xref: /linux/include/net/tcp.h (revision 164666fa66669d437bdcc8d5f1744a2aee73be41)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
146 						 * used as a fallback RTO for the
147 						 * initial data transmission if no
148 						 * valid RTT sample has been acquired,
149 						 * most likely due to retrans in 3WHS.
150 						 */
151 
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 					                 * for local resources.
154 					                 */
155 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
156 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
157 #define TCP_KEEPALIVE_INTVL	(75*HZ)
158 
159 #define MAX_TCP_KEEPIDLE	32767
160 #define MAX_TCP_KEEPINTVL	32767
161 #define MAX_TCP_KEEPCNT		127
162 #define MAX_TCP_SYNCNT		127
163 
164 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
165 
166 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
167 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
168 					 * after this time. It should be equal
169 					 * (or greater than) TCP_TIMEWAIT_LEN
170 					 * to provide reliability equal to one
171 					 * provided by timewait state.
172 					 */
173 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
174 					 * timestamps. It must be less than
175 					 * minimal timewait lifetime.
176 					 */
177 /*
178  *	TCP option
179  */
180 
181 #define TCPOPT_NOP		1	/* Padding */
182 #define TCPOPT_EOL		0	/* End of options */
183 #define TCPOPT_MSS		2	/* Segment size negotiating */
184 #define TCPOPT_WINDOW		3	/* Window scaling */
185 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
186 #define TCPOPT_SACK             5       /* SACK Block */
187 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
188 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
189 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
190 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
191 #define TCPOPT_EXP		254	/* Experimental */
192 /* Magic number to be after the option value for sharing TCP
193  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194  */
195 #define TCPOPT_FASTOPEN_MAGIC	0xF989
196 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
197 
198 /*
199  *     TCP option lengths
200  */
201 
202 #define TCPOLEN_MSS            4
203 #define TCPOLEN_WINDOW         3
204 #define TCPOLEN_SACK_PERM      2
205 #define TCPOLEN_TIMESTAMP      10
206 #define TCPOLEN_MD5SIG         18
207 #define TCPOLEN_FASTOPEN_BASE  2
208 #define TCPOLEN_EXP_FASTOPEN_BASE  4
209 #define TCPOLEN_EXP_SMC_BASE   6
210 
211 /* But this is what stacks really send out. */
212 #define TCPOLEN_TSTAMP_ALIGNED		12
213 #define TCPOLEN_WSCALE_ALIGNED		4
214 #define TCPOLEN_SACKPERM_ALIGNED	4
215 #define TCPOLEN_SACK_BASE		2
216 #define TCPOLEN_SACK_BASE_ALIGNED	4
217 #define TCPOLEN_SACK_PERBLOCK		8
218 #define TCPOLEN_MD5SIG_ALIGNED		20
219 #define TCPOLEN_MSS_ALIGNED		4
220 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
221 
222 /* Flags in tp->nonagle */
223 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
224 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
225 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
226 
227 /* TCP thin-stream limits */
228 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
229 
230 /* TCP initial congestion window as per rfc6928 */
231 #define TCP_INIT_CWND		10
232 
233 /* Bit Flags for sysctl_tcp_fastopen */
234 #define	TFO_CLIENT_ENABLE	1
235 #define	TFO_SERVER_ENABLE	2
236 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
237 
238 /* Accept SYN data w/o any cookie option */
239 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
240 
241 /* Force enable TFO on all listeners, i.e., not requiring the
242  * TCP_FASTOPEN socket option.
243  */
244 #define	TFO_SERVER_WO_SOCKOPT1	0x400
245 
246 
247 /* sysctl variables for tcp */
248 extern int sysctl_tcp_max_orphans;
249 extern long sysctl_tcp_mem[3];
250 
251 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
252 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
253 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
254 
255 extern atomic_long_t tcp_memory_allocated;
256 extern struct percpu_counter tcp_sockets_allocated;
257 extern unsigned long tcp_memory_pressure;
258 
259 /* optimized version of sk_under_memory_pressure() for TCP sockets */
260 static inline bool tcp_under_memory_pressure(const struct sock *sk)
261 {
262 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
263 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
264 		return true;
265 
266 	return READ_ONCE(tcp_memory_pressure);
267 }
268 /*
269  * The next routines deal with comparing 32 bit unsigned ints
270  * and worry about wraparound (automatic with unsigned arithmetic).
271  */
272 
273 static inline bool before(__u32 seq1, __u32 seq2)
274 {
275         return (__s32)(seq1-seq2) < 0;
276 }
277 #define after(seq2, seq1) 	before(seq1, seq2)
278 
279 /* is s2<=s1<=s3 ? */
280 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
281 {
282 	return seq3 - seq2 >= seq1 - seq2;
283 }
284 
285 static inline bool tcp_out_of_memory(struct sock *sk)
286 {
287 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
288 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
289 		return true;
290 	return false;
291 }
292 
293 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
294 {
295 	sk_wmem_queued_add(sk, -skb->truesize);
296 	if (!skb_zcopy_pure(skb))
297 		sk_mem_uncharge(sk, skb->truesize);
298 	else
299 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
300 	__kfree_skb(skb);
301 }
302 
303 void sk_forced_mem_schedule(struct sock *sk, int size);
304 
305 bool tcp_check_oom(struct sock *sk, int shift);
306 
307 
308 extern struct proto tcp_prot;
309 
310 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
311 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
314 
315 void tcp_tasklet_init(void);
316 
317 int tcp_v4_err(struct sk_buff *skb, u32);
318 
319 void tcp_shutdown(struct sock *sk, int how);
320 
321 int tcp_v4_early_demux(struct sk_buff *skb);
322 int tcp_v4_rcv(struct sk_buff *skb);
323 
324 void tcp_remove_empty_skb(struct sock *sk);
325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
329 		 int flags);
330 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
331 			size_t size, int flags);
332 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
333 		 size_t size, int flags);
334 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
335 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
336 	      int size_goal);
337 void tcp_release_cb(struct sock *sk);
338 void tcp_wfree(struct sk_buff *skb);
339 void tcp_write_timer_handler(struct sock *sk);
340 void tcp_delack_timer_handler(struct sock *sk);
341 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
342 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_space_adjust(struct sock *sk);
345 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
346 void tcp_twsk_destructor(struct sock *sk);
347 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
348 			struct pipe_inode_info *pipe, size_t len,
349 			unsigned int flags);
350 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
351 				     bool force_schedule);
352 
353 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
354 static inline void tcp_dec_quickack_mode(struct sock *sk,
355 					 const unsigned int pkts)
356 {
357 	struct inet_connection_sock *icsk = inet_csk(sk);
358 
359 	if (icsk->icsk_ack.quick) {
360 		if (pkts >= icsk->icsk_ack.quick) {
361 			icsk->icsk_ack.quick = 0;
362 			/* Leaving quickack mode we deflate ATO. */
363 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
364 		} else
365 			icsk->icsk_ack.quick -= pkts;
366 	}
367 }
368 
369 #define	TCP_ECN_OK		1
370 #define	TCP_ECN_QUEUE_CWR	2
371 #define	TCP_ECN_DEMAND_CWR	4
372 #define	TCP_ECN_SEEN		8
373 
374 enum tcp_tw_status {
375 	TCP_TW_SUCCESS = 0,
376 	TCP_TW_RST = 1,
377 	TCP_TW_ACK = 2,
378 	TCP_TW_SYN = 3
379 };
380 
381 
382 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
383 					      struct sk_buff *skb,
384 					      const struct tcphdr *th);
385 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
386 			   struct request_sock *req, bool fastopen,
387 			   bool *lost_race);
388 int tcp_child_process(struct sock *parent, struct sock *child,
389 		      struct sk_buff *skb);
390 void tcp_enter_loss(struct sock *sk);
391 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
392 void tcp_clear_retrans(struct tcp_sock *tp);
393 void tcp_update_metrics(struct sock *sk);
394 void tcp_init_metrics(struct sock *sk);
395 void tcp_metrics_init(void);
396 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
397 void __tcp_close(struct sock *sk, long timeout);
398 void tcp_close(struct sock *sk, long timeout);
399 void tcp_init_sock(struct sock *sk);
400 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
401 __poll_t tcp_poll(struct file *file, struct socket *sock,
402 		      struct poll_table_struct *wait);
403 int tcp_getsockopt(struct sock *sk, int level, int optname,
404 		   char __user *optval, int __user *optlen);
405 bool tcp_bpf_bypass_getsockopt(int level, int optname);
406 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
407 		   unsigned int optlen);
408 void tcp_set_keepalive(struct sock *sk, int val);
409 void tcp_syn_ack_timeout(const struct request_sock *req);
410 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
