xref: /linux/include/uapi/linux/bpf.h (revision ac84bac4062e7fc24f5e2c61c6a414b2a00a29ad)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  */
8 #ifndef _UAPI__LINUX_BPF_H__
9 #define _UAPI__LINUX_BPF_H__
10 
11 #include <linux/types.h>
12 #include <linux/bpf_common.h>
13 
14 /* Extended instruction set based on top of classic BPF */
15 
16 /* instruction classes */
17 #define BPF_JMP32	0x06	/* jmp mode in word width */
18 #define BPF_ALU64	0x07	/* alu mode in double word width */
19 
20 /* ld/ldx fields */
21 #define BPF_DW		0x18	/* double word (64-bit) */
22 #define BPF_XADD	0xc0	/* exclusive add */
23 
24 /* alu/jmp fields */
25 #define BPF_MOV		0xb0	/* mov reg to reg */
26 #define BPF_ARSH	0xc0	/* sign extending arithmetic shift right */
27 
28 /* change endianness of a register */
29 #define BPF_END		0xd0	/* flags for endianness conversion: */
30 #define BPF_TO_LE	0x00	/* convert to little-endian */
31 #define BPF_TO_BE	0x08	/* convert to big-endian */
32 #define BPF_FROM_LE	BPF_TO_LE
33 #define BPF_FROM_BE	BPF_TO_BE
34 
35 /* jmp encodings */
36 #define BPF_JNE		0x50	/* jump != */
37 #define BPF_JLT		0xa0	/* LT is unsigned, '<' */
38 #define BPF_JLE		0xb0	/* LE is unsigned, '<=' */
39 #define BPF_JSGT	0x60	/* SGT is signed '>', GT in x86 */
40 #define BPF_JSGE	0x70	/* SGE is signed '>=', GE in x86 */
41 #define BPF_JSLT	0xc0	/* SLT is signed, '<' */
42 #define BPF_JSLE	0xd0	/* SLE is signed, '<=' */
43 #define BPF_CALL	0x80	/* function call */
44 #define BPF_EXIT	0x90	/* function return */
45 
46 /* Register numbers */
47 enum {
48 	BPF_REG_0 = 0,
49 	BPF_REG_1,
50 	BPF_REG_2,
51 	BPF_REG_3,
52 	BPF_REG_4,
53 	BPF_REG_5,
54 	BPF_REG_6,
55 	BPF_REG_7,
56 	BPF_REG_8,
57 	BPF_REG_9,
58 	BPF_REG_10,
59 	__MAX_BPF_REG,
60 };
61 
62 /* BPF has 10 general purpose 64-bit registers and stack frame. */
63 #define MAX_BPF_REG	__MAX_BPF_REG
64 
65 struct bpf_insn {
66 	__u8	code;		/* opcode */
67 	__u8	dst_reg:4;	/* dest register */
68 	__u8	src_reg:4;	/* source register */
69 	__s16	off;		/* signed offset */
70 	__s32	imm;		/* signed immediate constant */
71 };
72 
73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
74 struct bpf_lpm_trie_key {
75 	__u32	prefixlen;	/* up to 32 for AF_INET, 128 for AF_INET6 */
76 	__u8	data[];	/* Arbitrary size */
77 };
78 
79 struct bpf_cgroup_storage_key {
80 	__u64	cgroup_inode_id;	/* cgroup inode id */
81 	__u32	attach_type;		/* program attach type */
82 };
83 
84 /* BPF syscall commands, see bpf(2) man-page for details. */
85 enum bpf_cmd {
86 	BPF_MAP_CREATE,
87 	BPF_MAP_LOOKUP_ELEM,
88 	BPF_MAP_UPDATE_ELEM,
89 	BPF_MAP_DELETE_ELEM,
90 	BPF_MAP_GET_NEXT_KEY,
91 	BPF_PROG_LOAD,
92 	BPF_OBJ_PIN,
93 	BPF_OBJ_GET,
94 	BPF_PROG_ATTACH,
95 	BPF_PROG_DETACH,
96 	BPF_PROG_TEST_RUN,
97 	BPF_PROG_GET_NEXT_ID,
98 	BPF_MAP_GET_NEXT_ID,
99 	BPF_PROG_GET_FD_BY_ID,
100 	BPF_MAP_GET_FD_BY_ID,
101 	BPF_OBJ_GET_INFO_BY_FD,
102 	BPF_PROG_QUERY,
103 	BPF_RAW_TRACEPOINT_OPEN,
104 	BPF_BTF_LOAD,
105 	BPF_BTF_GET_FD_BY_ID,
106 	BPF_TASK_FD_QUERY,
107 	BPF_MAP_LOOKUP_AND_DELETE_ELEM,
108 	BPF_MAP_FREEZE,
109 	BPF_BTF_GET_NEXT_ID,
110 	BPF_MAP_LOOKUP_BATCH,
111 	BPF_MAP_LOOKUP_AND_DELETE_BATCH,
112 	BPF_MAP_UPDATE_BATCH,
113 	BPF_MAP_DELETE_BATCH,
114 	BPF_LINK_CREATE,
115 	BPF_LINK_UPDATE,
116 };
117 
118 enum bpf_map_type {
119 	BPF_MAP_TYPE_UNSPEC,
120 	BPF_MAP_TYPE_HASH,
121 	BPF_MAP_TYPE_ARRAY,
122 	BPF_MAP_TYPE_PROG_ARRAY,
123 	BPF_MAP_TYPE_PERF_EVENT_ARRAY,
124 	BPF_MAP_TYPE_PERCPU_HASH,
125 	BPF_MAP_TYPE_PERCPU_ARRAY,
126 	BPF_MAP_TYPE_STACK_TRACE,
127 	BPF_MAP_TYPE_CGROUP_ARRAY,
128 	BPF_MAP_TYPE_LRU_HASH,
129 	BPF_MAP_TYPE_LRU_PERCPU_HASH,
130 	BPF_MAP_TYPE_LPM_TRIE,
131 	BPF_MAP_TYPE_ARRAY_OF_MAPS,
132 	BPF_MAP_TYPE_HASH_OF_MAPS,
133 	BPF_MAP_TYPE_DEVMAP,
134 	BPF_MAP_TYPE_SOCKMAP,
135 	BPF_MAP_TYPE_CPUMAP,
136 	BPF_MAP_TYPE_XSKMAP,
137 	BPF_MAP_TYPE_SOCKHASH,
138 	BPF_MAP_TYPE_CGROUP_STORAGE,
139 	BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
140 	BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
141 	BPF_MAP_TYPE_QUEUE,
142 	BPF_MAP_TYPE_STACK,
143 	BPF_MAP_TYPE_SK_STORAGE,
144 	BPF_MAP_TYPE_DEVMAP_HASH,
145 	BPF_MAP_TYPE_STRUCT_OPS,
146 };
147 
148 /* Note that tracing related programs such as
149  * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
150  * are not subject to a stable API since kernel internal data
151  * structures can change from release to release and may
152  * therefore break existing tracing BPF programs. Tracing BPF
153  * programs correspond to /a/ specific kernel which is to be
154  * analyzed, and not /a/ specific kernel /and/ all future ones.
155  */
156 enum bpf_prog_type {
157 	BPF_PROG_TYPE_UNSPEC,
158 	BPF_PROG_TYPE_SOCKET_FILTER,
159 	BPF_PROG_TYPE_KPROBE,
160 	BPF_PROG_TYPE_SCHED_CLS,
161 	BPF_PROG_TYPE_SCHED_ACT,
162 	BPF_PROG_TYPE_TRACEPOINT,
163 	BPF_PROG_TYPE_XDP,
164 	BPF_PROG_TYPE_PERF_EVENT,
165 	BPF_PROG_TYPE_CGROUP_SKB,
166 	BPF_PROG_TYPE_CGROUP_SOCK,
167 	BPF_PROG_TYPE_LWT_IN,
168 	BPF_PROG_TYPE_LWT_OUT,
169 	BPF_PROG_TYPE_LWT_XMIT,
170 	BPF_PROG_TYPE_SOCK_OPS,
171 	BPF_PROG_TYPE_SK_SKB,
172 	BPF_PROG_TYPE_CGROUP_DEVICE,
173 	BPF_PROG_TYPE_SK_MSG,
174 	BPF_PROG_TYPE_RAW_TRACEPOINT,
175 	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
176 	BPF_PROG_TYPE_LWT_SEG6LOCAL,
177 	BPF_PROG_TYPE_LIRC_MODE2,
178 	BPF_PROG_TYPE_SK_REUSEPORT,
179 	BPF_PROG_TYPE_FLOW_DISSECTOR,
180 	BPF_PROG_TYPE_CGROUP_SYSCTL,
181 	BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE,
182 	BPF_PROG_TYPE_CGROUP_SOCKOPT,
183 	BPF_PROG_TYPE_TRACING,
184 	BPF_PROG_TYPE_STRUCT_OPS,
185 	BPF_PROG_TYPE_EXT,
186 	BPF_PROG_TYPE_LSM,
187 };
188 
189 enum bpf_attach_type {
190 	BPF_CGROUP_INET_INGRESS,
191 	BPF_CGROUP_INET_EGRESS,
192 	BPF_CGROUP_INET_SOCK_CREATE,
193 	BPF_CGROUP_SOCK_OPS,
194 	BPF_SK_SKB_STREAM_PARSER,
195 	BPF_SK_SKB_STREAM_VERDICT,
196 	BPF_CGROUP_DEVICE,
197 	BPF_SK_MSG_VERDICT,
198 	BPF_CGROUP_INET4_BIND,
199 	BPF_CGROUP_INET6_BIND,
200 	BPF_CGROUP_INET4_CONNECT,
201 	BPF_CGROUP_INET6_CONNECT,
202 	BPF_CGROUP_INET4_POST_BIND,
203 	BPF_CGROUP_INET6_POST_BIND,
204 	BPF_CGROUP_UDP4_SENDMSG,
205 	BPF_CGROUP_UDP6_SENDMSG,
206 	BPF_LIRC_MODE2,
207 	BPF_FLOW_DISSECTOR,
208 	BPF_CGROUP_SYSCTL,
209 	BPF_CGROUP_UDP4_RECVMSG,
210 	BPF_CGROUP_UDP6_RECVMSG,
211 	BPF_CGROUP_GETSOCKOPT,
212 	BPF_CGROUP_SETSOCKOPT,
213 	BPF_TRACE_RAW_TP,
214 	BPF_TRACE_FENTRY,
215 	BPF_TRACE_FEXIT,
216 	BPF_MODIFY_RETURN,
217 	BPF_LSM_MAC,
218 	__MAX_BPF_ATTACH_TYPE
219 };
220 
221 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
222 
223 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
224  *
225  * NONE(default): No further bpf programs allowed in the subtree.
226  *
227  * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
228  * the program in this cgroup yields to sub-cgroup program.
229  *
230  * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
231  * that cgroup program gets run in addition to the program in this cgroup.
232  *
233  * Only one program is allowed to be attached to a cgroup with
234  * NONE or BPF_F_ALLOW_OVERRIDE flag.
235  * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
236  * release old program and attach the new one. Attach flags has to match.
237  *
238  * Multiple programs are allowed to be attached to a cgroup with
239  * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
240  * (those that were attached first, run first)
241  * The programs of sub-cgroup are executed first, then programs of
242  * this cgroup and then programs of parent cgroup.
243  * When children program makes decision (like picking TCP CA or sock bind)
244  * parent program has a chance to override it.
245  *
246  * With BPF_F_ALLOW_MULTI a new program is added to the end of the list of
247  * programs for a cgroup. Though it's possible to replace an old program at
248  * any position by also specifying BPF_F_REPLACE flag and position itself in
249  * replace_bpf_fd attribute. Old program at this position will be released.
250  *
251  * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
252  * A cgroup with NONE doesn't allow any programs in sub-cgroups.
253  * Ex1:
254  * cgrp1 (MULTI progs A, B) ->
255  *    cgrp2 (OVERRIDE prog C) ->
256  *      cgrp3 (MULTI prog D) ->
257  *        cgrp4 (OVERRIDE prog E) ->
258  *          cgrp5 (NONE prog F)
259  * the event in cgrp5 triggers execution of F,D,A,B in that order.
260  * if prog F is detached, the execution is E,D,A,B
261  * if prog F and D are detached, the execution is E,A,B
262  * if prog F, E and D are detached, the execution is C,A,B
263  *
264  * All eligible programs are executed regardless of return code from
265  * earlier programs.
266  */
267 #define BPF_F_ALLOW_OVERRIDE	(1U << 0)
268 #define BPF_F_ALLOW_MULTI	(1U << 1)
269 #define BPF_F_REPLACE		(1U << 2)
270 
271 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
272  * verifier will perform strict alignment checking as if the kernel
273  * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
274  * and NET_IP_ALIGN defined to 2.
275  */
276 #define BPF_F_STRICT_ALIGNMENT	(1U << 0)
277 
278 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the
279  * verifier will allow any alignment whatsoever.  On platforms
280  * with strict alignment requirements for loads ands stores (such
281  * as sparc and mips) the verifier validates that all loads and
282  * stores provably follow this requirement.  This flag turns that
283  * checking and enforcement off.
284  *
285  * It is mostly used for testing when we want to validate the
286  * context and memory access aspects of the verifier, but because
287  * of an unaligned access the alignment check would trigger before
288  * the one we are interested in.
289  */
290 #define BPF_F_ANY_ALIGNMENT	(1U << 1)
291 
292 /* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose.
293  * Verifier does sub-register def/use analysis and identifies instructions whose
294  * def only matters for low 32-bit, high 32-bit is never referenced later
295  * through implicit zero extension. Therefore verifier notifies JIT back-ends
296  * that it is safe to ignore clearing high 32-bit for these instructions. This
297  * saves some back-ends a lot of code-gen. However such optimization is not
298  * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends
299  * hence hasn't used verifier's analysis result. But, we really want to have a
300  * way to be able to verify the correctness of the described optimization on
301  * x86_64 on which testsuites are frequently exercised.
302  *
303  * So, this flag is introduced. Once it is set, verifier will randomize high
304  * 32-bit for those instructions who has been identified as safe to ignore them.
305  * Then, if verifier is not doing correct analysis, such randomization will
306  * regress tests to expose bugs.
307  */
308 #define BPF_F_TEST_RND_HI32	(1U << 2)
309 
310 /* The verifier internal test flag. Behavior is undefined */
311 #define BPF_F_TEST_STATE_FREQ	(1U << 3)
312 
313 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have
314  * two extensions:
315  *
316  * insn[0].src_reg:  BPF_PSEUDO_MAP_FD   BPF_PSEUDO_MAP_VALUE
317  * insn[0].imm:      map fd              map fd
318  * insn[1].imm:      0                   offset into value
319  * insn[0].off:      0                   0
320  * insn[1].off:      0                   0
321  * ldimm64 rewrite:  address of map      address of map[0]+offset
322  * verifier type:    CONST_PTR_TO_MAP    PTR_TO_MAP_VALUE
323  */
324 #define BPF_PSEUDO_MAP_FD	1
325 #define BPF_PSEUDO_MAP_VALUE	2
326 
327 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
328  * offset to another bpf function
329  */
330 #define BPF_PSEUDO_CALL		1
331 
332 /* flags for BPF_MAP_UPDATE_ELEM command */
333 enum {
334 	BPF_ANY		= 0, /* create new element or update existing */
335 	BPF_NOEXIST	= 1, /* create new element if it didn't exist */
336 	BPF_EXIST	= 2, /* update existing element */
337 	BPF_F_LOCK	= 4, /* spin_lock-ed map_lookup/map_update */
338 };
339 
340 /* flags for BPF_MAP_CREATE command */
341 enum {
342 	BPF_F_NO_PREALLOC	= (1U << 0),
343 /* Instead of having one common LRU list in the
344  * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
345  * which can scale and perform better.
346  * Note, the LRU nodes (including free nodes) cannot be moved
347  * across different LRU lists.
348  */
349 	BPF_F_NO_COMMON_LRU	= (1U << 1),
350 /* Specify numa node during map creation */
351 	BPF_F_NUMA_NODE		= (1U << 2),
352 
353 /* Flags for accessing BPF object from syscall side. */
354 	BPF_F_RDONLY		= (1U << 3),
355 	BPF_F_WRONLY		= (1U << 4),
356 
357 /* Flag for stack_map, store build_id+offset instead of pointer */
358 	BPF_F_STACK_BUILD_ID	= (1U << 5),
359 
360 /* Zero-initialize hash function seed. This should only be used for testing. */
361 	BPF_F_ZERO_SEED		= (1U << 6),
362 
363 /* Flags for accessing BPF object from program side. */
364 	BPF_F_RDONLY_PROG	= (1U << 7),
365 	BPF_F_WRONLY_PROG	= (1U << 8),
366 
367 /* Clone map from listener for newly accepted socket */
368 	BPF_F_CLONE		= (1U << 9),
369 
370 /* Enable memory-mapping BPF map */
371 	BPF_F_MMAPABLE		= (1U << 10),
372 };
373 
374 /* Flags for BPF_PROG_QUERY. */
375 
376 /* Query effective (directly attached + inherited from ancestor cgroups)
377  * programs that will be executed for events within a cgroup.
378  * attach_flags with this flag are returned only for directly attached programs.
379  */
380 #define BPF_F_QUERY_EFFECTIVE	(1U << 0)
381 
382 enum bpf_stack_build_id_status {
383 	/* user space need an empty entry to identify end of a trace */
384 	BPF_STACK_BUILD_ID_EMPTY = 0,
385 	/* with valid build_id and offset */
386 	BPF_STACK_BUILD_ID_VALID = 1,
387 	/* couldn't get build_id, fallback to ip */
388 	BPF_STACK_BUILD_ID_IP = 2,
389 };
390 
391 #define BPF_BUILD_ID_SIZE 20
392 struct bpf_stack_build_id {
393 	__s32		status;
394 	unsigned char	build_id[BPF_BUILD_ID_SIZE];
395 	union {
396 		__u64	offset;
397 		__u64	ip;
398 	};
399 };
400 
401 #define BPF_OBJ_NAME_LEN 16U
402 
403 union bpf_attr {
404 	struct { /* anonymous struct used by BPF_MAP_CREATE command */
405 		__u32	map_type;	/* one of enum bpf_map_type */
406 		__u32	key_size;	/* size of key in bytes */
407 		__u32	value_size;	/* size of value in bytes */
408 		__u32	max_entries;	/* max number of entries in a map */
409 		__u32	map_flags;	/* BPF_MAP_CREATE related
410 					 * flags defined above.
411 					 */
412 		__u32	inner_map_fd;	/* fd pointing to the inner map */
413 		__u32	numa_node;	/* numa node (effective only if
414 					 * BPF_F_NUMA_NODE is set).
415 					 */
416 		char	map_name[BPF_OBJ_NAME_LEN];
417 		__u32	map_ifindex;	/* ifindex of netdev to create on */
418 		__u32	btf_fd;		/* fd pointing to a BTF type data */
419 		__u32	btf_key_type_id;	/* BTF type_id of the key */
420 		__u32	btf_value_type_id;	/* BTF type_id of the value */
421 		__u32	btf_vmlinux_value_type_id;/* BTF type_id of a kernel-
422 						   * struct stored as the
423 						   * map value
424 						   */
425 	};
426 
427 	struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
428 		__u32		map_fd;
429 		__aligned_u64	key;
430 		union {
431 			__aligned_u64 value;
432 			__aligned_u64 next_key;
433 		};
434 		__u64		flags;
435 	};
436 
437 	struct { /* struct used by BPF_MAP_*_BATCH commands */
438 		__aligned_u64	in_batch;	/* start batch,
439 						 * NULL to start from beginning
440 						 */
441 		__aligned_u64	out_batch;	/* output: next start batch */
442 		__aligned_u64	keys;
443 		__aligned_u64	values;
444 		__u32		count;		/* input/output:
445 						 * input: # of key/value
446 						 * elements
447 						 * output: # of filled elements
448 						 */
449 		__u32		map_fd;
450 		__u64		elem_flags;
451 		__u64		flags;
452 	} batch;
453 
454 	struct { /* anonymous struct used by BPF_PROG_LOAD command */
455 		__u32		prog_type;	/* one of enum bpf_prog_type */
456 		__u32		insn_cnt;
457 		__aligned_u64	insns;
458 		__aligned_u64	license;
459 		__u32		log_level;	/* verbosity level of verifier */
460 		__u32		log_size;	/* size of user buffer */
461 		__aligned_u64	log_buf;	/* user supplied buffer */
462 		__u32		kern_version;	/* not used */
463 		__u32		prog_flags;
464 		char		prog_name[BPF_OBJ_NAME_LEN];
465 		__u32		prog_ifindex;	/* ifindex of netdev to prep for */
466 		/* For some prog types expected attach type must be known at
467 		 * load time to verify attach type specific parts of prog
468 		 * (context accesses, allowed helpers, etc).
