xref: /linux/include/net/tcp.h (revision 3ad0876554cafa368f574d4d408468510543e9ff)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
192 
193 /*
194  *     TCP option lengths
195  */
196 
197 #define TCPOLEN_MSS            4
198 #define TCPOLEN_WINDOW         3
199 #define TCPOLEN_SACK_PERM      2
200 #define TCPOLEN_TIMESTAMP      10
201 #define TCPOLEN_MD5SIG         18
202 #define TCPOLEN_FASTOPEN_BASE  2
203 #define TCPOLEN_EXP_FASTOPEN_BASE  4
204 #define TCPOLEN_EXP_SMC_BASE   6
205 
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED		12
208 #define TCPOLEN_WSCALE_ALIGNED		4
209 #define TCPOLEN_SACKPERM_ALIGNED	4
210 #define TCPOLEN_SACK_BASE		2
211 #define TCPOLEN_SACK_BASE_ALIGNED	4
212 #define TCPOLEN_SACK_PERBLOCK		8
213 #define TCPOLEN_MD5SIG_ALIGNED		20
214 #define TCPOLEN_MSS_ALIGNED		4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245 
246 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
248 
249 extern atomic_long_t tcp_memory_allocated;
250 extern struct percpu_counter tcp_sockets_allocated;
251 extern unsigned long tcp_memory_pressure;
252 
253 /* optimized version of sk_under_memory_pressure() for TCP sockets */
254 static inline bool tcp_under_memory_pressure(const struct sock *sk)
255 {
256 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
257 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
258 		return true;
259 
260 	return tcp_memory_pressure;
261 }
262 /*
263  * The next routines deal with comparing 32 bit unsigned ints
264  * and worry about wraparound (automatic with unsigned arithmetic).
265  */
266 
267 static inline bool before(__u32 seq1, __u32 seq2)
268 {
269         return (__s32)(seq1-seq2) < 0;
270 }
271 #define after(seq2, seq1) 	before(seq1, seq2)
272 
273 /* is s2<=s1<=s3 ? */
274 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
275 {
276 	return seq3 - seq2 >= seq1 - seq2;
277 }
278 
279 static inline bool tcp_out_of_memory(struct sock *sk)
280 {
281 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
282 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
283 		return true;
284 	return false;
285 }
286 
287 void sk_forced_mem_schedule(struct sock *sk, int size);
288 
289 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
290 {
291 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
292 	int orphans = percpu_counter_read_positive(ocp);
293 
294 	if (orphans << shift > sysctl_tcp_max_orphans) {
295 		orphans = percpu_counter_sum_positive(ocp);
296 		if (orphans << shift > sysctl_tcp_max_orphans)
297 			return true;
298 	}
299 	return false;
300 }
301 
302 bool tcp_check_oom(struct sock *sk, int shift);
303 
304 
305 extern struct proto tcp_prot;
306 
307 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
308 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
311 
312 void tcp_tasklet_init(void);
313 
314 void tcp_v4_err(struct sk_buff *skb, u32);
315 
316 void tcp_shutdown(struct sock *sk, int how);
317 
318 int tcp_v4_early_demux(struct sk_buff *skb);
319 int tcp_v4_rcv(struct sk_buff *skb);
320 
321 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
322 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
323 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
325 		 int flags);
326 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
327 			size_t size, int flags);
328 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
329 		 size_t size, int flags);
330 void tcp_release_cb(struct sock *sk);
331 void tcp_wfree(struct sk_buff *skb);
332 void tcp_write_timer_handler(struct sock *sk);
333 void tcp_delack_timer_handler(struct sock *sk);
334 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
335 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
336 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
337 			 const struct tcphdr *th);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 			struct pipe_inode_info *pipe, size_t len,
343 			unsigned int flags);
344 
345 static inline void tcp_dec_quickack_mode(struct sock *sk,
346 					 const unsigned int pkts)
347 {
348 	struct inet_connection_sock *icsk = inet_csk(sk);
349 
350 	if (icsk->icsk_ack.quick) {
351 		if (pkts >= icsk->icsk_ack.quick) {
352 			icsk->icsk_ack.quick = 0;
353 			/* Leaving quickack mode we deflate ATO. */
354 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
355 		} else
356 			icsk->icsk_ack.quick -= pkts;
357 	}
358 }
359 
360 #define	TCP_ECN_OK		1
361 #define	TCP_ECN_QUEUE_CWR	2
362 #define	TCP_ECN_DEMAND_CWR	4
363 #define	TCP_ECN_SEEN		8
364 
365 enum tcp_tw_status {
366 	TCP_TW_SUCCESS = 0,
367 	TCP_TW_RST = 1,
368 	TCP_TW_ACK = 2,
369 	TCP_TW_SYN = 3
370 };
371 
372 
373 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
374 					      struct sk_buff *skb,
375 					      const struct tcphdr *th);
376 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
377 			   struct request_sock *req, bool fastopen,
378 			   bool *lost_race);
379 int tcp_child_process(struct sock *parent, struct sock *child,
380 		      struct sk_buff *skb);
381 void tcp_enter_loss(struct sock *sk);
382 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
383 void tcp_clear_retrans(struct tcp_sock *tp);
384 void tcp_update_metrics(struct sock *sk);
385 void tcp_init_metrics(struct sock *sk);
386 void tcp_metrics_init(void);
387 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
388 void tcp_close(struct sock *sk, long timeout);
389 void tcp_init_sock(struct sock *sk);
390 void tcp_init_transfer(struct sock *sk, int bpf_op);
391 __poll_t tcp_poll(struct file *file, struct socket *sock,
392 		      struct poll_table_struct *wait);
393 int tcp_getsockopt(struct sock *sk, int level, int optname,
394 		   char __user *optval, int __user *optlen);
395 int tcp_setsockopt(struct sock *sk, int level, int optname,
396 		   char __user *optval, unsigned int optlen);
397 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
398 			  char __user *optval, int __user *optlen);
399 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
400 			  char __user *optval, unsigned int optlen);
401 void tcp_set_keepalive(struct sock *sk, int val);
402 void tcp_syn_ack_timeout(const struct request_sock *req);
403 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
404 		int flags, int *addr_len);
405 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
406 		       struct tcp_options_received *opt_rx,
407 		       int estab, struct tcp_fastopen_cookie *foc);
408 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
409 
410 /*
411  *	TCP v4 functions exported for the inet6 API
412  */
413 
414 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
415 void tcp_v4_mtu_reduced(struct sock *sk);
416 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
417 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
418 struct sock *tcp_create_openreq_child(const struct sock *sk,
419 				      struct request_sock *req,
420 				      struct sk_buff *skb);
421 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
422 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
423 				  struct request_sock *req,
424 				  struct dst_entry *dst,
425 				  struct request_sock *req_unhash,
426 				  bool *own_req);
427 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
428 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
429 int tcp_connect(struct sock *sk);
430 enum tcp_synack_type {
431 	TCP_SYNACK_NORMAL,
432 	TCP_SYNACK_FASTOPEN,
433 	TCP_SYNACK_COOKIE,
434 };
435 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
436 				struct request_sock *req,
437 				struct tcp_fastopen_cookie *foc,
438 				enum tcp_synack_type synack_type);
439 int tcp_disconnect(struct sock *sk, int flags);
440 
441 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
442 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
443 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
444 
445 /* From syncookies.c */
446 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
447 				 struct request_sock *req,
448 				 struct dst_entry *dst, u32 tsoff);
449 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
450 		      u32 cookie);
451 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
452 #ifdef CONFIG_SYN_COOKIES
453 
454 /* Syncookies use a monotonic timer which increments every 60 seconds.