411 		int flags, int *addr_len);
412 int tcp_set_rcvlowat(struct sock *sk, int val);
413 int tcp_set_window_clamp(struct sock *sk, int val);
414 void tcp_update_recv_tstamps(struct sk_buff *skb,
415 			     struct scm_timestamping_internal *tss);
416 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
417 			struct scm_timestamping_internal *tss);
418 void tcp_data_ready(struct sock *sk);
419 #ifdef CONFIG_MMU
420 int tcp_mmap(struct file *file, struct socket *sock,
421 	     struct vm_area_struct *vma);
422 #endif
423 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
424 		       struct tcp_options_received *opt_rx,
425 		       int estab, struct tcp_fastopen_cookie *foc);
426 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
427 
428 /*
429  *	BPF SKB-less helpers
430  */
431 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
432 			 struct tcphdr *th, u32 *cookie);
433 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
434 			 struct tcphdr *th, u32 *cookie);
435 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
436 			  const struct tcp_request_sock_ops *af_ops,
437 			  struct sock *sk, struct tcphdr *th);
438 /*
439  *	TCP v4 functions exported for the inet6 API
440  */
441 
442 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
443 void tcp_v4_mtu_reduced(struct sock *sk);
444 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
445 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
446 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
447 struct sock *tcp_create_openreq_child(const struct sock *sk,
448 				      struct request_sock *req,
449 				      struct sk_buff *skb);
450 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
451 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
452 				  struct request_sock *req,
453 				  struct dst_entry *dst,
454 				  struct request_sock *req_unhash,
455 				  bool *own_req);
456 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
457 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
458 int tcp_connect(struct sock *sk);
459 enum tcp_synack_type {
460 	TCP_SYNACK_NORMAL,
461 	TCP_SYNACK_FASTOPEN,
462 	TCP_SYNACK_COOKIE,
463 };
464 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
465 				struct request_sock *req,
466 				struct tcp_fastopen_cookie *foc,
467 				enum tcp_synack_type synack_type,
468 				struct sk_buff *syn_skb);
469 int tcp_disconnect(struct sock *sk, int flags);
470 
471 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
472 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
473 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
474 
475 /* From syncookies.c */
476 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
477 				 struct request_sock *req,
478 				 struct dst_entry *dst, u32 tsoff);
479 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
480 		      u32 cookie);
481 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
482 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
483 					    struct sock *sk, struct sk_buff *skb);
484 #ifdef CONFIG_SYN_COOKIES
485 
486 /* Syncookies use a monotonic timer which increments every 60 seconds.
487  * This counter is used both as a hash input and partially encoded into
488  * the cookie value.  A cookie is only validated further if the delta
489  * between the current counter value and the encoded one is less than this,
490  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
491  * the counter advances immediately after a cookie is generated).
492  */
493 #define MAX_SYNCOOKIE_AGE	2
494 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
495 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
496 
497 /* syncookies: remember time of last synqueue overflow
498  * But do not dirty this field too often (once per second is enough)
499  * It is racy as we do not hold a lock, but race is very minor.
500  */
501 static inline void tcp_synq_overflow(const struct sock *sk)
502 {
503 	unsigned int last_overflow;
504 	unsigned int now = jiffies;
505 
506 	if (sk->sk_reuseport) {
507 		struct sock_reuseport *reuse;
508 
509 		reuse = rcu_dereference(sk->sk_reuseport_cb);
510 		if (likely(reuse)) {
511 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
512 			if (!time_between32(now, last_overflow,
513 					    last_overflow + HZ))
514 				WRITE_ONCE(reuse->synq_overflow_ts, now);
515 			return;
516 		}
517 	}
518 
519 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
520 	if (!time_between32(now, last_overflow, last_overflow + HZ))
521 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
522 }
523 
524 /* syncookies: no recent synqueue overflow on this listening socket? */
525 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
526 {
527 	unsigned int last_overflow;
528 	unsigned int now = jiffies;
529 
530 	if (sk->sk_reuseport) {
531 		struct sock_reuseport *reuse;
532 
533 		reuse = rcu_dereference(sk->sk_reuseport_cb);
534 		if (likely(reuse)) {
535 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
536 			return !time_between32(now, last_overflow - HZ,
537 					       last_overflow +
538 					       TCP_SYNCOOKIE_VALID);
539 		}
540 	}
541 
542 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
543 
544 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
545 	 * then we're under synflood. However, we have to use
546 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
547 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
548 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
549 	 * which could lead to rejecting a valid syncookie.
550 	 */
551 	return !time_between32(now, last_overflow - HZ,
552 			       last_overflow + TCP_SYNCOOKIE_VALID);
553 }
554 
555 static inline u32 tcp_cookie_time(void)
556 {
557 	u64 val = get_jiffies_64();
558 
559 	do_div(val, TCP_SYNCOOKIE_PERIOD);
560 	return val;
561 }
562 
563 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
564 			      u16 *mssp);
565 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
566 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
567 bool cookie_timestamp_decode(const struct net *net,
568 			     struct tcp_options_received *opt);
569 bool cookie_ecn_ok(const struct tcp_options_received *opt,
570 		   const struct net *net, const struct dst_entry *dst);
571 
572 /* From net/ipv6/syncookies.c */
573 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
574 		      u32 cookie);
575 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
576 
577 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
578 			      const struct tcphdr *th, u16 *mssp);
579 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
580 #endif
581 /* tcp_output.c */
582 
583 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
584 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
585 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
586 			       int nonagle);
587 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
588 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
589 void tcp_retransmit_timer(struct sock *sk);
590 void tcp_xmit_retransmit_queue(struct sock *);
591 void tcp_simple_retransmit(struct sock *);
592 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
593 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
594 enum tcp_queue {
595 	TCP_FRAG_IN_WRITE_QUEUE,
596 	TCP_FRAG_IN_RTX_QUEUE,
597 };
598 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
599 		 struct sk_buff *skb, u32 len,
600 		 unsigned int mss_now, gfp_t gfp);
601 
602 void tcp_send_probe0(struct sock *);
603 void tcp_send_partial(struct sock *);
604 int tcp_write_wakeup(struct sock *, int mib);
605 void tcp_send_fin(struct sock *sk);
606 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
607 int tcp_send_synack(struct sock *);
608 void tcp_push_one(struct sock *, unsigned int mss_now);
609 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
610 void tcp_send_ack(struct sock *sk);
611 void tcp_send_delayed_ack(struct sock *sk);
612 void tcp_send_loss_probe(struct sock *sk);
613 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
614 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
615 			     const struct sk_buff *next_skb);
616 
617 /* tcp_input.c */
618 void tcp_rearm_rto(struct sock *sk);
619 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
620 void tcp_reset(struct sock *sk, struct sk_buff *skb);
621 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
622 void tcp_fin(struct sock *sk);
623 
624 /* tcp_timer.c */
625 void tcp_init_xmit_timers(struct sock *);
626 static inline void tcp_clear_xmit_timers(struct sock *sk)
627 {
628 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
629 		__sock_put(sk);
630 
631 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
632 		__sock_put(sk);
633 
634 	inet_csk_clear_xmit_timers(sk);
635 }
636 
637 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
638 unsigned int tcp_current_mss(struct sock *sk);
639 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
640 
641 /* Bound MSS / TSO packet size with the half of the window */
642 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
643 {
644 	int cutoff;
645 
646 	/* When peer uses tiny windows, there is no use in packetizing
647 	 * to sub-MSS pieces for the sake of SWS or making sure there
648 	 * are enough packets in the pipe for fast recovery.
649 	 *
650 	 * On the other hand, for extremely large MSS devices, handling
651 	 * smaller than MSS windows in this way does make sense.