469 		 */
470 		__u32		expected_attach_type;
471 		__u32		prog_btf_fd;	/* fd pointing to BTF type data */
472 		__u32		func_info_rec_size;	/* userspace bpf_func_info size */
473 		__aligned_u64	func_info;	/* func info */
474 		__u32		func_info_cnt;	/* number of bpf_func_info records */
475 		__u32		line_info_rec_size;	/* userspace bpf_line_info size */
476 		__aligned_u64	line_info;	/* line info */
477 		__u32		line_info_cnt;	/* number of bpf_line_info records */
478 		__u32		attach_btf_id;	/* in-kernel BTF type id to attach to */
479 		__u32		attach_prog_fd; /* 0 to attach to vmlinux */
480 	};
481 
482 	struct { /* anonymous struct used by BPF_OBJ_* commands */
483 		__aligned_u64	pathname;
484 		__u32		bpf_fd;
485 		__u32		file_flags;
486 	};
487 
488 	struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
489 		__u32		target_fd;	/* container object to attach to */
490 		__u32		attach_bpf_fd;	/* eBPF program to attach */
491 		__u32		attach_type;
492 		__u32		attach_flags;
493 		__u32		replace_bpf_fd;	/* previously attached eBPF
494 						 * program to replace if
495 						 * BPF_F_REPLACE is used
496 						 */
497 	};
498 
499 	struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
500 		__u32		prog_fd;
501 		__u32		retval;
502 		__u32		data_size_in;	/* input: len of data_in */
503 		__u32		data_size_out;	/* input/output: len of data_out
504 						 *   returns ENOSPC if data_out
505 						 *   is too small.
506 						 */
507 		__aligned_u64	data_in;
508 		__aligned_u64	data_out;
509 		__u32		repeat;
510 		__u32		duration;
511 		__u32		ctx_size_in;	/* input: len of ctx_in */
512 		__u32		ctx_size_out;	/* input/output: len of ctx_out
513 						 *   returns ENOSPC if ctx_out
514 						 *   is too small.
515 						 */
516 		__aligned_u64	ctx_in;
517 		__aligned_u64	ctx_out;
518 	} test;
519 
520 	struct { /* anonymous struct used by BPF_*_GET_*_ID */
521 		union {
522 			__u32		start_id;
523 			__u32		prog_id;
524 			__u32		map_id;
525 			__u32		btf_id;
526 		};
527 		__u32		next_id;
528 		__u32		open_flags;
529 	};
530 
531 	struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
532 		__u32		bpf_fd;
533 		__u32		info_len;
534 		__aligned_u64	info;
535 	} info;
536 
537 	struct { /* anonymous struct used by BPF_PROG_QUERY command */
538 		__u32		target_fd;	/* container object to query */
539 		__u32		attach_type;
540 		__u32		query_flags;
541 		__u32		attach_flags;
542 		__aligned_u64	prog_ids;
543 		__u32		prog_cnt;
544 	} query;
545 
546 	struct { /* anonymous struct used by BPF_RAW_TRACEPOINT_OPEN command */
547 		__u64 name;
548 		__u32 prog_fd;
549 	} raw_tracepoint;
550 
551 	struct { /* anonymous struct for BPF_BTF_LOAD */
552 		__aligned_u64	btf;
553 		__aligned_u64	btf_log_buf;
554 		__u32		btf_size;
555 		__u32		btf_log_size;
556 		__u32		btf_log_level;
557 	};
558 
559 	struct {
560 		__u32		pid;		/* input: pid */
561 		__u32		fd;		/* input: fd */
562 		__u32		flags;		/* input: flags */
563 		__u32		buf_len;	/* input/output: buf len */
564 		__aligned_u64	buf;		/* input/output:
565 						 *   tp_name for tracepoint
566 						 *   symbol for kprobe
567 						 *   filename for uprobe
568 						 */
569 		__u32		prog_id;	/* output: prod_id */
570 		__u32		fd_type;	/* output: BPF_FD_TYPE_* */
571 		__u64		probe_offset;	/* output: probe_offset */
572 		__u64		probe_addr;	/* output: probe_addr */
573 	} task_fd_query;
574 
575 	struct { /* struct used by BPF_LINK_CREATE command */
576 		__u32		prog_fd;	/* eBPF program to attach */
577 		__u32		target_fd;	/* object to attach to */
578 		__u32		attach_type;	/* attach type */
579 		__u32		flags;		/* extra flags */
580 	} link_create;
581 
582 	struct { /* struct used by BPF_LINK_UPDATE command */
583 		__u32		link_fd;	/* link fd */
584 		/* new program fd to update link with */
585 		__u32		new_prog_fd;
586 		__u32		flags;		/* extra flags */
587 		/* expected link's program fd; is specified only if
588 		 * BPF_F_REPLACE flag is set in flags */
589 		__u32		old_prog_fd;
590 	} link_update;
591 
592 } __attribute__((aligned(8)));
593 
594 /* The description below is an attempt at providing documentation to eBPF
595  * developers about the multiple available eBPF helper functions. It can be
596  * parsed and used to produce a manual page. The workflow is the following,
597  * and requires the rst2man utility:
598  *
599  *     $ ./scripts/bpf_helpers_doc.py \
600  *             --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
601  *     $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
602  *     $ man /tmp/bpf-helpers.7
603  *
604  * Note that in order to produce this external documentation, some RST
605  * formatting is used in the descriptions to get "bold" and "italics" in
606  * manual pages. Also note that the few trailing white spaces are
607  * intentional, removing them would break paragraphs for rst2man.
608  *
609  * Start of BPF helper function descriptions:
610  *
611  * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
612  * 	Description
613  * 		Perform a lookup in *map* for an entry associated to *key*.
614  * 	Return
615  * 		Map value associated to *key*, or **NULL** if no entry was
616  * 		found.
617  *
618  * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
619  * 	Description
620  * 		Add or update the value of the entry associated to *key* in
621  * 		*map* with *value*. *flags* is one of:
622  *
623  * 		**BPF_NOEXIST**
624  * 			The entry for *key* must not exist in the map.
625  * 		**BPF_EXIST**
626  * 			The entry for *key* must already exist in the map.
627  * 		**BPF_ANY**
628  * 			No condition on the existence of the entry for *key*.
629  *
630  * 		Flag value **BPF_NOEXIST** cannot be used for maps of types
631  * 		**BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY**  (all
632  * 		elements always exist), the helper would return an error.
633  * 	Return
634  * 		0 on success, or a negative error in case of failure.
635  *
636  * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
637  * 	Description
638  * 		Delete entry with *key* from *map*.
639  * 	Return
640  * 		0 on success, or a negative error in case of failure.
641  *
642  * int bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)
643  * 	Description
644  * 		For tracing programs, safely attempt to read *size* bytes from
645  * 		kernel space address *unsafe_ptr* and store the data in *dst*.
646  *
647  * 		Generally, use bpf_probe_read_user() or bpf_probe_read_kernel()
648  * 		instead.
649  * 	Return
650  * 		0 on success, or a negative error in case of failure.
651  *
652  * u64 bpf_ktime_get_ns(void)
653  * 	Description
654  * 		Return the time elapsed since system boot, in nanoseconds.
655  * 	Return
656  * 		Current *ktime*.
657  *
658  * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
659  * 	Description
660  * 		This helper is a "printk()-like" facility for debugging. It
661  * 		prints a message defined by format *fmt* (of size *fmt_size*)
662  * 		to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
663  * 		available. It can take up to three additional **u64**
664  * 		arguments (as an eBPF helpers, the total number of arguments is
665  * 		limited to five).
666  *
667  * 		Each time the helper is called, it appends a line to the trace.
668  * 		Lines are discarded while *\/sys/kernel/debug/tracing/trace* is
669  * 		open, use *\/sys/kernel/debug/tracing/trace_pipe* to avoid this.
670  * 		The format of the trace is customizable, and the exact output
671  * 		one will get depends on the options set in
672  * 		*\/sys/kernel/debug/tracing/trace_options* (see also the
673  * 		*README* file under the same directory). However, it usually
674  * 		defaults to something like:
675  *
676  * 		::
677  *
678  * 			telnet-470   [001] .N.. 419421.045894: 0x00000001: <formatted msg>
679  *
680  * 		In the above:
681  *
682  * 			* ``telnet`` is the name of the current task.
683  * 			* ``470`` is the PID of the current task.
684  * 			* ``001`` is the CPU number on which the task is
685  * 			  running.
686  * 			* In ``.N..``, each character refers to a set of
687  * 			  options (whether irqs are enabled, scheduling
688  * 			  options, whether hard/softirqs are running, level of
689  * 			  preempt_disabled respectively). **N** means that
690  * 			  **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
691  * 			  are set.
692  * 			* ``419421.045894`` is a timestamp.
693  * 			* ``0x00000001`` is a fake value used by BPF for the
694  * 			  instruction pointer register.
695  * 			* ``<formatted msg>`` is the message formatted with
696  * 			  *fmt*.
697  *
698  * 		The conversion specifiers supported by *fmt* are similar, but
699  * 		more limited than for printk(). They are **%d**, **%i**,
700  * 		**%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
701  * 		**%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
702  * 		of field, padding with zeroes, etc.) is available, and the
703  * 		helper will return **-EINVAL** (but print nothing) if it
704  * 		encounters an unknown specifier.
705  *
706  * 		Also, note that **bpf_trace_printk**\ () is slow, and should
707  * 		only be used for debugging purposes. For this reason, a notice
708  * 		bloc (spanning several lines) is printed to kernel logs and
709  * 		states that the helper should not be used "for production use"
710  * 		the first time this helper is used (or more precisely, when
711  * 		**trace_printk**\ () buffers are allocated). For passing values
712  * 		to user space, perf events should be preferred.
713  * 	Return
714  * 		The number of bytes written to the buffer, or a negative error
715  * 		in case of failure.
716  *
717  * u32 bpf_get_prandom_u32(void)
718  * 	Description
719  * 		Get a pseudo-random number.
720  *
721  * 		From a security point of view, this helper uses its own
722  * 		pseudo-random internal state, and cannot be used to infer the
723  * 		seed of other random functions in the kernel. However, it is
724  * 		essential to note that the generator used by the helper is not
725  * 		cryptographically secure.
726  * 	Return
727  * 		A random 32-bit unsigned value.
728  *
729  * u32 bpf_get_smp_processor_id(void)
730  * 	Description
731  * 		Get the SMP (symmetric multiprocessing) processor id. Note that
732  * 		all programs run with preemption disabled, which means that the
733  * 		SMP processor id is stable during all the execution of the
734  * 		program.
735  * 	Return
736  * 		The SMP id of the processor running the program.
737  *
738  * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
739  * 	Description
740  * 		Store *len* bytes from address *from* into the packet
741  * 		associated to *skb*, at *offset*. *flags* are a combination of
742  * 		**BPF_F_RECOMPUTE_CSUM** (automatically recompute the
743  * 		checksum for the packet after storing the bytes) and
744  * 		**BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
745  * 		**->swhash** and *skb*\ **->l4hash** to 0).
746  *
747  * 		A call to this helper is susceptible to change the underlying
748  * 		packet buffer. Therefore, at load time, all checks on pointers
749  * 		previously done by the verifier are invalidated and must be
750  * 		performed again, if the helper is used in combination with
751  * 		direct packet access.
752  * 	Return
753  * 		0 on success, or a negative error in case of failure.
754  *
755  * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
756  * 	Description
757  * 		Recompute the layer 3 (e.g. IP) checksum for the packet
758  * 		associated to *skb*. Computation is incremental, so the helper
759  * 		must know the former value of the header field that was
760  * 		modified (*from*), the new value of this field (*to*), and the
761  * 		number of bytes (2 or 4) for this field, stored in *size*.
762  * 		Alternatively, it is possible to store the difference between
763  * 		the previous and the new values of the header field in *to*, by
764  * 		setting *from* and *size* to 0. For both methods, *offset*
765  * 		indicates the location of the IP checksum within the packet.
766  *
767  * 		This helper works in combination with **bpf_csum_diff**\ (),
768  * 		which does not update the checksum in-place, but offers more
769  * 		flexibility and can handle sizes larger than 2 or 4 for the
770  * 		checksum to update.
771  *
772  * 		A call to this helper is susceptible to change the underlying
773  * 		packet buffer. Therefore, at load time, all checks on pointers
774  * 		previously done by the verifier are invalidated and must be
775  * 		performed again, if the helper is used in combination with
776  * 		direct packet access.
777  * 	Return
778  * 		0 on success, or a negative error in case of failure.
779  *
780  * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
781  * 	Description
782  * 		Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
783  * 		packet associated to *skb*. Computation is incremental, so the
784  * 		helper must know the former value of the header field that was
785  * 		modified (*from*), the new value of this field (*to*), and the
786  * 		number of bytes (2 or 4) for this field, stored on the lowest
787  * 		four bits of *flags*. Alternatively, it is possible to store
788  * 		the difference between the previous and the new values of the
789  * 		header field in *to*, by setting *from* and the four lowest
790  * 		bits of *flags* to 0. For both methods, *offset* indicates the
791  * 		location of the IP checksum within the packet. In addition to
792  * 		the size of the field, *flags* can be added (bitwise OR) actual
793  * 		flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
794  * 		untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
795  * 		for updates resulting in a null checksum the value is set to
796  * 		**CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
797  * 		the checksum is to be computed against a pseudo-header.
798  *
799  * 		This helper works in combination with **bpf_csum_diff**\ (),
800  * 		which does not update the checksum in-place, but offers more
801  * 		flexibility and can handle sizes larger than 2 or 4 for the
802  * 		checksum to update.
803  *
804  * 		A call to this helper is susceptible to change the underlying
805  * 		packet buffer. Therefore, at load time, all checks on pointers
806  * 		previously done by the verifier are invalidated and must be
807  * 		performed again, if the helper is used in combination with
808  * 		direct packet access.
809  * 	Return
810  * 		0 on success, or a negative error in case of failure.
811  *
812  * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
813  * 	Description
814  * 		This special helper is used to trigger a "tail call", or in
815  * 		other words, to jump into another eBPF program. The same stack
816  * 		frame is used (but values on stack and in registers for the
817  * 		caller are not accessible to the callee). This mechanism allows
818  * 		for program chaining, either for raising the maximum number of
819  * 		available eBPF instructions, or to execute given programs in
820  * 		conditional blocks. For security reasons, there is an upper
821  * 		limit to the number of successive tail calls that can be
822  * 		performed.
823  *
824  * 		Upon call of this helper, the program attempts to jump into a
825  * 		program referenced at index *index* in *prog_array_map*, a
826  * 		special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
827  * 		*ctx*, a pointer to the context.
828  *
829  * 		If the call succeeds, the kernel immediately runs the first
830  * 		instruction of the new program. This is not a function call,
831  * 		and it never returns to the previous program. If the call
832  * 		fails, then the helper has no effect, and the caller continues
833  * 		to run its subsequent instructions. A call can fail if the
834  * 		destination program for the jump does not exist (i.e. *index*
835  * 		is superior to the number of entries in *prog_array_map*), or
836  * 		if the maximum number of tail calls has been reached for this
837  * 		chain of programs. This limit is defined in the kernel by the
838  * 		macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
839  * 		which is currently set to 32.
840  * 	Return
841  * 		0 on success, or a negative error in case of failure.
842  *
843  * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
844  * 	Description
845  * 		Clone and redirect the packet associated to *skb* to another
846  * 		net device of index *ifindex*. Both ingress and egress
847  * 		interfaces can be used for redirection. The **BPF_F_INGRESS**
848  * 		value in *flags* is used to make the distinction (ingress path
849  * 		is selected if the flag is present, egress path otherwise).
850  * 		This is the only flag supported for now.
851  *
852  * 		In comparison with **bpf_redirect**\ () helper,
853  * 		**bpf_clone_redirect**\ () has the associated cost of
854  * 		duplicating the packet buffer, but this can be executed out of
855  * 		the eBPF program. Conversely, **bpf_redirect**\ () is more
856  * 		efficient, but it is handled through an action code where the
857  * 		redirection happens only after the eBPF program has returned.
858  *
859  * 		A call to this helper is susceptible to change the underlying
860  * 		packet buffer. Therefore, at load time, all checks on pointers
861  * 		previously done by the verifier are invalidated and must be
862  * 		performed again, if the helper is used in combination with
863  * 		direct packet access.
864  * 	Return
865  * 		0 on success, or a negative error in case of failure.
866  *
867  * u64 bpf_get_current_pid_tgid(void)
868  * 	Return
869  * 		A 64-bit integer containing the current tgid and pid, and
870  * 		created as such:
871  * 		*current_task*\ **->tgid << 32 \|**
872  * 		*current_task*\ **->pid**.
873  *
874  * u64 bpf_get_current_uid_gid(void)
875  * 	Return
876  * 		A 64-bit integer containing the current GID and UID, and
877  * 		created as such: *current_gid* **<< 32 \|** *current_uid*.
878  *
879  * int bpf_get_current_comm(void *buf, u32 size_of_buf)
880  * 	Description
881  * 		Copy the **comm** attribute of the current task into *buf* of
882  * 		*size_of_buf*. The **comm** attribute contains the name of
883  * 		the executable (excluding the path) for the current task. The
884  * 		*size_of_buf* must be strictly positive. On success, the
885  * 		helper makes sure that the *buf* is NUL-terminated. On failure,
886  * 		it is filled with zeroes.
887  * 	Return
888  * 		0 on success, or a negative error in case of failure.
889  *
890  * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
891  * 	Description
892  * 		Retrieve the classid for the current task, i.e. for the net_cls
893  * 		cgroup to which *skb* belongs.
894  *
895  * 		This helper can be used on TC egress path, but not on ingress.
896  *
897  * 		The net_cls cgroup provides an interface to tag network packets
898  * 		based on a user-provided identifier for all traffic coming from
899  * 		the tasks belonging to the related cgroup. See also the related
900  * 		kernel documentation, available from the Linux sources in file
901  * 		*Documentation/admin-guide/cgroup-v1/net_cls.rst*.
902  *
903  * 		The Linux kernel has two versions for cgroups: there are
904  * 		cgroups v1 and cgroups v2. Both are available to users, who can
905  * 		use a mixture of them, but note that the net_cls cgroup is for
906  * 		cgroup v1 only. This makes it incompatible with BPF programs
907  * 		run on cgroups, which is a cgroup-v2-only feature (a socket can
908  * 		only hold data for one version of cgroups at a time).
909  *
910  * 		This helper is only available is the kernel was compiled with
911  * 		the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
912  * 		"**y**" or to "**m**".
913  * 	Return
914  * 		The classid, or 0 for the default unconfigured classid.
915  *
916  * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
917  * 	Description
918  * 		Push a *vlan_tci* (VLAN tag control information) of protocol
919  * 		*vlan_proto* to the packet associated to *skb*, then update
920  * 		the checksum. Note that if *vlan_proto* is different from
921  * 		**ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
922  * 		be **ETH_P_8021Q**.
923  *
924  * 		A call to this helper is susceptible to change the underlying
925  * 		packet buffer. Therefore, at load time, all checks on pointers
926  * 		previously done by the verifier are invalidated and must be
927  * 		performed again, if the helper is used in combination with
928  * 		direct packet access.
929  * 	Return
930  * 		0 on success, or a negative error in case of failure.
931  *
932  * int bpf_skb_vlan_pop(struct sk_buff *skb)
933  * 	Description
934  * 		Pop a VLAN header from the packet associated to *skb*.
935  *
936  * 		A call to this helper is susceptible to change the underlying
937  * 		packet buffer. Therefore, at load time, all checks on pointers
938  * 		previously done by the verifier are invalidated and must be
939  * 		performed again, if the helper is used in combination with
940  * 		direct packet access.
941  * 	Return
942  * 		0 on success, or a negative error in case of failure.
943  *
944  * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
945  * 	Description
946  * 		Get tunnel metadata. This helper takes a pointer *key* to an
947  * 		empty **struct bpf_tunnel_key** of **size**, that will be
948  * 		filled with tunnel metadata for the packet associated to *skb*.
949  * 		The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
950  * 		indicates that the tunnel is based on IPv6 protocol instead of
951  * 		IPv4.
952  *
953  * 		The **struct bpf_tunnel_key** is an object that generalizes the
954  * 		principal parameters used by various tunneling protocols into a
955  * 		single struct. This way, it can be used to easily make a
956  * 		decision based on the contents of the encapsulation header,
957  * 		"summarized" in this struct. In particular, it holds the IP
958  * 		address of the remote end (IPv4 or IPv6, depending on the case)
959  * 		in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
960  * 		this struct exposes the *key*\ **->tunnel_id**, which is
961  * 		generally mapped to a VNI (Virtual Network Identifier), making
962  * 		it programmable together with the **bpf_skb_set_tunnel_key**\
963  * 		() helper.
964  *
965  * 		Let's imagine that the following code is part of a program
966  * 		attached to the TC ingress interface, on one end of a GRE
967  * 		tunnel, and is supposed to filter out all messages coming from
968  * 		remote ends with IPv4 address other than 10.0.0.1:
969  *
970  * 		::
971  *
972  * 			int ret;
973  * 			struct bpf_tunnel_key key = {};
974  *
975  * 			ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
976  * 			if (ret < 0)
977  * 				return TC_ACT_SHOT;	// drop packet
978  *
979  * 			if (key.remote_ipv4 != 0x0a000001)
980  * 				return TC_ACT_SHOT;	// drop packet
981  *
982  * 			return TC_ACT_OK;		// accept packet
983  *
984  * 		This interface can also be used with all encapsulation devices
985  * 		that can operate in "collect metadata" mode: instead of having
986  * 		one network device per specific configuration, the "collect
987  * 		metadata" mode only requires a single device where the
988  * 		configuration can be extracted from this helper.