455  * This counter is used both as a hash input and partially encoded into
456  * the cookie value.  A cookie is only validated further if the delta
457  * between the current counter value and the encoded one is less than this,
458  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
459  * the counter advances immediately after a cookie is generated).
460  */
461 #define MAX_SYNCOOKIE_AGE	2
462 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
463 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
464 
465 /* syncookies: remember time of last synqueue overflow
466  * But do not dirty this field too often (once per second is enough)
467  * It is racy as we do not hold a lock, but race is very minor.
468  */
469 static inline void tcp_synq_overflow(const struct sock *sk)
470 {
471 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
472 	unsigned long now = jiffies;
473 
474 	if (time_after(now, last_overflow + HZ))
475 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
476 }
477 
478 /* syncookies: no recent synqueue overflow on this listening socket? */
479 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
480 {
481 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
482 
483 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
484 }
485 
486 static inline u32 tcp_cookie_time(void)
487 {
488 	u64 val = get_jiffies_64();
489 
490 	do_div(val, TCP_SYNCOOKIE_PERIOD);
491 	return val;
492 }
493 
494 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
495 			      u16 *mssp);
496 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
497 u64 cookie_init_timestamp(struct request_sock *req);
498 bool cookie_timestamp_decode(const struct net *net,
499 			     struct tcp_options_received *opt);
500 bool cookie_ecn_ok(const struct tcp_options_received *opt,
501 		   const struct net *net, const struct dst_entry *dst);
502 
503 /* From net/ipv6/syncookies.c */
504 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
505 		      u32 cookie);
506 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
507 
508 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
509 			      const struct tcphdr *th, u16 *mssp);
510 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
511 #endif
512 /* tcp_output.c */
513 
514 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
515 			       int nonagle);
516 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
517 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
518 void tcp_retransmit_timer(struct sock *sk);
519 void tcp_xmit_retransmit_queue(struct sock *);
520 void tcp_simple_retransmit(struct sock *);
521 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
522 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
523 enum tcp_queue {
524 	TCP_FRAG_IN_WRITE_QUEUE,
525 	TCP_FRAG_IN_RTX_QUEUE,
526 };
527 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
528 		 struct sk_buff *skb, u32 len,
529 		 unsigned int mss_now, gfp_t gfp);
530 
531 void tcp_send_probe0(struct sock *);
532 void tcp_send_partial(struct sock *);
533 int tcp_write_wakeup(struct sock *, int mib);
534 void tcp_send_fin(struct sock *sk);
535 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
536 int tcp_send_synack(struct sock *);
537 void tcp_push_one(struct sock *, unsigned int mss_now);
538 void tcp_send_ack(struct sock *sk);
539 void tcp_send_delayed_ack(struct sock *sk);
540 void tcp_send_loss_probe(struct sock *sk);
541 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
542 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
543 			     const struct sk_buff *next_skb);
544 
545 /* tcp_input.c */
546 void tcp_rearm_rto(struct sock *sk);
547 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
548 void tcp_reset(struct sock *sk);
549 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
550 void tcp_fin(struct sock *sk);
551 
552 /* tcp_timer.c */
553 void tcp_init_xmit_timers(struct sock *);
554 static inline void tcp_clear_xmit_timers(struct sock *sk)
555 {
556 	hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
557 	inet_csk_clear_xmit_timers(sk);
558 }
559 
560 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
561 unsigned int tcp_current_mss(struct sock *sk);
562 
563 /* Bound MSS / TSO packet size with the half of the window */
564 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
565 {
566 	int cutoff;
567 
568 	/* When peer uses tiny windows, there is no use in packetizing
569 	 * to sub-MSS pieces for the sake of SWS or making sure there
570 	 * are enough packets in the pipe for fast recovery.
571 	 *
572 	 * On the other hand, for extremely large MSS devices, handling
573 	 * smaller than MSS windows in this way does make sense.
574 	 */
575 	if (tp->max_window > TCP_MSS_DEFAULT)
576 		cutoff = (tp->max_window >> 1);
577 	else
578 		cutoff = tp->max_window;
579 
580 	if (cutoff && pktsize > cutoff)
581 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
582 	else
583 		return pktsize;
584 }
585 
586 /* tcp.c */
587 void tcp_get_info(struct sock *, struct tcp_info *);
588 
589 /* Read 'sendfile()'-style from a TCP socket */
590 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
591 		  sk_read_actor_t recv_actor);
592 
593 void tcp_initialize_rcv_mss(struct sock *sk);
594 
595 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
596 int tcp_mss_to_mtu(struct sock *sk, int mss);
597 void tcp_mtup_init(struct sock *sk);
598 void tcp_init_buffer_space(struct sock *sk);
599 
600 static inline void tcp_bound_rto(const struct sock *sk)
601 {
602 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
603 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
604 }
605 
606 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
607 {
608 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
609 }
610 
611 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
612 {
613 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
614 			       ntohl(TCP_FLAG_ACK) |
615 			       snd_wnd);
616 }
617 
618 static inline void tcp_fast_path_on(struct tcp_sock *tp)
619 {
620 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
621 }
622 
623 static inline void tcp_fast_path_check(struct sock *sk)
624 {
625 	struct tcp_sock *tp = tcp_sk(sk);
626 
627 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
628 	    tp->rcv_wnd &&
629 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
630 	    !tp->urg_data)
631 		tcp_fast_path_on(tp);
632 }
633 
634 /* Compute the actual rto_min value */
635 static inline u32 tcp_rto_min(struct sock *sk)
636 {
637 	const struct dst_entry *dst = __sk_dst_get(sk);
638 	u32 rto_min = TCP_RTO_MIN;
639 
640 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
641 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
642 	return rto_min;
643 }
644 
645 static inline u32 tcp_rto_min_us(struct sock *sk)
646 {
647 	return jiffies_to_usecs(tcp_rto_min(sk));
648 }
649 
650 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
651 {
652 	return dst_metric_locked(dst, RTAX_CC_ALGO);
653 }
654 
655 /* Minimum RTT in usec. ~0 means not available. */
656 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
657 {
658 	return minmax_get(&tp->rtt_min);
659 }
660 
661 /* Compute the actual receive window we are currently advertising.
