xref: /linux/kernel/bpf/devmap.c (revision 3503d56cc7233ced602e38a4c13caa64f00ab2aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3  */
4 
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7  * spent some effort to ensure the datapath with redirect maps does not use
8  * any locking. This is a quick note on the details.
9  *
10  * We have three possible paths to get into the devmap control plane bpf
11  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12  * will invoke an update, delete, or lookup operation. To ensure updates and
13  * deletes appear atomic from the datapath side xchg() is used to modify the
14  * netdev_map array. Then because the datapath does a lookup into the netdev_map
15  * array (read-only) from an RCU critical section we use call_rcu() to wait for
16  * an rcu grace period before free'ing the old data structures. This ensures the
17  * datapath always has a valid copy. However, the datapath does a "flush"
18  * operation that pushes any pending packets in the driver outside the RCU
19  * critical section. Each bpf_dtab_netdev tracks these pending operations using
20  * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed  until
21  * this list is empty, indicating outstanding flush operations have completed.
22  *
23  * BPF syscalls may race with BPF program calls on any of the update, delete
24  * or lookup operations. As noted above the xchg() operation also keep the
25  * netdev_map consistent in this case. From the devmap side BPF programs
26  * calling into these operations are the same as multiple user space threads
27  * making system calls.
28  *
29  * Finally, any of the above may race with a netdev_unregister notifier. The
30  * unregister notifier must search for net devices in the map structure that
31  * contain a reference to the net device and remove them. This is a two step
32  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33  * check to see if the ifindex is the same as the net_device being removed.
34  * When removing the dev a cmpxchg() is used to ensure the correct dev is
35  * removed, in the case of a concurrent update or delete operation it is
36  * possible that the initially referenced dev is no longer in the map. As the
37  * notifier hook walks the map we know that new dev references can not be
38  * added by the user because core infrastructure ensures dev_get_by_index()
39  * calls will fail at this point.
40  *
41  * The devmap_hash type is a map type which interprets keys as ifindexes and
42  * indexes these using a hashmap. This allows maps that use ifindex as key to be
43  * densely packed instead of having holes in the lookup array for unused
44  * ifindexes. The setup and packet enqueue/send code is shared between the two
45  * types of devmap; only the lookup and insertion is different.
46  */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51 
52 #define DEV_CREATE_FLAG_MASK \
53 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
54 
55 struct xdp_dev_bulk_queue {
56 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
57 	struct list_head flush_node;
58 	struct net_device *dev;
59 	struct net_device *dev_rx;
60 	unsigned int count;
61 };
62 
63 struct bpf_dtab_netdev {
64 	struct net_device *dev; /* must be first member, due to tracepoint */
65 	struct hlist_node index_hlist;
66 	struct bpf_dtab *dtab;
67 	struct bpf_prog *xdp_prog;
68 	struct rcu_head rcu;
69 	unsigned int idx;
70 	struct bpf_devmap_val val;
71 };
72 
73 struct bpf_dtab {
74 	struct bpf_map map;
75 	struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
76 	struct list_head list;
77 
78 	/* these are only used for DEVMAP_HASH type maps */
79 	struct hlist_head *dev_index_head;
80 	spinlock_t index_lock;
81 	unsigned int items;
82 	u32 n_buckets;
83 };