989  *
990  * 		This can be used together with various tunnels such as VXLan,
991  * 		Geneve, GRE or IP in IP (IPIP).
992  * 	Return
993  * 		0 on success, or a negative error in case of failure.
994  *
995  * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
996  * 	Description
997  * 		Populate tunnel metadata for packet associated to *skb.* The
998  * 		tunnel metadata is set to the contents of *key*, of *size*. The
999  * 		*flags* can be set to a combination of the following values:
1000  *
1001  * 		**BPF_F_TUNINFO_IPV6**
1002  * 			Indicate that the tunnel is based on IPv6 protocol
1003  * 			instead of IPv4.
1004  * 		**BPF_F_ZERO_CSUM_TX**
1005  * 			For IPv4 packets, add a flag to tunnel metadata
1006  * 			indicating that checksum computation should be skipped
1007  * 			and checksum set to zeroes.
1008  * 		**BPF_F_DONT_FRAGMENT**
1009  * 			Add a flag to tunnel metadata indicating that the
1010  * 			packet should not be fragmented.
1011  * 		**BPF_F_SEQ_NUMBER**
1012  * 			Add a flag to tunnel metadata indicating that a
1013  * 			sequence number should be added to tunnel header before
1014  * 			sending the packet. This flag was added for GRE
1015  * 			encapsulation, but might be used with other protocols
1016  * 			as well in the future.
1017  *
1018  * 		Here is a typical usage on the transmit path:
1019  *
1020  * 		::
1021  *
1022  * 			struct bpf_tunnel_key key;
1023  * 			     populate key ...
1024  * 			bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
1025  * 			bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
1026  *
1027  * 		See also the description of the **bpf_skb_get_tunnel_key**\ ()
1028  * 		helper for additional information.
1029  * 	Return
1030  * 		0 on success, or a negative error in case of failure.
1031  *
1032  * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
1033  * 	Description
1034  * 		Read the value of a perf event counter. This helper relies on a
1035  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
1036  * 		the perf event counter is selected when *map* is updated with
1037  * 		perf event file descriptors. The *map* is an array whose size
1038  * 		is the number of available CPUs, and each cell contains a value
1039  * 		relative to one CPU. The value to retrieve is indicated by
1040  * 		*flags*, that contains the index of the CPU to look up, masked
1041  * 		with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1042  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1043  * 		current CPU should be retrieved.
1044  *
1045  * 		Note that before Linux 4.13, only hardware perf event can be
1046  * 		retrieved.
1047  *
1048  * 		Also, be aware that the newer helper
1049  * 		**bpf_perf_event_read_value**\ () is recommended over
1050  * 		**bpf_perf_event_read**\ () in general. The latter has some ABI
1051  * 		quirks where error and counter value are used as a return code
1052  * 		(which is wrong to do since ranges may overlap). This issue is
1053  * 		fixed with **bpf_perf_event_read_value**\ (), which at the same
1054  * 		time provides more features over the **bpf_perf_event_read**\
1055  * 		() interface. Please refer to the description of
1056  * 		**bpf_perf_event_read_value**\ () for details.
1057  * 	Return
1058  * 		The value of the perf event counter read from the map, or a
1059  * 		negative error code in case of failure.
1060  *
1061  * int bpf_redirect(u32 ifindex, u64 flags)
1062  * 	Description
1063  * 		Redirect the packet to another net device of index *ifindex*.
1064  * 		This helper is somewhat similar to **bpf_clone_redirect**\
1065  * 		(), except that the packet is not cloned, which provides
1066  * 		increased performance.
1067  *
1068  * 		Except for XDP, both ingress and egress interfaces can be used
1069  * 		for redirection. The **BPF_F_INGRESS** value in *flags* is used
1070  * 		to make the distinction (ingress path is selected if the flag
1071  * 		is present, egress path otherwise). Currently, XDP only
1072  * 		supports redirection to the egress interface, and accepts no
1073  * 		flag at all.
1074  *
1075  * 		The same effect can also be attained with the more generic
1076  * 		**bpf_redirect_map**\ (), which uses a BPF map to store the
1077  * 		redirect target instead of providing it directly to the helper.
1078  * 	Return
1079  * 		For XDP, the helper returns **XDP_REDIRECT** on success or
1080  * 		**XDP_ABORTED** on error. For other program types, the values
1081  * 		are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
1082  * 		error.
1083  *
1084  * u32 bpf_get_route_realm(struct sk_buff *skb)
1085  * 	Description
1086  * 		Retrieve the realm or the route, that is to say the
1087  * 		**tclassid** field of the destination for the *skb*. The
1088  * 		indentifier retrieved is a user-provided tag, similar to the
1089  * 		one used with the net_cls cgroup (see description for
1090  * 		**bpf_get_cgroup_classid**\ () helper), but here this tag is
1091  * 		held by a route (a destination entry), not by a task.
1092  *
1093  * 		Retrieving this identifier works with the clsact TC egress hook
1094  * 		(see also **tc-bpf(8)**), or alternatively on conventional
1095  * 		classful egress qdiscs, but not on TC ingress path. In case of
1096  * 		clsact TC egress hook, this has the advantage that, internally,
1097  * 		the destination entry has not been dropped yet in the transmit
1098  * 		path. Therefore, the destination entry does not need to be
1099  * 		artificially held via **netif_keep_dst**\ () for a classful
1100  * 		qdisc until the *skb* is freed.
1101  *
1102  * 		This helper is available only if the kernel was compiled with
1103  * 		**CONFIG_IP_ROUTE_CLASSID** configuration option.
1104  * 	Return
1105  * 		The realm of the route for the packet associated to *skb*, or 0
1106  * 		if none was found.
1107  *
1108  * int bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
1109  * 	Description
1110  * 		Write raw *data* blob into a special BPF perf event held by
1111  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
1112  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
1113  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
1114  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
1115  *
1116  * 		The *flags* are used to indicate the index in *map* for which
1117  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
1118  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
1119  * 		to indicate that the index of the current CPU core should be
1120  * 		used.
1121  *
1122  * 		The value to write, of *size*, is passed through eBPF stack and
1123  * 		pointed by *data*.
1124  *
1125  * 		The context of the program *ctx* needs also be passed to the
1126  * 		helper.
1127  *
1128  * 		On user space, a program willing to read the values needs to
1129  * 		call **perf_event_open**\ () on the perf event (either for
1130  * 		one or for all CPUs) and to store the file descriptor into the
1131  * 		*map*. This must be done before the eBPF program can send data
1132  * 		into it. An example is available in file
1133  * 		*samples/bpf/trace_output_user.c* in the Linux kernel source
1134  * 		tree (the eBPF program counterpart is in
1135  * 		*samples/bpf/trace_output_kern.c*).
1136  *
1137  * 		**bpf_perf_event_output**\ () achieves better performance
1138  * 		than **bpf_trace_printk**\ () for sharing data with user
1139  * 		space, and is much better suitable for streaming data from eBPF
1140  * 		programs.
1141  *
1142  * 		Note that this helper is not restricted to tracing use cases
1143  * 		and can be used with programs attached to TC or XDP as well,
1144  * 		where it allows for passing data to user space listeners. Data
1145  * 		can be:
1146  *
1147  * 		* Only custom structs,
1148  * 		* Only the packet payload, or
1149  * 		* A combination of both.
1150  * 	Return
1151  * 		0 on success, or a negative error in case of failure.
1152  *
1153  * int bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)
1154  * 	Description
1155  * 		This helper was provided as an easy way to load data from a
1156  * 		packet. It can be used to load *len* bytes from *offset* from
1157  * 		the packet associated to *skb*, into the buffer pointed by
1158  * 		*to*.
1159  *
1160  * 		Since Linux 4.7, usage of this helper has mostly been replaced
1161  * 		by "direct packet access", enabling packet data to be
1162  * 		manipulated with *skb*\ **->data** and *skb*\ **->data_end**
1163  * 		pointing respectively to the first byte of packet data and to
1164  * 		the byte after the last byte of packet data. However, it
1165  * 		remains useful if one wishes to read large quantities of data
1166  * 		at once from a packet into the eBPF stack.
1167  * 	Return
1168  * 		0 on success, or a negative error in case of failure.
1169  *
1170  * int bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)
1171  * 	Description
1172  * 		Walk a user or a kernel stack and return its id. To achieve
1173  * 		this, the helper needs *ctx*, which is a pointer to the context
1174  * 		on which the tracing program is executed, and a pointer to a
1175  * 		*map* of type **BPF_MAP_TYPE_STACK_TRACE**.
1176  *
1177  * 		The last argument, *flags*, holds the number of stack frames to
1178  * 		skip (from 0 to 255), masked with
1179  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1180  * 		a combination of the following flags:
1181  *
1182  * 		**BPF_F_USER_STACK**
1183  * 			Collect a user space stack instead of a kernel stack.
1184  * 		**BPF_F_FAST_STACK_CMP**
1185  * 			Compare stacks by hash only.
1186  * 		**BPF_F_REUSE_STACKID**
1187  * 			If two different stacks hash into the same *stackid*,
1188  * 			discard the old one.
1189  *
1190  * 		The stack id retrieved is a 32 bit long integer handle which
1191  * 		can be further combined with other data (including other stack
1192  * 		ids) and used as a key into maps. This can be useful for
1193  * 		generating a variety of graphs (such as flame graphs or off-cpu
1194  * 		graphs).
1195  *
1196  * 		For walking a stack, this helper is an improvement over
1197  * 		**bpf_probe_read**\ (), which can be used with unrolled loops
1198  * 		but is not efficient and consumes a lot of eBPF instructions.
1199  * 		Instead, **bpf_get_stackid**\ () can collect up to
1200  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
1201  * 		this limit can be controlled with the **sysctl** program, and
1202  * 		that it should be manually increased in order to profile long
1203  * 		user stacks (such as stacks for Java programs). To do so, use:
1204  *
1205  * 		::
1206  *
1207  * 			# sysctl kernel.perf_event_max_stack=<new value>
1208  * 	Return
1209  * 		The positive or null stack id on success, or a negative error
1210  * 		in case of failure.
1211  *
1212  * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
1213  * 	Description
1214  * 		Compute a checksum difference, from the raw buffer pointed by
1215  * 		*from*, of length *from_size* (that must be a multiple of 4),
1216  * 		towards the raw buffer pointed by *to*, of size *to_size*
1217  * 		(same remark). An optional *seed* can be added to the value
1218  * 		(this can be cascaded, the seed may come from a previous call
1219  * 		to the helper).
1220  *
1221  * 		This is flexible enough to be used in several ways:
1222  *
1223  * 		* With *from_size* == 0, *to_size* > 0 and *seed* set to
1224  * 		  checksum, it can be used when pushing new data.
1225  * 		* With *from_size* > 0, *to_size* == 0 and *seed* set to
1226  * 		  checksum, it can be used when removing data from a packet.
1227  * 		* With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1228  * 		  can be used to compute a diff. Note that *from_size* and
1229  * 		  *to_size* do not need to be equal.
1230  *
1231  * 		This helper can be used in combination with
1232  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1233  * 		which one can feed in the difference computed with
1234  * 		**bpf_csum_diff**\ ().
1235  * 	Return
1236  * 		The checksum result, or a negative error code in case of
1237  * 		failure.
1238  *
1239  * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
1240  * 	Description
1241  * 		Retrieve tunnel options metadata for the packet associated to
1242  * 		*skb*, and store the raw tunnel option data to the buffer *opt*
1243  * 		of *size*.
1244  *
1245  * 		This helper can be used with encapsulation devices that can
1246  * 		operate in "collect metadata" mode (please refer to the related
1247  * 		note in the description of **bpf_skb_get_tunnel_key**\ () for
1248  * 		more details). A particular example where this can be used is
1249  * 		in combination with the Geneve encapsulation protocol, where it
1250  * 		allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1251  * 		and retrieving arbitrary TLVs (Type-Length-Value headers) from
1252  * 		the eBPF program. This allows for full customization of these
1253  * 		headers.
1254  * 	Return
1255  * 		The size of the option data retrieved.
1256  *
1257  * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
1258  * 	Description
1259  * 		Set tunnel options metadata for the packet associated to *skb*
1260  * 		to the option data contained in the raw buffer *opt* of *size*.
1261  *
1262  * 		See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1263  * 		helper for additional information.
1264  * 	Return
1265  * 		0 on success, or a negative error in case of failure.
1266  *
1267  * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1268  * 	Description
1269  * 		Change the protocol of the *skb* to *proto*. Currently
1270  * 		supported are transition from IPv4 to IPv6, and from IPv6 to
1271  * 		IPv4. The helper takes care of the groundwork for the
1272  * 		transition, including resizing the socket buffer. The eBPF
1273  * 		program is expected to fill the new headers, if any, via
1274  * 		**skb_store_bytes**\ () and to recompute the checksums with
1275  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1276  * 		(). The main case for this helper is to perform NAT64
1277  * 		operations out of an eBPF program.
1278  *
1279  * 		Internally, the GSO type is marked as dodgy so that headers are
1280  * 		checked and segments are recalculated by the GSO/GRO engine.
1281  * 		The size for GSO target is adapted as well.
1282  *
1283  * 		All values for *flags* are reserved for future usage, and must
1284  * 		be left at zero.
1285  *
1286  * 		A call to this helper is susceptible to change the underlying
1287  * 		packet buffer. Therefore, at load time, all checks on pointers
1288  * 		previously done by the verifier are invalidated and must be
1289  * 		performed again, if the helper is used in combination with
1290  * 		direct packet access.
1291  * 	Return
1292  * 		0 on success, or a negative error in case of failure.
1293  *
1294  * int bpf_skb_change_type(struct sk_buff *skb, u32 type)
1295  * 	Description
1296  * 		Change the packet type for the packet associated to *skb*. This
1297  * 		comes down to setting *skb*\ **->pkt_type** to *type*, except
1298  * 		the eBPF program does not have a write access to *skb*\
1299  * 		**->pkt_type** beside this helper. Using a helper here allows
1300  * 		for graceful handling of errors.
1301  *
1302  * 		The major use case is to change incoming *skb*s to
1303  * 		**PACKET_HOST** in a programmatic way instead of having to
1304  * 		recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1305  * 		example.
1306  *
1307  * 		Note that *type* only allows certain values. At this time, they
1308  * 		are:
1309  *
1310  * 		**PACKET_HOST**
1311  * 			Packet is for us.
1312  * 		**PACKET_BROADCAST**
1313  * 			Send packet to all.
1314  * 		**PACKET_MULTICAST**
1315  * 			Send packet to group.
1316  * 		**PACKET_OTHERHOST**
1317  * 			Send packet to someone else.
1318  * 	Return
1319  * 		0 on success, or a negative error in case of failure.
1320  *
1321  * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1322  * 	Description
1323  * 		Check whether *skb* is a descendant of the cgroup2 held by
1324  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1325  * 	Return
1326  * 		The return value depends on the result of the test, and can be:
1327  *
1328  * 		* 0, if the *skb* failed the cgroup2 descendant test.
1329  * 		* 1, if the *skb* succeeded the cgroup2 descendant test.
1330  * 		* A negative error code, if an error occurred.
1331  *
1332  * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1333  * 	Description
1334  * 		Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1335  * 		not set, in particular if the hash was cleared due to mangling,
1336  * 		recompute this hash. Later accesses to the hash can be done
1337  * 		directly with *skb*\ **->hash**.
1338  *
1339  * 		Calling **bpf_set_hash_invalid**\ (), changing a packet
1340  * 		prototype with **bpf_skb_change_proto**\ (), or calling
1341  * 		**bpf_skb_store_bytes**\ () with the
1342  * 		**BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1343  * 		the hash and to trigger a new computation for the next call to
1344  * 		**bpf_get_hash_recalc**\ ().
1345  * 	Return
1346  * 		The 32-bit hash.
1347  *
1348  * u64 bpf_get_current_task(void)
1349  * 	Return
1350  * 		A pointer to the current task struct.
1351  *
1352  * int bpf_probe_write_user(void *dst, const void *src, u32 len)
1353  * 	Description
1354  * 		Attempt in a safe way to write *len* bytes from the buffer
1355  * 		*src* to *dst* in memory. It only works for threads that are in
1356  * 		user context, and *dst* must be a valid user space address.
1357  *
1358  * 		This helper should not be used to implement any kind of
1359  * 		security mechanism because of TOC-TOU attacks, but rather to
1360  * 		debug, divert, and manipulate execution of semi-cooperative
1361  * 		processes.
1362  *
1363  * 		Keep in mind that this feature is meant for experiments, and it
1364  * 		has a risk of crashing the system and running programs.
1365  * 		Therefore, when an eBPF program using this helper is attached,
1366  * 		a warning including PID and process name is printed to kernel
1367  * 		logs.
1368  * 	Return
1369  * 		0 on success, or a negative error in case of failure.
1370  *
1371  * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1372  * 	Description
1373  * 		Check whether the probe is being run is the context of a given
1374  * 		subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1375  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1376  * 	Return
1377  * 		The return value depends on the result of the test, and can be:
1378  *
1379  * 		* 0, if the *skb* task belongs to the cgroup2.
1380  * 		* 1, if the *skb* task does not belong to the cgroup2.
1381  * 		* A negative error code, if an error occurred.
1382  *
1383  * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1384  * 	Description
1385  * 		Resize (trim or grow) the packet associated to *skb* to the
1386  * 		new *len*. The *flags* are reserved for future usage, and must
1387  * 		be left at zero.
1388  *
1389  * 		The basic idea is that the helper performs the needed work to
1390  * 		change the size of the packet, then the eBPF program rewrites
1391  * 		the rest via helpers like **bpf_skb_store_bytes**\ (),
1392  * 		**bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1393  * 		and others. This helper is a slow path utility intended for
1394  * 		replies with control messages. And because it is targeted for
1395  * 		slow path, the helper itself can afford to be slow: it
1396  * 		implicitly linearizes, unclones and drops offloads from the
1397  * 		*skb*.
1398  *
1399  * 		A call to this helper is susceptible to change the underlying
1400  * 		packet buffer. Therefore, at load time, all checks on pointers
1401  * 		previously done by the verifier are invalidated and must be
1402  * 		performed again, if the helper is used in combination with
1403  * 		direct packet access.
1404  * 	Return
1405  * 		0 on success, or a negative error in case of failure.
1406  *
1407  * int bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1408  * 	Description
1409  * 		Pull in non-linear data in case the *skb* is non-linear and not
1410  * 		all of *len* are part of the linear section. Make *len* bytes
1411  * 		from *skb* readable and writable. If a zero value is passed for
1412  * 		*len*, then the whole length of the *skb* is pulled.
1413  *
1414  * 		This helper is only needed for reading and writing with direct
1415  * 		packet access.
1416  *
1417  * 		For direct packet access, testing that offsets to access
1418  * 		are within packet boundaries (test on *skb*\ **->data_end**) is
1419  * 		susceptible to fail if offsets are invalid, or if the requested
1420  * 		data is in non-linear parts of the *skb*. On failure the
1421  * 		program can just bail out, or in the case of a non-linear
1422  * 		buffer, use a helper to make the data available. The
1423  * 		**bpf_skb_load_bytes**\ () helper is a first solution to access
1424  * 		the data. Another one consists in using **bpf_skb_pull_data**
1425  * 		to pull in once the non-linear parts, then retesting and
1426  * 		eventually access the data.
1427  *
1428  * 		At the same time, this also makes sure the *skb* is uncloned,
1429  * 		which is a necessary condition for direct write. As this needs
1430  * 		to be an invariant for the write part only, the verifier
1431  * 		detects writes and adds a prologue that is calling
1432  * 		**bpf_skb_pull_data()** to effectively unclone the *skb* from
1433  * 		the very beginning in case it is indeed cloned.
1434  *
1435  * 		A call to this helper is susceptible to change the underlying
1436  * 		packet buffer. Therefore, at load time, all checks on pointers
1437  * 		previously done by the verifier are invalidated and must be
1438  * 		performed again, if the helper is used in combination with
1439  * 		direct packet access.
1440  * 	Return
1441  * 		0 on success, or a negative error in case of failure.
1442  *
1443  * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1444  * 	Description
1445  * 		Add the checksum *csum* into *skb*\ **->csum** in case the
1446  * 		driver has supplied a checksum for the entire packet into that
1447  * 		field. Return an error otherwise. This helper is intended to be
1448  * 		used in combination with **bpf_csum_diff**\ (), in particular
1449  * 		when the checksum needs to be updated after data has been
1450  * 		written into the packet through direct packet access.
1451  * 	Return
1452  * 		The checksum on success, or a negative error code in case of
1453  * 		failure.