662  * Rcv_nxt can be after the window if our peer push more data
663  * than the offered window.
664  */
665 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
666 {
667 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
668 
669 	if (win < 0)
670 		win = 0;
671 	return (u32) win;
672 }
673 
674 /* Choose a new window, without checks for shrinking, and without
675  * scaling applied to the result.  The caller does these things
676  * if necessary.  This is a "raw" window selection.
677  */
678 u32 __tcp_select_window(struct sock *sk);
679 
680 void tcp_send_window_probe(struct sock *sk);
681 
682 /* TCP uses 32bit jiffies to save some space.
683  * Note that this is different from tcp_time_stamp, which
684  * historically has been the same until linux-4.13.
685  */
686 #define tcp_jiffies32 ((u32)jiffies)
687 
688 /*
689  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
690  * It is no longer tied to jiffies, but to 1 ms clock.
691  * Note: double check if you want to use tcp_jiffies32 instead of this.
692  */
693 #define TCP_TS_HZ	1000
694 
695 static inline u64 tcp_clock_ns(void)
696 {
697 	return local_clock();
698 }
699 
700 static inline u64 tcp_clock_us(void)
701 {
702 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
703 }
704 
705 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
706 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
707 {
708 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
709 }
710 
711 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
712 static inline u32 tcp_time_stamp_raw(void)
713 {
714 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
715 }
716 
717 
718 /* Refresh 1us clock of a TCP socket,
719  * ensuring monotically increasing values.
720  */
721 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
722 {
723 	u64 val = tcp_clock_us();
724 
725 	if (val > tp->tcp_mstamp)
726 		tp->tcp_mstamp = val;
727 }
728 
729 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
730 {
731 	return max_t(s64, t1 - t0, 0);
732 }
733 
734 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
735 {
736 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
737 }
738 
739 
740 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
741 
742 #define TCPHDR_FIN 0x01
743 #define TCPHDR_SYN 0x02
744 #define TCPHDR_RST 0x04
745 #define TCPHDR_PSH 0x08
746 #define TCPHDR_ACK 0x10
747 #define TCPHDR_URG 0x20
748 #define TCPHDR_ECE 0x40
749 #define TCPHDR_CWR 0x80
750 
751 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
752 
753 /* This is what the send packet queuing engine uses to pass
754  * TCP per-packet control information to the transmission code.
755  * We also store the host-order sequence numbers in here too.
756  * This is 44 bytes if IPV6 is enabled.
757  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
758  */
759 struct tcp_skb_cb {
760 	__u32		seq;		/* Starting sequence number	*/
761 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
762 	union {
763 		/* Note : tcp_tw_isn is used in input path only
764 		 *	  (isn chosen by tcp_timewait_state_process())
765 		 *
766 		 * 	  tcp_gso_segs/size are used in write queue only,
767 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
768 		 */
769 		__u32		tcp_tw_isn;
770 		struct {
771 			u16	tcp_gso_segs;
772 			u16	tcp_gso_size;
773 		};
774 	};
775 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
776 
777 	__u8		sacked;		/* State flags for SACK.	*/
778 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
779 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
780 #define TCPCB_LOST		0x04	/* SKB is lost			*/
781 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
782 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
783 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
784 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
785 				TCPCB_REPAIRED)
786 
787 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
788 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
789 			eor:1,		/* Is skb MSG_EOR marked? */
790 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
791 			unused:5;
792 	__u32		ack_seq;	/* Sequence number ACK'd	*/
793 	union {
794 		struct {
795 			/* There is space for up to 24 bytes */
796 			__u32 in_flight:30,/* Bytes in flight at transmit */
797 			      is_app_limited:1, /* cwnd not fully used? */
798 			      unused:1;
799 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
800 			__u32 delivered;
801 			/* start of send pipeline phase */
802 			u64 first_tx_mstamp;
803 			/* when we reached the "delivered" count */
804 			u64 delivered_mstamp;
805 		} tx;   /* only used for outgoing skbs */
806 		union {
807 			struct inet_skb_parm	h4;
808 #if IS_ENABLED(CONFIG_IPV6)
809 			struct inet6_skb_parm	h6;
810 #endif
811 		} header;	/* For incoming skbs */
812 		struct {
813 			__u32 key;
814 			__u32 flags;
815 			struct bpf_map *map;
816 			void *data_end;
817 		} bpf;
818 	};
819 };
820 
821 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
822 
823 
824 #if IS_ENABLED(CONFIG_IPV6)
825 /* This is the variant of inet6_iif() that must be used by TCP,
826  * as TCP moves IP6CB into a different location in skb->cb[]
827  */
828 static inline int tcp_v6_iif(const struct sk_buff *skb)
829 {
830 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
831 
832 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
833 }
834 
835 /* TCP_SKB_CB reference means this can not be used from early demux */
836 static inline int tcp_v6_sdif(const struct sk_buff *skb)
837 {
838 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
839 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
840 		return TCP_SKB_CB(skb)->header.h6.iif;
841 #endif
842 	return 0;
843 }
844 #endif
845 
846 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
847 {
848 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
849 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
850 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
851 		return true;
852 #endif
853 	return false;
854 }
855 
856 /* TCP_SKB_CB reference means this can not be used from early demux */
857 static inline int tcp_v4_sdif(struct sk_buff *skb)
858 {
859 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
860 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
861 		return TCP_SKB_CB(skb)->header.h4.iif;
862 #endif
863 	return 0;
864 }
865 
866 /* Due to TSO, an SKB can be composed of multiple actual
867  * packets.  To keep these tracked properly, we use this.
868  */
869 static inline int tcp_skb_pcount(const struct sk_buff *skb)
870 {
871 	return TCP_SKB_CB(skb)->tcp_gso_segs;
872 }
873 
874 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
875 {
876 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
877 }
878 
879 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
880 {
881 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
882 }
883 
884 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
885 static inline int tcp_skb_mss(const struct sk_buff *skb)
886 {
887 	return TCP_SKB_CB(skb)->tcp_gso_size;
888 }
889 
890 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
891 {
892 	return likely(!TCP_SKB_CB(skb)->eor);
893 }
894 
895 /* Events passed to congestion control interface */
896 enum tcp_ca_event {
897 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
898 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
899 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
900 	CA_EVENT_LOSS,		/* loss timeout */
901 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
902 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
903 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
904 	CA_EVENT_NON_DELAYED_ACK,
905 };
906 
907 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
908 enum tcp_ca_ack_event_flags {
909 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
910 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
911 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
912 };
913 
914 /*
915  * Interface for adding new TCP congestion control handlers
916  */
917 #define TCP_CA_NAME_MAX	16
918 #define TCP_CA_MAX	128
919 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
920 
921 #define TCP_CA_UNSPEC	0
922 
923 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
924 #define TCP_CONG_NON_RESTRICTED 0x1
925 /* Requires ECN/ECT set on all packets */
926 #define TCP_CONG_NEEDS_ECN	0x2
927 
928 union tcp_cc_info;
929 
930 struct ack_sample {
931 	u32 pkts_acked;
932 	s32 rtt_us;
933 	u32 in_flight;
934 };
935 
936 /* A rate sample measures the number of (original/retransmitted) data
937  * packets delivered "delivered" over an interval of time "interval_us".
