNC_strtoul:
1728 		return &bpf_strtoul_proto;
1729 	default:
1730 		break;
1731 	}
1732 
1733 	if (!bpf_capable())
1734 		return NULL;
1735 
1736 	switch (func_id) {
1737 	case BPF_FUNC_spin_lock:
1738 		return &bpf_spin_lock_proto;
1739 	case BPF_FUNC_spin_unlock:
1740 		return &bpf_spin_unlock_proto;
1741 	case BPF_FUNC_jiffies64:
1742 		return &bpf_jiffies64_proto;
1743 	case BPF_FUNC_per_cpu_ptr:
1744 		return &bpf_per_cpu_ptr_proto;
1745 	case BPF_FUNC_this_cpu_ptr:
1746 		return &bpf_this_cpu_ptr_proto;
1747 	case BPF_FUNC_timer_init:
1748 		return &bpf_timer_init_proto;
1749 	case BPF_FUNC_timer_set_callback:
1750 		return &bpf_timer_set_callback_proto;
1751 	case BPF_FUNC_timer_start:
1752 		return &bpf_timer_start_proto;
1753 	case BPF_FUNC_timer_cancel:
1754 		return &bpf_timer_cancel_proto;
1755 	case BPF_FUNC_kptr_xchg:
1756 		return &bpf_kptr_xchg_proto;
1757 	case BPF_FUNC_for_each_map_elem:
1758 		return &bpf_for_each_map_elem_proto;
1759 	case BPF_FUNC_loop:
1760 		return &bpf_loop_proto;
1761 	case BPF_FUNC_user_ringbuf_drain:
1762 		return &bpf_user_ringbuf_drain_proto;
1763 	case BPF_FUNC_ringbuf_reserve_dynptr:
1764 		return &bpf_ringbuf_reserve_dynptr_proto;
1765 	case BPF_FUNC_ringbuf_submit_dynptr:
1766 		return &bpf_ringbuf_submit_dynptr_proto;
1767 	case BPF_FUNC_ringbuf_discard_dynptr:
1768 		return &bpf_ringbuf_discard_dynptr_proto;
1769 	case BPF_FUNC_dynptr_from_mem:
1770 		return &bpf_dynptr_from_mem_proto;
1771 	case BPF_FUNC_dynptr_read:
1772 		return &bpf_dynptr_read_proto;
1773 	case BPF_FUNC_dynptr_write:
1774 		return &bpf_dynptr_write_proto;
1775 	case BPF_FUNC_dynptr_data:
1776 		return &bpf_dynptr_data_proto;
1777 #ifdef CONFIG_CGROUPS
1778 	case BPF_FUNC_cgrp_storage_get:
1779 		return &bpf_cgrp_storage_get_proto;
1780 	case BPF_FUNC_cgrp_storage_delete:
1781 		return &bpf_cgrp_storage_delete_proto;
1782 	case BPF_FUNC_get_current_cgroup_id:
1783 		return &bpf_get_current_cgroup_id_proto;
1784 	case BPF_FUNC_get_current_ancestor_cgroup_id:
1785 		return &bpf_get_current_ancestor_cgroup_id_proto;
1786 #endif
1787 	default:
1788 		break;
1789 	}
1790 
1791 	if (!perfmon_capable())
1792 		return NULL;
1793 
1794 	switch (func_id) {
1795 	case BPF_FUNC_trace_printk:
1796 		return bpf_get_trace_printk_proto();
1797 	case BPF_FUNC_get_current_task:
1798 		return &bpf_get_current_task_proto;
1799 	case BPF_FUNC_get_current_task_btf:
1800 		return &bpf_get_current_task_btf_proto;
1801 	case BPF_FUNC_probe_read_user:
1802 		return &bpf_probe_read_user_proto;
1803 	case BPF_FUNC_probe_read_kernel:
1804 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1805 		       NULL : &bpf_probe_read_kernel_proto;
1806 	case BPF_FUNC_probe_read_user_str:
1807 		return &bpf_probe_read_user_str_proto;
1808 	case BPF_FUNC_probe_read_kernel_str:
1809 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1810 		       NULL : &bpf_probe_read_kernel_str_proto;
1811 	case BPF_FUNC_snprintf_btf:
1812 		return &bpf_snprintf_btf_proto;
1813 	case BPF_FUNC_snprintf:
1814 		return &bpf_snprintf_proto;
1815 	case BPF_FUNC_task_pt_regs:
1816 		return &bpf_task_pt_regs_proto;
1817 	case BPF_FUNC_trace_vprintk:
1818 		return bpf_get_trace_vprintk_proto();
1819 	default:
1820 		return NULL;
1821 	}
1822 }
1823 
1824 void bpf_list_head_free(const struct btf_field *field, void *list_head,
1825 			struct bpf_spin_lock *spin_lock)
1826 {
1827 	struct list_head *head = list_head, *orig_head = list_head;
1828 
1829 	BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
1830 	BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
1831 
1832 	/* Do the actual list draining outside the lock to not hold the lock for
1833 	 * too long, and also prevent deadlocks if tracing programs end up
1834 	 * executing on entry/exit of functions called inside the critical
1835 	 * section, and end up doing map ops that call bpf_list_head_free for
1836 	 * the same map value again.