1454  *
1455  * void bpf_set_hash_invalid(struct sk_buff *skb)
1456  * 	Description
1457  * 		Invalidate the current *skb*\ **->hash**. It can be used after
1458  * 		mangling on headers through direct packet access, in order to
1459  * 		indicate that the hash is outdated and to trigger a
1460  * 		recalculation the next time the kernel tries to access this
1461  * 		hash or when the **bpf_get_hash_recalc**\ () helper is called.
1462  *
1463  * int bpf_get_numa_node_id(void)
1464  * 	Description
1465  * 		Return the id of the current NUMA node. The primary use case
1466  * 		for this helper is the selection of sockets for the local NUMA
1467  * 		node, when the program is attached to sockets using the
1468  * 		**SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1469  * 		but the helper is also available to other eBPF program types,
1470  * 		similarly to **bpf_get_smp_processor_id**\ ().
1471  * 	Return
1472  * 		The id of current NUMA node.
1473  *
1474  * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1475  * 	Description
1476  * 		Grows headroom of packet associated to *skb* and adjusts the
1477  * 		offset of the MAC header accordingly, adding *len* bytes of
1478  * 		space. It automatically extends and reallocates memory as
1479  * 		required.
1480  *
1481  * 		This helper can be used on a layer 3 *skb* to push a MAC header
1482  * 		for redirection into a layer 2 device.
1483  *
1484  * 		All values for *flags* are reserved for future usage, and must
1485  * 		be left at zero.
1486  *
1487  * 		A call to this helper is susceptible to change the underlying
1488  * 		packet buffer. Therefore, at load time, all checks on pointers
1489  * 		previously done by the verifier are invalidated and must be
1490  * 		performed again, if the helper is used in combination with
1491  * 		direct packet access.
1492  * 	Return
1493  * 		0 on success, or a negative error in case of failure.
1494  *
1495  * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1496  * 	Description
1497  * 		Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1498  * 		it is possible to use a negative value for *delta*. This helper
1499  * 		can be used to prepare the packet for pushing or popping
1500  * 		headers.
1501  *
1502  * 		A call to this helper is susceptible to change the underlying
1503  * 		packet buffer. Therefore, at load time, all checks on pointers
1504  * 		previously done by the verifier are invalidated and must be
1505  * 		performed again, if the helper is used in combination with
1506  * 		direct packet access.
1507  * 	Return
1508  * 		0 on success, or a negative error in case of failure.
1509  *
1510  * int bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)
1511  * 	Description
1512  * 		Copy a NUL terminated string from an unsafe kernel address
1513  * 		*unsafe_ptr* to *dst*. See bpf_probe_read_kernel_str() for
1514  * 		more details.
1515  *
1516  * 		Generally, use bpf_probe_read_user_str() or bpf_probe_read_kernel_str()
1517  * 		instead.
1518  * 	Return
1519  * 		On success, the strictly positive length of the string,
1520  * 		including the trailing NUL character. On error, a negative
1521  * 		value.
1522  *
1523  * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1524  * 	Description
1525  * 		If the **struct sk_buff** pointed by *skb* has a known socket,
1526  * 		retrieve the cookie (generated by the kernel) of this socket.
1527  * 		If no cookie has been set yet, generate a new cookie. Once
1528  * 		generated, the socket cookie remains stable for the life of the
1529  * 		socket. This helper can be useful for monitoring per socket
1530  * 		networking traffic statistics as it provides a global socket
1531  * 		identifier that can be assumed unique.
1532  * 	Return
1533  * 		A 8-byte long non-decreasing number on success, or 0 if the
1534  * 		socket field is missing inside *skb*.
1535  *
1536  * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
1537  * 	Description
1538  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1539  * 		*skb*, but gets socket from **struct bpf_sock_addr** context.
1540  * 	Return
1541  * 		A 8-byte long non-decreasing number.
1542  *
1543  * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
1544  * 	Description
1545  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1546  * 		*skb*, but gets socket from **struct bpf_sock_ops** context.
1547  * 	Return
1548  * 		A 8-byte long non-decreasing number.
1549  *
1550  * u32 bpf_get_socket_uid(struct sk_buff *skb)
1551  * 	Return
1552  * 		The owner UID of the socket associated to *skb*. If the socket
1553  * 		is **NULL**, or if it is not a full socket (i.e. if it is a
1554  * 		time-wait or a request socket instead), **overflowuid** value
1555  * 		is returned (note that **overflowuid** might also be the actual
1556  * 		UID value for the socket).
1557  *
1558  * u32 bpf_set_hash(struct sk_buff *skb, u32 hash)
1559  * 	Description
1560  * 		Set the full hash for *skb* (set the field *skb*\ **->hash**)
1561  * 		to value *hash*.
1562  * 	Return
1563  * 		0
1564  *
1565  * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, void *optval, int optlen)
1566  * 	Description
1567  * 		Emulate a call to **setsockopt()** on the socket associated to
1568  * 		*bpf_socket*, which must be a full socket. The *level* at
1569  * 		which the option resides and the name *optname* of the option
1570  * 		must be specified, see **setsockopt(2)** for more information.
1571  * 		The option value of length *optlen* is pointed by *optval*.
1572  *
1573  * 		This helper actually implements a subset of **setsockopt()**.
1574  * 		It supports the following *level*\ s:
1575  *
1576  * 		* **SOL_SOCKET**, which supports the following *optname*\ s:
1577  * 		  **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1578  * 		  **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**.
1579  * 		* **IPPROTO_TCP**, which supports the following *optname*\ s:
1580  * 		  **TCP_CONGESTION**, **TCP_BPF_IW**,
1581  * 		  **TCP_BPF_SNDCWND_CLAMP**.
1582  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1583  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1584  * 	Return
1585  * 		0 on success, or a negative error in case of failure.
1586  *
1587  * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
1588  * 	Description
1589  * 		Grow or shrink the room for data in the packet associated to
1590  * 		*skb* by *len_diff*, and according to the selected *mode*.
1591  *
1592  *		There are two supported modes at this time:
1593  *
1594  *		* **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer
1595  *		  (room space is added or removed below the layer 2 header).
1596  *
1597  * 		* **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1598  * 		  (room space is added or removed below the layer 3 header).
1599  *
1600  *		The following flags are supported at this time:
1601  *
1602  *		* **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size.
1603  *		  Adjusting mss in this way is not allowed for datagrams.
1604  *
1605  *		* **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**,
1606  *		  **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**:
1607  *		  Any new space is reserved to hold a tunnel header.
1608  *		  Configure skb offsets and other fields accordingly.
1609  *
1610  *		* **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**,
1611  *		  **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**:
1612  *		  Use with ENCAP_L3 flags to further specify the tunnel type.
1613  *
1614  *		* **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*):
1615  *		  Use with ENCAP_L3/L4 flags to further specify the tunnel
1616  *		  type; *len* is the length of the inner MAC header.
1617  *
1618  * 		A call to this helper is susceptible to change the underlying
1619  * 		packet buffer. Therefore, at load time, all checks on pointers
1620  * 		previously done by the verifier are invalidated and must be
1621  * 		performed again, if the helper is used in combination with
1622  * 		direct packet access.
1623  * 	Return
1624  * 		0 on success, or a negative error in case of failure.
1625  *
1626  * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1627  * 	Description
1628  * 		Redirect the packet to the endpoint referenced by *map* at
1629  * 		index *key*. Depending on its type, this *map* can contain
1630  * 		references to net devices (for forwarding packets through other
1631  * 		ports), or to CPUs (for redirecting XDP frames to another CPU;
1632  * 		but this is only implemented for native XDP (with driver
1633  * 		support) as of this writing).
1634  *
1635  * 		The lower two bits of *flags* are used as the return code if
1636  * 		the map lookup fails. This is so that the return value can be
1637  * 		one of the XDP program return codes up to XDP_TX, as chosen by
1638  * 		the caller. Any higher bits in the *flags* argument must be
1639  * 		unset.
1640  *
1641  * 		See also bpf_redirect(), which only supports redirecting to an
1642  * 		ifindex, but doesn't require a map to do so.
1643  * 	Return
1644  * 		**XDP_REDIRECT** on success, or the value of the two lower bits
1645  * 		of the **flags* argument on error.
1646  *
1647  * int bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags)
1648  * 	Description
1649  * 		Redirect the packet to the socket referenced by *map* (of type
1650  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1651  * 		egress interfaces can be used for redirection. The
1652  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1653  * 		distinction (ingress path is selected if the flag is present,
1654  * 		egress path otherwise). This is the only flag supported for now.
1655  * 	Return
1656  * 		**SK_PASS** on success, or **SK_DROP** on error.
1657  *
1658  * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
1659  * 	Description
1660  * 		Add an entry to, or update a *map* referencing sockets. The
1661  * 		*skops* is used as a new value for the entry associated to
1662  * 		*key*. *flags* is one of:
1663  *
1664  * 		**BPF_NOEXIST**
1665  * 			The entry for *key* must not exist in the map.
1666  * 		**BPF_EXIST**
1667  * 			The entry for *key* must already exist in the map.
1668  * 		**BPF_ANY**
1669  * 			No condition on the existence of the entry for *key*.
1670  *
1671  * 		If the *map* has eBPF programs (parser and verdict), those will
1672  * 		be inherited by the socket being added. If the socket is
1673  * 		already attached to eBPF programs, this results in an error.
1674  * 	Return
1675  * 		0 on success, or a negative error in case of failure.
1676  *
1677  * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1678  * 	Description
1679  * 		Adjust the address pointed by *xdp_md*\ **->data_meta** by
1680  * 		*delta* (which can be positive or negative). Note that this
1681  * 		operation modifies the address stored in *xdp_md*\ **->data**,
1682  * 		so the latter must be loaded only after the helper has been
1683  * 		called.
1684  *
1685  * 		The use of *xdp_md*\ **->data_meta** is optional and programs
1686  * 		are not required to use it. The rationale is that when the
1687  * 		packet is processed with XDP (e.g. as DoS filter), it is
1688  * 		possible to push further meta data along with it before passing
1689  * 		to the stack, and to give the guarantee that an ingress eBPF
1690  * 		program attached as a TC classifier on the same device can pick
1691  * 		this up for further post-processing. Since TC works with socket
1692  * 		buffers, it remains possible to set from XDP the **mark** or
1693  * 		**priority** pointers, or other pointers for the socket buffer.
1694  * 		Having this scratch space generic and programmable allows for
1695  * 		more flexibility as the user is free to store whatever meta
1696  * 		data they need.
1697  *
1698  * 		A call to this helper is susceptible to change the underlying
1699  * 		packet buffer. Therefore, at load time, all checks on pointers
1700  * 		previously done by the verifier are invalidated and must be
1701  * 		performed again, if the helper is used in combination with
1702  * 		direct packet access.
1703  * 	Return
1704  * 		0 on success, or a negative error in case of failure.
1705  *
1706  * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1707  * 	Description
1708  * 		Read the value of a perf event counter, and store it into *buf*
1709  * 		of size *buf_size*. This helper relies on a *map* of type
1710  * 		**BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1711  * 		counter is selected when *map* is updated with perf event file
1712  * 		descriptors. The *map* is an array whose size is the number of
1713  * 		available CPUs, and each cell contains a value relative to one
1714  * 		CPU. The value to retrieve is indicated by *flags*, that
1715  * 		contains the index of the CPU to look up, masked with
1716  * 		**BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1717  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1718  * 		current CPU should be retrieved.
1719  *
1720  * 		This helper behaves in a way close to
1721  * 		**bpf_perf_event_read**\ () helper, save that instead of
1722  * 		just returning the value observed, it fills the *buf*
1723  * 		structure. This allows for additional data to be retrieved: in
1724  * 		particular, the enabled and running times (in *buf*\
1725  * 		**->enabled** and *buf*\ **->running**, respectively) are
1726  * 		copied. In general, **bpf_perf_event_read_value**\ () is
1727  * 		recommended over **bpf_perf_event_read**\ (), which has some
1728  * 		ABI issues and provides fewer functionalities.
1729  *
1730  * 		These values are interesting, because hardware PMU (Performance
1731  * 		Monitoring Unit) counters are limited resources. When there are
1732  * 		more PMU based perf events opened than available counters,
1733  * 		kernel will multiplex these events so each event gets certain
1734  * 		percentage (but not all) of the PMU time. In case that
1735  * 		multiplexing happens, the number of samples or counter value
1736  * 		will not reflect the case compared to when no multiplexing
1737  * 		occurs. This makes comparison between different runs difficult.
1738  * 		Typically, the counter value should be normalized before
1739  * 		comparing to other experiments. The usual normalization is done
1740  * 		as follows.
1741  *
1742  * 		::
1743  *
1744  * 			normalized_counter = counter * t_enabled / t_running
1745  *
1746  * 		Where t_enabled is the time enabled for event and t_running is
1747  * 		the time running for event since last normalization. The
1748  * 		enabled and running times are accumulated since the perf event
1749  * 		open. To achieve scaling factor between two invocations of an
1750  * 		eBPF program, users can can use CPU id as the key (which is
1751  * 		typical for perf array usage model) to remember the previous
1752  * 		value and do the calculation inside the eBPF program.
1753  * 	Return
1754  * 		0 on success, or a negative error in case of failure.
1755  *
1756  * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
1757  * 	Description
1758  * 		For en eBPF program attached to a perf event, retrieve the
1759  * 		value of the event counter associated to *ctx* and store it in
1760  * 		the structure pointed by *buf* and of size *buf_size*. Enabled
1761  * 		and running times are also stored in the structure (see
1762  * 		description of helper **bpf_perf_event_read_value**\ () for
1763  * 		more details).
1764  * 	Return
1765  * 		0 on success, or a negative error in case of failure.
1766  *
1767  * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, void *optval, int optlen)
1768  * 	Description
1769  * 		Emulate a call to **getsockopt()** on the socket associated to
1770  * 		*bpf_socket*, which must be a full socket. The *level* at
1771  * 		which the option resides and the name *optname* of the option
1772  * 		must be specified, see **getsockopt(2)** for more information.
1773  * 		The retrieved value is stored in the structure pointed by
1774  * 		*opval* and of length *optlen*.
1775  *
1776  * 		This helper actually implements a subset of **getsockopt()**.
1777  * 		It supports the following *level*\ s:
1778  *
1779  * 		* **IPPROTO_TCP**, which supports *optname*
1780  * 		  **TCP_CONGESTION**.
1781  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1782  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1783  * 	Return
1784  * 		0 on success, or a negative error in case of failure.
1785  *
1786  * int bpf_override_return(struct pt_regs *regs, u64 rc)
1787  * 	Description
1788  * 		Used for error injection, this helper uses kprobes to override
1789  * 		the return value of the probed function, and to set it to *rc*.
1790  * 		The first argument is the context *regs* on which the kprobe
1791  * 		works.
1792  *
1793  * 		This helper works by setting setting the PC (program counter)
1794  * 		to an override function which is run in place of the original
1795  * 		probed function. This means the probed function is not run at
1796  * 		all. The replacement function just returns with the required
1797  * 		value.
1798  *
1799  * 		This helper has security implications, and thus is subject to
1800  * 		restrictions. It is only available if the kernel was compiled
1801  * 		with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1802  * 		option, and in this case it only works on functions tagged with
1803  * 		**ALLOW_ERROR_INJECTION** in the kernel code.
1804  *
1805  * 		Also, the helper is only available for the architectures having
1806  * 		the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1807  * 		x86 architecture is the only one to support this feature.
1808  * 	Return
1809  * 		0
1810  *
1811  * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
1812  * 	Description
1813  * 		Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1814  * 		for the full TCP socket associated to *bpf_sock_ops* to
1815  * 		*argval*.
1816  *
1817  * 		The primary use of this field is to determine if there should
1818  * 		be calls to eBPF programs of type
1819  * 		**BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1820  * 		code. A program of the same type can change its value, per
1821  * 		connection and as necessary, when the connection is
1822  * 		established. This field is directly accessible for reading, but
1823  * 		this helper must be used for updates in order to return an
1824  * 		error if an eBPF program tries to set a callback that is not
1825  * 		supported in the current kernel.
1826  *
1827  * 		*argval* is a flag array which can combine these flags:
1828  *
1829  * 		* **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1830  * 		* **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1831  * 		* **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1832  * 		* **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT)
1833  *
1834  * 		Therefore, this function can be used to clear a callback flag by
1835  * 		setting the appropriate bit to zero. e.g. to disable the RTO
1836  * 		callback:
1837  *
1838  * 		**bpf_sock_ops_cb_flags_set(bpf_sock,**
1839  * 			**bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)**
1840  *
1841  * 		Here are some examples of where one could call such eBPF
1842  * 		program:
1843  *
1844  * 		* When RTO fires.
1845  * 		* When a packet is retransmitted.
1846  * 		* When the connection terminates.
1847  * 		* When a packet is sent.
1848  * 		* When a packet is received.
1849  * 	Return
1850  * 		Code **-EINVAL** if the socket is not a full TCP socket;
1851  * 		otherwise, a positive number containing the bits that could not
1852  * 		be set is returned (which comes down to 0 if all bits were set
1853  * 		as required).
1854  *
1855  * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
1856  * 	Description
1857  * 		This helper is used in programs implementing policies at the
1858  * 		socket level. If the message *msg* is allowed to pass (i.e. if
1859  * 		the verdict eBPF program returns **SK_PASS**), redirect it to
1860  * 		the socket referenced by *map* (of type
1861  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1862  * 		egress interfaces can be used for redirection. The
1863  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1864  * 		distinction (ingress path is selected if the flag is present,
1865  * 		egress path otherwise). This is the only flag supported for now.
1866  * 	Return
1867  * 		**SK_PASS** on success, or **SK_DROP** on error.
1868  *
1869  * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
1870  * 	Description
1871  * 		For socket policies, apply the verdict of the eBPF program to
1872  * 		the next *bytes* (number of bytes) of message *msg*.
1873  *
1874  * 		For example, this helper can be used in the following cases:
1875  *
1876  * 		* A single **sendmsg**\ () or **sendfile**\ () system call
1877  * 		  contains multiple logical messages that the eBPF program is
1878  * 		  supposed to read and for which it should apply a verdict.
1879  * 		* An eBPF program only cares to read the first *bytes* of a
1880  * 		  *msg*. If the message has a large payload, then setting up
1881  * 		  and calling the eBPF program repeatedly for all bytes, even
1882  * 		  though the verdict is already known, would create unnecessary
1883  * 		  overhead.
1884  *
1885  * 		When called from within an eBPF program, the helper sets a
1886  * 		counter internal to the BPF infrastructure, that is used to
1887  * 		apply the last verdict to the next *bytes*. If *bytes* is
1888  * 		smaller than the current data being processed from a
1889  * 		**sendmsg**\ () or **sendfile**\ () system call, the first
1890  * 		*bytes* will be sent and the eBPF program will be re-run with
1891  * 		the pointer for start of data pointing to byte number *bytes*
1892  * 		**+ 1**. If *bytes* is larger than the current data being
1893  * 		processed, then the eBPF verdict will be applied to multiple
1894  * 		**sendmsg**\ () or **sendfile**\ () calls until *bytes* are
1895  * 		consumed.
1896  *
1897  * 		Note that if a socket closes with the internal counter holding
1898  * 		a non-zero value, this is not a problem because data is not
1899  * 		being buffered for *bytes* and is sent as it is received.
1900  * 	Return
1901  * 		0
1902  *
1903  * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
1904  * 	Description
1905  * 		For socket policies, prevent the execution of the verdict eBPF
1906  * 		program for message *msg* until *bytes* (byte number) have been
1907  * 		accumulated.
1908  *
1909  * 		This can be used when one needs a specific number of bytes
1910  * 		before a verdict can be assigned, even if the data spans
1911  * 		multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
1912  * 		case would be a user calling **sendmsg**\ () repeatedly with
1913  * 		1-byte long message segments. Obviously, this is bad for
1914  * 		performance, but it is still valid. If the eBPF program needs
1915  * 		*bytes* bytes to validate a header, this helper can be used to
1916  * 		prevent the eBPF program to be called again until *bytes* have
1917  * 		been accumulated.
1918  * 	Return
1919  * 		0
1920  *
1921  * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
1922  * 	Description
1923  * 		For socket policies, pull in non-linear data from user space
1924  * 		for *msg* and set pointers *msg*\ **->data** and *msg*\
1925  * 		**->data_end** to *start* and *end* bytes offsets into *msg*,
1926  * 		respectively.
1927  *
1928  * 		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
1929  * 		*msg* it can only parse data that the (**data**, **data_end**)
1930  * 		pointers have already consumed. For **sendmsg**\ () hooks this
1931  * 		is likely the first scatterlist element. But for calls relying
1932  * 		on the **sendpage** handler (e.g. **sendfile**\ ()) this will
1933  * 		be the range (**0**, **0**) because the data is shared with
1934  * 		user space and by default the objective is to avoid allowing
1935  * 		user space to modify data while (or after) eBPF verdict is
1936  * 		being decided. This helper can be used to pull in data and to
1937  * 		set the start and end pointer to given values. Data will be
1938  * 		copied if necessary (i.e. if data was not linear and if start
1939  * 		and end pointers do not point to the same chunk).