938  * The tcp_rate.c code fills in the rate sample, and congestion
939  * control modules that define a cong_control function to run at the end
940  * of ACK processing can optionally chose to consult this sample when
941  * setting cwnd and pacing rate.
942  * A sample is invalid if "delivered" or "interval_us" is negative.
943  */
944 struct rate_sample {
945 	u64  prior_mstamp; /* starting timestamp for interval */
946 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
947 	s32  delivered;		/* number of packets delivered over interval */
948 	long interval_us;	/* time for tp->delivered to incr "delivered" */
949 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
950 	int  losses;		/* number of packets marked lost upon ACK */
951 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
952 	u32  prior_in_flight;	/* in flight before this ACK */
953 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
954 	bool is_retrans;	/* is sample from retransmission? */
955 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
956 };
957 
958 struct tcp_congestion_ops {
959 	struct list_head	list;
960 	u32 key;
961 	u32 flags;
962 
963 	/* initialize private data (optional) */
964 	void (*init)(struct sock *sk);
965 	/* cleanup private data  (optional) */
966 	void (*release)(struct sock *sk);
967 
968 	/* return slow start threshold (required) */
969 	u32 (*ssthresh)(struct sock *sk);
970 	/* do new cwnd calculation (required) */
971 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
972 	/* call before changing ca_state (optional) */
973 	void (*set_state)(struct sock *sk, u8 new_state);
974 	/* call when cwnd event occurs (optional) */
975 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
976 	/* call when ack arrives (optional) */
977 	void (*in_ack_event)(struct sock *sk, u32 flags);
978 	/* new value of cwnd after loss (required) */
979 	u32  (*undo_cwnd)(struct sock *sk);
980 	/* hook for packet ack accounting (optional) */
981 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
982 	/* override sysctl_tcp_min_tso_segs */
983 	u32 (*min_tso_segs)(struct sock *sk);
984 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
985 	u32 (*sndbuf_expand)(struct sock *sk);
986 	/* call when packets are delivered to update cwnd and pacing rate,
987 	 * after all the ca_state processing. (optional)
988 	 */
989 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
990 	/* get info for inet_diag (optional) */
991 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
992 			   union tcp_cc_info *info);
993 
994 	char 		name[TCP_CA_NAME_MAX];
995 	struct module 	*owner;
996 };
997 
998 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
999 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1000 
1001 void tcp_assign_congestion_control(struct sock *sk);
1002 void tcp_init_congestion_control(struct sock *sk);
1003 void tcp_cleanup_congestion_control(struct sock *sk);
1004 int tcp_set_default_congestion_control(struct net *net, const char *name);
1005 void tcp_get_default_congestion_control(struct net *net, char *name);
1006 void tcp_get_available_congestion_control(char *buf, size_t len);
1007 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1008 int tcp_set_allowed_congestion_control(char *allowed);
1009 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1010 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1011 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1012 
1013 u32 tcp_reno_ssthresh(struct sock *sk);
1014 u32 tcp_reno_undo_cwnd(struct sock *sk);
1015 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1016 extern struct tcp_congestion_ops tcp_reno;
1017 
1018 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1019 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1020 #ifdef CONFIG_INET
1021 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1022 #else
1023 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1024 {
1025 	return NULL;
1026 }
1027 #endif
1028 
1029 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1030 {
1031 	const struct inet_connection_sock *icsk = inet_csk(sk);
1032 
1033 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1034 }
1035 
1036 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1037 {
1038 	struct inet_connection_sock *icsk = inet_csk(sk);
1039 
1040 	if (icsk->icsk_ca_ops->set_state)
1041 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1042 	icsk->icsk_ca_state = ca_state;
1043 }
1044 
1045 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1046 {
1047 	const struct inet_connection_sock *icsk = inet_csk(sk);
1048 
1049 	if (icsk->icsk_ca_ops->cwnd_event)
1050 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1051 }
1052 
1053 /* From tcp_rate.c */
1054 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1055 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1056 			    struct rate_sample *rs);
1057 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1058 		  bool is_sack_reneg, struct rate_sample *rs);
1059 void tcp_rate_check_app_limited(struct sock *sk);
1060 
1061 /* These functions determine how the current flow behaves in respect of SACK
1062  * handling. SACK is negotiated with the peer, and therefore it can vary
1063  * between different flows.
1064  *
1065  * tcp_is_sack - SACK enabled
1066  * tcp_is_reno - No SACK
1067  */
1068 static inline int tcp_is_sack(const struct tcp_sock *tp)
1069 {
1070 	return tp->rx_opt.sack_ok;
1071 }
1072 
1073 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1074 {
1075 	return !tcp_is_sack(tp);
1076 }
1077 
1078 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1079 {
1080 	return tp->sacked_out + tp->lost_out;
1081 }
1082 
1083 /* This determines how many packets are "in the network" to the best
1084  * of our knowledge.  In many cases it is conservative, but where
1085  * detailed information is available from the receiver (via SACK
1086  * blocks etc.) we can make more aggressive calculations.
1087  *
1088  * Use this for decisions involving congestion control, use just
1089  * tp->packets_out to determine if the send queue is empty or not.
1090  *
1091  * Read this equation as:
1092  *
1093  *	"Packets sent once on transmission queue" MINUS
1094  *	"Packets left network, but not honestly ACKed yet" PLUS
1095  *	"Packets fast retransmitted"
1096  */
1097 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1098 {
1099 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1100 }
1101 
1102 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1103 
1104 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1105 {
1106 	return tp->snd_cwnd < tp->snd_ssthresh;
1107 }
1108 
1109 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1110 {
1111 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1112 }
1113 
1114 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1115 {
1116 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1117 	       (1 << inet_csk(sk)->icsk_ca_state);
1118 }
1119 
1120 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1121  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1122  * ssthresh.
1123  */
1124 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1125 {
1126 	const struct tcp_sock *tp = tcp_sk(sk);
1127 
1128 	if (tcp_in_cwnd_reduction(sk))
1129 		return tp->snd_ssthresh;
1130 	else
1131 		return max(tp->snd_ssthresh,
1132 			   ((tp->snd_cwnd >> 1) +
1133 			    (tp->snd_cwnd >> 2)));
1134 }
1135 
1136 /* Use define here intentionally to get WARN_ON location shown at the caller */
1137 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1138 
1139 void tcp_enter_cwr(struct sock *sk);
1140 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1141 
1142 /* The maximum number of MSS of available cwnd for which TSO defers
1143  * sending if not using sysctl_tcp_tso_win_divisor.