1837 	 */
1838 	__bpf_spin_lock_irqsave(spin_lock);
1839 	if (!head->next || list_empty(head))
1840 		goto unlock;
1841 	head = head->next;
1842 unlock:
1843 	INIT_LIST_HEAD(orig_head);
1844 	__bpf_spin_unlock_irqrestore(spin_lock);
1845 
1846 	while (head != orig_head) {
1847 		void *obj = head;
1848 
1849 		obj -= field->graph_root.node_offset;
1850 		head = head->next;
1851 		/* The contained type can also have resources, including a
1852 		 * bpf_list_head which needs to be freed.
1853 		 */
1854 		migrate_disable();
1855 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
1856 		migrate_enable();
1857 	}
1858 }
1859 
1860 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
1861  * 'rb_node *', so field name of rb_node within containing struct is not
1862  * needed.
1863  *
1864  * Since bpf_rb_tree's node type has a corresponding struct btf_field with
1865  * graph_root.node_offset, it's not necessary to know field name
1866  * or type of node struct
1867  */
1868 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
1869 	for (pos = rb_first_postorder(root); \
1870 	    pos && ({ n = rb_next_postorder(pos); 1; }); \
1871 	    pos = n)
1872 
1873 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
1874 		      struct bpf_spin_lock *spin_lock)
1875 {
1876 	struct rb_root_cached orig_root, *root = rb_root;
1877 	struct rb_node *pos, *n;
1878 	void *obj;
1879 
1880 	BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
1881 	BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
1882 
1883 	__bpf_spin_lock_irqsave(spin_lock);
1884 	orig_root = *root;
1885 	*root = RB_ROOT_CACHED;
1886 	__bpf_spin_unlock_irqrestore(spin_lock);
1887 
1888 	bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
1889 		obj = pos;
1890 		obj -= field->graph_root.node_offset;
1891 
1892 
1893 		migrate_disable();
1894 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
1895 		migrate_enable();
1896 	}
1897 }
1898 
1899 __bpf_kfunc_start_defs();
1900 
1901 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
1902 {
1903 	struct btf_struct_meta *meta = meta__ign;
1904 	u64 size = local_type_id__k;
1905 	void *p;
1906 
1907 	p = bpf_mem_alloc(&bpf_global_ma, size);
1908 	if (!p)
1909 		return NULL;
1910 	if (meta)
1911 		bpf_obj_init(meta->record, p);
1912 	return p;
1913 }
1914 
1915 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
1916 {
1917 	u64 size = local_type_id__k;
1918 
1919 	/* The verifier has ensured that meta__ign must be NULL */
1920 	return bpf_mem_alloc(&bpf_global_percpu_ma, size);
1921 }
1922 
1923 /* Must be called under migrate_disable(), as required by bpf_mem_free */
1924 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
1925 {
1926 	struct bpf_mem_alloc *ma;
1927 
1928 	if (rec && rec->refcount_off >= 0 &&
1929 	    !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
1930 		/* Object is refcounted and refcount_dec didn't result in 0
1931 		 * refcount. Return without freeing the object
1932 		 */
1933 		return;
1934 	}
1935 
1936 	if (rec)
1937 		bpf_obj_free_fields(rec, p);
1938 
1939 	if (percpu)
1940 		ma = &bpf_global_percpu_ma;
1941 	else
1942 		ma = &bpf_global_ma;
1943 	bpf_mem_free_rcu(ma, p);
1944 }
1945 
1946 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
1947 {
1948 	struct btf_struct_meta *meta = meta__ign;
1949 	void *p = p__alloc;
1950 
1951 	__bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
1952 }
1953 
1954 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
1955 {
1956 	/* The verifier has ensured that meta__ign must be NULL */
1957 	bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
1958 }
1959 
1960 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
1961 {
1962 	struct btf_struct_meta *meta = meta__ign;
1963 	struct bpf_refcount *ref;
1964 
1965 	/* Could just cast directly to refcount_t *, but need some code using
1966 	 * bpf_refcount type so that it is emitted in vmlinux BTF
1967 	 */
1968 	ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
1969 	if (!refcount_inc_not_zero((refcount_t *)ref))
1970 		return NULL;
1971 
1972 	/* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
1973 	 * in verifier.c
1974 	 */
1975 	return (void *)p__refcounted_kptr;
1976 }
1977 
1978 static int __bpf_list_add(struct bpf_list_node_kern *node,
1979 			  struct bpf_list_head *head,
1980 			  bool tail, struct btf_record *rec, u64 off)
1981 {
1982 	struct list_head *n = &node->list_head, *h = (void *)head;
1983 
1984 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
1985 	 * called on its fields, so init here
1986 	 */
1987 	if (unlikely(!h->next))