652 	 */
653 	if (tp->max_window > TCP_MSS_DEFAULT)
654 		cutoff = (tp->max_window >> 1);
655 	else
656 		cutoff = tp->max_window;
657 
658 	if (cutoff && pktsize > cutoff)
659 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
660 	else
661 		return pktsize;
662 }
663 
664 /* tcp.c */
665 void tcp_get_info(struct sock *, struct tcp_info *);
666 
667 /* Read 'sendfile()'-style from a TCP socket */
668 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
669 		  sk_read_actor_t recv_actor);
670 
671 void tcp_initialize_rcv_mss(struct sock *sk);
672 
673 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
674 int tcp_mss_to_mtu(struct sock *sk, int mss);
675 void tcp_mtup_init(struct sock *sk);
676 
677 static inline void tcp_bound_rto(const struct sock *sk)
678 {
679 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
680 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
681 }
682 
683 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
684 {
685 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
686 }
687 
688 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
689 {
690 	/* mptcp hooks are only on the slow path */
691 	if (sk_is_mptcp((struct sock *)tp))
692 		return;
693 
694 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
695 			       ntohl(TCP_FLAG_ACK) |
696 			       snd_wnd);
697 }
698 
699 static inline void tcp_fast_path_on(struct tcp_sock *tp)
700 {
701 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
702 }
703 
704 static inline void tcp_fast_path_check(struct sock *sk)
705 {
706 	struct tcp_sock *tp = tcp_sk(sk);
707 
708 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
709 	    tp->rcv_wnd &&
710 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
711 	    !tp->urg_data)
712 		tcp_fast_path_on(tp);
713 }
714 
715 /* Compute the actual rto_min value */
716 static inline u32 tcp_rto_min(struct sock *sk)
717 {
718 	const struct dst_entry *dst = __sk_dst_get(sk);
719 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
720 
721 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
722 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
723 	return rto_min;
724 }
725 
726 static inline u32 tcp_rto_min_us(struct sock *sk)
727 {
728 	return jiffies_to_usecs(tcp_rto_min(sk));
729 }
730 
731 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
732 {
733 	return dst_metric_locked(dst, RTAX_CC_ALGO);
734 }
735 
736 /* Minimum RTT in usec. ~0 means not available. */
737 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
738 {
739 	return minmax_get(&tp->rtt_min);
740 }
741 
742 /* Compute the actual receive window we are currently advertising.
743  * Rcv_nxt can be after the window if our peer push more data
744  * than the offered window.
745  */
746 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
747 {
748 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
749 
750 	if (win < 0)
751 		win = 0;
752 	return (u32) win;
753 }
754 
755 /* Choose a new window, without checks for shrinking, and without
756  * scaling applied to the result.  The caller does these things
757  * if necessary.  This is a "raw" window selection.
758  */
759 u32 __tcp_select_window(struct sock *sk);
760 
761 void tcp_send_window_probe(struct sock *sk);
762 
763 /* TCP uses 32bit jiffies to save some space.
764  * Note that this is different from tcp_time_stamp, which
765  * historically has been the same until linux-4.13.
766  */
767 #define tcp_jiffies32 ((u32)jiffies)
768 
769 /*
770  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
771  * It is no longer tied to jiffies, but to 1 ms clock.
772  * Note: double check if you want to use tcp_jiffies32 instead of this.
773  */
774 #define TCP_TS_HZ	1000
775 
776 static inline u64 tcp_clock_ns(void)
777 {
778 	return ktime_get_ns();
779 }
780 
781 static inline u64 tcp_clock_us(void)
782 {
783 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
784 }
785 
786 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
787 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
788 {
789 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
790 }
791 
792 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
793 static inline u32 tcp_ns_to_ts(u64 ns)
794 {
795 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
796 }
797 
798 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
799 static inline u32 tcp_time_stamp_raw(void)
800 {
801 	return tcp_ns_to_ts(tcp_clock_ns());
802 }
803 
804 void tcp_mstamp_refresh(struct tcp_sock *tp);
805 
806 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
807 {
808 	return max_t(s64, t1 - t0, 0);
809 }
810 
811 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
812 {
813 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
814 }
815 
816 /* provide the departure time in us unit */
817 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
818 {
819 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
820 }
821 
822 
823 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
824 
825 #define TCPHDR_FIN 0x01
826 #define TCPHDR_SYN 0x02
827 #define TCPHDR_RST 0x04
828 #define TCPHDR_PSH 0x08
829 #define TCPHDR_ACK 0x10
830 #define TCPHDR_URG 0x20
831 #define TCPHDR_ECE 0x40
832 #define TCPHDR_CWR 0x80
833 
834 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
835 
836 /* This is what the send packet queuing engine uses to pass
837  * TCP per-packet control information to the transmission code.
838  * We also store the host-order sequence numbers in here too.
839  * This is 44 bytes if IPV6 is enabled.
840  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
841  */
842 struct tcp_skb_cb {
843 	__u32		seq;		/* Starting sequence number	*/
844 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
845 	union {
846 		/* Note : tcp_tw_isn is used in input path only
847 		 *	  (isn chosen by tcp_timewait_state_process())
848 		 *
849 		 * 	  tcp_gso_segs/size are used in write queue only,
850 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
851 		 */
852 		__u32		tcp_tw_isn;
853 		struct {
854 			u16	tcp_gso_segs;
855 			u16	tcp_gso_size;
856 		};
857 	};
858 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
859 
860 	__u8		sacked;		/* State flags for SACK.	*/
861 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
862 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
863 #define TCPCB_LOST		0x04	/* SKB is lost			*/
864 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
865 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
866 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
867 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
868 				TCPCB_REPAIRED)
869 
870 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
871 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
872 			eor:1,		/* Is skb MSG_EOR marked? */
873 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
874 			unused:5;
875 	__u32		ack_seq;	/* Sequence number ACK'd	*/
876 	union {
877 		struct {
878 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
879 			/* There is space for up to 24 bytes */
880 			__u32 is_app_limited:1, /* cwnd not fully used? */
881 			      delivered_ce:20,
882 			      unused:11;
883 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
884 			__u32 delivered;
885 			/* start of send pipeline phase */
886 			u64 first_tx_mstamp;
887 			/* when we reached the "delivered" count */
888 			u64 delivered_mstamp;
889 		} tx;   /* only used for outgoing skbs */
890 		union {
891 			struct inet_skb_parm	h4;
892 #if IS_ENABLED(CONFIG_IPV6)
893 			struct inet6_skb_parm	h6;
894 #endif
895 		} header;	/* For incoming skbs */
896 	};
897 };
898 
899 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
900 
901 extern const struct inet_connection_sock_af_ops ipv4_specific;
902 
903 #if IS_ENABLED(CONFIG_IPV6)
904 /* This is the variant of inet6_iif() that must be used by TCP,
905  * as TCP moves IP6CB into a different location in skb->cb[]
906  */
907 static inline int tcp_v6_iif(const struct sk_buff *skb)
908 {
909 	return TCP_SKB_CB(skb)->header.h6.iif;
910 }
911 
912 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
913 {
914 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
915 
916 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
917 }
918 
919 /* TCP_SKB_CB reference means this can not be used from early demux */
920 static inline int tcp_v6_sdif(const struct sk_buff *skb)
921 {
922 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
923 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
924 		return TCP_SKB_CB(skb)->header.h6.iif;
925 #endif
926 	return 0;
927 }
928 
929 extern const struct inet_connection_sock_af_ops ipv6_specific;
930 
931 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
932 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
933 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
934 
935 #endif
936 
937 /* TCP_SKB_CB reference means this can not be used from early demux */
938 static inline int tcp_v4_sdif(struct sk_buff *skb)
939 {
940 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
941 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
942 		return TCP_SKB_CB(skb)->header.h4.iif;
943 #endif
944 	return 0;
945 }
946 
947 /* Due to TSO, an SKB can be composed of multiple actual
948  * packets.  To keep these tracked properly, we use this.