84 
85 static DEFINE_PER_CPU(struct list_head, dev_flush_list);
86 static DEFINE_SPINLOCK(dev_map_lock);
87 static LIST_HEAD(dev_map_list);
88 
89 static struct hlist_head *dev_map_create_hash(unsigned int entries,
90 					      int numa_node)
91 {
92 	int i;
93 	struct hlist_head *hash;
94 
95 	hash = bpf_map_area_alloc(entries * sizeof(*hash), numa_node);
96 	if (hash != NULL)
97 		for (i = 0; i < entries; i++)
98 			INIT_HLIST_HEAD(&hash[i]);
99 
100 	return hash;
101 }
102 
103 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
104 						    int idx)
105 {
106 	return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
107 }
108 
109 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
110 {
111 	u32 valsize = attr->value_size;
112 	u64 cost = 0;
113 	int err;
114 
115 	/* check sanity of attributes. 2 value sizes supported:
116 	 * 4 bytes: ifindex
117 	 * 8 bytes: ifindex + prog fd
118 	 */
119 	if (attr->max_entries == 0 || attr->key_size != 4 ||
120 	    (valsize != offsetofend(struct bpf_devmap_val, ifindex) &&
121 	     valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) ||
122 	    attr->map_flags & ~DEV_CREATE_FLAG_MASK)
123 		return -EINVAL;
124 
125 	/* Lookup returns a pointer straight to dev->ifindex, so make sure the
126 	 * verifier prevents writes from the BPF side
127 	 */
128 	attr->map_flags |= BPF_F_RDONLY_PROG;
129 
130 
131 	bpf_map_init_from_attr(&dtab->map, attr);
132 
133 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
134 		dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
135 
136 		if (!dtab->n_buckets) /* Overflow check */
137 			return -EINVAL;
138 		cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets;
139 	} else {
140 		cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
141 	}
142 
143 	/* if map size is larger than memlock limit, reject it */
144 	err = bpf_map_charge_init(&dtab->map.memory, cost);
145 	if (err)
146 		return -EINVAL;
147 
148 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
149 		dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets,
150 							   dtab->map.numa_node);
151 		if (!dtab->dev_index_head)
152 			goto free_charge;
153 
154 		spin_lock_init(&dtab->index_lock);
155 	} else {
156 		dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
157 						      sizeof(struct bpf_dtab_netdev *),
158 						      dtab->map.numa_node);
159 		if (!dtab->netdev_map)
160 			goto free_charge;
161 	}
162 
163 	return 0;
164 
165 free_charge:
166 	bpf_map_charge_finish(&dtab->map.memory);
167 	return -ENOMEM;
168 }
169 
170 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
171 {
172 	struct bpf_dtab *dtab;
173 	int err;
174 
175 	if (!capable(CAP_NET_ADMIN))
176 		return ERR_PTR(-EPERM);
177 
178 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
179 	if (!dtab)
180 		return ERR_PTR(-ENOMEM);
181 
182 	err = dev_map_init_map(dtab, attr);
183 	if (err) {
184 		kfree(dtab);
185 		return ERR_PTR(err);
186 	}
187 
188 	spin_lock(&dev_map_lock);
189 	list_add_tail_rcu(&dtab->list, &dev_map_list);
190 	spin_unlock(&dev_map_lock);
191 
192 	return &dtab->map;
193 }
194 
195 static void dev_map_free(struct bpf_map *map)
196 {
197 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
198 	int i;
199 
200 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
201 	 * so the programs (can be more than one that used this map) were
202 	 * disconnected from events. The following synchronize_rcu() guarantees
203 	 * both rcu read critical sections complete and waits for
204 	 * preempt-disable regions (NAPI being the relevant context here) so we
205 	 * are certain there will be no further reads against the netdev_map and
206 	 * all flush operations are complete. Flush operations can only be done
207 	 * from NAPI context for this reason.