1988 		INIT_LIST_HEAD(h);
1989 
1990 	/* node->owner != NULL implies !list_empty(n), no need to separately
1991 	 * check the latter
1992 	 */
1993 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
1994 		/* Only called from BPF prog, no need to migrate_disable */
1995 		__bpf_obj_drop_impl((void *)n - off, rec, false);
1996 		return -EINVAL;
1997 	}
1998 
1999 	tail ? list_add_tail(n, h) : list_add(n, h);
2000 	WRITE_ONCE(node->owner, head);
2001 
2002 	return 0;
2003 }
2004 
2005 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2006 					 struct bpf_list_node *node,
2007 					 void *meta__ign, u64 off)
2008 {
2009 	struct bpf_list_node_kern *n = (void *)node;
2010 	struct btf_struct_meta *meta = meta__ign;
2011 
2012 	return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2013 }
2014 
2015 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2016 					struct bpf_list_node *node,
2017 					void *meta__ign, u64 off)
2018 {
2019 	struct bpf_list_node_kern *n = (void *)node;
2020 	struct btf_struct_meta *meta = meta__ign;
2021 
2022 	return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2023 }
2024 
2025 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2026 {
2027 	struct list_head *n, *h = (void *)head;
2028 	struct bpf_list_node_kern *node;
2029 
2030 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2031 	 * called on its fields, so init here
2032 	 */
2033 	if (unlikely(!h->next))
2034 		INIT_LIST_HEAD(h);
2035 	if (list_empty(h))
2036 		return NULL;
2037 
2038 	n = tail ? h->prev : h->next;
2039 	node = container_of(n, struct bpf_list_node_kern, list_head);
2040 	if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2041 		return NULL;
2042 
2043 	list_del_init(n);
2044 	WRITE_ONCE(node->owner, NULL);
2045 	return (struct bpf_list_node *)n;
2046 }
2047 
2048 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2049 {
2050 	return __bpf_list_del(head, false);
2051 }
2052 
2053 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2054 {
2055 	return __bpf_list_del(head, true);
2056 }
2057 
2058 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2059 						  struct bpf_rb_node *node)
2060 {
2061 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2062 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2063 	struct rb_node *n = &node_internal->rb_node;
2064 
2065 	/* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2066 	 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2067 	 */
2068 	if (READ_ONCE(node_internal->owner) != root)
2069 		return NULL;
2070 
2071 	rb_erase_cached(n, r);
2072 	RB_CLEAR_NODE(n);
2073 	WRITE_ONCE(node_internal->owner, NULL);
2074 	return (struct bpf_rb_node *)n;
2075 }
2076 
2077 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2078  * program
2079  */
2080 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2081 			    struct bpf_rb_node_kern *node,
2082 			    void *less, struct btf_record *rec, u64 off)
2083 {
2084 	struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2085 	struct rb_node *parent = NULL, *n = &node->rb_node;
2086 	bpf_callback_t cb = (bpf_callback_t)less;
2087 	bool leftmost = true;
2088 
2089 	/* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2090 	 * check the latter
2091 	 */
2092 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2093 		/* Only called from BPF prog, no need to migrate_disable */
2094 		__bpf_obj_drop_impl((void *)n - off, rec, false);
2095 		return -EINVAL;
2096 	}
2097 
2098 	while (*link) {
2099 		parent = *link;
2100 		if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2101 			link = &parent->rb_left;
2102 		} else {
2103 			link = &parent->rb_right;
2104 			leftmost = false;
2105 		}
2106 	}
2107 
2108 	rb_link_node(n, parent, link);
2109 	rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2110 	WRITE_ONCE(node->owner, root);
2111 	return 0;
2112 }
2113 
2114 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2115 				    bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2116 				    void *meta__ign, u64 off)
2117 {
2118 	struct btf_struct_meta *meta = meta__ign;
2119 	struct bpf_rb_node_kern *n = (void *)node;
2120 
2121 	return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2122 }
2123 
2124 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2125 {
2126 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2127 
2128 	return (struct bpf_rb_node *)rb_first_cached(r);
2129 }
2130 
2131 /**
2132  * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2133  * kfunc which is not stored in a map as a kptr, must be released by calling
2134  * bpf_task_release().