949  */
950 static inline int tcp_skb_pcount(const struct sk_buff *skb)
951 {
952 	return TCP_SKB_CB(skb)->tcp_gso_segs;
953 }
954 
955 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
956 {
957 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
958 }
959 
960 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
961 {
962 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
963 }
964 
965 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
966 static inline int tcp_skb_mss(const struct sk_buff *skb)
967 {
968 	return TCP_SKB_CB(skb)->tcp_gso_size;
969 }
970 
971 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
972 {
973 	return likely(!TCP_SKB_CB(skb)->eor);
974 }
975 
976 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
977 					const struct sk_buff *from)
978 {
979 	return likely(tcp_skb_can_collapse_to(to) &&
980 		      mptcp_skb_can_collapse(to, from) &&
981 		      skb_pure_zcopy_same(to, from));
982 }
983 
984 /* Events passed to congestion control interface */
985 enum tcp_ca_event {
986 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
987 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
988 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
989 	CA_EVENT_LOSS,		/* loss timeout */
990 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
991 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
992 };
993 
994 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
995 enum tcp_ca_ack_event_flags {
996 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
997 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
998 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
999 };
1000 
1001 /*
1002  * Interface for adding new TCP congestion control handlers
1003  */
1004 #define TCP_CA_NAME_MAX	16
1005 #define TCP_CA_MAX	128
1006 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1007 
1008 #define TCP_CA_UNSPEC	0
1009 
1010 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1011 #define TCP_CONG_NON_RESTRICTED 0x1
1012 /* Requires ECN/ECT set on all packets */
1013 #define TCP_CONG_NEEDS_ECN	0x2
1014 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1015 
1016 union tcp_cc_info;
1017 
1018 struct ack_sample {
1019 	u32 pkts_acked;
1020 	s32 rtt_us;
1021 	u32 in_flight;
1022 };
1023 
1024 /* A rate sample measures the number of (original/retransmitted) data
1025  * packets delivered "delivered" over an interval of time "interval_us".
1026  * The tcp_rate.c code fills in the rate sample, and congestion
1027  * control modules that define a cong_control function to run at the end
1028  * of ACK processing can optionally chose to consult this sample when
1029  * setting cwnd and pacing rate.
1030  * A sample is invalid if "delivered" or "interval_us" is negative.
1031  */
1032 struct rate_sample {
1033 	u64  prior_mstamp; /* starting timestamp for interval */
1034 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1035 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1036 	s32  delivered;		/* number of packets delivered over interval */
1037 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1038 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1039 	u32 snd_interval_us;	/* snd interval for delivered packets */
1040 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1041 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1042 	int  losses;		/* number of packets marked lost upon ACK */
1043 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1044 	u32  prior_in_flight;	/* in flight before this ACK */
1045 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1046 	bool is_retrans;	/* is sample from retransmission? */
1047 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1048 };
1049 
1050 struct tcp_congestion_ops {
1051 /* fast path fields are put first to fill one cache line */
1052 
1053 	/* return slow start threshold (required) */
1054 	u32 (*ssthresh)(struct sock *sk);
1055 
1056 	/* do new cwnd calculation (required) */
1057 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1058 
1059 	/* call before changing ca_state (optional) */
1060 	void (*set_state)(struct sock *sk, u8 new_state);
1061 
1062 	/* call when cwnd event occurs (optional) */
1063 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1064 
1065 	/* call when ack arrives (optional) */
1066 	void (*in_ack_event)(struct sock *sk, u32 flags);
1067 
1068 	/* hook for packet ack accounting (optional) */
1069 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1070 
1071 	/* override sysctl_tcp_min_tso_segs */
1072 	u32 (*min_tso_segs)(struct sock *sk);
1073 
1074 	/* call when packets are delivered to update cwnd and pacing rate,
1075 	 * after all the ca_state processing. (optional)
1076 	 */
1077 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1078 
1079 
1080 	/* new value of cwnd after loss (required) */
1081 	u32  (*undo_cwnd)(struct sock *sk);
1082 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1083 	u32 (*sndbuf_expand)(struct sock *sk);
1084 
1085 /* control/slow paths put last */
1086 	/* get info for inet_diag (optional) */
1087 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1088 			   union tcp_cc_info *info);
1089 
1090 	char 			name[TCP_CA_NAME_MAX];
1091 	struct module		*owner;
1092 	struct list_head	list;
1093 	u32			key;
1094 	u32			flags;
1095 
1096 	/* initialize private data (optional) */
1097 	void (*init)(struct sock *sk);
1098 	/* cleanup private data  (optional) */
1099 	void (*release)(struct sock *sk);
1100 } ____cacheline_aligned_in_smp;
1101 
1102 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1103 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1104 
1105 void tcp_assign_congestion_control(struct sock *sk);
1106 void tcp_init_congestion_control(struct sock *sk);
1107 void tcp_cleanup_congestion_control(struct sock *sk);
1108 int tcp_set_default_congestion_control(struct net *net, const char *name);
1109 void tcp_get_default_congestion_control(struct net *net, char *name);
1110 void tcp_get_available_congestion_control(char *buf, size_t len);
1111 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1112 int tcp_set_allowed_congestion_control(char *allowed);
1113 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1114 			       bool cap_net_admin);
1115 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1116 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1117 
1118 u32 tcp_reno_ssthresh(struct sock *sk);
1119 u32 tcp_reno_undo_cwnd(struct sock *sk);
1120 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1121 extern struct tcp_congestion_ops tcp_reno;
1122 
1123 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1124 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1125 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1126 #ifdef CONFIG_INET
1127 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1128 #else
1129 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1130 {
1131 	return NULL;
1132 }
1133 #endif
1134 
1135 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1136 {
1137 	const struct inet_connection_sock *icsk = inet_csk(sk);
1138 
1139 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1140 }
1141 
1142 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1143 {
1144 	struct inet_connection_sock *icsk = inet_csk(sk);
1145 
1146 	if (icsk->icsk_ca_ops->set_state)
1147 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1148 	icsk->icsk_ca_state = ca_state;
1149 }
1150 
1151 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1152 {
1153 	const struct inet_connection_sock *icsk = inet_csk(sk);
1154 
1155 	if (icsk->icsk_ca_ops->cwnd_event)
1156 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1157 }
1158 
1159 /* From tcp_rate.c */
1160 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1161 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1162 			    struct rate_sample *rs);
1163 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1164 		  bool is_sack_reneg, struct rate_sample *rs);
1165 void tcp_rate_check_app_limited(struct sock *sk);
1166 
1167 /* These functions determine how the current flow behaves in respect of SACK
1168  * handling. SACK is negotiated with the peer, and therefore it can vary
1169  * between different flows.
1170  *
1171  * tcp_is_sack - SACK enabled
1172  * tcp_is_reno - No SACK
1173  */
1174 static inline int tcp_is_sack(const struct tcp_sock *tp)
1175 {
1176 	return likely(tp->rx_opt.sack_ok);
1177 }
1178 
1179 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1180 {
1181 	return !tcp_is_sack(tp);
1182 }
1183 
1184 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1185 {
1186 	return tp->sacked_out + tp->lost_out;
1187 }
1188 
1189 /* This determines how many packets are "in the network" to the best
1190  * of our knowledge.  In many cases it is conservative, but where
1191  * detailed information is available from the receiver (via SACK
1192  * blocks etc.) we can make more aggressive calculations.
1193  *
1194  * Use this for decisions involving congestion control, use just
1195  * tp->packets_out to determine if the send queue is empty or not.
1196  *
1197  * Read this equation as:
1198  *
1199  *	"Packets sent once on transmission queue" MINUS
1200  *	"Packets left network, but not honestly ACKed yet" PLUS
1201  *	"Packets fast retransmitted"
1202  */
1203 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1204 {
1205 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1206 }
1207 
1208 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1209 
1210 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1211 {
1212 	return tp->snd_cwnd < tp->snd_ssthresh;
1213 }
1214 
1215 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1216 {
1217 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1218 }
1219 
1220 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1221 {
1222 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1223 	       (1 << inet_csk(sk)->icsk_ca_state);
1224 }
1225 
1226 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1227  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1228  * ssthresh.
1229  */
1230 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1231 {
1232 	const struct tcp_sock *tp = tcp_sk(sk);
1233 
1234 	if (tcp_in_cwnd_reduction(sk))
1235 		return tp->snd_ssthresh;
1236 	else
1237 		return max(tp->snd_ssthresh,
1238 			   ((tp->snd_cwnd >> 1) +
1239 			    (tp->snd_cwnd >> 2)));
1240 }
1241 
1242 /* Use define here intentionally to get WARN_ON location shown at the caller */
1243 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1244 
1245 void tcp_enter_cwr(struct sock *sk);
1246 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1247 
1248 /* The maximum number of MSS of available cwnd for which TSO defers
1249  * sending if not using sysctl_tcp_tso_win_divisor.