1940  *
1941  * 		A call to this helper is susceptible to change the underlying
1942  * 		packet buffer. Therefore, at load time, all checks on pointers
1943  * 		previously done by the verifier are invalidated and must be
1944  * 		performed again, if the helper is used in combination with
1945  * 		direct packet access.
1946  *
1947  * 		All values for *flags* are reserved for future usage, and must
1948  * 		be left at zero.
1949  * 	Return
1950  * 		0 on success, or a negative error in case of failure.
1951  *
1952  * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
1953  * 	Description
1954  * 		Bind the socket associated to *ctx* to the address pointed by
1955  * 		*addr*, of length *addr_len*. This allows for making outgoing
1956  * 		connection from the desired IP address, which can be useful for
1957  * 		example when all processes inside a cgroup should use one
1958  * 		single IP address on a host that has multiple IP configured.
1959  *
1960  * 		This helper works for IPv4 and IPv6, TCP and UDP sockets. The
1961  * 		domain (*addr*\ **->sa_family**) must be **AF_INET** (or
1962  * 		**AF_INET6**). Looking for a free port to bind to can be
1963  * 		expensive, therefore binding to port is not permitted by the
1964  * 		helper: *addr*\ **->sin_port** (or **sin6_port**, respectively)
1965  * 		must be set to zero.
1966  * 	Return
1967  * 		0 on success, or a negative error in case of failure.
1968  *
1969  * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
1970  * 	Description
1971  * 		Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
1972  * 		only possible to shrink the packet as of this writing,
1973  * 		therefore *delta* must be a negative integer.
1974  *
1975  * 		A call to this helper is susceptible to change the underlying
1976  * 		packet buffer. Therefore, at load time, all checks on pointers
1977  * 		previously done by the verifier are invalidated and must be
1978  * 		performed again, if the helper is used in combination with
1979  * 		direct packet access.
1980  * 	Return
1981  * 		0 on success, or a negative error in case of failure.
1982  *
1983  * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
1984  * 	Description
1985  * 		Retrieve the XFRM state (IP transform framework, see also
1986  * 		**ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
1987  *
1988  * 		The retrieved value is stored in the **struct bpf_xfrm_state**
1989  * 		pointed by *xfrm_state* and of length *size*.
1990  *
1991  * 		All values for *flags* are reserved for future usage, and must
1992  * 		be left at zero.
1993  *
1994  * 		This helper is available only if the kernel was compiled with
1995  * 		**CONFIG_XFRM** configuration option.
1996  * 	Return
1997  * 		0 on success, or a negative error in case of failure.
1998  *
1999  * int bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)
2000  * 	Description
2001  * 		Return a user or a kernel stack in bpf program provided buffer.
2002  * 		To achieve this, the helper needs *ctx*, which is a pointer
2003  * 		to the context on which the tracing program is executed.
2004  * 		To store the stacktrace, the bpf program provides *buf* with
2005  * 		a nonnegative *size*.
2006  *
2007  * 		The last argument, *flags*, holds the number of stack frames to
2008  * 		skip (from 0 to 255), masked with
2009  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
2010  * 		the following flags:
2011  *
2012  * 		**BPF_F_USER_STACK**
2013  * 			Collect a user space stack instead of a kernel stack.
2014  * 		**BPF_F_USER_BUILD_ID**
2015  * 			Collect buildid+offset instead of ips for user stack,
2016  * 			only valid if **BPF_F_USER_STACK** is also specified.
2017  *
2018  * 		**bpf_get_stack**\ () can collect up to
2019  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
2020  * 		to sufficient large buffer size. Note that
2021  * 		this limit can be controlled with the **sysctl** program, and
2022  * 		that it should be manually increased in order to profile long
2023  * 		user stacks (such as stacks for Java programs). To do so, use:
2024  *
2025  * 		::
2026  *
2027  * 			# sysctl kernel.perf_event_max_stack=<new value>
2028  * 	Return
2029  * 		A non-negative value equal to or less than *size* on success,
2030  * 		or a negative error in case of failure.
2031  *
2032  * int bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header)
2033  * 	Description
2034  * 		This helper is similar to **bpf_skb_load_bytes**\ () in that
2035  * 		it provides an easy way to load *len* bytes from *offset*
2036  * 		from the packet associated to *skb*, into the buffer pointed
2037  * 		by *to*. The difference to **bpf_skb_load_bytes**\ () is that
2038  * 		a fifth argument *start_header* exists in order to select a
2039  * 		base offset to start from. *start_header* can be one of:
2040  *
2041  * 		**BPF_HDR_START_MAC**
2042  * 			Base offset to load data from is *skb*'s mac header.
2043  * 		**BPF_HDR_START_NET**
2044  * 			Base offset to load data from is *skb*'s network header.
2045  *
2046  * 		In general, "direct packet access" is the preferred method to
2047  * 		access packet data, however, this helper is in particular useful
2048  * 		in socket filters where *skb*\ **->data** does not always point
2049  * 		to the start of the mac header and where "direct packet access"
2050  * 		is not available.
2051  * 	Return
2052  * 		0 on success, or a negative error in case of failure.
2053  *
2054  * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
2055  *	Description
2056  *		Do FIB lookup in kernel tables using parameters in *params*.
2057  *		If lookup is successful and result shows packet is to be
2058  *		forwarded, the neighbor tables are searched for the nexthop.
2059  *		If successful (ie., FIB lookup shows forwarding and nexthop
2060  *		is resolved), the nexthop address is returned in ipv4_dst
2061  *		or ipv6_dst based on family, smac is set to mac address of
2062  *		egress device, dmac is set to nexthop mac address, rt_metric
2063  *		is set to metric from route (IPv4/IPv6 only), and ifindex
2064  *		is set to the device index of the nexthop from the FIB lookup.
2065  *
2066  *		*plen* argument is the size of the passed in struct.
2067  *		*flags* argument can be a combination of one or more of the
2068  *		following values:
2069  *
2070  *		**BPF_FIB_LOOKUP_DIRECT**
2071  *			Do a direct table lookup vs full lookup using FIB
2072  *			rules.
2073  *		**BPF_FIB_LOOKUP_OUTPUT**
2074  *			Perform lookup from an egress perspective (default is
2075  *			ingress).
2076  *
2077  *		*ctx* is either **struct xdp_md** for XDP programs or
2078  *		**struct sk_buff** tc cls_act programs.
2079  *	Return
2080  *		* < 0 if any input argument is invalid
2081  *		*   0 on success (packet is forwarded, nexthop neighbor exists)
2082  *		* > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
2083  *		  packet is not forwarded or needs assist from full stack
2084  *
2085  * int bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
2086  *	Description
2087  *		Add an entry to, or update a sockhash *map* referencing sockets.
2088  *		The *skops* is used as a new value for the entry associated to
2089  *		*key*. *flags* is one of:
2090  *
2091  *		**BPF_NOEXIST**
2092  *			The entry for *key* must not exist in the map.
2093  *		**BPF_EXIST**
2094  *			The entry for *key* must already exist in the map.
2095  *		**BPF_ANY**
2096  *			No condition on the existence of the entry for *key*.
2097  *
2098  *		If the *map* has eBPF programs (parser and verdict), those will
2099  *		be inherited by the socket being added. If the socket is
2100  *		already attached to eBPF programs, this results in an error.
2101  *	Return
2102  *		0 on success, or a negative error in case of failure.
2103  *
2104  * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
2105  *	Description
2106  *		This helper is used in programs implementing policies at the
2107  *		socket level. If the message *msg* is allowed to pass (i.e. if
2108  *		the verdict eBPF program returns **SK_PASS**), redirect it to
2109  *		the socket referenced by *map* (of type
2110  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2111  *		egress interfaces can be used for redirection. The
2112  *		**BPF_F_INGRESS** value in *flags* is used to make the
2113  *		distinction (ingress path is selected if the flag is present,
2114  *		egress path otherwise). This is the only flag supported for now.
2115  *	Return
2116  *		**SK_PASS** on success, or **SK_DROP** on error.
2117  *
2118  * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
2119  *	Description
2120  *		This helper is used in programs implementing policies at the
2121  *		skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
2122  *		if the verdeict eBPF program returns **SK_PASS**), redirect it
2123  *		to the socket referenced by *map* (of type
2124  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2125  *		egress interfaces can be used for redirection. The
2126  *		**BPF_F_INGRESS** value in *flags* is used to make the
2127  *		distinction (ingress path is selected if the flag is present,
2128  *		egress otherwise). This is the only flag supported for now.
2129  *	Return
2130  *		**SK_PASS** on success, or **SK_DROP** on error.
2131  *
2132  * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
2133  *	Description
2134  *		Encapsulate the packet associated to *skb* within a Layer 3
2135  *		protocol header. This header is provided in the buffer at
2136  *		address *hdr*, with *len* its size in bytes. *type* indicates
2137  *		the protocol of the header and can be one of:
2138  *
2139  *		**BPF_LWT_ENCAP_SEG6**
2140  *			IPv6 encapsulation with Segment Routing Header
2141  *			(**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
2142  *			the IPv6 header is computed by the kernel.
2143  *		**BPF_LWT_ENCAP_SEG6_INLINE**
2144  *			Only works if *skb* contains an IPv6 packet. Insert a
2145  *			Segment Routing Header (**struct ipv6_sr_hdr**) inside
2146  *			the IPv6 header.
2147  *		**BPF_LWT_ENCAP_IP**
2148  *			IP encapsulation (GRE/GUE/IPIP/etc). The outer header
2149  *			must be IPv4 or IPv6, followed by zero or more
2150  *			additional headers, up to **LWT_BPF_MAX_HEADROOM**
2151  *			total bytes in all prepended headers. Please note that
2152  *			if **skb_is_gso**\ (*skb*) is true, no more than two
2153  *			headers can be prepended, and the inner header, if
2154  *			present, should be either GRE or UDP/GUE.
2155  *
2156  *		**BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs
2157  *		of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can
2158  *		be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and
2159  *		**BPF_PROG_TYPE_LWT_XMIT**.
2160  *
2161  * 		A call to this helper is susceptible to change the underlying
2162  * 		packet buffer. Therefore, at load time, all checks on pointers
2163  * 		previously done by the verifier are invalidated and must be
2164  * 		performed again, if the helper is used in combination with
2165  * 		direct packet access.
2166  *	Return
2167  * 		0 on success, or a negative error in case of failure.
2168  *
2169  * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
2170  *	Description
2171  *		Store *len* bytes from address *from* into the packet
2172  *		associated to *skb*, at *offset*. Only the flags, tag and TLVs
2173  *		inside the outermost IPv6 Segment Routing Header can be
2174  *		modified through this helper.
2175  *
2176  * 		A call to this helper is susceptible to change the underlying
2177  * 		packet buffer. Therefore, at load time, all checks on pointers
2178  * 		previously done by the verifier are invalidated and must be
2179  * 		performed again, if the helper is used in combination with
2180  * 		direct packet access.
2181  *	Return
2182  * 		0 on success, or a negative error in case of failure.
2183  *
2184  * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
2185  *	Description
2186  *		Adjust the size allocated to TLVs in the outermost IPv6
2187  *		Segment Routing Header contained in the packet associated to
2188  *		*skb*, at position *offset* by *delta* bytes. Only offsets
2189  *		after the segments are accepted. *delta* can be as well
2190  *		positive (growing) as negative (shrinking).
2191  *
2192  * 		A call to this helper is susceptible to change the underlying
2193  * 		packet buffer. Therefore, at load time, all checks on pointers
2194  * 		previously done by the verifier are invalidated and must be
2195  * 		performed again, if the helper is used in combination with
2196  * 		direct packet access.
2197  *	Return
2198  * 		0 on success, or a negative error in case of failure.
2199  *
2200  * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
2201  *	Description
2202  *		Apply an IPv6 Segment Routing action of type *action* to the
2203  *		packet associated to *skb*. Each action takes a parameter
2204  *		contained at address *param*, and of length *param_len* bytes.
2205  *		*action* can be one of:
2206  *
2207  *		**SEG6_LOCAL_ACTION_END_X**
2208  *			End.X action: Endpoint with Layer-3 cross-connect.
2209  *			Type of *param*: **struct in6_addr**.
2210  *		**SEG6_LOCAL_ACTION_END_T**
2211  *			End.T action: Endpoint with specific IPv6 table lookup.
2212  *			Type of *param*: **int**.
2213  *		**SEG6_LOCAL_ACTION_END_B6**
2214  *			End.B6 action: Endpoint bound to an SRv6 policy.
2215  *			Type of *param*: **struct ipv6_sr_hdr**.
2216  *		**SEG6_LOCAL_ACTION_END_B6_ENCAP**
2217  *			End.B6.Encap action: Endpoint bound to an SRv6
2218  *			encapsulation policy.
2219  *			Type of *param*: **struct ipv6_sr_hdr**.
2220  *
2221  * 		A call to this helper is susceptible to change the underlying
2222  * 		packet buffer. Therefore, at load time, all checks on pointers
2223  * 		previously done by the verifier are invalidated and must be
2224  * 		performed again, if the helper is used in combination with
2225  * 		direct packet access.
2226  *	Return
2227  * 		0 on success, or a negative error in case of failure.
2228  *
2229  * int bpf_rc_repeat(void *ctx)
2230  *	Description
2231  *		This helper is used in programs implementing IR decoding, to
2232  *		report a successfully decoded repeat key message. This delays
2233  *		the generation of a key up event for previously generated
2234  *		key down event.
2235  *
2236  *		Some IR protocols like NEC have a special IR message for
2237  *		repeating last button, for when a button is held down.
2238  *
2239  *		The *ctx* should point to the lirc sample as passed into
2240  *		the program.
2241  *
2242  *		This helper is only available is the kernel was compiled with
2243  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2244  *		"**y**".
2245  *	Return
2246  *		0
2247  *
2248  * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
2249  *	Description
2250  *		This helper is used in programs implementing IR decoding, to
2251  *		report a successfully decoded key press with *scancode*,
2252  *		*toggle* value in the given *protocol*. The scancode will be
2253  *		translated to a keycode using the rc keymap, and reported as
2254  *		an input key down event. After a period a key up event is
2255  *		generated. This period can be extended by calling either
2256  *		**bpf_rc_keydown**\ () again with the same values, or calling
2257  *		**bpf_rc_repeat**\ ().
2258  *
2259  *		Some protocols include a toggle bit, in case the button	was
2260  *		released and pressed again between consecutive scancodes.
2261  *
2262  *		The *ctx* should point to the lirc sample as passed into
2263  *		the program.
2264  *
2265  *		The *protocol* is the decoded protocol number (see
2266  *		**enum rc_proto** for some predefined values).
2267  *
2268  *		This helper is only available is the kernel was compiled with
2269  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2270  *		"**y**".
2271  *	Return
2272  *		0
2273  *
2274  * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
2275  * 	Description
2276  * 		Return the cgroup v2 id of the socket associated with the *skb*.
2277  * 		This is roughly similar to the **bpf_get_cgroup_classid**\ ()
2278  * 		helper for cgroup v1 by providing a tag resp. identifier that
2279  * 		can be matched on or used for map lookups e.g. to implement
2280  * 		policy. The cgroup v2 id of a given path in the hierarchy is
2281  * 		exposed in user space through the f_handle API in order to get
2282  * 		to the same 64-bit id.
2283  *
2284  * 		This helper can be used on TC egress path, but not on ingress,
2285  * 		and is available only if the kernel was compiled with the
2286  * 		**CONFIG_SOCK_CGROUP_DATA** configuration option.
2287  * 	Return
2288  * 		The id is returned or 0 in case the id could not be retrieved.
2289  *
2290  * u64 bpf_get_current_cgroup_id(void)
2291  * 	Return
2292  * 		A 64-bit integer containing the current cgroup id based
2293  * 		on the cgroup within which the current task is running.
2294  *
2295  * void *bpf_get_local_storage(void *map, u64 flags)
2296  *	Description
2297  *		Get the pointer to the local storage area.
2298  *		The type and the size of the local storage is defined
2299  *		by the *map* argument.
2300  *		The *flags* meaning is specific for each map type,
2301  *		and has to be 0 for cgroup local storage.
2302  *
2303  *		Depending on the BPF program type, a local storage area
2304  *		can be shared between multiple instances of the BPF program,
2305  *		running simultaneously.
2306  *
2307  *		A user should care about the synchronization by himself.
2308  *		For example, by using the **BPF_STX_XADD** instruction to alter
2309  *		the shared data.
2310  *	Return
2311  *		A pointer to the local storage area.
2312  *
2313  * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
2314  *	Description
2315  *		Select a **SO_REUSEPORT** socket from a
2316  *		**BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*.
2317  *		It checks the selected socket is matching the incoming
2318  *		request in the socket buffer.
2319  *	Return
2320  *		0 on success, or a negative error in case of failure.
2321  *
2322  * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
2323  *	Description
2324  *		Return id of cgroup v2 that is ancestor of cgroup associated
2325  *		with the *skb* at the *ancestor_level*.  The root cgroup is at
2326  *		*ancestor_level* zero and each step down the hierarchy
2327  *		increments the level. If *ancestor_level* == level of cgroup
2328  *		associated with *skb*, then return value will be same as that
2329  *		of **bpf_skb_cgroup_id**\ ().
2330  *
2331  *		The helper is useful to implement policies based on cgroups
2332  *		that are upper in hierarchy than immediate cgroup associated
2333  *		with *skb*.
2334  *
2335  *		The format of returned id and helper limitations are same as in
2336  *		**bpf_skb_cgroup_id**\ ().
2337  *	Return
2338  *		The id is returned or 0 in case the id could not be retrieved.
2339  *
2340  * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2341  *	Description
2342  *		Look for TCP socket matching *tuple*, optionally in a child
2343  *		network namespace *netns*. The return value must be checked,
2344  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2345  *
2346  *		The *ctx* should point to the context of the program, such as
2347  *		the skb or socket (depending on the hook in use). This is used
2348  *		to determine the base network namespace for the lookup.
2349  *
2350  *		*tuple_size* must be one of:
2351  *
2352  *		**sizeof**\ (*tuple*\ **->ipv4**)
2353  *			Look for an IPv4 socket.
2354  *		**sizeof**\ (*tuple*\ **->ipv6**)
2355  *			Look for an IPv6 socket.
2356  *
2357  *		If the *netns* is a negative signed 32-bit integer, then the
2358  *		socket lookup table in the netns associated with the *ctx* will
2359  *		will be used. For the TC hooks, this is the netns of the device
2360  *		in the skb. For socket hooks, this is the netns of the socket.
2361  *		If *netns* is any other signed 32-bit value greater than or
2362  *		equal to zero then it specifies the ID of the netns relative to
2363  *		the netns associated with the *ctx*. *netns* values beyond the
2364  *		range of 32-bit integers are reserved for future use.
2365  *
2366  *		All values for *flags* are reserved for future usage, and must
2367  *		be left at zero.
2368  *
2369  *		This helper is available only if the kernel was compiled with
2370  *		**CONFIG_NET** configuration option.
2371  *	Return
2372  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2373  *		For sockets with reuseport option, the **struct bpf_sock**
2374  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2375  *		tuple.
2376  *
2377  * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2378  *	Description
2379  *		Look for UDP socket matching *tuple*, optionally in a child
2380  *		network namespace *netns*. The return value must be checked,
2381  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2382  *
2383  *		The *ctx* should point to the context of the program, such as
2384  *		the skb or socket (depending on the hook in use). This is used
2385  *		to determine the base network namespace for the lookup.
2386  *
2387  *		*tuple_size* must be one of:
2388  *
2389  *		**sizeof**\ (*tuple*\ **->ipv4**)
2390  *			Look for an IPv4 socket.
2391  *		**sizeof**\ (*tuple*\ **->ipv6**)
2392  *			Look for an IPv6 socket.
2393  *
2394  *		If the *netns* is a negative signed 32-bit integer, then the
2395  *		socket lookup table in the netns associated with the *ctx* will
2396  *		will be used. For the TC hooks, this is the netns of the device
2397  *		in the skb. For socket hooks, this is the netns of the socket.
2398  *		If *netns* is any other signed 32-bit value greater than or
2399  *		equal to zero then it specifies the ID of the netns relative to
2400  *		the netns associated with the *ctx*. *netns* values beyond the
2401  *		range of 32-bit integers are reserved for future use.
2402  *
2403  *		All values for *flags* are reserved for future usage, and must
2404  *		be left at zero.
2405  *
2406  *		This helper is available only if the kernel was compiled with
2407  *		**CONFIG_NET** configuration option.
2408  *	Return
2409  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2410  *		For sockets with reuseport option, the **struct bpf_sock**
2411  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2412  *		tuple.
2413  *
2414  * int bpf_sk_release(struct bpf_sock *sock)
2415  *	Description
2416  *		Release the reference held by *sock*. *sock* must be a
2417  *		non-**NULL** pointer that was returned from
2418  *		**bpf_sk_lookup_xxx**\ ().
2419  *	Return
2420  *		0 on success, or a negative error in case of failure.