2135  * @p: The task on which a reference is being acquired.
2136  */
2137 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2138 {
2139 	if (refcount_inc_not_zero(&p->rcu_users))
2140 		return p;
2141 	return NULL;
2142 }
2143 
2144 /**
2145  * bpf_task_release - Release the reference acquired on a task.
2146  * @p: The task on which a reference is being released.
2147  */
2148 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2149 {
2150 	put_task_struct_rcu_user(p);
2151 }
2152 
2153 __bpf_kfunc void bpf_task_release_dtor(void *p)
2154 {
2155 	put_task_struct_rcu_user(p);
2156 }
2157 CFI_NOSEAL(bpf_task_release_dtor);
2158 
2159 #ifdef CONFIG_CGROUPS
2160 /**
2161  * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2162  * this kfunc which is not stored in a map as a kptr, must be released by
2163  * calling bpf_cgroup_release().
2164  * @cgrp: The cgroup on which a reference is being acquired.
2165  */
2166 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2167 {
2168 	return cgroup_tryget(cgrp) ? cgrp : NULL;
2169 }
2170 
2171 /**
2172  * bpf_cgroup_release - Release the reference acquired on a cgroup.
2173  * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2174  * not be freed until the current grace period has ended, even if its refcount
2175  * drops to 0.
2176  * @cgrp: The cgroup on which a reference is being released.
2177  */
2178 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2179 {
2180 	cgroup_put(cgrp);
2181 }
2182 
2183 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
2184 {
2185 	cgroup_put(cgrp);
2186 }
2187 CFI_NOSEAL(bpf_cgroup_release_dtor);
2188 
2189 /**
2190  * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2191  * array. A cgroup returned by this kfunc which is not subsequently stored in a
2192  * map, must be released by calling bpf_cgroup_release().
2193  * @cgrp: The cgroup for which we're performing a lookup.
2194  * @level: The level of ancestor to look up.
2195  */
2196 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2197 {
2198 	struct cgroup *ancestor;
2199 
2200 	if (level > cgrp->level || level < 0)
2201 		return NULL;
2202 
2203 	/* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2204 	ancestor = cgrp->ancestors[level];
2205 	if (!cgroup_tryget(ancestor))
2206 		return NULL;
2207 	return ancestor;
2208 }
2209 
2210 /**
2211  * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2212  * kfunc which is not subsequently stored in a map, must be released by calling
2213  * bpf_cgroup_release().
2214  * @cgid: cgroup id.
2215  */
2216 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2217 {
2218 	struct cgroup *cgrp;
2219 
2220 	cgrp = cgroup_get_from_id(cgid);
2221 	if (IS_ERR(cgrp))
2222 		return NULL;
2223 	return cgrp;
2224 }
2225 
2226 /**
2227  * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2228  * task's membership of cgroup ancestry.
2229  * @task: the task to be tested
2230  * @ancestor: possible ancestor of @task's cgroup
2231  *
2232  * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2233  * It follows all the same rules as cgroup_is_descendant, and only applies
2234  * to the default hierarchy.
2235  */
2236 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2237 				       struct cgroup *ancestor)
2238 {
2239 	long ret;
2240 
2241 	rcu_read_lock();
2242 	ret = task_under_cgroup_hierarchy(task, ancestor);
2243 	rcu_read_unlock();
2244 	return ret;
2245 }
2246 
2247 /**
2248  * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
2249  * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
2250  * hierarchy ID.