1144  */
1145 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1146 {
1147 	return 3;
1148 }
1149 
1150 /* Returns end sequence number of the receiver's advertised window */
1151 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1152 {
1153 	return tp->snd_una + tp->snd_wnd;
1154 }
1155 
1156 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1157  * flexible approach. The RFC suggests cwnd should not be raised unless
1158  * it was fully used previously. And that's exactly what we do in
1159  * congestion avoidance mode. But in slow start we allow cwnd to grow
1160  * as long as the application has used half the cwnd.
1161  * Example :
1162  *    cwnd is 10 (IW10), but application sends 9 frames.
1163  *    We allow cwnd to reach 18 when all frames are ACKed.
1164  * This check is safe because it's as aggressive as slow start which already
1165  * risks 100% overshoot. The advantage is that we discourage application to
1166  * either send more filler packets or data to artificially blow up the cwnd
1167  * usage, and allow application-limited process to probe bw more aggressively.
1168  */
1169 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1170 {
1171 	const struct tcp_sock *tp = tcp_sk(sk);
1172 
1173 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1174 	if (tcp_in_slow_start(tp))
1175 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1176 
1177 	return tp->is_cwnd_limited;
1178 }
1179 
1180 /* Something is really bad, we could not queue an additional packet,
1181  * because qdisc is full or receiver sent a 0 window.
1182  * We do not want to add fuel to the fire, or abort too early,
1183  * so make sure the timer we arm now is at least 200ms in the future,
1184  * regardless of current icsk_rto value (as it could be ~2ms)
1185  */
1186 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1187 {
1188 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1189 }
1190 
1191 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1192 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1193 					    unsigned long max_when)
1194 {
1195 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1196 
1197 	return (unsigned long)min_t(u64, when, max_when);
1198 }
1199 
1200 static inline void tcp_check_probe_timer(struct sock *sk)
1201 {
1202 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1203 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1204 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1205 }
1206 
1207 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1208 {
1209 	tp->snd_wl1 = seq;
1210 }
1211 
1212 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1213 {
1214 	tp->snd_wl1 = seq;
1215 }
1216 
1217 /*
1218  * Calculate(/check) TCP checksum
1219  */
1220 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1221 				   __be32 daddr, __wsum base)
1222 {
1223 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1224 }
1225 
1226 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1227 {
1228 	return __skb_checksum_complete(skb);
1229 }
1230 
1231 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1232 {
1233 	return !skb_csum_unnecessary(skb) &&
1234 		__tcp_checksum_complete(skb);
1235 }
1236 
1237 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1238 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1239 
1240 #undef STATE_TRACE
1241 
1242 #ifdef STATE_TRACE
1243 static const char *statename[]={
1244 	"Unused","Established","Syn Sent","Syn Recv",
1245 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1246 	"Close Wait","Last ACK","Listen","Closing"
1247 };
1248 #endif
1249 void tcp_set_state(struct sock *sk, int state);
1250 
1251 void tcp_done(struct sock *sk);
1252 
1253 int tcp_abort(struct sock *sk, int err);
1254 
1255 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1256 {
1257 	rx_opt->dsack = 0;
1258 	rx_opt->num_sacks = 0;
1259 }
1260 
1261 u32 tcp_default_init_rwnd(u32 mss);
1262 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1263 
1264 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1265 {
1266 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1267 	struct tcp_sock *tp = tcp_sk(sk);
1268 	s32 delta;
1269 
1270 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1271 	    ca_ops->cong_control)
1272 		return;
1273 	delta = tcp_jiffies32 - tp->lsndtime;
1274 	if (delta > inet_csk(sk)->icsk_rto)
1275 		tcp_cwnd_restart(sk, delta);
1276 }
1277 
1278 /* Determine a window scaling and initial window to offer. */
1279 void tcp_select_initial_window(const struct sock *sk, int __space,
1280 			       __u32 mss, __u32 *rcv_wnd,
1281 			       __u32 *window_clamp, int wscale_ok,
1282 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1283 
1284 static inline int tcp_win_from_space(const struct sock *sk, int space)
1285 {
1286 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1287 
1288 	return tcp_adv_win_scale <= 0 ?
1289 		(space>>(-tcp_adv_win_scale)) :
1290 		space - (space>>tcp_adv_win_scale);
1291 }
1292 
1293 /* Note: caller must be prepared to deal with negative returns */
1294 static inline int tcp_space(const struct sock *sk)
1295 {
1296 	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1297 				  atomic_read(&sk->sk_rmem_alloc));
1298 }
1299 
1300 static inline int tcp_full_space(const struct sock *sk)
1301 {
1302 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1303 }
1304 
1305 extern void tcp_openreq_init_rwin(struct request_sock *req,
1306 				  const struct sock *sk_listener,
1307 				  const struct dst_entry *dst);
1308 
1309 void tcp_enter_memory_pressure(struct sock *sk);
1310 void tcp_leave_memory_pressure(struct sock *sk);
1311 
1312 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1313 {
1314 	struct net *net = sock_net((struct sock *)tp);
1315 
1316 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1317 }
1318 
1319 static inline int keepalive_time_when(const struct tcp_sock *tp)
1320 {
1321 	struct net *net = sock_net((struct sock *)tp);
1322 
1323 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1324 }
1325 
1326 static inline int keepalive_probes(const struct tcp_sock *tp)
1327 {
1328 	struct net *net = sock_net((struct sock *)tp);
1329 
1330 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1331 }
1332 
1333 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1334 {
1335 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1336 
1337 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1338 			  tcp_jiffies32 - tp->rcv_tstamp);
1339 }
1340 
1341 static inline int tcp_fin_time(const struct sock *sk)
1342 {
1343 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1344 	const int rto = inet_csk(sk)->icsk_rto;
1345 
1346 	if (fin_timeout < (rto << 2) - (rto >> 1))
1347 		fin_timeout = (rto << 2) - (rto >> 1);
1348 
1349 	return fin_timeout;
1350 }
1351 
1352 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1353 				  int paws_win)
1354 {
1355 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1356 		return true;
1357 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1358 		return true;
1359 	/*
1360 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1361 	 * then following tcp messages have valid values. Ignore 0 value,
1362 	 * or else 'negative' tsval might forbid us to accept their packets.
1363 	 */
1364 	if (!rx_opt->ts_recent)
1365 		return true;
1366 	return false;
1367 }
1368 
1369 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1370 				   int rst)
1371 {
1372 	if (tcp_paws_check(rx_opt, 0))
1373 		return false;
1374 
1375 	/* RST segments are not recommended to carry timestamp,
1376 	   and, if they do, it is recommended to ignore PAWS because
1377 	   "their cleanup function should take precedence over timestamps."
1378 	   Certainly, it is mistake. It is necessary to understand the reasons
1379 	   of this constraint to relax it: if peer reboots, clock may go
1380 	   out-of-sync and half-open connections will not be reset.
