xref: /linux/include/net/sock.h (revision a4cdb556cae05cd3e7b602b3a44c01420c4e2258)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
65 
66 #include <linux/atomic.h>
67 #include <net/dst.h>
68 #include <net/checksum.h>
69 #include <net/tcp_states.h>
70 #include <linux/net_tstamp.h>
71 
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 {
81 	return 0;
82 }
83 static inline
84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85 {
86 }
87 #endif
88 /*
89  * This structure really needs to be cleaned up.
90  * Most of it is for TCP, and not used by any of
91  * the other protocols.
92  */
93 
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 					printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103 {
104 }
105 #endif
106 
107 /* This is the per-socket lock.  The spinlock provides a synchronization
108  * between user contexts and software interrupt processing, whereas the
109  * mini-semaphore synchronizes multiple users amongst themselves.
110  */
111 typedef struct {
112 	spinlock_t		slock;
113 	int			owned;
114 	wait_queue_head_t	wq;
115 	/*
116 	 * We express the mutex-alike socket_lock semantics
117 	 * to the lock validator by explicitly managing
118 	 * the slock as a lock variant (in addition to
119 	 * the slock itself):
120 	 */
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 	struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
125 
126 struct sock;
127 struct proto;
128 struct net;
129 
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
132 
133 /**
134  *	struct sock_common - minimal network layer representation of sockets
135  *	@skc_daddr: Foreign IPv4 addr
136  *	@skc_rcv_saddr: Bound local IPv4 addr
137  *	@skc_hash: hash value used with various protocol lookup tables
138  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
139  *	@skc_dport: placeholder for inet_dport/tw_dport
140  *	@skc_num: placeholder for inet_num/tw_num
141  *	@skc_family: network address family
142  *	@skc_state: Connection state
143  *	@skc_reuse: %SO_REUSEADDR setting
144  *	@skc_reuseport: %SO_REUSEPORT setting
145  *	@skc_bound_dev_if: bound device index if != 0
146  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
147  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148  *	@skc_prot: protocol handlers inside a network family
149  *	@skc_net: reference to the network namespace of this socket
150  *	@skc_node: main hash linkage for various protocol lookup tables
151  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152  *	@skc_tx_queue_mapping: tx queue number for this connection
153  *	@skc_flags: place holder for sk_flags
154  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
155  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
156  *	@skc_incoming_cpu: record/match cpu processing incoming packets
157  *	@skc_refcnt: reference count
158  *
159  *	This is the minimal network layer representation of sockets, the header
160  *	for struct sock and struct inet_timewait_sock.
161  */
162 struct sock_common {
163 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
164 	 * address on 64bit arches : cf INET_MATCH()
165 	 */
166 	union {
167 		__addrpair	skc_addrpair;
168 		struct {
169 			__be32	skc_daddr;
170 			__be32	skc_rcv_saddr;
171 		};
172 	};
173 	union  {
174 		unsigned int	skc_hash;
175 		__u16		skc_u16hashes[2];
176 	};
177 	/* skc_dport && skc_num must be grouped as well */
178 	union {
179 		__portpair	skc_portpair;
180 		struct {
181 			__be16	skc_dport;
182 			__u16	skc_num;
183 		};
184 	};
185 
186 	unsigned short		skc_family;
187 	volatile unsigned char	skc_state;
188 	unsigned char		skc_reuse:4;
189 	unsigned char		skc_reuseport:1;
190 	unsigned char		skc_ipv6only:1;
191 	unsigned char		skc_net_refcnt:1;
192 	int			skc_bound_dev_if;
193 	union {
194 		struct hlist_node	skc_bind_node;
195 		struct hlist_nulls_node skc_portaddr_node;
196 	};
197 	struct proto		*skc_prot;
198 	possible_net_t		skc_net;
199 
200 #if IS_ENABLED(CONFIG_IPV6)
201 	struct in6_addr		skc_v6_daddr;
202 	struct in6_addr		skc_v6_rcv_saddr;
203 #endif
204 
205 	atomic64_t		skc_cookie;
206 
207 	/* following fields are padding to force
208 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 	 * assuming IPV6 is enabled. We use this padding differently
210 	 * for different kind of 'sockets'
211 	 */
212 	union {
213 		unsigned long	skc_flags;
214 		struct sock	*skc_listener; /* request_sock */