208 	 */
209 
210 	spin_lock(&dev_map_lock);
211 	list_del_rcu(&dtab->list);
212 	spin_unlock(&dev_map_lock);
213 
214 	bpf_clear_redirect_map(map);
215 	synchronize_rcu();
216 
217 	/* Make sure prior __dev_map_entry_free() have completed. */
218 	rcu_barrier();
219 
220 	if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
221 		for (i = 0; i < dtab->n_buckets; i++) {
222 			struct bpf_dtab_netdev *dev;
223 			struct hlist_head *head;
224 			struct hlist_node *next;
225 
226 			head = dev_map_index_hash(dtab, i);
227 
228 			hlist_for_each_entry_safe(dev, next, head, index_hlist) {
229 				hlist_del_rcu(&dev->index_hlist);
230 				if (dev->xdp_prog)
231 					bpf_prog_put(dev->xdp_prog);
232 				dev_put(dev->dev);
233 				kfree(dev);
234 			}
235 		}
236 
237 		bpf_map_area_free(dtab->dev_index_head);
238 	} else {
239 		for (i = 0; i < dtab->map.max_entries; i++) {
240 			struct bpf_dtab_netdev *dev;
241 
242 			dev = dtab->netdev_map[i];
243 			if (!dev)
244 				continue;
245 
246 			if (dev->xdp_prog)
247 				bpf_prog_put(dev->xdp_prog);
248 			dev_put(dev->dev);
249 			kfree(dev);
250 		}
251 
252 		bpf_map_area_free(dtab->netdev_map);
253 	}
254 
255 	kfree(dtab);
256 }
257 
258 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
259 {
260 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
261 	u32 index = key ? *(u32 *)key : U32_MAX;
262 	u32 *next = next_key;
263 
264 	if (index >= dtab->map.max_entries) {
265 		*next = 0;
266 		return 0;
267 	}
268 
269 	if (index == dtab->map.max_entries - 1)
270 		return -ENOENT;
271 	*next = index + 1;
272 	return 0;
273 }
274 
275 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
276 {
277 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
278 	struct hlist_head *head = dev_map_index_hash(dtab, key);
279 	struct bpf_dtab_netdev *dev;
280 
281 	hlist_for_each_entry_rcu(dev, head, index_hlist,
282 				 lockdep_is_held(&dtab->index_lock))
283 		if (dev->idx == key)
284 			return dev;
285 
286 	return NULL;
287 }
288 
289 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
290 				    void *next_key)
291 {
292 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
293 	u32 idx, *next = next_key;
294 	struct bpf_dtab_netdev *dev, *next_dev;
295 	struct hlist_head *head;
296 	int i = 0;
297 
298 	if (!key)
299 		goto find_first;
300 
301 	idx = *(u32 *)key;
302 
303 	dev = __dev_map_hash_lookup_elem(map, idx);
304 	if (!dev)
305 		goto find_first;
306 
307 	next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
308 				    struct bpf_dtab_netdev, index_hlist);
309 
310 	if (next_dev) {
311 		*next = next_dev->idx;
312 		return 0;
313 	}
314 
315 	i = idx & (dtab->n_buckets - 1);
316 	i++;
317 
318  find_first:
319 	for (; i < dtab->n_buckets; i++) {
320 		head = dev_map_index_hash(dtab, i);
321 
322 		next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
323 					    struct bpf_dtab_netdev,
324 					    index_hlist);
325 		if (next_dev) {
326 			*next = next_dev->idx;
327 			return 0;
328 		}
329 	}
330 
331 	return -ENOENT;
332 }
333 
334 bool dev_map_can_have_prog(struct bpf_map *map)
335 {
336 	if ((map->map_type == BPF_MAP_TYPE_DEVMAP ||
337 	     map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) &&
338 	    map->value_size != offsetofend(struct bpf_devmap_val, ifindex))
339 		return true;
340 
341 	return false;
342 }
343 
344 static int bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
345 {
346 	struct net_device *dev = bq->dev;
347 	int sent = 0, drops = 0, err = 0;
348 	int i;
349 
350 	if (unlikely(!bq->count))
351 		return 0;
352 
353 	for (i = 0; i < bq->count; i++) {
354 		struct xdp_frame *xdpf = bq->q[i];
355 
356 		prefetch(xdpf);
357 	}
358 
359 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
360 	if (sent < 0) {
361 		err = sent;
362 		sent = 0;
363 		goto error;
364 	}
365 	drops = bq->count - sent;
366 out:
367 	bq->count = 0;
368 
369 	trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err);
370 	bq->dev_rx = NULL;
371 	__list_del_clearprev(&bq->flush_node);
372 	return 0;
373 error:
374 	/* If ndo_xdp_xmit fails with an errno, no frames have been
375 	 * xmit'ed and it's our responsibility to them free all.