2421  *
2422  * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
2423  * 	Description
2424  * 		Push an element *value* in *map*. *flags* is one of:
2425  *
2426  * 		**BPF_EXIST**
2427  * 			If the queue/stack is full, the oldest element is
2428  * 			removed to make room for this.
2429  * 	Return
2430  * 		0 on success, or a negative error in case of failure.
2431  *
2432  * int bpf_map_pop_elem(struct bpf_map *map, void *value)
2433  * 	Description
2434  * 		Pop an element from *map*.
2435  * 	Return
2436  * 		0 on success, or a negative error in case of failure.
2437  *
2438  * int bpf_map_peek_elem(struct bpf_map *map, void *value)
2439  * 	Description
2440  * 		Get an element from *map* without removing it.
2441  * 	Return
2442  * 		0 on success, or a negative error in case of failure.
2443  *
2444  * int bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
2445  *	Description
2446  *		For socket policies, insert *len* bytes into *msg* at offset
2447  *		*start*.
2448  *
2449  *		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2450  *		*msg* it may want to insert metadata or options into the *msg*.
2451  *		This can later be read and used by any of the lower layer BPF
2452  *		hooks.
2453  *
2454  *		This helper may fail if under memory pressure (a malloc
2455  *		fails) in these cases BPF programs will get an appropriate
2456  *		error and BPF programs will need to handle them.
2457  *	Return
2458  *		0 on success, or a negative error in case of failure.
2459  *
2460  * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
2461  *	Description
2462  *		Will remove *len* bytes from a *msg* starting at byte *start*.
2463  *		This may result in **ENOMEM** errors under certain situations if
2464  *		an allocation and copy are required due to a full ring buffer.
2465  *		However, the helper will try to avoid doing the allocation
2466  *		if possible. Other errors can occur if input parameters are
2467  *		invalid either due to *start* byte not being valid part of *msg*
2468  *		payload and/or *pop* value being to large.
2469  *	Return
2470  *		0 on success, or a negative error in case of failure.
2471  *
2472  * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
2473  *	Description
2474  *		This helper is used in programs implementing IR decoding, to
2475  *		report a successfully decoded pointer movement.
2476  *
2477  *		The *ctx* should point to the lirc sample as passed into
2478  *		the program.
2479  *
2480  *		This helper is only available is the kernel was compiled with
2481  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2482  *		"**y**".
2483  *	Return
2484  *		0
2485  *
2486  * int bpf_spin_lock(struct bpf_spin_lock *lock)
2487  *	Description
2488  *		Acquire a spinlock represented by the pointer *lock*, which is
2489  *		stored as part of a value of a map. Taking the lock allows to
2490  *		safely update the rest of the fields in that value. The
2491  *		spinlock can (and must) later be released with a call to
2492  *		**bpf_spin_unlock**\ (\ *lock*\ ).
2493  *
2494  *		Spinlocks in BPF programs come with a number of restrictions
2495  *		and constraints:
2496  *
2497  *		* **bpf_spin_lock** objects are only allowed inside maps of
2498  *		  types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
2499  *		  list could be extended in the future).
2500  *		* BTF description of the map is mandatory.
2501  *		* The BPF program can take ONE lock at a time, since taking two
2502  *		  or more could cause dead locks.
2503  *		* Only one **struct bpf_spin_lock** is allowed per map element.
2504  *		* When the lock is taken, calls (either BPF to BPF or helpers)
2505  *		  are not allowed.
2506  *		* The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
2507  *		  allowed inside a spinlock-ed region.
2508  *		* The BPF program MUST call **bpf_spin_unlock**\ () to release
2509  *		  the lock, on all execution paths, before it returns.
2510  *		* The BPF program can access **struct bpf_spin_lock** only via
2511  *		  the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
2512  *		  helpers. Loading or storing data into the **struct
2513  *		  bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
2514  *		* To use the **bpf_spin_lock**\ () helper, the BTF description
2515  *		  of the map value must be a struct and have **struct
2516  *		  bpf_spin_lock** *anyname*\ **;** field at the top level.
2517  *		  Nested lock inside another struct is not allowed.
2518  *		* The **struct bpf_spin_lock** *lock* field in a map value must
2519  *		  be aligned on a multiple of 4 bytes in that value.
2520  *		* Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
2521  *		  the **bpf_spin_lock** field to user space.
2522  *		* Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
2523  *		  a BPF program, do not update the **bpf_spin_lock** field.
2524  *		* **bpf_spin_lock** cannot be on the stack or inside a
2525  *		  networking packet (it can only be inside of a map values).
2526  *		* **bpf_spin_lock** is available to root only.
2527  *		* Tracing programs and socket filter programs cannot use
2528  *		  **bpf_spin_lock**\ () due to insufficient preemption checks
2529  *		  (but this may change in the future).
2530  *		* **bpf_spin_lock** is not allowed in inner maps of map-in-map.
2531  *	Return
2532  *		0
2533  *
2534  * int bpf_spin_unlock(struct bpf_spin_lock *lock)
2535  *	Description
2536  *		Release the *lock* previously locked by a call to
2537  *		**bpf_spin_lock**\ (\ *lock*\ ).
2538  *	Return
2539  *		0
2540  *
2541  * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
2542  *	Description
2543  *		This helper gets a **struct bpf_sock** pointer such
2544  *		that all the fields in this **bpf_sock** can be accessed.
2545  *	Return
2546  *		A **struct bpf_sock** pointer on success, or **NULL** in
2547  *		case of failure.
2548  *
2549  * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
2550  *	Description
2551  *		This helper gets a **struct bpf_tcp_sock** pointer from a
2552  *		**struct bpf_sock** pointer.
2553  *	Return
2554  *		A **struct bpf_tcp_sock** pointer on success, or **NULL** in
2555  *		case of failure.
2556  *
2557  * int bpf_skb_ecn_set_ce(struct sk_buff *skb)
2558  *	Description
2559  *		Set ECN (Explicit Congestion Notification) field of IP header
2560  *		to **CE** (Congestion Encountered) if current value is **ECT**
2561  *		(ECN Capable Transport). Otherwise, do nothing. Works with IPv6
2562  *		and IPv4.
2563  *	Return
2564  *		1 if the **CE** flag is set (either by the current helper call
2565  *		or because it was already present), 0 if it is not set.
2566  *
2567  * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
2568  *	Description
2569  *		Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
2570  *		**bpf_sk_release**\ () is unnecessary and not allowed.
2571  *	Return
2572  *		A **struct bpf_sock** pointer on success, or **NULL** in
2573  *		case of failure.
2574  *
2575  * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2576  *	Description
2577  *		Look for TCP socket matching *tuple*, optionally in a child
2578  *		network namespace *netns*. The return value must be checked,
2579  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2580  *
2581  *		This function is identical to **bpf_sk_lookup_tcp**\ (), except
2582  *		that it also returns timewait or request sockets. Use
2583  *		**bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the
2584  *		full structure.
2585  *
2586  *		This helper is available only if the kernel was compiled with
2587  *		**CONFIG_NET** configuration option.
2588  *	Return
2589  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2590  *		For sockets with reuseport option, the **struct bpf_sock**
2591  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2592  *		tuple.
2593  *
2594  * int bpf_tcp_check_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2595  * 	Description
2596  * 		Check whether *iph* and *th* contain a valid SYN cookie ACK for
2597  * 		the listening socket in *sk*.
2598  *
2599  * 		*iph* points to the start of the IPv4 or IPv6 header, while
2600  * 		*iph_len* contains **sizeof**\ (**struct iphdr**) or
2601  * 		**sizeof**\ (**struct ip6hdr**).
2602  *
2603  * 		*th* points to the start of the TCP header, while *th_len*
2604  * 		contains **sizeof**\ (**struct tcphdr**).
2605  *
2606  * 	Return
2607  * 		0 if *iph* and *th* are a valid SYN cookie ACK, or a negative
2608  * 		error otherwise.
2609  *
2610  * int bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)
2611  *	Description
2612  *		Get name of sysctl in /proc/sys/ and copy it into provided by
2613  *		program buffer *buf* of size *buf_len*.
2614  *
2615  *		The buffer is always NUL terminated, unless it's zero-sized.
2616  *
2617  *		If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is
2618  *		copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name
2619  *		only (e.g. "tcp_mem").
2620  *	Return
2621  *		Number of character copied (not including the trailing NUL).
2622  *
2623  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2624  *		truncated name in this case).
2625  *
2626  * int bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2627  *	Description
2628  *		Get current value of sysctl as it is presented in /proc/sys
2629  *		(incl. newline, etc), and copy it as a string into provided
2630  *		by program buffer *buf* of size *buf_len*.
2631  *
2632  *		The whole value is copied, no matter what file position user
2633  *		space issued e.g. sys_read at.
2634  *
2635  *		The buffer is always NUL terminated, unless it's zero-sized.
2636  *	Return
2637  *		Number of character copied (not including the trailing NUL).
2638  *
2639  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2640  *		truncated name in this case).
2641  *
2642  *		**-EINVAL** if current value was unavailable, e.g. because
2643  *		sysctl is uninitialized and read returns -EIO for it.
2644  *
2645  * int bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2646  *	Description
2647  *		Get new value being written by user space to sysctl (before
2648  *		the actual write happens) and copy it as a string into
2649  *		provided by program buffer *buf* of size *buf_len*.
2650  *
2651  *		User space may write new value at file position > 0.
2652  *
2653  *		The buffer is always NUL terminated, unless it's zero-sized.
2654  *	Return
2655  *		Number of character copied (not including the trailing NUL).
2656  *
2657  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2658  *		truncated name in this case).
2659  *
2660  *		**-EINVAL** if sysctl is being read.
2661  *
2662  * int bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len)
2663  *	Description
2664  *		Override new value being written by user space to sysctl with
2665  *		value provided by program in buffer *buf* of size *buf_len*.
2666  *
2667  *		*buf* should contain a string in same form as provided by user
2668  *		space on sysctl write.
2669  *
2670  *		User space may write new value at file position > 0. To override
2671  *		the whole sysctl value file position should be set to zero.
2672  *	Return
2673  *		0 on success.
2674  *
2675  *		**-E2BIG** if the *buf_len* is too big.
2676  *
2677  *		**-EINVAL** if sysctl is being read.
2678  *
2679  * int bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)
2680  *	Description
2681  *		Convert the initial part of the string from buffer *buf* of
2682  *		size *buf_len* to a long integer according to the given base
2683  *		and save the result in *res*.
2684  *
2685  *		The string may begin with an arbitrary amount of white space
2686  *		(as determined by **isspace**\ (3)) followed by a single
2687  *		optional '**-**' sign.
2688  *
2689  *		Five least significant bits of *flags* encode base, other bits
2690  *		are currently unused.
2691  *
2692  *		Base must be either 8, 10, 16 or 0 to detect it automatically
2693  *		similar to user space **strtol**\ (3).
2694  *	Return
2695  *		Number of characters consumed on success. Must be positive but
2696  *		no more than *buf_len*.
2697  *
2698  *		**-EINVAL** if no valid digits were found or unsupported base
2699  *		was provided.
2700  *
2701  *		**-ERANGE** if resulting value was out of range.
2702  *
2703  * int bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)
2704  *	Description
2705  *		Convert the initial part of the string from buffer *buf* of
2706  *		size *buf_len* to an unsigned long integer according to the
2707  *		given base and save the result in *res*.
2708  *
2709  *		The string may begin with an arbitrary amount of white space
2710  *		(as determined by **isspace**\ (3)).
2711  *
2712  *		Five least significant bits of *flags* encode base, other bits
2713  *		are currently unused.
2714  *
2715  *		Base must be either 8, 10, 16 or 0 to detect it automatically
2716  *		similar to user space **strtoul**\ (3).
2717  *	Return
2718  *		Number of characters consumed on success. Must be positive but
2719  *		no more than *buf_len*.
2720  *
2721  *		**-EINVAL** if no valid digits were found or unsupported base
2722  *		was provided.
2723  *
2724  *		**-ERANGE** if resulting value was out of range.
2725  *
2726  * void *bpf_sk_storage_get(struct bpf_map *map, struct bpf_sock *sk, void *value, u64 flags)
2727  *	Description
2728  *		Get a bpf-local-storage from a *sk*.
2729  *
2730  *		Logically, it could be thought of getting the value from
2731  *		a *map* with *sk* as the **key**.  From this
2732  *		perspective,  the usage is not much different from
2733  *		**bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this
2734  *		helper enforces the key must be a full socket and the map must
2735  *		be a **BPF_MAP_TYPE_SK_STORAGE** also.
2736  *
2737  *		Underneath, the value is stored locally at *sk* instead of
2738  *		the *map*.  The *map* is used as the bpf-local-storage
2739  *		"type". The bpf-local-storage "type" (i.e. the *map*) is
2740  *		searched against all bpf-local-storages residing at *sk*.
2741  *
2742  *		An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be
2743  *		used such that a new bpf-local-storage will be
2744  *		created if one does not exist.  *value* can be used
2745  *		together with **BPF_SK_STORAGE_GET_F_CREATE** to specify
2746  *		the initial value of a bpf-local-storage.  If *value* is
2747  *		**NULL**, the new bpf-local-storage will be zero initialized.
2748  *	Return
2749  *		A bpf-local-storage pointer is returned on success.
2750  *
2751  *		**NULL** if not found or there was an error in adding
2752  *		a new bpf-local-storage.
2753  *
2754  * int bpf_sk_storage_delete(struct bpf_map *map, struct bpf_sock *sk)
2755  *	Description
2756  *		Delete a bpf-local-storage from a *sk*.
2757  *	Return
2758  *		0 on success.
2759  *
2760  *		**-ENOENT** if the bpf-local-storage cannot be found.
2761  *
2762  * int bpf_send_signal(u32 sig)
2763  *	Description
2764  *		Send signal *sig* to the process of the current task.
2765  *		The signal may be delivered to any of this process's threads.
2766  *	Return
2767  *		0 on success or successfully queued.
2768  *
2769  *		**-EBUSY** if work queue under nmi is full.
2770  *
2771  *		**-EINVAL** if *sig* is invalid.
2772  *
2773  *		**-EPERM** if no permission to send the *sig*.
2774  *
2775  *		**-EAGAIN** if bpf program can try again.
2776  *
2777  * s64 bpf_tcp_gen_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2778  *	Description
2779  *		Try to issue a SYN cookie for the packet with corresponding
2780  *		IP/TCP headers, *iph* and *th*, on the listening socket in *sk*.
2781  *
2782  *		*iph* points to the start of the IPv4 or IPv6 header, while
2783  *		*iph_len* contains **sizeof**\ (**struct iphdr**) or
2784  *		**sizeof**\ (**struct ip6hdr**).
2785  *
2786  *		*th* points to the start of the TCP header, while *th_len*
2787  *		contains the length of the TCP header.
2788  *
2789  *	Return
2790  *		On success, lower 32 bits hold the generated SYN cookie in
2791  *		followed by 16 bits which hold the MSS value for that cookie,
2792  *		and the top 16 bits are unused.
2793  *
2794  *		On failure, the returned value is one of the following:
2795  *
2796  *		**-EINVAL** SYN cookie cannot be issued due to error
2797  *
2798  *		**-ENOENT** SYN cookie should not be issued (no SYN flood)
2799  *
2800  *		**-EOPNOTSUPP** kernel configuration does not enable SYN cookies
2801  *
2802  *		**-EPROTONOSUPPORT** IP packet version is not 4 or 6
2803  *
2804  * int bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
2805  * 	Description
2806  * 		Write raw *data* blob into a special BPF perf event held by
2807  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
2808  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
2809  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
2810  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
2811  *
2812  * 		The *flags* are used to indicate the index in *map* for which
2813  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
2814  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
2815  * 		to indicate that the index of the current CPU core should be
2816  * 		used.
2817  *
2818  * 		The value to write, of *size*, is passed through eBPF stack and
2819  * 		pointed by *data*.
2820  *
2821  * 		*ctx* is a pointer to in-kernel struct sk_buff.
2822  *
2823  * 		This helper is similar to **bpf_perf_event_output**\ () but
2824  * 		restricted to raw_tracepoint bpf programs.
2825  * 	Return
2826  * 		0 on success, or a negative error in case of failure.
2827  *
2828  * int bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)
2829  * 	Description
2830  * 		Safely attempt to read *size* bytes from user space address
2831  * 		*unsafe_ptr* and store the data in *dst*.
2832  * 	Return
2833  * 		0 on success, or a negative error in case of failure.
2834  *
2835  * int bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
2836  * 	Description
2837  * 		Safely attempt to read *size* bytes from kernel space address
2838  * 		*unsafe_ptr* and store the data in *dst*.
2839  * 	Return
2840  * 		0 on success, or a negative error in case of failure.
2841  *
2842  * int bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)
2843  * 	Description
2844  * 		Copy a NUL terminated string from an unsafe user address
2845  * 		*unsafe_ptr* to *dst*. The *size* should include the
2846  * 		terminating NUL byte. In case the string length is smaller than
2847  * 		*size*, the target is not padded with further NUL bytes. If the
2848  * 		string length is larger than *size*, just *size*-1 bytes are
2849  * 		copied and the last byte is set to NUL.
2850  *
2851  * 		On success, the length of the copied string is returned. This
2852  * 		makes this helper useful in tracing programs for reading
2853  * 		strings, and more importantly to get its length at runtime. See
2854  * 		the following snippet:
2855  *
2856  * 		::
2857  *
2858  * 			SEC("kprobe/sys_open")
2859  * 			void bpf_sys_open(struct pt_regs *ctx)
2860  * 			{
2861  * 			        char buf[PATHLEN]; // PATHLEN is defined to 256
2862  * 			        int res = bpf_probe_read_user_str(buf, sizeof(buf),
2863  * 				                                  ctx->di);
2864  *
2865  * 				// Consume buf, for example push it to
2866  * 				// userspace via bpf_perf_event_output(); we
2867  * 				// can use res (the string length) as event
2868  * 				// size, after checking its boundaries.
2869  * 			}
2870  *
2871  * 		In comparison, using **bpf_probe_read_user()** helper here
2872  * 		instead to read the string would require to estimate the length
2873  * 		at compile time, and would often result in copying more memory
2874  * 		than necessary.
2875  *
2876  * 		Another useful use case is when parsing individual process
2877  * 		arguments or individual environment variables navigating
2878  * 		*current*\ **->mm->arg_start** and *current*\
2879  * 		**->mm->env_start**: using this helper and the return value,
2880  * 		one can quickly iterate at the right offset of the memory area.
2881  * 	Return
2882  * 		On success, the strictly positive length of the string,
2883  * 		including the trailing NUL character. On error, a negative
2884  * 		value.
2885  *
2886  * int bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)
2887  * 	Description
2888  * 		Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr*
2889  * 		to *dst*. Same semantics as with bpf_probe_read_user_str() apply.
2890  * 	Return
2891  * 		On success, the strictly positive length of the string,	including
2892  * 		the trailing NUL character. On error, a negative value.
2893  *
2894  * int bpf_tcp_send_ack(void *tp, u32 rcv_nxt)
2895  *	Description
2896  *		Send out a tcp-ack. *tp* is the in-kernel struct tcp_sock.
2897  *		*rcv_nxt* is the ack_seq to be sent out.
2898  *	Return
2899  *		0 on success, or a negative error in case of failure.
2900  *
2901  * int bpf_send_signal_thread(u32 sig)
2902  *	Description
2903  *		Send signal *sig* to the thread corresponding to the current task.
2904  *	Return
2905  *		0 on success or successfully queued.
2906  *
2907  *		**-EBUSY** if work queue under nmi is full.
2908  *
2909  *		**-EINVAL** if *sig* is invalid.
2910  *
2911  *		**-EPERM** if no permission to send the *sig*.
2912  *
2913  *		**-EAGAIN** if bpf program can try again.
2914  *
2915  * u64 bpf_jiffies64(void)
2916  *	Description
2917  *		Obtain the 64bit jiffies
2918  *	Return
2919  *		The 64 bit jiffies
2920  *
2921  * int bpf_read_branch_records(struct bpf_perf_event_data *ctx, void *buf, u32 size, u64 flags)
2922  *	Description
2923  *		For an eBPF program attached to a perf event, retrieve the
2924  *		branch records (struct perf_branch_entry) associated to *ctx*
2925  *		and store it in	the buffer pointed by *buf* up to size
2926  *		*size* bytes.
2927  *	Return
2928  *		On success, number of bytes written to *buf*. On error, a
2929  *		negative value.
2930  *
2931  *		The *flags* can be set to **BPF_F_GET_BRANCH_RECORDS_SIZE** to
2932  *		instead	return the number of bytes required to store all the
2933  *		branch entries. If this flag is set, *buf* may be NULL.
2934  *
2935  *		**-EINVAL** if arguments invalid or **size** not a multiple
2936  *		of sizeof(struct perf_branch_entry).
2937  *
2938  *		**-ENOENT** if architecture does not support branch records.
2939  *
2940  * int bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info *nsdata, u32 size)
2941  *	Description
2942  *		Returns 0 on success, values for *pid* and *tgid* as seen from the current
2943  *		*namespace* will be returned in *nsdata*.