1250  */
1251 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1252 {
1253 	return 3;
1254 }
1255 
1256 /* Returns end sequence number of the receiver's advertised window */
1257 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1258 {
1259 	return tp->snd_una + tp->snd_wnd;
1260 }
1261 
1262 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1263  * flexible approach. The RFC suggests cwnd should not be raised unless
1264  * it was fully used previously. And that's exactly what we do in
1265  * congestion avoidance mode. But in slow start we allow cwnd to grow
1266  * as long as the application has used half the cwnd.
1267  * Example :
1268  *    cwnd is 10 (IW10), but application sends 9 frames.
1269  *    We allow cwnd to reach 18 when all frames are ACKed.
1270  * This check is safe because it's as aggressive as slow start which already
1271  * risks 100% overshoot. The advantage is that we discourage application to
1272  * either send more filler packets or data to artificially blow up the cwnd
1273  * usage, and allow application-limited process to probe bw more aggressively.
1274  */
1275 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1276 {
1277 	const struct tcp_sock *tp = tcp_sk(sk);
1278 
1279 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1280 	if (tcp_in_slow_start(tp))
1281 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1282 
1283 	return tp->is_cwnd_limited;
1284 }
1285 
1286 /* BBR congestion control needs pacing.
1287  * Same remark for SO_MAX_PACING_RATE.
1288  * sch_fq packet scheduler is efficiently handling pacing,
1289  * but is not always installed/used.
1290  * Return true if TCP stack should pace packets itself.
1291  */
1292 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1293 {
1294 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1295 }
1296 
1297 /* Estimates in how many jiffies next packet for this flow can be sent.
1298  * Scheduling a retransmit timer too early would be silly.
1299  */
1300 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1301 {
1302 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1303 
1304 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1305 }
1306 
1307 static inline void tcp_reset_xmit_timer(struct sock *sk,
1308 					const int what,
1309 					unsigned long when,
1310 					const unsigned long max_when)
1311 {
1312 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1313 				  max_when);
1314 }
1315 
1316 /* Something is really bad, we could not queue an additional packet,
1317  * because qdisc is full or receiver sent a 0 window, or we are paced.
1318  * We do not want to add fuel to the fire, or abort too early,
1319  * so make sure the timer we arm now is at least 200ms in the future,
1320  * regardless of current icsk_rto value (as it could be ~2ms)
1321  */
1322 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1323 {
1324 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1325 }
1326 
1327 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1328 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1329 					    unsigned long max_when)
1330 {
1331 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1332 			   inet_csk(sk)->icsk_backoff);
1333 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1334 
1335 	return (unsigned long)min_t(u64, when, max_when);
1336 }
1337 
1338 static inline void tcp_check_probe_timer(struct sock *sk)
1339 {
1340 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1341 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1342 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1343 }
1344 
1345 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1346 {
1347 	tp->snd_wl1 = seq;
1348 }
1349 
1350 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1351 {
1352 	tp->snd_wl1 = seq;
1353 }
1354 
1355 /*
1356  * Calculate(/check) TCP checksum
1357  */
1358 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1359 				   __be32 daddr, __wsum base)
1360 {
1361 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1362 }
1363 
1364 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1365 {
1366 	return !skb_csum_unnecessary(skb) &&
1367 		__skb_checksum_complete(skb);
1368 }
1369 
1370 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1371 
1372 void __sk_defer_free_flush(struct sock *sk);
1373 
1374 static inline void sk_defer_free_flush(struct sock *sk)
1375 {
1376 	if (llist_empty(&sk->defer_list))
1377 		return;
1378 	__sk_defer_free_flush(sk);
1379 }
1380 
1381 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1382 void tcp_set_state(struct sock *sk, int state);
1383 void tcp_done(struct sock *sk);
1384 int tcp_abort(struct sock *sk, int err);
1385 
1386 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1387 {
1388 	rx_opt->dsack = 0;
1389 	rx_opt->num_sacks = 0;
1390 }
1391 
1392 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1393 
1394 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1395 {
1396 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1397 	struct tcp_sock *tp = tcp_sk(sk);
1398 	s32 delta;
1399 
1400 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1401 	    ca_ops->cong_control)
1402 		return;
1403 	delta = tcp_jiffies32 - tp->lsndtime;
1404 	if (delta > inet_csk(sk)->icsk_rto)
1405 		tcp_cwnd_restart(sk, delta);
1406 }
1407 
1408 /* Determine a window scaling and initial window to offer. */
1409 void tcp_select_initial_window(const struct sock *sk, int __space,
1410 			       __u32 mss, __u32 *rcv_wnd,
1411 			       __u32 *window_clamp, int wscale_ok,
1412 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1413 
1414 static inline int tcp_win_from_space(const struct sock *sk, int space)
1415 {
1416 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1417 
1418 	return tcp_adv_win_scale <= 0 ?
1419 		(space>>(-tcp_adv_win_scale)) :
1420 		space - (space>>tcp_adv_win_scale);
1421 }
1422 
1423 /* Note: caller must be prepared to deal with negative returns */
1424 static inline int tcp_space(const struct sock *sk)
1425 {
1426 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1427 				  READ_ONCE(sk->sk_backlog.len) -
1428 				  atomic_read(&sk->sk_rmem_alloc));
1429 }
1430 
1431 static inline int tcp_full_space(const struct sock *sk)
1432 {
1433 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1434 }
1435 
1436 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1437 {
1438 	int unused_mem = sk_unused_reserved_mem(sk);
1439 	struct tcp_sock *tp = tcp_sk(sk);
1440 
1441 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1442 	if (unused_mem)
1443 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1444 					 tcp_win_from_space(sk, unused_mem));
1445 }
1446 
1447 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1448 
1449 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1450  * If 87.5 % (7/8) of the space has been consumed, we want to override
1451  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1452  * len/truesize ratio.
1453  */
1454 static inline bool tcp_rmem_pressure(const struct sock *sk)
1455 {
1456 	int rcvbuf, threshold;
1457 
1458 	if (tcp_under_memory_pressure(sk))
1459 		return true;
1460 
1461 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1462 	threshold = rcvbuf - (rcvbuf >> 3);
1463 
1464 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1465 }
1466 
1467 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1468 {
1469 	const struct tcp_sock *tp = tcp_sk(sk);
1470 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1471 
1472 	if (avail <= 0)
1473 		return false;
1474 
1475 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1476 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1477 }
1478 
1479 extern void tcp_openreq_init_rwin(struct request_sock *req,
1480 				  const struct sock *sk_listener,
1481 				  const struct dst_entry *dst);
1482 
1483 void tcp_enter_memory_pressure(struct sock *sk);
1484 void tcp_leave_memory_pressure(struct sock *sk);
1485 
1486 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1487 {
1488 	struct net *net = sock_net((struct sock *)tp);
1489 
1490 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1491 }
1492 
1493 static inline int keepalive_time_when(const struct tcp_sock *tp)
1494 {
1495 	struct net *net = sock_net((struct sock *)tp);
1496 
1497 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1498 }
1499 
1500 static inline int keepalive_probes(const struct tcp_sock *tp)
1501 {
1502 	struct net *net = sock_net((struct sock *)tp);
1503 
1504 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1505 }
1506 
1507 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1508 {
1509 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1510 
1511 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1512 			  tcp_jiffies32 - tp->rcv_tstamp);
1513 }
1514 
1515 static inline int tcp_fin_time(const struct sock *sk)
1516 {
1517 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1518 	const int rto = inet_csk(sk)->icsk_rto;
1519 
1520 	if (fin_timeout < (rto << 2) - (rto >> 1))
1521 		fin_timeout = (rto << 2) - (rto >> 1);
1522 
1523 	return fin_timeout;
1524 }
1525 
1526 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1527 				  int paws_win)
1528 {
1529 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1530 		return true;
1531 	if (unlikely(!time_before32(ktime_get_seconds(),
1532 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1533 		return true;
1534 	/*
1535 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1536 	 * then following tcp messages have valid values. Ignore 0 value,
1537 	 * or else 'negative' tsval might forbid us to accept their packets.