376 	 */
377 	for (i = 0; i < bq->count; i++) {
378 		struct xdp_frame *xdpf = bq->q[i];
379 
380 		xdp_return_frame_rx_napi(xdpf);
381 		drops++;
382 	}
383 	goto out;
384 }
385 
386 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled
387  * from the driver before returning from its napi->poll() routine. The poll()
388  * routine is called either from busy_poll context or net_rx_action signaled
389  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
390  * net device can be torn down. On devmap tear down we ensure the flush list
391  * is empty before completing to ensure all flush operations have completed.
392  * When drivers update the bpf program they may need to ensure any flush ops
393  * are also complete. Using synchronize_rcu or call_rcu will suffice for this
394  * because both wait for napi context to exit.
395  */
396 void __dev_flush(void)
397 {
398 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
399 	struct xdp_dev_bulk_queue *bq, *tmp;
400 
401 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
402 		bq_xmit_all(bq, XDP_XMIT_FLUSH);
403 }
404 
405 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
406  * update happens in parallel here a dev_put wont happen until after reading the
407  * ifindex.
408  */
409 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
410 {
411 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
412 	struct bpf_dtab_netdev *obj;
413 
414 	if (key >= map->max_entries)
415 		return NULL;
416 
417 	obj = READ_ONCE(dtab->netdev_map[key]);
418 	return obj;
419 }
420 
421 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
422  * Thus, safe percpu variable access.
423  */
424 static int bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
425 		      struct net_device *dev_rx)
426 {
427 	struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
428 	struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
429 
430 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
431 		bq_xmit_all(bq, 0);
432 
433 	/* Ingress dev_rx will be the same for all xdp_frame's in
434 	 * bulk_queue, because bq stored per-CPU and must be flushed
435 	 * from net_device drivers NAPI func end.
436 	 */
437 	if (!bq->dev_rx)
438 		bq->dev_rx = dev_rx;
439 
440 	bq->q[bq->count++] = xdpf;
441 
442 	if (!bq->flush_node.prev)
443 		list_add(&bq->flush_node, flush_list);
444 
445 	return 0;
446 }
447 
448 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
449 			       struct net_device *dev_rx)
450 {
451 	struct xdp_frame *xdpf;
452 	int err;
453 
454 	if (!dev->netdev_ops->ndo_xdp_xmit)
455 		return -EOPNOTSUPP;
456 
457 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
458 	if (unlikely(err))
459 		return err;
460 
461 	xdpf = xdp_convert_buff_to_frame(xdp);
462 	if (unlikely(!xdpf))
463 		return -EOVERFLOW;
464 
465 	return bq_enqueue(dev, xdpf, dev_rx);
466 }
467 
468 static struct xdp_buff *dev_map_run_prog(struct net_device *dev,
469 					 struct xdp_buff *xdp,
470 					 struct bpf_prog *xdp_prog)
471 {
472 	struct xdp_txq_info txq = { .dev = dev };
473 	u32 act;
474 
475 	xdp_set_data_meta_invalid(xdp);
476 	xdp->txq = &txq;
477 
478 	act = bpf_prog_run_xdp(xdp_prog, xdp);
479 	switch (act) {
480 	case XDP_PASS:
481 		return xdp;
482 	case XDP_DROP:
483 		break;
484 	default:
485 		bpf_warn_invalid_xdp_action(act);
486 		fallthrough;
487 	case XDP_ABORTED:
488 		trace_xdp_exception(dev, xdp_prog, act);
489 		break;
490 	}
491 
492 	xdp_return_buff(xdp);
493 	return NULL;
494 }
495 
496 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