2944  *
2945  *		On failure, the returned value is one of the following:
2946  *
2947  *		**-EINVAL** if dev and inum supplied don't match dev_t and inode number
2948  *              with nsfs of current task, or if dev conversion to dev_t lost high bits.
2949  *
2950  *		**-ENOENT** if pidns does not exists for the current task.
2951  *
2952  * int bpf_xdp_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
2953  *	Description
2954  *		Write raw *data* blob into a special BPF perf event held by
2955  *		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
2956  *		event must have the following attributes: **PERF_SAMPLE_RAW**
2957  *		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
2958  *		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
2959  *
2960  *		The *flags* are used to indicate the index in *map* for which
2961  *		the value must be put, masked with **BPF_F_INDEX_MASK**.
2962  *		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
2963  *		to indicate that the index of the current CPU core should be
2964  *		used.
2965  *
2966  *		The value to write, of *size*, is passed through eBPF stack and
2967  *		pointed by *data*.
2968  *
2969  *		*ctx* is a pointer to in-kernel struct xdp_buff.
2970  *
2971  *		This helper is similar to **bpf_perf_eventoutput**\ () but
2972  *		restricted to raw_tracepoint bpf programs.
2973  *	Return
2974  *		0 on success, or a negative error in case of failure.
2975  *
2976  * u64 bpf_get_netns_cookie(void *ctx)
2977  * 	Description
2978  * 		Retrieve the cookie (generated by the kernel) of the network
2979  * 		namespace the input *ctx* is associated with. The network
2980  * 		namespace cookie remains stable for its lifetime and provides
2981  * 		a global identifier that can be assumed unique. If *ctx* is
2982  * 		NULL, then the helper returns the cookie for the initial
2983  * 		network namespace. The cookie itself is very similar to that
2984  * 		of bpf_get_socket_cookie() helper, but for network namespaces
2985  * 		instead of sockets.
2986  * 	Return
2987  * 		A 8-byte long opaque number.
2988  *
2989  * u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level)
2990  * 	Description
2991  * 		Return id of cgroup v2 that is ancestor of the cgroup associated
2992  * 		with the current task at the *ancestor_level*. The root cgroup
2993  * 		is at *ancestor_level* zero and each step down the hierarchy
2994  * 		increments the level. If *ancestor_level* == level of cgroup
2995  * 		associated with the current task, then return value will be the
2996  * 		same as that of **bpf_get_current_cgroup_id**\ ().
2997  *
2998  * 		The helper is useful to implement policies based on cgroups
2999  * 		that are upper in hierarchy than immediate cgroup associated
3000  * 		with the current task.
3001  *
3002  * 		The format of returned id and helper limitations are same as in
3003  * 		**bpf_get_current_cgroup_id**\ ().
3004  * 	Return
3005  * 		The id is returned or 0 in case the id could not be retrieved.
3006  *
3007  * int bpf_sk_assign(struct sk_buff *skb, struct bpf_sock *sk, u64 flags)
3008  *	Description
3009  *		Assign the *sk* to the *skb*. When combined with appropriate
3010  *		routing configuration to receive the packet towards the socket,
3011  *		will cause *skb* to be delivered to the specified socket.
3012  *		Subsequent redirection of *skb* via  **bpf_redirect**\ (),
3013  *		**bpf_clone_redirect**\ () or other methods outside of BPF may
3014  *		interfere with successful delivery to the socket.
3015  *
3016  *		This operation is only valid from TC ingress path.
3017  *
3018  *		The *flags* argument must be zero.
3019  *	Return
3020  *		0 on success, or a negative errno in case of failure.
3021  *
3022  *		* **-EINVAL**		Unsupported flags specified.
3023  *		* **-ENOENT**		Socket is unavailable for assignment.
3024  *		* **-ENETUNREACH**	Socket is unreachable (wrong netns).
3025  *		* **-EOPNOTSUPP**	Unsupported operation, for example a
3026  *					call from outside of TC ingress.
3027  *		* **-ESOCKTNOSUPPORT**	Socket type not supported (reuseport).
3028  */
3029 #define __BPF_FUNC_MAPPER(FN)		\
3030 	FN(unspec),			\
3031 	FN(map_lookup_elem),		\
3032 	FN(map_update_elem),		\
3033 	FN(map_delete_elem),		\
3034 	FN(probe_read),			\
3035 	FN(ktime_get_ns),		\
3036 	FN(trace_printk),		\
3037 	FN(get_prandom_u32),		\
3038 	FN(get_smp_processor_id),	\
3039 	FN(skb_store_bytes),		\
3040 	FN(l3_csum_replace),		\
3041 	FN(l4_csum_replace),		\
3042 	FN(tail_call),			\
3043 	FN(clone_redirect),		\
3044 	FN(get_current_pid_tgid),	\
3045 	FN(get_current_uid_gid),	\
3046 	FN(get_current_comm),		\
3047 	FN(get_cgroup_classid),		\
3048 	FN(skb_vlan_push),		\
3049 	FN(skb_vlan_pop),		\
3050 	FN(skb_get_tunnel_key),		\
3051 	FN(skb_set_tunnel_key),		\
3052 	FN(perf_event_read),		\
3053 	FN(redirect),			\
3054 	FN(get_route_realm),		\
3055 	FN(perf_event_output),		\
3056 	FN(skb_load_bytes),		\
3057 	FN(get_stackid),		\
3058 	FN(csum_diff),			\
3059 	FN(skb_get_tunnel_opt),		\
3060 	FN(skb_set_tunnel_opt),		\
3061 	FN(skb_change_proto),		\
3062 	FN(skb_change_type),		\
3063 	FN(skb_under_cgroup),		\
3064 	FN(get_hash_recalc),		\
3065 	FN(get_current_task),		\
3066 	FN(probe_write_user),		\
3067 	FN(current_task_under_cgroup),	\
3068 	FN(skb_change_tail),		\
3069 	FN(skb_pull_data),		\
3070 	FN(csum_update),		\
3071 	FN(set_hash_invalid),		\
3072 	FN(get_numa_node_id),		\
3073 	FN(skb_change_head),		\
3074 	FN(xdp_adjust_head),		\
3075 	FN(probe_read_str),		\
3076 	FN(get_socket_cookie),		\
3077 	FN(get_socket_uid),		\
3078 	FN(set_hash),			\
3079 	FN(setsockopt),			\
3080 	FN(skb_adjust_room),		\
3081 	FN(redirect_map),		\
3082 	FN(sk_redirect_map),		\
3083 	FN(sock_map_update),		\
3084 	FN(xdp_adjust_meta),		\
3085 	FN(perf_event_read_value),	\
3086 	FN(perf_prog_read_value),	\
3087 	FN(getsockopt),			\
3088 	FN(override_return),		\
3089 	FN(sock_ops_cb_flags_set),	\
3090 	FN(msg_redirect_map),		\
3091 	FN(msg_apply_bytes),		\
3092 	FN(msg_cork_bytes),		\
3093 	FN(msg_pull_data),		\
3094 	FN(bind),			\
3095 	FN(xdp_adjust_tail),		\
3096 	FN(skb_get_xfrm_state),		\
3097 	FN(get_stack),			\
3098 	FN(skb_load_bytes_relative),	\
3099 	FN(fib_lookup),			\
3100 	FN(sock_hash_update),		\
3101 	FN(msg_redirect_hash),		\
3102 	FN(sk_redirect_hash),		\
3103 	FN(lwt_push_encap),		\
3104 	FN(lwt_seg6_store_bytes),	\
3105 	FN(lwt_seg6_adjust_srh),	\
3106 	FN(lwt_seg6_action),		\
3107 	FN(rc_repeat),			\
3108 	FN(rc_keydown),			\
3109 	FN(skb_cgroup_id),		\
3110 	FN(get_current_cgroup_id),	\
3111 	FN(get_local_storage),		\
3112 	FN(sk_select_reuseport),	\
3113 	FN(skb_ancestor_cgroup_id),	\
3114 	FN(sk_lookup_tcp),		\
3115 	FN(sk_lookup_udp),		\
3116 	FN(sk_release),			\
3117 	FN(map_push_elem),		\
3118 	FN(map_pop_elem),		\
3119 	FN(map_peek_elem),		\
3120 	FN(msg_push_data),		\
3121 	FN(msg_pop_data),		\
3122 	FN(rc_pointer_rel),		\
3123 	FN(spin_lock),			\
3124 	FN(spin_unlock),		\
3125 	FN(sk_fullsock),		\
3126 	FN(tcp_sock),			\
3127 	FN(skb_ecn_set_ce),		\
3128 	FN(get_listener_sock),		\
3129 	FN(skc_lookup_tcp),		\
3130 	FN(tcp_check_syncookie),	\
3131 	FN(sysctl_get_name),		\
3132 	FN(sysctl_get_current_value),	\
3133 	FN(sysctl_get_new_value),	\
3134 	FN(sysctl_set_new_value),	\
3135 	FN(strtol),			\
3136 	FN(strtoul),			\
3137 	FN(sk_storage_get),		\
3138 	FN(sk_storage_delete),		\
3139 	FN(send_signal),		\
3140 	FN(tcp_gen_syncookie),		\
3141 	FN(skb_output),			\
3142 	FN(probe_read_user),		\
3143 	FN(probe_read_kernel),		\
3144 	FN(probe_read_user_str),	\
3145 	FN(probe_read_kernel_str),	\
3146 	FN(tcp_send_ack),		\
3147 	FN(send_signal_thread),		\
3148 	FN(jiffies64),			\
3149 	FN(read_branch_records),	\
3150 	FN(get_ns_current_pid_tgid),	\
3151 	FN(xdp_output),			\
3152 	FN(get_netns_cookie),		\
3153 	FN(get_current_ancestor_cgroup_id),	\
3154 	FN(sk_assign),
3155 
3156 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
3157  * function eBPF program intends to call
3158  */
3159 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
3160 enum bpf_func_id {
3161 	__BPF_FUNC_MAPPER(__BPF_ENUM_FN)
3162 	__BPF_FUNC_MAX_ID,
3163 };
3164 #undef __BPF_ENUM_FN
3165 
3166 /* All flags used by eBPF helper functions, placed here. */
3167 
3168 /* BPF_FUNC_skb_store_bytes flags. */
3169 enum {
3170 	BPF_F_RECOMPUTE_CSUM		= (1ULL << 0),
3171 	BPF_F_INVALIDATE_HASH		= (1ULL << 1),
3172 };
3173 
3174 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
3175  * First 4 bits are for passing the header field size.
3176  */
3177 enum {
3178 	BPF_F_HDR_FIELD_MASK		= 0xfULL,
3179 };
3180 
3181 /* BPF_FUNC_l4_csum_replace flags. */
3182 enum {
3183 	BPF_F_PSEUDO_HDR		= (1ULL << 4),
3184 	BPF_F_MARK_MANGLED_0		= (1ULL << 5),
3185 	BPF_F_MARK_ENFORCE		= (1ULL << 6),
3186 };
3187 
3188 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
3189 enum {
3190 	BPF_F_INGRESS			= (1ULL << 0),
3191 };
3192 
3193 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
3194 enum {
3195 	BPF_F_TUNINFO_IPV6		= (1ULL << 0),
3196 };
3197 
3198 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
3199 enum {
3200 	BPF_F_SKIP_FIELD_MASK		= 0xffULL,
3201 	BPF_F_USER_STACK		= (1ULL << 8),
3202 /* flags used by BPF_FUNC_get_stackid only. */
3203 	BPF_F_FAST_STACK_CMP		= (1ULL << 9),
3204 	BPF_F_REUSE_STACKID		= (1ULL << 10),
3205 /* flags used by BPF_FUNC_get_stack only. */
3206 	BPF_F_USER_BUILD_ID		= (1ULL << 11),
3207 };
3208 
3209 /* BPF_FUNC_skb_set_tunnel_key flags. */
3210 enum {
3211 	BPF_F_ZERO_CSUM_TX		= (1ULL << 1),
3212 	BPF_F_DONT_FRAGMENT		= (1ULL << 2),
3213 	BPF_F_SEQ_NUMBER		= (1ULL << 3),
3214 };
3215 
3216 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
3217  * BPF_FUNC_perf_event_read_value flags.
3218  */
3219 enum {
3220 	BPF_F_INDEX_MASK		= 0xffffffffULL,
3221 	BPF_F_CURRENT_CPU		= BPF_F_INDEX_MASK,
3222 /* BPF_FUNC_perf_event_output for sk_buff input context. */
3223 	BPF_F_CTXLEN_MASK		= (0xfffffULL << 32),
3224 };
3225 
3226 /* Current network namespace */
3227 enum {
3228 	BPF_F_CURRENT_NETNS		= (-1L),
3229 };
3230 
3231 /* BPF_FUNC_skb_adjust_room flags. */
3232 enum {
3233 	BPF_F_ADJ_ROOM_FIXED_GSO	= (1ULL << 0),
3234 	BPF_F_ADJ_ROOM_ENCAP_L3_IPV4	= (1ULL << 1),
3235 	BPF_F_ADJ_ROOM_ENCAP_L3_IPV6	= (1ULL << 2),
3236 	BPF_F_ADJ_ROOM_ENCAP_L4_GRE	= (1ULL << 3),
3237 	BPF_F_ADJ_ROOM_ENCAP_L4_UDP	= (1ULL << 4),
3238 };
3239 
3240 enum {
3241 	BPF_ADJ_ROOM_ENCAP_L2_MASK	= 0xff,
3242 	BPF_ADJ_ROOM_ENCAP_L2_SHIFT	= 56,
3243 };
3244 
3245 #define BPF_F_ADJ_ROOM_ENCAP_L2(len)	(((__u64)len & \
3246 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) \
3247 					 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT)
3248 
3249 /* BPF_FUNC_sysctl_get_name flags. */
3250 enum {
3251 	BPF_F_SYSCTL_BASE_NAME		= (1ULL << 0),
3252 };
3253 
3254 /* BPF_FUNC_sk_storage_get flags */
3255 enum {
3256 	BPF_SK_STORAGE_GET_F_CREATE	= (1ULL << 0),
3257 };
3258 
3259 /* BPF_FUNC_read_branch_records flags. */
3260 enum {
3261 	BPF_F_GET_BRANCH_RECORDS_SIZE	= (1ULL << 0),
3262 };
3263 
3264 /* Mode for BPF_FUNC_skb_adjust_room helper. */
3265 enum bpf_adj_room_mode {
3266 	BPF_ADJ_ROOM_NET,
3267 	BPF_ADJ_ROOM_MAC,
3268 };
3269 
3270 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
3271 enum bpf_hdr_start_off {
3272 	BPF_HDR_START_MAC,
3273 	BPF_HDR_START_NET,
3274 };
3275 
3276 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
3277 enum bpf_lwt_encap_mode {
3278 	BPF_LWT_ENCAP_SEG6,
3279 	BPF_LWT_ENCAP_SEG6_INLINE,
3280 	BPF_LWT_ENCAP_IP,
3281 };
3282 
3283 #define __bpf_md_ptr(type, name)	\
3284 union {					\
3285 	type name;			\
3286 	__u64 :64;			\
3287 } __attribute__((aligned(8)))
3288 
3289 /* user accessible mirror of in-kernel sk_buff.
3290  * new fields can only be added to the end of this structure
3291  */
3292 struct __sk_buff {
3293 	__u32 len;
3294 	__u32 pkt_type;
3295 	__u32 mark;
3296 	__u32 queue_mapping;
3297 	__u32 protocol;
3298 	__u32 vlan_present;
3299 	__u32 vlan_tci;
3300 	__u32 vlan_proto;
3301 	__u32 priority;
3302 	__u32 ingress_ifindex;
3303 	__u32 ifindex;
3304 	__u32 tc_index;
3305 	__u32 cb[5];
3306 	__u32 hash;
3307 	__u32 tc_classid;
3308 	__u32 data;
3309 	__u32 data_end;
3310 	__u32 napi_id;
3311 
3312 	/* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
3313 	__u32 family;
3314 	__u32 remote_ip4;	/* Stored in network byte order */
3315 	__u32 local_ip4;	/* Stored in network byte order */
3316 	__u32 remote_ip6[4];	/* Stored in network byte order */
3317 	__u32 local_ip6[4];	/* Stored in network byte order */
3318 	__u32 remote_port;	/* Stored in network byte order */
3319 	__u32 local_port;	/* stored in host byte order */
3320 	/* ... here. */
3321 
3322 	__u32 data_meta;
3323 	__bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
3324 	__u64 tstamp;
3325 	__u32 wire_len;
3326 	__u32 gso_segs;
3327 	__bpf_md_ptr(struct bpf_sock *, sk);
3328 	__u32 gso_size;
3329 };
3330 
3331 struct bpf_tunnel_key {
3332 	__u32 tunnel_id;
3333 	union {
3334 		__u32 remote_ipv4;
3335 		__u32 remote_ipv6[4];
3336 	};
3337 	__u8 tunnel_tos;
3338 	__u8 tunnel_ttl;
3339 	__u16 tunnel_ext;	/* Padding, future use. */
3340 	__u32 tunnel_label;
3341 };
3342 
3343 /* user accessible mirror of in-kernel xfrm_state.
3344  * new fields can only be added to the end of this structure
3345  */
3346 struct bpf_xfrm_state {
3347 	__u32 reqid;
3348 	__u32 spi;	/* Stored in network byte order */
3349 	__u16 family;
3350 	__u16 ext;	/* Padding, future use. */
3351 	union {
3352 		__u32 remote_ipv4;	/* Stored in network byte order */
3353 		__u32 remote_ipv6[4];	/* Stored in network byte order */
3354 	};
3355 };
3356 
3357 /* Generic BPF return codes which all BPF program types may support.
3358  * The values are binary compatible with their TC_ACT_* counter-part to
3359  * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
3360  * programs.
3361  *
3362  * XDP is handled seprately, see XDP_*.
3363  */
3364 enum bpf_ret_code {
3365 	BPF_OK = 0,
3366 	/* 1 reserved */
3367 	BPF_DROP = 2,
3368 	/* 3-6 reserved */
3369 	BPF_REDIRECT = 7,
3370 	/* >127 are reserved for prog type specific return codes.
3371 	 *
3372 	 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
3373 	 *    BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
3374 	 *    changed and should be routed based on its new L3 header.
3375 	 *    (This is an L3 redirect, as opposed to L2 redirect
3376 	 *    represented by BPF_REDIRECT above).
3377 	 */
3378 	BPF_LWT_REROUTE = 128,
3379 };
3380 
3381 struct bpf_sock {
3382 	__u32 bound_dev_if;
3383 	__u32 family;
3384 	__u32 type;
3385 	__u32 protocol;
3386 	__u32 mark;
3387 	__u32 priority;
3388 	/* IP address also allows 1 and 2 bytes access */
3389 	__u32 src_ip4;
3390 	__u32 src_ip6[4];
3391 	__u32 src_port;		/* host byte order */
3392 	__u32 dst_port;		/* network byte order */
3393 	__u32 dst_ip4;
3394 	__u32 dst_ip6[4];
3395 	__u32 state;
3396 };
3397 
3398 struct bpf_tcp_sock {
3399 	__u32 snd_cwnd;		/* Sending congestion window		*/
3400 	__u32 srtt_us;		/* smoothed round trip time << 3 in usecs */
3401 	__u32 rtt_min;
3402 	__u32 snd_ssthresh;	/* Slow start size threshold		*/
3403 	__u32 rcv_nxt;		/* What we want to receive next		*/
3404 	__u32 snd_nxt;		/* Next sequence we send		*/
3405 	__u32 snd_una;		/* First byte we want an ack for	*/
3406 	__u32 mss_cache;	/* Cached effective mss, not including SACKS */
3407 	__u32 ecn_flags;	/* ECN status bits.			*/
3408 	__u32 rate_delivered;	/* saved rate sample: packets delivered */
3409 	__u32 rate_interval_us;	/* saved rate sample: time elapsed */
3410 	__u32 packets_out;	/* Packets which are "in flight"	*/
3411 	__u32 retrans_out;	/* Retransmitted packets out		*/
3412 	__u32 total_retrans;	/* Total retransmits for entire connection */
3413 	__u32 segs_in;		/* RFC4898 tcpEStatsPerfSegsIn
3414 				 * total number of segments in.
3415 				 */
3416 	__u32 data_segs_in;	/* RFC4898 tcpEStatsPerfDataSegsIn
3417 				 * total number of data segments in.
3418 				 */
3419 	__u32 segs_out;		/* RFC4898 tcpEStatsPerfSegsOut
3420 				 * The total number of segments sent.
3421 				 */
3422 	__u32 data_segs_out;	/* RFC4898 tcpEStatsPerfDataSegsOut
3423 				 * total number of data segments sent.
3424 				 */
3425 	__u32 lost_out;		/* Lost packets			*/
3426 	__u32 sacked_out;	/* SACK'd packets			*/
3427 	__u64 bytes_received;	/* RFC4898 tcpEStatsAppHCThruOctetsReceived
3428 				 * sum(delta(rcv_nxt)), or how many bytes
3429 				 * were acked.
3430 				 */
3431 	__u64 bytes_acked;	/* RFC4898 tcpEStatsAppHCThruOctetsAcked
3432 				 * sum(delta(snd_una)), or how many bytes
3433 				 * were acked.