1538 	 */
1539 	if (!rx_opt->ts_recent)
1540 		return true;
1541 	return false;
1542 }
1543 
1544 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1545 				   int rst)
1546 {
1547 	if (tcp_paws_check(rx_opt, 0))
1548 		return false;
1549 
1550 	/* RST segments are not recommended to carry timestamp,
1551 	   and, if they do, it is recommended to ignore PAWS because
1552 	   "their cleanup function should take precedence over timestamps."
1553 	   Certainly, it is mistake. It is necessary to understand the reasons
1554 	   of this constraint to relax it: if peer reboots, clock may go
1555 	   out-of-sync and half-open connections will not be reset.
1556 	   Actually, the problem would be not existing if all
1557 	   the implementations followed draft about maintaining clock
1558 	   via reboots. Linux-2.2 DOES NOT!
1559 
1560 	   However, we can relax time bounds for RST segments to MSL.
1561 	 */
1562 	if (rst && !time_before32(ktime_get_seconds(),
1563 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1564 		return false;
1565 	return true;
1566 }
1567 
1568 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1569 			  int mib_idx, u32 *last_oow_ack_time);
1570 
1571 static inline void tcp_mib_init(struct net *net)
1572 {
1573 	/* See RFC 2012 */
1574 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1575 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1576 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1577 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1578 }
1579 
1580 /* from STCP */
1581 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1582 {
1583 	tp->lost_skb_hint = NULL;
1584 }
1585 
1586 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1587 {
1588 	tcp_clear_retrans_hints_partial(tp);
1589 	tp->retransmit_skb_hint = NULL;
1590 }
1591 
1592 union tcp_md5_addr {
1593 	struct in_addr  a4;
1594 #if IS_ENABLED(CONFIG_IPV6)
1595 	struct in6_addr	a6;
1596 #endif
1597 };
1598 
1599 /* - key database */
1600 struct tcp_md5sig_key {
1601 	struct hlist_node	node;
1602 	u8			keylen;
1603 	u8			family; /* AF_INET or AF_INET6 */
1604 	u8			prefixlen;
1605 	u8			flags;
1606 	union tcp_md5_addr	addr;
1607 	int			l3index; /* set if key added with L3 scope */
1608 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1609 	struct rcu_head		rcu;
1610 };
1611 
1612 /* - sock block */
1613 struct tcp_md5sig_info {
1614 	struct hlist_head	head;
1615 	struct rcu_head		rcu;
1616 };
1617 
1618 /* - pseudo header */
1619 struct tcp4_pseudohdr {
1620 	__be32		saddr;
1621 	__be32		daddr;
1622 	__u8		pad;
1623 	__u8		protocol;
1624 	__be16		len;
1625 };
1626 
1627 struct tcp6_pseudohdr {
1628 	struct in6_addr	saddr;
1629 	struct in6_addr daddr;
1630 	__be32		len;
1631 	__be32		protocol;	/* including padding */
1632 };
1633 
1634 union tcp_md5sum_block {
1635 	struct tcp4_pseudohdr ip4;
1636 #if IS_ENABLED(CONFIG_IPV6)
1637 	struct tcp6_pseudohdr ip6;
1638 #endif
1639 };
1640 
1641 /* - pool: digest algorithm, hash description and scratch buffer */
1642 struct tcp_md5sig_pool {
1643 	struct ahash_request	*md5_req;
1644 	void			*scratch;
1645 };
1646 
1647 /* - functions */
1648 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1649 			const struct sock *sk, const struct sk_buff *skb);
1650 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1651 		   int family, u8 prefixlen, int l3index, u8 flags,
1652 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1653 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1654 		   int family, u8 prefixlen, int l3index, u8 flags);
1655 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1656 					 const struct sock *addr_sk);
1657 
1658 #ifdef CONFIG_TCP_MD5SIG
1659 #include <linux/jump_label.h>
1660 extern struct static_key_false tcp_md5_needed;
1661 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1662 					   const union tcp_md5_addr *addr,
1663 					   int family);
1664 static inline struct tcp_md5sig_key *
1665 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1666 		  const union tcp_md5_addr *addr, int family)
1667 {
1668 	if (!static_branch_unlikely(&tcp_md5_needed))
1669 		return NULL;
1670 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1671 }
1672 
1673 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1674 #else
1675 static inline struct tcp_md5sig_key *
1676 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1677 		  const union tcp_md5_addr *addr, int family)
1678 {
1679 	return NULL;
1680 }
1681 #define tcp_twsk_md5_key(twsk)	NULL
1682 #endif
1683 
1684 bool tcp_alloc_md5sig_pool(void);
1685 
1686 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1687 static inline void tcp_put_md5sig_pool(void)
1688 {
1689 	local_bh_enable();
1690 }
1691 
1692 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1693 			  unsigned int header_len);
1694 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1695 		     const struct tcp_md5sig_key *key);
1696 
1697 /* From tcp_fastopen.c */
1698 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1699 			    struct tcp_fastopen_cookie *cookie);
1700 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1701 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1702 			    u16 try_exp);
1703 struct tcp_fastopen_request {
1704 	/* Fast Open cookie. Size 0 means a cookie request */
1705 	struct tcp_fastopen_cookie	cookie;
1706 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1707 	size_t				size;
1708 	int				copied;	/* queued in tcp_connect() */
1709 	struct ubuf_info		*uarg;
1710 };
1711 void tcp_free_fastopen_req(struct tcp_sock *tp);
1712 void tcp_fastopen_destroy_cipher(struct sock *sk);
1713 void tcp_fastopen_ctx_destroy(struct net *net);
1714 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1715 			      void *primary_key, void *backup_key);
1716 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1717 			    u64 *key);
1718 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1719 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1720 			      struct request_sock *req,
1721 			      struct tcp_fastopen_cookie *foc,
1722 			      const struct dst_entry *dst);
1723 void tcp_fastopen_init_key_once(struct net *net);
1724 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1725 			     struct tcp_fastopen_cookie *cookie);
1726 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1727 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1728 #define TCP_FASTOPEN_KEY_MAX 2
1729 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1730 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1731 
1732 /* Fastopen key context */
1733 struct tcp_fastopen_context {
1734 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1735 	int		num;
1736 	struct rcu_head	rcu;
1737 };
1738 
1739 void tcp_fastopen_active_disable(struct sock *sk);
1740 bool tcp_fastopen_active_should_disable(struct sock *sk);
1741 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1742 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1743 
1744 /* Caller needs to wrap with rcu_read_(un)lock() */
1745 static inline
1746 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1747 {
1748 	struct tcp_fastopen_context *ctx;
1749 
1750 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1751 	if (!ctx)
1752 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1753 	return ctx;
1754 }
1755 
1756 static inline
1757 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1758 			       const struct tcp_fastopen_cookie *orig)
1759 {
1760 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1761 	    orig->len == foc->len &&
1762 	    !memcmp(orig->val, foc->val, foc->len))
1763 		return true;
1764 	return false;
1765 }
1766 
1767 static inline
1768 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1769 {
1770 	return ctx->num;
1771 }
1772 
1773 /* Latencies incurred by various limits for a sender. They are
1774  * chronograph-like stats that are mutually exclusive.