497 		    struct net_device *dev_rx)
498 {
499 	return __xdp_enqueue(dev, xdp, dev_rx);
500 }
501 
502 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
503 		    struct net_device *dev_rx)
504 {
505 	struct net_device *dev = dst->dev;
506 
507 	if (dst->xdp_prog) {
508 		xdp = dev_map_run_prog(dev, xdp, dst->xdp_prog);
509 		if (!xdp)
510 			return 0;
511 	}
512 	return __xdp_enqueue(dev, xdp, dev_rx);
513 }
514 
515 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
516 			     struct bpf_prog *xdp_prog)
517 {
518 	int err;
519 
520 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
521 	if (unlikely(err))
522 		return err;
523 	skb->dev = dst->dev;
524 	generic_xdp_tx(skb, xdp_prog);
525 
526 	return 0;
527 }
528 
529 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
530 {
531 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
532 
533 	return obj ? &obj->val : NULL;
534 }
535 
536 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
537 {
538 	struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
539 								*(u32 *)key);
540 	return obj ? &obj->val : NULL;
541 }
542 
543 static void __dev_map_entry_free(struct rcu_head *rcu)
544 {
545 	struct bpf_dtab_netdev *dev;
546 
547 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
548 	if (dev->xdp_prog)
549 		bpf_prog_put(dev->xdp_prog);
550 	dev_put(dev->dev);
551 	kfree(dev);
552 }
553 
554 static int dev_map_delete_elem(struct bpf_map *map, void *key)
555 {
556 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
557 	struct bpf_dtab_netdev *old_dev;
558 	int k = *(u32 *)key;
559 
560 	if (k >= map->max_entries)
561 		return -EINVAL;
562 
563 	/* Use call_rcu() here to ensure any rcu critical sections have
564 	 * completed as well as any flush operations because call_rcu
565 	 * will wait for preempt-disable region to complete, NAPI in this
566 	 * context.  And additionally, the driver tear down ensures all
567 	 * soft irqs are complete before removing the net device in the
568 	 * case of dev_put equals zero.
569 	 */
570 	old_dev = xchg(&dtab->netdev_map[k], NULL);
571 	if (old_dev)
572 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
573 	return 0;
574 }
575 
576 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
577 {
578 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
579 	struct bpf_dtab_netdev *old_dev;
580 	int k = *(u32 *)key;
581 	unsigned long flags;
582 	int ret = -ENOENT;
583 
584 	spin_lock_irqsave(&dtab->index_lock, flags);
585 
586 	old_dev = __dev_map_hash_lookup_elem(map, k);
587 	if (old_dev) {
588 		dtab->items--;
589 		hlist_del_init_rcu(&old_dev->index_hlist);
590 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
591 		ret = 0;
592 	}
593 	spin_unlock_irqrestore(&dtab->index_lock, flags);
594 
595 	return ret;
596 }
597 
598 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
599 						    struct bpf_dtab *dtab,
600 						    struct bpf_devmap_val *val,
601 						    unsigned int idx)
602 {
603 	struct bpf_prog *prog = NULL;
604 	struct bpf_dtab_netdev *dev;
605 
606 	dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
607 			   dtab->map.numa_node);
608 	if (!dev)
609 		return ERR_PTR(-ENOMEM);
610 
611 	dev->dev = dev_get_by_index(net, val->ifindex);
612 	if (!dev->dev)
613 		goto err_out;
614 
615 	if (val->bpf_prog.fd > 0) {
616 		prog = bpf_prog_get_type_dev(val->bpf_prog.fd,
617 					     BPF_PROG_TYPE_XDP, false);
618 		if (IS_ERR(prog))
619 			goto err_put_dev;
620 		if (prog->expected_attach_type != BPF_XDP_DEVMAP)
621 			goto err_put_prog;
622 	}
623 
624 	dev->idx = idx;
625 	dev->dtab = dtab;