2251  * @task: The target task
2252  * @hierarchy_id: The ID of a cgroup1 hierarchy
2253  *
2254  * On success, the cgroup is returen. On failure, NULL is returned.
2255  */
2256 __bpf_kfunc struct cgroup *
2257 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
2258 {
2259 	struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
2260 
2261 	if (IS_ERR(cgrp))
2262 		return NULL;
2263 	return cgrp;
2264 }
2265 #endif /* CONFIG_CGROUPS */
2266 
2267 /**
2268  * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2269  * in the root pid namespace idr. If a task is returned, it must either be
2270  * stored in a map, or released with bpf_task_release().
2271  * @pid: The pid of the task being looked up.
2272  */
2273 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2274 {
2275 	struct task_struct *p;
2276 
2277 	rcu_read_lock();
2278 	p = find_task_by_pid_ns(pid, &init_pid_ns);
2279 	if (p)
2280 		p = bpf_task_acquire(p);
2281 	rcu_read_unlock();
2282 
2283 	return p;
2284 }
2285 
2286 /**
2287  * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2288  * @ptr: The dynptr whose data slice to retrieve
2289  * @offset: Offset into the dynptr
2290  * @buffer__opt: User-provided buffer to copy contents into.  May be NULL
2291  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2292  *               length of the requested slice. This must be a constant.
2293  *
2294  * For non-skb and non-xdp type dynptrs, there is no difference between
2295  * bpf_dynptr_slice and bpf_dynptr_data.
2296  *
2297  *  If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2298  *
2299  * If the intention is to write to the data slice, please use
2300  * bpf_dynptr_slice_rdwr.
2301  *
2302  * The user must check that the returned pointer is not null before using it.
2303  *
2304  * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2305  * does not change the underlying packet data pointers, so a call to
2306  * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2307  * the bpf program.
2308  *
2309  * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2310  * data slice (can be either direct pointer to the data or a pointer to the user
2311  * provided buffer, with its contents containing the data, if unable to obtain
2312  * direct pointer)
2313  */
2314 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset,
2315 				   void *buffer__opt, u32 buffer__szk)
2316 {
2317 	enum bpf_dynptr_type type;
2318 	u32 len = buffer__szk;
2319 	int err;
2320 
2321 	if (!ptr->data)
2322 		return NULL;
2323 
2324 	err = bpf_dynptr_check_off_len(ptr, offset, len);
2325 	if (err)
2326 		return NULL;
2327 
2328 	type = bpf_dynptr_get_type(ptr);
2329 
2330 	switch (type) {
2331 	case BPF_DYNPTR_TYPE_LOCAL:
2332 	case BPF_DYNPTR_TYPE_RINGBUF:
2333 		return ptr->data + ptr->offset + offset;
2334 	case BPF_DYNPTR_TYPE_SKB:
2335 		if (buffer__opt)
2336 			return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2337 		else
2338 			return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2339 	case BPF_DYNPTR_TYPE_XDP:
2340 	{
2341 		void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2342 		if (!IS_ERR_OR_NULL(xdp_ptr))
2343 			return xdp_ptr;
2344 
2345 		if (!buffer__opt)
2346 			return NULL;
2347 		bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2348 		return buffer__opt;
2349 	}
2350 	default:
2351 		WARN_ONCE(true, "unknown dynptr type %d\n", type);
2352 		return NULL;
2353 	}
2354 }
2355 
2356 /**
2357  * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2358  * @ptr: The dynptr whose data slice to retrieve
2359  * @offset: Offset into the dynptr
2360  * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2361  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2362  *               length of the requested slice. This must be a constant.
2363  *
2364  * For non-skb and non-xdp type dynptrs, there is no difference between
2365  * bpf_dynptr_slice and bpf_dynptr_data.
2366  *
2367  * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2368  *
2369  * The returned pointer is writable and may point to either directly the dynptr
2370  * data at the requested offset or to the buffer if unable to obtain a direct
2371  * data pointer to (example: the requested slice is to the paged area of an skb
2372  * packet). In the case where the returned pointer is to the buffer, the user
2373  * is responsible for persisting writes through calling bpf_dynptr_write(). This
2374  * usually looks something like this pattern:
2375  *
2376  * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2377  * if (!eth)
2378  *	return TC_ACT_SHOT;
2379  *
2380  * // mutate eth header //
2381  *
2382  * if (eth == buffer)
2383  *	bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2384  *
2385  * Please note that, as in the example above, the user must check that the
2386  * returned pointer is not null before using it.