3434 				 */
3435 	__u32 dsack_dups;	/* RFC4898 tcpEStatsStackDSACKDups
3436 				 * total number of DSACK blocks received
3437 				 */
3438 	__u32 delivered;	/* Total data packets delivered incl. rexmits */
3439 	__u32 delivered_ce;	/* Like the above but only ECE marked packets */
3440 	__u32 icsk_retransmits;	/* Number of unrecovered [RTO] timeouts */
3441 };
3442 
3443 struct bpf_sock_tuple {
3444 	union {
3445 		struct {
3446 			__be32 saddr;
3447 			__be32 daddr;
3448 			__be16 sport;
3449 			__be16 dport;
3450 		} ipv4;
3451 		struct {
3452 			__be32 saddr[4];
3453 			__be32 daddr[4];
3454 			__be16 sport;
3455 			__be16 dport;
3456 		} ipv6;
3457 	};
3458 };
3459 
3460 struct bpf_xdp_sock {
3461 	__u32 queue_id;
3462 };
3463 
3464 #define XDP_PACKET_HEADROOM 256
3465 
3466 /* User return codes for XDP prog type.
3467  * A valid XDP program must return one of these defined values. All other
3468  * return codes are reserved for future use. Unknown return codes will
3469  * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
3470  */
3471 enum xdp_action {
3472 	XDP_ABORTED = 0,
3473 	XDP_DROP,
3474 	XDP_PASS,
3475 	XDP_TX,
3476 	XDP_REDIRECT,
3477 };
3478 
3479 /* user accessible metadata for XDP packet hook
3480  * new fields must be added to the end of this structure
3481  */
3482 struct xdp_md {
3483 	__u32 data;
3484 	__u32 data_end;
3485 	__u32 data_meta;
3486 	/* Below access go through struct xdp_rxq_info */
3487 	__u32 ingress_ifindex; /* rxq->dev->ifindex */
3488 	__u32 rx_queue_index;  /* rxq->queue_index  */
3489 };
3490 
3491 enum sk_action {
3492 	SK_DROP = 0,
3493 	SK_PASS,
3494 };
3495 
3496 /* user accessible metadata for SK_MSG packet hook, new fields must
3497  * be added to the end of this structure
3498  */
3499 struct sk_msg_md {
3500 	__bpf_md_ptr(void *, data);
3501 	__bpf_md_ptr(void *, data_end);
3502 
3503 	__u32 family;
3504 	__u32 remote_ip4;	/* Stored in network byte order */
3505 	__u32 local_ip4;	/* Stored in network byte order */
3506 	__u32 remote_ip6[4];	/* Stored in network byte order */
3507 	__u32 local_ip6[4];	/* Stored in network byte order */
3508 	__u32 remote_port;	/* Stored in network byte order */
3509 	__u32 local_port;	/* stored in host byte order */
3510 	__u32 size;		/* Total size of sk_msg */
3511 };
3512 
3513 struct sk_reuseport_md {
3514 	/*
3515 	 * Start of directly accessible data. It begins from
3516 	 * the tcp/udp header.
3517 	 */
3518 	__bpf_md_ptr(void *, data);
3519 	/* End of directly accessible data */
3520 	__bpf_md_ptr(void *, data_end);
3521 	/*
3522 	 * Total length of packet (starting from the tcp/udp header).
3523 	 * Note that the directly accessible bytes (data_end - data)
3524 	 * could be less than this "len".  Those bytes could be
3525 	 * indirectly read by a helper "bpf_skb_load_bytes()".
3526 	 */
3527 	__u32 len;
3528 	/*
3529 	 * Eth protocol in the mac header (network byte order). e.g.
3530 	 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
3531 	 */
3532 	__u32 eth_protocol;
3533 	__u32 ip_protocol;	/* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
3534 	__u32 bind_inany;	/* Is sock bound to an INANY address? */
3535 	__u32 hash;		/* A hash of the packet 4 tuples */
3536 };
3537 
3538 #define BPF_TAG_SIZE	8
3539 
3540 struct bpf_prog_info {
3541 	__u32 type;
3542 	__u32 id;
3543 	__u8  tag[BPF_TAG_SIZE];
3544 	__u32 jited_prog_len;
3545 	__u32 xlated_prog_len;
3546 	__aligned_u64 jited_prog_insns;
3547 	__aligned_u64 xlated_prog_insns;
3548 	__u64 load_time;	/* ns since boottime */
3549 	__u32 created_by_uid;
3550 	__u32 nr_map_ids;
3551 	__aligned_u64 map_ids;
3552 	char name[BPF_OBJ_NAME_LEN];
3553 	__u32 ifindex;
3554 	__u32 gpl_compatible:1;
3555 	__u32 :31; /* alignment pad */
3556 	__u64 netns_dev;
3557 	__u64 netns_ino;
3558 	__u32 nr_jited_ksyms;
3559 	__u32 nr_jited_func_lens;
3560 	__aligned_u64 jited_ksyms;
3561 	__aligned_u64 jited_func_lens;
3562 	__u32 btf_id;
3563 	__u32 func_info_rec_size;
3564 	__aligned_u64 func_info;
3565 	__u32 nr_func_info;
3566 	__u32 nr_line_info;
3567 	__aligned_u64 line_info;
3568 	__aligned_u64 jited_line_info;
3569 	__u32 nr_jited_line_info;
3570 	__u32 line_info_rec_size;
3571 	__u32 jited_line_info_rec_size;
3572 	__u32 nr_prog_tags;
3573 	__aligned_u64 prog_tags;
3574 	__u64 run_time_ns;
3575 	__u64 run_cnt;
3576 } __attribute__((aligned(8)));
3577 
3578 struct bpf_map_info {
3579 	__u32 type;
3580 	__u32 id;
3581 	__u32 key_size;
3582 	__u32 value_size;
3583 	__u32 max_entries;
3584 	__u32 map_flags;
3585 	char  name[BPF_OBJ_NAME_LEN];
3586 	__u32 ifindex;
3587 	__u32 btf_vmlinux_value_type_id;
3588 	__u64 netns_dev;
3589 	__u64 netns_ino;
3590 	__u32 btf_id;
3591 	__u32 btf_key_type_id;
3592 	__u32 btf_value_type_id;
3593 } __attribute__((aligned(8)));
3594 
3595 struct bpf_btf_info {
3596 	__aligned_u64 btf;
3597 	__u32 btf_size;
3598 	__u32 id;
3599 } __attribute__((aligned(8)));
3600 
3601 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
3602  * by user and intended to be used by socket (e.g. to bind to, depends on
3603  * attach attach type).
3604  */
3605 struct bpf_sock_addr {
3606 	__u32 user_family;	/* Allows 4-byte read, but no write. */
3607 	__u32 user_ip4;		/* Allows 1,2,4-byte read and 4-byte write.
3608 				 * Stored in network byte order.
3609 				 */
3610 	__u32 user_ip6[4];	/* Allows 1,2,4,8-byte read and 4,8-byte write.
3611 				 * Stored in network byte order.
3612 				 */
3613 	__u32 user_port;	/* Allows 4-byte read and write.
3614 				 * Stored in network byte order
3615 				 */
3616 	__u32 family;		/* Allows 4-byte read, but no write */
3617 	__u32 type;		/* Allows 4-byte read, but no write */
3618 	__u32 protocol;		/* Allows 4-byte read, but no write */
3619 	__u32 msg_src_ip4;	/* Allows 1,2,4-byte read and 4-byte write.
3620 				 * Stored in network byte order.
3621 				 */
3622 	__u32 msg_src_ip6[4];	/* Allows 1,2,4,8-byte read and 4,8-byte write.
3623 				 * Stored in network byte order.
3624 				 */
3625 	__bpf_md_ptr(struct bpf_sock *, sk);
3626 };
3627 
3628 /* User bpf_sock_ops struct to access socket values and specify request ops
3629  * and their replies.
3630  * Some of this fields are in network (bigendian) byte order and may need
3631  * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
3632  * New fields can only be added at the end of this structure
3633  */
3634 struct bpf_sock_ops {
3635 	__u32 op;
3636 	union {
3637 		__u32 args[4];		/* Optionally passed to bpf program */
3638 		__u32 reply;		/* Returned by bpf program	    */
3639 		__u32 replylong[4];	/* Optionally returned by bpf prog  */
3640 	};
3641 	__u32 family;
3642 	__u32 remote_ip4;	/* Stored in network byte order */
3643 	__u32 local_ip4;	/* Stored in network byte order */
3644 	__u32 remote_ip6[4];	/* Stored in network byte order */
3645 	__u32 local_ip6[4];	/* Stored in network byte order */
3646 	__u32 remote_port;	/* Stored in network byte order */
3647 	__u32 local_port;	/* stored in host byte order */
3648 	__u32 is_fullsock;	/* Some TCP fields are only valid if
3649 				 * there is a full socket. If not, the
3650 				 * fields read as zero.
3651 				 */
3652 	__u32 snd_cwnd;
3653 	__u32 srtt_us;		/* Averaged RTT << 3 in usecs */
3654 	__u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
3655 	__u32 state;
3656 	__u32 rtt_min;
3657 	__u32 snd_ssthresh;
3658 	__u32 rcv_nxt;
3659 	__u32 snd_nxt;
3660 	__u32 snd_una;
3661 	__u32 mss_cache;
3662 	__u32 ecn_flags;
3663 	__u32 rate_delivered;
3664 	__u32 rate_interval_us;
3665 	__u32 packets_out;
3666 	__u32 retrans_out;
3667 	__u32 total_retrans;
3668 	__u32 segs_in;
3669 	__u32 data_segs_in;
3670 	__u32 segs_out;
3671 	__u32 data_segs_out;
3672 	__u32 lost_out;
3673 	__u32 sacked_out;
3674 	__u32 sk_txhash;
3675 	__u64 bytes_received;
3676 	__u64 bytes_acked;
3677 	__bpf_md_ptr(struct bpf_sock *, sk);
3678 };
3679 
3680 /* Definitions for bpf_sock_ops_cb_flags */
3681 enum {
3682 	BPF_SOCK_OPS_RTO_CB_FLAG	= (1<<0),
3683 	BPF_SOCK_OPS_RETRANS_CB_FLAG	= (1<<1),
3684 	BPF_SOCK_OPS_STATE_CB_FLAG	= (1<<2),
3685 	BPF_SOCK_OPS_RTT_CB_FLAG	= (1<<3),
3686 /* Mask of all currently supported cb flags */
3687 	BPF_SOCK_OPS_ALL_CB_FLAGS       = 0xF,
3688 };
3689 
3690 /* List of known BPF sock_ops operators.
3691  * New entries can only be added at the end
3692  */
3693 enum {
3694 	BPF_SOCK_OPS_VOID,
3695 	BPF_SOCK_OPS_TIMEOUT_INIT,	/* Should return SYN-RTO value to use or
3696 					 * -1 if default value should be used
3697 					 */
3698 	BPF_SOCK_OPS_RWND_INIT,		/* Should return initial advertized
3699 					 * window (in packets) or -1 if default
3700 					 * value should be used
3701 					 */
3702 	BPF_SOCK_OPS_TCP_CONNECT_CB,	/* Calls BPF program right before an
3703 					 * active connection is initialized
3704 					 */
3705 	BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB,	/* Calls BPF program when an
3706 						 * active connection is
3707 						 * established
3708 						 */
3709 	BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,	/* Calls BPF program when a
3710 						 * passive connection is
3711 						 * established
3712 						 */
3713 	BPF_SOCK_OPS_NEEDS_ECN,		/* If connection's congestion control
3714 					 * needs ECN
3715 					 */
3716 	BPF_SOCK_OPS_BASE_RTT,		/* Get base RTT. The correct value is
3717 					 * based on the path and may be
3718 					 * dependent on the congestion control
3719 					 * algorithm. In general it indicates
3720 					 * a congestion threshold. RTTs above
3721 					 * this indicate congestion
3722 					 */
3723 	BPF_SOCK_OPS_RTO_CB,		/* Called when an RTO has triggered.
3724 					 * Arg1: value of icsk_retransmits
3725 					 * Arg2: value of icsk_rto
3726 					 * Arg3: whether RTO has expired
3727 					 */
3728 	BPF_SOCK_OPS_RETRANS_CB,	/* Called when skb is retransmitted.
3729 					 * Arg1: sequence number of 1st byte
3730 					 * Arg2: # segments
3731 					 * Arg3: return value of
3732 					 *       tcp_transmit_skb (0 => success)
3733 					 */
3734 	BPF_SOCK_OPS_STATE_CB,		/* Called when TCP changes state.
3735 					 * Arg1: old_state
3736 					 * Arg2: new_state
3737 					 */
3738 	BPF_SOCK_OPS_TCP_LISTEN_CB,	/* Called on listen(2), right after
3739 					 * socket transition to LISTEN state.
3740 					 */
3741 	BPF_SOCK_OPS_RTT_CB,		/* Called on every RTT.
3742 					 */
3743 };
3744 
3745 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
3746  * changes between the TCP and BPF versions. Ideally this should never happen.
3747  * If it does, we need to add code to convert them before calling
3748  * the BPF sock_ops function.
3749  */
3750 enum {
3751 	BPF_TCP_ESTABLISHED = 1,
3752 	BPF_TCP_SYN_SENT,
3753 	BPF_TCP_SYN_RECV,
3754 	BPF_TCP_FIN_WAIT1,
3755 	BPF_TCP_FIN_WAIT2,
3756 	BPF_TCP_TIME_WAIT,
3757 	BPF_TCP_CLOSE,
3758 	BPF_TCP_CLOSE_WAIT,
3759 	BPF_TCP_LAST_ACK,
3760 	BPF_TCP_LISTEN,
3761 	BPF_TCP_CLOSING,	/* Now a valid state */
3762 	BPF_TCP_NEW_SYN_RECV,
3763 
3764 	BPF_TCP_MAX_STATES	/* Leave at the end! */
3765 };
3766 
3767 enum {
3768 	TCP_BPF_IW		= 1001,	/* Set TCP initial congestion window */
3769 	TCP_BPF_SNDCWND_CLAMP	= 1002,	/* Set sndcwnd_clamp */
3770 };
3771 
3772 struct bpf_perf_event_value {
3773 	__u64 counter;
3774 	__u64 enabled;
3775 	__u64 running;
3776 };
3777 
3778 enum {
3779 	BPF_DEVCG_ACC_MKNOD	= (1ULL << 0),
3780 	BPF_DEVCG_ACC_READ	= (1ULL << 1),
3781 	BPF_DEVCG_ACC_WRITE	= (1ULL << 2),
3782 };
3783 
3784 enum {
3785 	BPF_DEVCG_DEV_BLOCK	= (1ULL << 0),
3786 	BPF_DEVCG_DEV_CHAR	= (1ULL << 1),
3787 };
3788 
3789 struct bpf_cgroup_dev_ctx {
3790 	/* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
3791 	__u32 access_type;
3792 	__u32 major;
3793 	__u32 minor;
3794 };
3795 
3796 struct bpf_raw_tracepoint_args {
3797 	__u64 args[0];
3798 };
3799 
3800 /* DIRECT:  Skip the FIB rules and go to FIB table associated with device
3801  * OUTPUT:  Do lookup from egress perspective; default is ingress
3802  */
3803 enum {
3804 	BPF_FIB_LOOKUP_DIRECT  = (1U << 0),
3805 	BPF_FIB_LOOKUP_OUTPUT  = (1U << 1),
3806 };
3807 
3808 enum {
3809 	BPF_FIB_LKUP_RET_SUCCESS,      /* lookup successful */
3810 	BPF_FIB_LKUP_RET_BLACKHOLE,    /* dest is blackholed; can be dropped */
3811 	BPF_FIB_LKUP_RET_UNREACHABLE,  /* dest is unreachable; can be dropped */
3812 	BPF_FIB_LKUP_RET_PROHIBIT,     /* dest not allowed; can be dropped */
3813 	BPF_FIB_LKUP_RET_NOT_FWDED,    /* packet is not forwarded */
3814 	BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
3815 	BPF_FIB_LKUP_RET_UNSUPP_LWT,   /* fwd requires encapsulation */
3816 	BPF_FIB_LKUP_RET_NO_NEIGH,     /* no neighbor entry for nh */
3817 	BPF_FIB_LKUP_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
3818 };
3819 
3820 struct bpf_fib_lookup {
3821 	/* input:  network family for lookup (AF_INET, AF_INET6)
3822 	 * output: network family of egress nexthop
3823 	 */
3824 	__u8	family;
3825 
3826 	/* set if lookup is to consider L4 data - e.g., FIB rules */
3827 	__u8	l4_protocol;
3828 	__be16	sport;
3829 	__be16	dport;
3830 
3831 	/* total length of packet from network header - used for MTU check */
3832 	__u16	tot_len;
3833 
3834 	/* input: L3 device index for lookup
3835 	 * output: device index from FIB lookup
3836 	 */
3837 	__u32	ifindex;
3838 
3839 	union {
3840 		/* inputs to lookup */
3841 		__u8	tos;		/* AF_INET  */
3842 		__be32	flowinfo;	/* AF_INET6, flow_label + priority */
3843 
3844 		/* output: metric of fib result (IPv4/IPv6 only) */
3845 		__u32	rt_metric;
3846 	};
3847 
3848 	union {
3849 		__be32		ipv4_src;
3850 		__u32		ipv6_src[4];  /* in6_addr; network order */
3851 	};
3852 
3853 	/* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
3854 	 * network header. output: bpf_fib_lookup sets to gateway address
3855 	 * if FIB lookup returns gateway route
3856 	 */
3857 	union {
3858 		__be32		ipv4_dst;
3859 		__u32		ipv6_dst[4];  /* in6_addr; network order */
3860 	};
3861 
3862 	/* output */
3863 	__be16	h_vlan_proto;
3864 	__be16	h_vlan_TCI;
3865 	__u8	smac[6];     /* ETH_ALEN */
3866 	__u8	dmac[6];     /* ETH_ALEN */
3867 };
3868 
3869 enum bpf_task_fd_type {
3870 	BPF_FD_TYPE_RAW_TRACEPOINT,	/* tp name */
3871 	BPF_FD_TYPE_TRACEPOINT,		/* tp name */
3872 	BPF_FD_TYPE_KPROBE,		/* (symbol + offset) or addr */
3873 	BPF_FD_TYPE_KRETPROBE,		/* (symbol + offset) or addr */
3874 	BPF_FD_TYPE_UPROBE,		/* filename + offset */
3875 	BPF_FD_TYPE_URETPROBE,		/* filename + offset */
3876 };
3877 
3878 enum {
3879 	BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG		= (1U << 0),
3880 	BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL		= (1U << 1),
3881 	BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP		= (1U << 2),
3882 };
3883 
3884 struct bpf_flow_keys {
3885 	__u16	nhoff;
3886 	__u16	thoff;
3887 	__u16	addr_proto;			/* ETH_P_* of valid addrs */
3888 	__u8	is_frag;
3889 	__u8	is_first_frag;
3890 	__u8	is_encap;
3891 	__u8	ip_proto;
3892 	__be16	n_proto;
3893 	__be16	sport;
3894 	__be16	dport;
3895 	union {
3896 		struct {
3897 			__be32	ipv4_src;
3898 			__be32	ipv4_dst;
3899 		};
3900 		struct {
3901 			__u32	ipv6_src[4];	/* in6_addr; network order */
3902 			__u32	ipv6_dst[4];	/* in6_addr; network order */
3903 		};
3904 	};
3905 	__u32	flags;
3906 	__be32	flow_label;
3907 };
3908 
3909 struct bpf_func_info {
3910 	__u32	insn_off;
3911 	__u32	type_id;
3912 };
3913 
3914 #define BPF_LINE_INFO_LINE_NUM(line_col)	((line_col) >> 10)
3915 #define BPF_LINE_INFO_LINE_COL(line_col)	((line_col) & 0x3ff)
3916 
3917 struct bpf_line_info {
3918 	__u32	insn_off;
3919 	__u32	file_name_off;
3920 	__u32	line_off;
3921 	__u32	line_col;
3922 };
3923 
3924 struct bpf_spin_lock {
3925 	__u32	val;
3926 };
3927 
3928 struct bpf_sysctl {
3929 	__u32	write;		/* Sysctl is being read (= 0) or written (= 1).
3930 				 * Allows 1,2,4-byte read, but no write.
3931 				 */
3932 	__u32	file_pos;	/* Sysctl file position to read from, write to.
3933 				 * Allows 1,2,4-byte read an 4-byte write.
3934 				 */
3935 };
3936 
3937 struct bpf_sockopt {
3938 	__bpf_md_ptr(struct bpf_sock *, sk);
3939 	__bpf_md_ptr(void *, optval);
3940 	__bpf_md_ptr(void *, optval_end);
3941 
3942 	__s32	level;
3943 	__s32	optname;
3944 	__s32	optlen;
3945 	__s32	retval;
3946 };
3947 
3948 struct bpf_pidns_info {
3949 	__u32 pid;
3950 	__u32 tgid;
3951 };
3952 #endif /* _UAPI__LINUX_BPF_H__ */
3953