1775  */
1776 enum tcp_chrono {
1777 	TCP_CHRONO_UNSPEC,
1778 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1779 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1780 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1781 	__TCP_CHRONO_MAX,
1782 };
1783 
1784 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1785 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1786 
1787 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1788  * the same memory storage than skb->destructor/_skb_refdst
1789  */
1790 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1791 {
1792 	skb->destructor = NULL;
1793 	skb->_skb_refdst = 0UL;
1794 }
1795 
1796 #define tcp_skb_tsorted_save(skb) {		\
1797 	unsigned long _save = skb->_skb_refdst;	\
1798 	skb->_skb_refdst = 0UL;
1799 
1800 #define tcp_skb_tsorted_restore(skb)		\
1801 	skb->_skb_refdst = _save;		\
1802 }
1803 
1804 void tcp_write_queue_purge(struct sock *sk);
1805 
1806 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1807 {
1808 	return skb_rb_first(&sk->tcp_rtx_queue);
1809 }
1810 
1811 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1812 {
1813 	return skb_rb_last(&sk->tcp_rtx_queue);
1814 }
1815 
1816 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1817 {
1818 	return skb_peek(&sk->sk_write_queue);
1819 }
1820 
1821 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1822 {
1823 	return skb_peek_tail(&sk->sk_write_queue);
1824 }
1825 
1826 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1827 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1828 
1829 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1830 {
1831 	return skb_peek(&sk->sk_write_queue);
1832 }
1833 
1834 static inline bool tcp_skb_is_last(const struct sock *sk,
1835 				   const struct sk_buff *skb)
1836 {
1837 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1838 }
1839 
1840 /**
1841  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1842  * @sk: socket
1843  *
1844  * Since the write queue can have a temporary empty skb in it,
1845  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1846  */
1847 static inline bool tcp_write_queue_empty(const struct sock *sk)
1848 {
1849 	const struct tcp_sock *tp = tcp_sk(sk);
1850 
1851 	return tp->write_seq == tp->snd_nxt;
1852 }
1853 
1854 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1855 {
1856 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1857 }
1858 
1859 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1860 {
1861 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1862 }
1863 
1864 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1865 {
1866 	__skb_queue_tail(&sk->sk_write_queue, skb);
1867 
1868 	/* Queue it, remembering where we must start sending. */
1869 	if (sk->sk_write_queue.next == skb)
1870 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1871 }
1872 
1873 /* Insert new before skb on the write queue of sk.  */
1874 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1875 						  struct sk_buff *skb,
1876 						  struct sock *sk)
1877 {
1878 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1879 }
1880 
1881 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1882 {
1883 	tcp_skb_tsorted_anchor_cleanup(skb);
1884 	__skb_unlink(skb, &sk->sk_write_queue);
1885 }
1886 
1887 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1888 
1889 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1890 {
1891 	tcp_skb_tsorted_anchor_cleanup(skb);
1892 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1893 }
1894 
1895 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1896 {
1897 	list_del(&skb->tcp_tsorted_anchor);
1898 	tcp_rtx_queue_unlink(skb, sk);
1899 	tcp_wmem_free_skb(sk, skb);
1900 }
1901 
1902 static inline void tcp_push_pending_frames(struct sock *sk)
1903 {
1904 	if (tcp_send_head(sk)) {
1905 		struct tcp_sock *tp = tcp_sk(sk);
1906 
1907 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1908 	}
1909 }
1910 
1911 /* Start sequence of the skb just after the highest skb with SACKed
1912  * bit, valid only if sacked_out > 0 or when the caller has ensured
1913  * validity by itself.
1914  */
1915 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1916 {
1917 	if (!tp->sacked_out)
1918 		return tp->snd_una;
1919 
1920 	if (tp->highest_sack == NULL)
1921 		return tp->snd_nxt;
1922 
1923 	return TCP_SKB_CB(tp->highest_sack)->seq;
1924 }
1925 
1926 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1927 {
1928 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1929 }
1930 
1931 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1932 {
1933 	return tcp_sk(sk)->highest_sack;
1934 }
1935 
1936 static inline void tcp_highest_sack_reset(struct sock *sk)
1937 {
1938 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1939 }
1940 
1941 /* Called when old skb is about to be deleted and replaced by new skb */
1942 static inline void tcp_highest_sack_replace(struct sock *sk,
1943 					    struct sk_buff *old,
1944 					    struct sk_buff *new)
1945 {
1946 	if (old == tcp_highest_sack(sk))
1947 		tcp_sk(sk)->highest_sack = new;
1948 }
1949 
1950 /* This helper checks if socket has IP_TRANSPARENT set */
1951 static inline bool inet_sk_transparent(const struct sock *sk)
1952 {
1953 	switch (sk->sk_state) {
1954 	case TCP_TIME_WAIT:
1955 		return inet_twsk(sk)->tw_transparent;
1956 	case TCP_NEW_SYN_RECV:
1957 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1958 	}
1959 	return inet_sk(sk)->transparent;
1960 }
1961 
1962 /* Determines whether this is a thin stream (which may suffer from
1963  * increased latency). Used to trigger latency-reducing mechanisms.
1964  */
1965 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1966 {
1967 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1968 }
1969 
1970 /* /proc */
1971 enum tcp_seq_states {
1972 	TCP_SEQ_STATE_LISTENING,
1973 	TCP_SEQ_STATE_ESTABLISHED,
1974 };
1975 
1976 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1977 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1978 void tcp_seq_stop(struct seq_file *seq, void *v);
1979 
1980 struct tcp_seq_afinfo {
1981 	sa_family_t			family;
1982 };
1983 
1984 struct tcp_iter_state {
1985 	struct seq_net_private	p;
1986 	enum tcp_seq_states	state;
1987 	struct sock		*syn_wait_sk;
1988 	int			bucket, offset, sbucket, num;
1989 	loff_t			last_pos;
1990 };
1991 
1992 extern struct request_sock_ops tcp_request_sock_ops;
1993 extern struct request_sock_ops tcp6_request_sock_ops;
1994 
1995 void tcp_v4_destroy_sock(struct sock *sk);
1996 
1997 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1998 				netdev_features_t features);
1999 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2000 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2001 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2002 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2003 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2004 int tcp_gro_complete(struct sk_buff *skb);
2005 
2006 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2007 
2008 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2009 {
2010 	struct net *net = sock_net((struct sock *)tp);
2011 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
2012 }
2013 
2014 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2015 
2016 #ifdef CONFIG_PROC_FS
2017 int tcp4_proc_init(void);
2018 void tcp4_proc_exit(void);
2019 #endif
2020 
2021 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2022 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2023 		     const struct tcp_request_sock_ops *af_ops,
2024 		     struct sock *sk, struct sk_buff *skb);
2025 
2026 /* TCP af-specific functions */
2027 struct tcp_sock_af_ops {
2028 #ifdef CONFIG_TCP_MD5SIG
2029 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2030 						const struct sock *addr_sk);
2031 	int		(*calc_md5_hash)(char *location,
2032 					 const struct tcp_md5sig_key *md5,
2033 					 const struct sock *sk,
2034 					 const struct sk_buff *skb);
2035 	int		(*md5_parse)(struct sock *sk,
2036 				     int optname,
2037 				     sockptr_t optval,
2038 				     int optlen);
2039 #endif
2040 };
2041 
2042 struct tcp_request_sock_ops {
2043 	u16 mss_clamp;
2044 #ifdef CONFIG_TCP_MD5SIG
2045 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2046 						 const struct sock *addr_sk);
2047 	int		(*calc_md5_hash) (char *location,
2048 					  const struct tcp_md5sig_key *md5,
2049 					  const struct sock *sk,
2050 					  const struct sk_buff *skb);
2051 #endif
2052 #ifdef CONFIG_SYN_COOKIES
2053 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2054 				 __u16 *mss);
2055 #endif
2056 	struct dst_entry *(*route_req)(const struct sock *sk,
2057 				       struct sk_buff *skb,
2058 				       struct flowi *fl,
2059 				       struct request_sock *req);
2060 	u32 (*init_seq)(const struct sk_buff *skb);
2061 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2062 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2063 			   struct flowi *fl, struct request_sock *req,
2064 			   struct tcp_fastopen_cookie *foc,
2065 			   enum tcp_synack_type synack_type,
2066 			   struct sk_buff *syn_skb);
2067 };
2068 
2069 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2070 #if IS_ENABLED(CONFIG_IPV6)
2071 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2072 #endif
2073 
2074 #ifdef CONFIG_SYN_COOKIES
2075 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2076 					 const struct sock *sk, struct sk_buff *skb,
2077 					 __u16 *mss)
2078 {
2079 	tcp_synq_overflow(sk);
2080 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2081 	return ops->cookie_init_seq(skb, mss);
2082 }
2083 #else
2084 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2085 					 const struct sock *sk, struct sk_buff *skb,
2086 					 __u16 *mss)
2087 {
2088 	return 0;
2089 }
2090 #endif
2091 
2092 int tcpv4_offload_init(void);
2093 
2094 void tcp_v4_init(void);
2095 void tcp_init(void);
2096 
2097 /* tcp_recovery.c */
2098 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2099 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2100 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2101 				u32 reo_wnd);
2102 extern bool tcp_rack_mark_lost(struct sock *sk);
2103 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2104 			     u64 xmit_time);
2105 extern void tcp_rack_reo_timeout(struct sock *sk);
2106 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2107 
2108 /* At how many usecs into the future should the RTO fire? */
2109 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2110 {
2111 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2112 	u32 rto = inet_csk(sk)->icsk_rto;
2113 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2114 
2115 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2116 }
2117 
2118 /*
2119  * Save and compile IPv4 options, return a pointer to it
2120  */
2121 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2122 							 struct sk_buff *skb)
2123 {
2124 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2125 	struct ip_options_rcu *dopt = NULL;
2126 
2127 	if (opt->optlen) {
2128 		int opt_size = sizeof(*dopt) + opt->optlen;
2129 
2130 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2131 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2132 			kfree(dopt);
2133 			dopt = NULL;
2134 		}
2135 	}
2136 	return dopt;
2137 }
2138 
2139 /* locally generated TCP pure ACKs have skb->truesize == 2
2140  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2141  * This is much faster than dissecting the packet to find out.