2387  *
2388  * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2389  * does not change the underlying packet data pointers, so a call to
2390  * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2391  * the bpf program.
2392  *
2393  * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2394  * data slice (can be either direct pointer to the data or a pointer to the user
2395  * provided buffer, with its contents containing the data, if unable to obtain
2396  * direct pointer)
2397  */
2398 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset,
2399 					void *buffer__opt, u32 buffer__szk)
2400 {
2401 	if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2402 		return NULL;
2403 
2404 	/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2405 	 *
2406 	 * For skb-type dynptrs, it is safe to write into the returned pointer
2407 	 * if the bpf program allows skb data writes. There are two possiblities
2408 	 * that may occur when calling bpf_dynptr_slice_rdwr:
2409 	 *
2410 	 * 1) The requested slice is in the head of the skb. In this case, the
2411 	 * returned pointer is directly to skb data, and if the skb is cloned, the
2412 	 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2413 	 * The pointer can be directly written into.
2414 	 *
2415 	 * 2) Some portion of the requested slice is in the paged buffer area.
2416 	 * In this case, the requested data will be copied out into the buffer
2417 	 * and the returned pointer will be a pointer to the buffer. The skb
2418 	 * will not be pulled. To persist the write, the user will need to call
2419 	 * bpf_dynptr_write(), which will pull the skb and commit the write.
2420 	 *
2421 	 * Similarly for xdp programs, if the requested slice is not across xdp
2422 	 * fragments, then a direct pointer will be returned, otherwise the data
2423 	 * will be copied out into the buffer and the user will need to call
2424 	 * bpf_dynptr_write() to commit changes.
2425 	 */
2426 	return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk);
2427 }
2428 
2429 __bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end)
2430 {
2431 	u32 size;
2432 
2433 	if (!ptr->data || start > end)
2434 		return -EINVAL;
2435 
2436 	size = __bpf_dynptr_size(ptr);
2437 
2438 	if (start > size || end > size)
2439 		return -ERANGE;
2440 
2441 	ptr->offset += start;
2442 	bpf_dynptr_set_size(ptr, end - start);
2443 
2444 	return 0;
2445 }
2446 
2447 __bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr)
2448 {
2449 	return !ptr->data;
2450 }
2451 
2452 __bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
2453 {
2454 	if (!ptr->data)
2455 		return false;
2456 
2457 	return __bpf_dynptr_is_rdonly(ptr);
2458 }
2459 
2460 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
2461 {
2462 	if (!ptr->data)
2463 		return -EINVAL;
2464 
2465 	return __bpf_dynptr_size(ptr);
2466 }
2467 
2468 __bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr,
2469 				 struct bpf_dynptr_kern *clone__uninit)
2470 {
2471 	if (!ptr->data) {
2472 		bpf_dynptr_set_null(clone__uninit);
2473 		return -EINVAL;
2474 	}
2475 
2476 	*clone__uninit = *ptr;
2477 
2478 	return 0;
2479 }
2480 
2481 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2482 {
2483 	return obj;
2484 }
2485 
2486 __bpf_kfunc void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k)
2487 {
2488 	return obj__ign;
2489 }
2490 
2491 __bpf_kfunc void bpf_rcu_read_lock(void)
2492 {
2493 	rcu_read_lock();
2494 }
2495 
2496 __bpf_kfunc void bpf_rcu_read_unlock(void)
2497 {
2498 	rcu_read_unlock();
2499 }
2500 
2501 struct bpf_throw_ctx {
2502 	struct bpf_prog_aux *aux;
2503 	u64 sp;
2504 	u64 bp;
2505 	int cnt;
2506 };
2507 
2508 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
2509 {
2510 	struct bpf_throw_ctx *ctx = cookie;
2511 	struct bpf_prog *prog;
2512 
2513 	if (!is_bpf_text_address(ip))
2514 		return !ctx->cnt;
2515 	prog = bpf_prog_ksym_find(ip);
2516 	ctx->cnt++;
2517 	if (bpf_is_subprog(prog))
2518 		return true;
2519 	ctx->aux = prog->aux;
2520 	ctx->sp = sp;
2521 	ctx->bp = bp;
2522 	return false;
2523 }
2524 
2525 __bpf_kfunc void bpf_throw(u64 cookie)
2526 {
2527 	struct bpf_throw_ctx ctx = {};
2528 
2529 	arch_bpf_stack_walk(bpf_stack_walker, &ctx);
2530 	WARN_ON_ONCE(!ctx.aux);
2531 	if (ctx.aux)
2532 		WARN_ON_ONCE(!ctx.aux->exception_boundary);
2533 	WARN_ON_ONCE(!ctx.bp);
2534 	WARN_ON_ONCE(!ctx.cnt);
2535 	/* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
2536 	 * deeper stack depths than ctx.sp as we do not return from bpf_throw,
2537 	 * which skips compiler generated instrumentation to do the same.