1381 	   Actually, the problem would be not existing if all
1382 	   the implementations followed draft about maintaining clock
1383 	   via reboots. Linux-2.2 DOES NOT!
1384 
1385 	   However, we can relax time bounds for RST segments to MSL.
1386 	 */
1387 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1388 		return false;
1389 	return true;
1390 }
1391 
1392 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1393 			  int mib_idx, u32 *last_oow_ack_time);
1394 
1395 static inline void tcp_mib_init(struct net *net)
1396 {
1397 	/* See RFC 2012 */
1398 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1399 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1400 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1401 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1402 }
1403 
1404 /* from STCP */
1405 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1406 {
1407 	tp->lost_skb_hint = NULL;
1408 }
1409 
1410 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1411 {
1412 	tcp_clear_retrans_hints_partial(tp);
1413 	tp->retransmit_skb_hint = NULL;
1414 }
1415 
1416 union tcp_md5_addr {
1417 	struct in_addr  a4;
1418 #if IS_ENABLED(CONFIG_IPV6)
1419 	struct in6_addr	a6;
1420 #endif
1421 };
1422 
1423 /* - key database */
1424 struct tcp_md5sig_key {
1425 	struct hlist_node	node;
1426 	u8			keylen;
1427 	u8			family; /* AF_INET or AF_INET6 */
1428 	union tcp_md5_addr	addr;
1429 	u8			prefixlen;
1430 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1431 	struct rcu_head		rcu;
1432 };
1433 
1434 /* - sock block */
1435 struct tcp_md5sig_info {
1436 	struct hlist_head	head;
1437 	struct rcu_head		rcu;
1438 };
1439 
1440 /* - pseudo header */
1441 struct tcp4_pseudohdr {
1442 	__be32		saddr;
1443 	__be32		daddr;
1444 	__u8		pad;
1445 	__u8		protocol;
1446 	__be16		len;
1447 };
1448 
1449 struct tcp6_pseudohdr {
1450 	struct in6_addr	saddr;
1451 	struct in6_addr daddr;
1452 	__be32		len;
1453 	__be32		protocol;	/* including padding */
1454 };
1455 
1456 union tcp_md5sum_block {
1457 	struct tcp4_pseudohdr ip4;
1458 #if IS_ENABLED(CONFIG_IPV6)
1459 	struct tcp6_pseudohdr ip6;
1460 #endif
1461 };
1462 
1463 /* - pool: digest algorithm, hash description and scratch buffer */
1464 struct tcp_md5sig_pool {
1465 	struct ahash_request	*md5_req;
1466 	void			*scratch;
1467 };
1468 
1469 /* - functions */
1470 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1471 			const struct sock *sk, const struct sk_buff *skb);
1472 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1473 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1474 		   gfp_t gfp);
1475 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1476 		   int family, u8 prefixlen);
1477 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1478 					 const struct sock *addr_sk);
1479 
1480 #ifdef CONFIG_TCP_MD5SIG
1481 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1482 					 const union tcp_md5_addr *addr,
1483 					 int family);
1484 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1485 #else
1486 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1487 					 const union tcp_md5_addr *addr,
1488 					 int family)
1489 {
1490 	return NULL;
1491 }
1492 #define tcp_twsk_md5_key(twsk)	NULL
1493 #endif
1494 
1495 bool tcp_alloc_md5sig_pool(void);
1496 
1497 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1498 static inline void tcp_put_md5sig_pool(void)
1499 {
1500 	local_bh_enable();
1501 }
1502 
1503 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1504 			  unsigned int header_len);
1505 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1506 		     const struct tcp_md5sig_key *key);
1507 
1508 /* From tcp_fastopen.c */
1509 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1510 			    struct tcp_fastopen_cookie *cookie);
1511 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1512 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1513 			    u16 try_exp);
1514 struct tcp_fastopen_request {
1515 	/* Fast Open cookie. Size 0 means a cookie request */
1516 	struct tcp_fastopen_cookie	cookie;
1517 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1518 	size_t				size;
1519 	int				copied;	/* queued in tcp_connect() */
1520 };
1521 void tcp_free_fastopen_req(struct tcp_sock *tp);
1522 void tcp_fastopen_destroy_cipher(struct sock *sk);
1523 void tcp_fastopen_ctx_destroy(struct net *net);
1524 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1525 			      void *key, unsigned int len);
1526 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1527 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1528 			      struct request_sock *req,
1529 			      struct tcp_fastopen_cookie *foc,
1530 			      const struct dst_entry *dst);
1531 void tcp_fastopen_init_key_once(struct net *net);
1532 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1533 			     struct tcp_fastopen_cookie *cookie);
1534 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1535 #define TCP_FASTOPEN_KEY_LENGTH 16
1536 
1537 /* Fastopen key context */
1538 struct tcp_fastopen_context {
1539 	struct crypto_cipher	*tfm;
1540 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1541 	struct rcu_head		rcu;
1542 };
1543 
1544 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1545 void tcp_fastopen_active_disable(struct sock *sk);
1546 bool tcp_fastopen_active_should_disable(struct sock *sk);
1547 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1548 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1549 
1550 /* Latencies incurred by various limits for a sender. They are
1551  * chronograph-like stats that are mutually exclusive.