626 	if (prog) {
627 		dev->xdp_prog = prog;
628 		dev->val.bpf_prog.id = prog->aux->id;
629 	} else {
630 		dev->xdp_prog = NULL;
631 		dev->val.bpf_prog.id = 0;
632 	}
633 	dev->val.ifindex = val->ifindex;
634 
635 	return dev;
636 err_put_prog:
637 	bpf_prog_put(prog);
638 err_put_dev:
639 	dev_put(dev->dev);
640 err_out:
641 	kfree(dev);
642 	return ERR_PTR(-EINVAL);
643 }
644 
645 static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
646 				 void *key, void *value, u64 map_flags)
647 {
648 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
649 	struct bpf_dtab_netdev *dev, *old_dev;
650 	struct bpf_devmap_val val = {};
651 	u32 i = *(u32 *)key;
652 
653 	if (unlikely(map_flags > BPF_EXIST))
654 		return -EINVAL;
655 	if (unlikely(i >= dtab->map.max_entries))
656 		return -E2BIG;
657 	if (unlikely(map_flags == BPF_NOEXIST))
658 		return -EEXIST;
659 
660 	/* already verified value_size <= sizeof val */
661 	memcpy(&val, value, map->value_size);
662 
663 	if (!val.ifindex) {
664 		dev = NULL;
665 		/* can not specify fd if ifindex is 0 */
666 		if (val.bpf_prog.fd > 0)
667 			return -EINVAL;
668 	} else {
669 		dev = __dev_map_alloc_node(net, dtab, &val, i);
670 		if (IS_ERR(dev))
671 			return PTR_ERR(dev);
672 	}
673 
674 	/* Use call_rcu() here to ensure rcu critical sections have completed
675 	 * Remembering the driver side flush operation will happen before the
676 	 * net device is removed.
677 	 */
678 	old_dev = xchg(&dtab->netdev_map[i], dev);
679 	if (old_dev)
680 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
681 
682 	return 0;
683 }
684 
685 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
686 			       u64 map_flags)
687 {
688 	return __dev_map_update_elem(current->nsproxy->net_ns,
689 				     map, key, value, map_flags);
690 }
691 
692 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
693 				     void *key, void *value, u64 map_flags)
694 {
695 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
696 	struct bpf_dtab_netdev *dev, *old_dev;
697 	struct bpf_devmap_val val = {};
698 	u32 idx = *(u32 *)key;
699 	unsigned long flags;
700 	int err = -EEXIST;
701 
702 	/* already verified value_size <= sizeof val */
703 	memcpy(&val, value, map->value_size);
704 
705 	if (unlikely(map_flags > BPF_EXIST || !val.ifindex))
706 		return -EINVAL;
707 
708 	spin_lock_irqsave(&dtab->index_lock, flags);
709 
710 	old_dev = __dev_map_hash_lookup_elem(map, idx);
711 	if (old_dev && (map_flags & BPF_NOEXIST))
712 		goto out_err;
713 
714 	dev = __dev_map_alloc_node(net, dtab, &val, idx);
715 	if (IS_ERR(dev)) {
716 		err = PTR_ERR(dev);
717 		goto out_err;
718 	}
719 
720 	if (old_dev) {
721 		hlist_del_rcu(&old_dev->index_hlist);
722 	} else {
723 		if (dtab->items >= dtab->map.max_entries) {
724 			spin_unlock_irqrestore(&dtab->index_lock, flags);
725 			call_rcu(&dev->rcu, __dev_map_entry_free);
726 			return -E2BIG;
727 		}
728 		dtab->items++;
729 	}
730 
731 	hlist_add_head_rcu(&dev->index_hlist,
732 			   dev_map_index_hash(dtab, idx));
733 	spin_unlock_irqrestore(&dtab->index_lock, flags);
734 
735 	if (old_dev)
736 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
737 
738 	return 0;
739 
740 out_err:
741 	spin_unlock_irqrestore(&dtab->index_lock, flags);
742 	return err;
743 }
744 
745 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
746 				   u64 map_flags)
747 {
748 	return __dev_map_hash_update_elem(current->nsproxy->net_ns,
749 					 map, key, value, map_flags);
750 }
751 
752 const struct bpf_map_ops dev_map_ops = {
753 	.map_alloc = dev_map_alloc,