2142  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2143  */
2144 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2145 {
2146 	return skb->truesize == 2;
2147 }
2148 
2149 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2150 {
2151 	skb->truesize = 2;
2152 }
2153 
2154 static inline int tcp_inq(struct sock *sk)
2155 {
2156 	struct tcp_sock *tp = tcp_sk(sk);
2157 	int answ;
2158 
2159 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2160 		answ = 0;
2161 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2162 		   !tp->urg_data ||
2163 		   before(tp->urg_seq, tp->copied_seq) ||
2164 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2165 
2166 		answ = tp->rcv_nxt - tp->copied_seq;
2167 
2168 		/* Subtract 1, if FIN was received */
2169 		if (answ && sock_flag(sk, SOCK_DONE))
2170 			answ--;
2171 	} else {
2172 		answ = tp->urg_seq - tp->copied_seq;
2173 	}
2174 
2175 	return answ;
2176 }
2177 
2178 int tcp_peek_len(struct socket *sock);
2179 
2180 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2181 {
2182 	u16 segs_in;
2183 
2184 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2185 
2186 	/* We update these fields while other threads might
2187 	 * read them from tcp_get_info()
2188 	 */
2189 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2190 	if (skb->len > tcp_hdrlen(skb))
2191 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2192 }
2193 
2194 /*
2195  * TCP listen path runs lockless.
2196  * We forced "struct sock" to be const qualified to make sure
2197  * we don't modify one of its field by mistake.
2198  * Here, we increment sk_drops which is an atomic_t, so we can safely
2199  * make sock writable again.
2200  */
2201 static inline void tcp_listendrop(const struct sock *sk)
2202 {
2203 	atomic_inc(&((struct sock *)sk)->sk_drops);
2204 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2205 }
2206 
2207 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2208 
2209 /*
2210  * Interface for adding Upper Level Protocols over TCP
2211  */
2212 
2213 #define TCP_ULP_NAME_MAX	16
2214 #define TCP_ULP_MAX		128
2215 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2216 
2217 struct tcp_ulp_ops {
2218 	struct list_head	list;
2219 
2220 	/* initialize ulp */
2221 	int (*init)(struct sock *sk);
2222 	/* update ulp */
2223 	void (*update)(struct sock *sk, struct proto *p,
2224 		       void (*write_space)(struct sock *sk));
2225 	/* cleanup ulp */
2226 	void (*release)(struct sock *sk);
2227 	/* diagnostic */
2228 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2229 	size_t (*get_info_size)(const struct sock *sk);
2230 	/* clone ulp */
2231 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2232 		      const gfp_t priority);
2233 
2234 	char		name[TCP_ULP_NAME_MAX];
2235 	struct module	*owner;
2236 };
2237 int tcp_register_ulp(struct tcp_ulp_ops *type);
2238 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2239 int tcp_set_ulp(struct sock *sk, const char *name);
2240 void tcp_get_available_ulp(char *buf, size_t len);
2241 void tcp_cleanup_ulp(struct sock *sk);
2242 void tcp_update_ulp(struct sock *sk, struct proto *p,
2243 		    void (*write_space)(struct sock *sk));
2244 
2245 #define MODULE_ALIAS_TCP_ULP(name)				\
2246 	__MODULE_INFO(alias, alias_userspace, name);		\
2247 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2248 
2249 #ifdef CONFIG_NET_SOCK_MSG
2250 struct sk_msg;
2251 struct sk_psock;
2252 
2253 #ifdef CONFIG_BPF_SYSCALL
2254 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2255 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2256 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2257 #endif /* CONFIG_BPF_SYSCALL */
2258 
2259 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2260 			  int flags);
2261 #endif /* CONFIG_NET_SOCK_MSG */
2262 
2263 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2264 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2265 {
2266 }
2267 #endif
2268 
2269 #ifdef CONFIG_CGROUP_BPF
2270 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2271 				      struct sk_buff *skb,
2272 				      unsigned int end_offset)
2273 {
2274 	skops->skb = skb;
2275 	skops->skb_data_end = skb->data + end_offset;
2276 }
2277 #else
2278 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2279 				      struct sk_buff *skb,
2280 				      unsigned int end_offset)
2281 {
2282 }
2283 #endif
2284 
2285 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2286  * is < 0, then the BPF op failed (for example if the loaded BPF
2287  * program does not support the chosen operation or there is no BPF
2288  * program loaded).
2289  */
2290 #ifdef CONFIG_BPF
2291 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2292 {
2293 	struct bpf_sock_ops_kern sock_ops;
2294 	int ret;
2295 
2296 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2297 	if (sk_fullsock(sk)) {
2298 		sock_ops.is_fullsock = 1;
2299 		sock_owned_by_me(sk);
2300 	}
2301 
2302 	sock_ops.sk = sk;
2303 	sock_ops.op = op;
2304 	if (nargs > 0)
2305 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2306 
2307 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2308 	if (ret == 0)
2309 		ret = sock_ops.reply;
2310 	else
2311 		ret = -1;
2312 	return ret;
2313 }
2314 
2315 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2316 {
2317 	u32 args[2] = {arg1, arg2};
2318 
2319 	return tcp_call_bpf(sk, op, 2, args);
2320 }
2321 
2322 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2323 				    u32 arg3)
2324 {
2325 	u32 args[3] = {arg1, arg2, arg3};
2326 
2327 	return tcp_call_bpf(sk, op, 3, args);
2328 }
2329 
2330 #else
2331 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2332 {
2333 	return -EPERM;
2334 }
2335 
2336 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2337 {
2338 	return -EPERM;
2339 }
2340 
2341 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2342 				    u32 arg3)
2343 {
2344 	return -EPERM;
2345 }
2346 
2347 #endif
2348 
2349 static inline u32 tcp_timeout_init(struct sock *sk)
2350 {
2351 	int timeout;
2352 
2353 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2354 
2355 	if (timeout <= 0)
2356 		timeout = TCP_TIMEOUT_INIT;
2357 	return timeout;
2358 }
2359 
2360 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2361 {
2362 	int rwnd;
2363 
2364 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2365 
2366 	if (rwnd < 0)
2367 		rwnd = 0;
2368 	return rwnd;
2369 }
2370 
2371 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2372 {
2373 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2374 }
2375 
2376 static inline void tcp_bpf_rtt(struct sock *sk)
2377 {
2378 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2379 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2380 }
2381 
2382 #if IS_ENABLED(CONFIG_SMC)
2383 extern struct static_key_false tcp_have_smc;
2384 #endif
2385 
2386 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2387 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2388 			     void (*cad)(struct sock *sk, u32 ack_seq));
2389 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2390 void clean_acked_data_flush(void);
2391 #endif
2392 
2393 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2394 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2395 				    const struct tcp_sock *tp)
2396 {
2397 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2398 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2399 }
2400 
2401 /* Compute Earliest Departure Time for some control packets
2402  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2403  */
2404 static inline u64 tcp_transmit_time(const struct sock *sk)
2405 {
2406 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2407 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2408 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2409 
2410 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2411 	}
2412 	return 0;
2413 }
2414 
2415 #endif	/* _TCP_H */
2416