1552  */
1553 enum tcp_chrono {
1554 	TCP_CHRONO_UNSPEC,
1555 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1556 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1557 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1558 	__TCP_CHRONO_MAX,
1559 };
1560 
1561 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1562 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1563 
1564 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1565  * the same memory storage than skb->destructor/_skb_refdst
1566  */
1567 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1568 {
1569 	skb->destructor = NULL;
1570 	skb->_skb_refdst = 0UL;
1571 }
1572 
1573 #define tcp_skb_tsorted_save(skb) {		\
1574 	unsigned long _save = skb->_skb_refdst;	\
1575 	skb->_skb_refdst = 0UL;
1576 
1577 #define tcp_skb_tsorted_restore(skb)		\
1578 	skb->_skb_refdst = _save;		\
1579 }
1580 
1581 void tcp_write_queue_purge(struct sock *sk);
1582 
1583 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1584 {
1585 	return skb_rb_first(&sk->tcp_rtx_queue);
1586 }
1587 
1588 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1589 {
1590 	return skb_peek(&sk->sk_write_queue);
1591 }
1592 
1593 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1594 {
1595 	return skb_peek_tail(&sk->sk_write_queue);
1596 }
1597 
1598 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1599 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1600 
1601 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1602 {
1603 	return skb_peek(&sk->sk_write_queue);
1604 }
1605 
1606 static inline bool tcp_skb_is_last(const struct sock *sk,
1607 				   const struct sk_buff *skb)
1608 {
1609 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1610 }
1611 
1612 static inline bool tcp_write_queue_empty(const struct sock *sk)
1613 {
1614 	return skb_queue_empty(&sk->sk_write_queue);
1615 }
1616 
1617 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1618 {
1619 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1620 }
1621 
1622 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1623 {
1624 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1625 }
1626 
1627 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1628 {
1629 	if (tcp_write_queue_empty(sk))
1630 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1631 }
1632 
1633 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1634 {
1635 	__skb_queue_tail(&sk->sk_write_queue, skb);
1636 }
1637 
1638 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1639 {
1640 	__tcp_add_write_queue_tail(sk, skb);
1641 
1642 	/* Queue it, remembering where we must start sending. */
1643 	if (sk->sk_write_queue.next == skb)
1644 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1645 }
1646 
1647 /* Insert new before skb on the write queue of sk.  */
1648 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1649 						  struct sk_buff *skb,
1650 						  struct sock *sk)
1651 {
1652 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1653 }
1654 
1655 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1656 {
1657 	tcp_skb_tsorted_anchor_cleanup(skb);
1658 	__skb_unlink(skb, &sk->sk_write_queue);
1659 }
1660 
1661 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1662 
1663 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1664 {
1665 	tcp_skb_tsorted_anchor_cleanup(skb);
1666 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1667 }
1668 
1669 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1670 {
1671 	list_del(&skb->tcp_tsorted_anchor);
1672 	tcp_rtx_queue_unlink(skb, sk);
1673 	sk_wmem_free_skb(sk, skb);
1674 }
1675 
1676 static inline void tcp_push_pending_frames(struct sock *sk)
1677 {
1678 	if (tcp_send_head(sk)) {
1679 		struct tcp_sock *tp = tcp_sk(sk);
1680 
1681 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1682 	}
1683 }
1684 
1685 /* Start sequence of the skb just after the highest skb with SACKed
1686  * bit, valid only if sacked_out > 0 or when the caller has ensured
1687  * validity by itself.
1688  */
1689 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1690 {
1691 	if (!tp->sacked_out)
1692 		return tp->snd_una;
1693 
1694 	if (tp->highest_sack == NULL)
1695 		return tp->snd_nxt;
1696 
1697 	return TCP_SKB_CB(tp->highest_sack)->seq;
1698 }
1699 
1700 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1701 {
1702 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1703 }
1704 
1705 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1706 {
1707 	return tcp_sk(sk)->highest_sack;
1708 }
1709 
1710 static inline void tcp_highest_sack_reset(struct sock *sk)
1711 {
1712 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1713 }
1714 
1715 /* Called when old skb is about to be deleted and replaced by new skb */
1716 static inline void tcp_highest_sack_replace(struct sock *sk,
1717 					    struct sk_buff *old,
1718 					    struct sk_buff *new)
1719 {
1720 	if (old == tcp_highest_sack(sk))
1721 		tcp_sk(sk)->highest_sack = new;
1722 }
1723 
1724 /* This helper checks if socket has IP_TRANSPARENT set */
1725 static inline bool inet_sk_transparent(const struct sock *sk)
1726 {
1727 	switch (sk->sk_state) {
1728 	case TCP_TIME_WAIT:
1729 		return inet_twsk(sk)->tw_transparent;
1730 	case TCP_NEW_SYN_RECV:
1731 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1732 	}
1733 	return inet_sk(sk)->transparent;
1734 }
1735 
1736 /* Determines whether this is a thin stream (which may suffer from
1737  * increased latency). Used to trigger latency-reducing mechanisms.
1738  */
1739 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1740 {
1741 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1742 }
1743 
1744 /* /proc */
1745 enum tcp_seq_states {
1746 	TCP_SEQ_STATE_LISTENING,
1747 	TCP_SEQ_STATE_ESTABLISHED,
1748 };
1749 
1750 int tcp_seq_open(struct inode *inode, struct file *file);
1751 
1752 struct tcp_seq_afinfo {
1753 	char				*name;
1754 	sa_family_t			family;
1755 	const struct file_operations	*seq_fops;
1756 	struct seq_operations		seq_ops;
1757 };
1758 
1759 struct tcp_iter_state {
1760 	struct seq_net_private	p;
1761 	sa_family_t		family;
1762 	enum tcp_seq_states	state;
1763 	struct sock		*syn_wait_sk;
1764 	int			bucket, offset, sbucket, num;
1765 	loff_t			last_pos;
1766 };
1767 
1768 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1769 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1770 
1771 extern struct request_sock_ops tcp_request_sock_ops;
1772 extern struct request_sock_ops tcp6_request_sock_ops;
1773 
1774 void tcp_v4_destroy_sock(struct sock *sk);
1775 
1776 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1777 				netdev_features_t features);
1778 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1779 int tcp_gro_complete(struct sk_buff *skb);
1780 
1781 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1782 
1783 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1784 {
1785 	struct net *net = sock_net((struct sock *)tp);
1786 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1787 }
1788 
1789 static inline bool tcp_stream_memory_free(const struct sock *sk)
1790 {
1791 	const struct tcp_sock *tp = tcp_sk(sk);
1792 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1793 
1794 	return notsent_bytes < tcp_notsent_lowat(tp);
1795 }
1796 
1797 #ifdef CONFIG_PROC_FS
1798 int tcp4_proc_init(void);
1799 void tcp4_proc_exit(void);
1800 #endif
1801 
1802 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1803 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1804 		     const struct tcp_request_sock_ops *af_ops,
1805 		     struct sock *sk, struct sk_buff *skb);
1806 
1807 /* TCP af-specific functions */
1808 struct tcp_sock_af_ops {
1809 #ifdef CONFIG_TCP_MD5SIG
1810 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1811 						const struct sock *addr_sk);
1812 	int		(*calc_md5_hash)(char *location,
1813 					 const struct tcp_md5sig_key *md5,
1814 					 const struct sock *sk,
1815 					 const struct sk_buff *skb);
1816 	int		(*md5_parse)(struct sock *sk,
1817 				     int optname,
1818 				     char __user *optval,
1819 				     int optlen);
1820 #endif
1821 };
1822 
1823 struct tcp_request_sock_ops {
1824 	u16 mss_clamp;
1825 #ifdef CONFIG_TCP_MD5SIG
1826 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1827 						 const struct sock *addr_sk);
1828 	int		(*calc_md5_hash) (char *location,
1829 					  const struct tcp_md5sig_key *md5,
1830 					  const struct sock *sk,
1831 					  const struct sk_buff *skb);
1832 #endif
1833 	void (*init_req)(struct request_sock *req,
1834 			 const struct sock *sk_listener,
1835 			 struct sk_buff *skb);
1836 #ifdef CONFIG_SYN_COOKIES
1837 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1838 				 __u16 *mss);
1839 #endif
1840 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1841 				       const struct request_sock *req);
1842 	u32 (*init_seq)(const struct sk_buff *skb);
1843 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1844 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1845 			   struct flowi *fl, struct request_sock *req,
1846 			   struct tcp_fastopen_cookie *foc,
1847 			   enum tcp_synack_type synack_type);
1848 };
1849 
1850 #ifdef CONFIG_SYN_COOKIES
1851 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1852 					 const struct sock *sk, struct sk_buff *skb,
1853 					 __u16 *mss)
1854 {
1855 	tcp_synq_overflow(sk);
1856 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1857 	return ops->cookie_init_seq(skb, mss);
1858 }
1859 #else
1860 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1861 					 const struct sock *sk, struct sk_buff *skb,
1862 					 __u16 *mss)
1863 {
1864 	return 0;
1865 }
1866 #endif
1867 
1868 int tcpv4_offload_init(void);
1869 
1870 void tcp_v4_init(void);
1871 void tcp_init(void);
1872 
1873 /* tcp_recovery.c */
1874 extern void tcp_rack_mark_lost(struct sock *sk);
1875 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1876 			     u64 xmit_time);
1877 extern void tcp_rack_reo_timeout(struct sock *sk);
1878 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1879 
1880 /* At how many usecs into the future should the RTO fire? */
1881 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1882 {
1883 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1884 	u32 rto = inet_csk(sk)->icsk_rto;
1885 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1886 
1887 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1888 }
1889 
1890 /*
1891  * Save and compile IPv4 options, return a pointer to it
1892  */
1893 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1894 							 struct sk_buff *skb)
1895 {
1896 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1897 	struct ip_options_rcu *dopt = NULL;
1898 
1899 	if (opt->optlen) {
1900 		int opt_size = sizeof(*dopt) + opt->optlen;
1901 
1902 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1903 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1904 			kfree(dopt);
1905 			dopt = NULL;
1906 		}
1907 	}
1908 	return dopt;
1909 }
1910 
1911 /* locally generated TCP pure ACKs have skb->truesize == 2
1912  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1913  * This is much faster than dissecting the packet to find out.