2538 	 */
2539 	kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
2540 	ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
2541 	WARN(1, "A call to BPF exception callback should never return\n");
2542 }
2543 
2544 __bpf_kfunc_end_defs();
2545 
2546 BTF_SET8_START(generic_btf_ids)
2547 #ifdef CONFIG_KEXEC_CORE
2548 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
2549 #endif
2550 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
2551 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
2552 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
2553 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
2554 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
2555 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
2556 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
2557 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
2558 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
2559 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2560 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
2561 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
2562 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
2563 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
2564 
2565 #ifdef CONFIG_CGROUPS
2566 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2567 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
2568 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2569 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
2570 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
2571 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2572 #endif
2573 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
2574 BTF_ID_FLAGS(func, bpf_throw)
2575 BTF_SET8_END(generic_btf_ids)
2576 
2577 static const struct btf_kfunc_id_set generic_kfunc_set = {
2578 	.owner = THIS_MODULE,
2579 	.set   = &generic_btf_ids,
2580 };
2581 
2582 
2583 BTF_ID_LIST(generic_dtor_ids)
2584 BTF_ID(struct, task_struct)
2585 BTF_ID(func, bpf_task_release_dtor)
2586 #ifdef CONFIG_CGROUPS
2587 BTF_ID(struct, cgroup)
2588 BTF_ID(func, bpf_cgroup_release_dtor)
2589 #endif
2590 
2591 BTF_SET8_START(common_btf_ids)
2592 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
2593 BTF_ID_FLAGS(func, bpf_rdonly_cast)
2594 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
2595 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
2596 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
2597 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
2598 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
2599 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
2600 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
2601 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
2602 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
2603 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
2604 #ifdef CONFIG_CGROUPS
2605 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
2606 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
2607 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
2608 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
2609 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
2610 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
2611 #endif
2612 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
2613 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
2614 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
2615 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
2616 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
2617 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
2618 BTF_ID_FLAGS(func, bpf_dynptr_size)
2619 BTF_ID_FLAGS(func, bpf_dynptr_clone)
2620 BTF_SET8_END(common_btf_ids)
2621 
2622 static const struct btf_kfunc_id_set common_kfunc_set = {
2623 	.owner = THIS_MODULE,
2624 	.set   = &common_btf_ids,
2625 };
2626 
2627 static int __init kfunc_init(void)
2628 {
2629 	int ret;
2630 	const struct btf_id_dtor_kfunc generic_dtors[] = {
2631 		{
2632 			.btf_id       = generic_dtor_ids[0],
2633 			.kfunc_btf_id = generic_dtor_ids[1]
2634 		},
2635 #ifdef CONFIG_CGROUPS
2636 		{
2637 			.btf_id       = generic_dtor_ids[2],
2638 			.kfunc_btf_id = generic_dtor_ids[3]
2639 		},
2640 #endif
2641 	};
2642 
2643 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
2644 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
2645 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
2646 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
2647 	ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
2648 						  ARRAY_SIZE(generic_dtors),
2649 						  THIS_MODULE);
2650 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
2651 }
2652 
2653 late_initcall(kfunc_init);
2654 
2655 /* Get a pointer to dynptr data up to len bytes for read only access. If
2656  * the dynptr doesn't have continuous data up to len bytes, return NULL.
2657  */
2658 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len)
2659 {
2660 	return bpf_dynptr_slice(ptr, 0, NULL, len);
2661 }
2662 
2663 /* Get a pointer to dynptr data up to len bytes for read write access. If
2664  * the dynptr doesn't have continuous data up to len bytes, or the dynptr
2665  * is read only, return NULL.
2666  */
2667 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len)
2668 {
2669 	if (__bpf_dynptr_is_rdonly(ptr))
2670 		return NULL;
2671 	return (void *)__bpf_dynptr_data(ptr, len);
2672 }
2673