754 	.map_free = dev_map_free,
755 	.map_get_next_key = dev_map_get_next_key,
756 	.map_lookup_elem = dev_map_lookup_elem,
757 	.map_update_elem = dev_map_update_elem,
758 	.map_delete_elem = dev_map_delete_elem,
759 	.map_check_btf = map_check_no_btf,
760 };
761 
762 const struct bpf_map_ops dev_map_hash_ops = {
763 	.map_alloc = dev_map_alloc,
764 	.map_free = dev_map_free,
765 	.map_get_next_key = dev_map_hash_get_next_key,
766 	.map_lookup_elem = dev_map_hash_lookup_elem,
767 	.map_update_elem = dev_map_hash_update_elem,
768 	.map_delete_elem = dev_map_hash_delete_elem,
769 	.map_check_btf = map_check_no_btf,
770 };
771 
772 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
773 				       struct net_device *netdev)
774 {
775 	unsigned long flags;
776 	u32 i;
777 
778 	spin_lock_irqsave(&dtab->index_lock, flags);
779 	for (i = 0; i < dtab->n_buckets; i++) {
780 		struct bpf_dtab_netdev *dev;
781 		struct hlist_head *head;
782 		struct hlist_node *next;
783 
784 		head = dev_map_index_hash(dtab, i);
785 
786 		hlist_for_each_entry_safe(dev, next, head, index_hlist) {
787 			if (netdev != dev->dev)
788 				continue;
789 
790 			dtab->items--;
791 			hlist_del_rcu(&dev->index_hlist);
792 			call_rcu(&dev->rcu, __dev_map_entry_free);
793 		}
794 	}
795 	spin_unlock_irqrestore(&dtab->index_lock, flags);
796 }
797 
798 static int dev_map_notification(struct notifier_block *notifier,
799 				ulong event, void *ptr)
800 {
801 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
802 	struct bpf_dtab *dtab;
803 	int i, cpu;
804 
805 	switch (event) {
806 	case NETDEV_REGISTER:
807 		if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
808 			break;
809 
810 		/* will be freed in free_netdev() */
811 		netdev->xdp_bulkq =
812 			__alloc_percpu_gfp(sizeof(struct xdp_dev_bulk_queue),
813 					   sizeof(void *), GFP_ATOMIC);
814 		if (!netdev->xdp_bulkq)
815 			return NOTIFY_BAD;
816 
817 		for_each_possible_cpu(cpu)
818 			per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
819 		break;
820 	case NETDEV_UNREGISTER:
821 		/* This rcu_read_lock/unlock pair is needed because
822 		 * dev_map_list is an RCU list AND to ensure a delete
823 		 * operation does not free a netdev_map entry while we
824 		 * are comparing it against the netdev being unregistered.
825 		 */
826 		rcu_read_lock();
827 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
828 			if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
829 				dev_map_hash_remove_netdev(dtab, netdev);
830 				continue;
831 			}
832 
833 			for (i = 0; i < dtab->map.max_entries; i++) {
834 				struct bpf_dtab_netdev *dev, *odev;
835 
836 				dev = READ_ONCE(dtab->netdev_map[i]);
837 				if (!dev || netdev != dev->dev)
838 					continue;
839 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
840 				if (dev == odev)
841 					call_rcu(&dev->rcu,
842 						 __dev_map_entry_free);
843 			}
844 		}
845 		rcu_read_unlock();
846 		break;
847 	default:
848 		break;
849 	}
850 	return NOTIFY_OK;
851 }
852 
853 static struct notifier_block dev_map_notifier = {
854 	.notifier_call = dev_map_notification,
855 };
856 
857 static int __init dev_map_init(void)
858 {
859 	int cpu;
860 
861 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
862 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
863 		     offsetof(struct _bpf_dtab_netdev, dev));
864 	register_netdevice_notifier(&dev_map_notifier);
865 
866 	for_each_possible_cpu(cpu)
867 		INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
868 	return 0;
869 }
870 
871 subsys_initcall(dev_map_init);
872