1914  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1915  */
1916 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1917 {
1918 	return skb->truesize == 2;
1919 }
1920 
1921 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1922 {
1923 	skb->truesize = 2;
1924 }
1925 
1926 static inline int tcp_inq(struct sock *sk)
1927 {
1928 	struct tcp_sock *tp = tcp_sk(sk);
1929 	int answ;
1930 
1931 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1932 		answ = 0;
1933 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1934 		   !tp->urg_data ||
1935 		   before(tp->urg_seq, tp->copied_seq) ||
1936 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1937 
1938 		answ = tp->rcv_nxt - tp->copied_seq;
1939 
1940 		/* Subtract 1, if FIN was received */
1941 		if (answ && sock_flag(sk, SOCK_DONE))
1942 			answ--;
1943 	} else {
1944 		answ = tp->urg_seq - tp->copied_seq;
1945 	}
1946 
1947 	return answ;
1948 }
1949 
1950 int tcp_peek_len(struct socket *sock);
1951 
1952 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1953 {
1954 	u16 segs_in;
1955 
1956 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1957 	tp->segs_in += segs_in;
1958 	if (skb->len > tcp_hdrlen(skb))
1959 		tp->data_segs_in += segs_in;
1960 }
1961 
1962 /*
1963  * TCP listen path runs lockless.
1964  * We forced "struct sock" to be const qualified to make sure
1965  * we don't modify one of its field by mistake.
1966  * Here, we increment sk_drops which is an atomic_t, so we can safely
1967  * make sock writable again.
1968  */
1969 static inline void tcp_listendrop(const struct sock *sk)
1970 {
1971 	atomic_inc(&((struct sock *)sk)->sk_drops);
1972 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1973 }
1974 
1975 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
1976 
1977 /*
1978  * Interface for adding Upper Level Protocols over TCP
1979  */
1980 
1981 #define TCP_ULP_NAME_MAX	16
1982 #define TCP_ULP_MAX		128
1983 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
1984 
1985 enum {
1986 	TCP_ULP_TLS,
1987 	TCP_ULP_BPF,
1988 };
1989 
1990 struct tcp_ulp_ops {
1991 	struct list_head	list;
1992 
1993 	/* initialize ulp */
1994 	int (*init)(struct sock *sk);
1995 	/* cleanup ulp */
1996 	void (*release)(struct sock *sk);
1997 
1998 	int		uid;
1999 	char		name[TCP_ULP_NAME_MAX];
2000 	bool		user_visible;
2001 	struct module	*owner;
2002 };
2003 int tcp_register_ulp(struct tcp_ulp_ops *type);
2004 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2005 int tcp_set_ulp(struct sock *sk, const char *name);
2006 int tcp_set_ulp_id(struct sock *sk, const int ulp);
2007 void tcp_get_available_ulp(char *buf, size_t len);
2008 void tcp_cleanup_ulp(struct sock *sk);
2009 
2010 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2011  * is < 0, then the BPF op failed (for example if the loaded BPF
2012  * program does not support the chosen operation or there is no BPF
2013  * program loaded).
2014  */
2015 #ifdef CONFIG_BPF
2016 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2017 {
2018 	struct bpf_sock_ops_kern sock_ops;
2019 	int ret;
2020 
2021 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2022 	if (sk_fullsock(sk)) {
2023 		sock_ops.is_fullsock = 1;
2024 		sock_owned_by_me(sk);
2025 	}
2026 
2027 	sock_ops.sk = sk;
2028 	sock_ops.op = op;
2029 	if (nargs > 0)
2030 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2031 
2032 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2033 	if (ret == 0)
2034 		ret = sock_ops.reply;
2035 	else
2036 		ret = -1;
2037 	return ret;
2038 }
2039 
2040 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2041 {
2042 	u32 args[2] = {arg1, arg2};
2043 
2044 	return tcp_call_bpf(sk, op, 2, args);
2045 }
2046 
2047 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2048 				    u32 arg3)
2049 {
2050 	u32 args[3] = {arg1, arg2, arg3};
2051 
2052 	return tcp_call_bpf(sk, op, 3, args);
2053 }
2054 
2055 #else
2056 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2057 {
2058 	return -EPERM;
2059 }
2060 
2061 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2062 {
2063 	return -EPERM;
2064 }
2065 
2066 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2067 				    u32 arg3)
2068 {
2069 	return -EPERM;
2070 }
2071 
2072 #endif
2073 
2074 static inline u32 tcp_timeout_init(struct sock *sk)
2075 {
2076 	int timeout;
2077 
2078 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2079 
2080 	if (timeout <= 0)
2081 		timeout = TCP_TIMEOUT_INIT;
2082 	return timeout;
2083 }
2084 
2085 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2086 {
2087 	int rwnd;
2088 
2089 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2090 
2091 	if (rwnd < 0)
2092 		rwnd = 0;
2093 	return rwnd;
2094 }
2095 
2096 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2097 {
2098 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2099 }
2100 
2101 #if IS_ENABLED(CONFIG_SMC)
2102 extern struct static_key_false tcp_have_smc;
2103 #endif
2104 #endif	/* _TCP_H */
2105