215 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
216 	};
217 	/*
218 	 * fields between dontcopy_begin/dontcopy_end
219 	 * are not copied in sock_copy()
220 	 */
221 	/* private: */
222 	int			skc_dontcopy_begin[0];
223 	/* public: */
224 	union {
225 		struct hlist_node	skc_node;
226 		struct hlist_nulls_node skc_nulls_node;
227 	};
228 	int			skc_tx_queue_mapping;
229 	union {
230 		int		skc_incoming_cpu;
231 		u32		skc_rcv_wnd;
232 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
233 	};
234 
235 	atomic_t		skc_refcnt;
236 	/* private: */
237 	int                     skc_dontcopy_end[0];
238 	union {
239 		u32		skc_rxhash;
240 		u32		skc_window_clamp;
241 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
242 	};
243 	/* public: */
244 };
245 
246 struct cg_proto;
247 /**
248   *	struct sock - network layer representation of sockets
249   *	@__sk_common: shared layout with inet_timewait_sock
250   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
251   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
252   *	@sk_lock:	synchronizer
253   *	@sk_rcvbuf: size of receive buffer in bytes
254   *	@sk_wq: sock wait queue and async head
255   *	@sk_rx_dst: receive input route used by early demux
256   *	@sk_dst_cache: destination cache
257   *	@sk_policy: flow policy
258   *	@sk_receive_queue: incoming packets
259   *	@sk_wmem_alloc: transmit queue bytes committed
260   *	@sk_write_queue: Packet sending queue
261   *	@sk_omem_alloc: "o" is "option" or "other"
262   *	@sk_wmem_queued: persistent queue size
263   *	@sk_forward_alloc: space allocated forward
264   *	@sk_napi_id: id of the last napi context to receive data for sk
265   *	@sk_ll_usec: usecs to busypoll when there is no data
266   *	@sk_allocation: allocation mode
267   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
268   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
269   *	@sk_sndbuf: size of send buffer in bytes
270   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
271   *	@sk_no_check_rx: allow zero checksum in RX packets
272   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
273   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
274   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
275   *	@sk_gso_max_size: Maximum GSO segment size to build
276   *	@sk_gso_max_segs: Maximum number of GSO segments
277   *	@sk_lingertime: %SO_LINGER l_linger setting
278   *	@sk_backlog: always used with the per-socket spinlock held
279   *	@sk_callback_lock: used with the callbacks in the end of this struct
280   *	@sk_error_queue: rarely used
281   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
282   *			  IPV6_ADDRFORM for instance)
283   *	@sk_err: last error
284   *	@sk_err_soft: errors that don't cause failure but are the cause of a
285   *		      persistent failure not just 'timed out'
286   *	@sk_drops: raw/udp drops counter
287   *	@sk_ack_backlog: current listen backlog
288   *	@sk_max_ack_backlog: listen backlog set in listen()
289   *	@sk_priority: %SO_PRIORITY setting
290   *	@sk_cgrp_prioidx: socket group's priority map index
291   *	@sk_type: socket type (%SOCK_STREAM, etc)
292   *	@sk_protocol: which protocol this socket belongs in this network family
293   *	@sk_peer_pid: &struct pid for this socket's peer
294   *	@sk_peer_cred: %SO_PEERCRED setting
295   *	@sk_rcvlowat: %SO_RCVLOWAT setting
296   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
297   *	@sk_sndtimeo: %SO_SNDTIMEO setting
298   *	@sk_txhash: computed flow hash for use on transmit
299   *	@sk_filter: socket filtering instructions
300   *	@sk_timer: sock cleanup timer
301   *	@sk_stamp: time stamp of last packet received
302   *	@sk_tsflags: SO_TIMESTAMPING socket options
303   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
304   *	@sk_socket: Identd and reporting IO signals
305   *	@sk_user_data: RPC layer private data
306   *	@sk_frag: cached page frag
307   *	@sk_peek_off: current peek_offset value
308   *	@sk_send_head: front of stuff to transmit
309   *	@sk_security: used by security modules
310   *	@sk_mark: generic packet mark
311   *	@sk_classid: this socket's cgroup classid
312   *	@sk_cgrp: this socket's cgroup-specific proto data
313   *	@sk_write_pending: a write to stream socket waits to start
314   *	@sk_state_change: callback to indicate change in the state of the sock
315   *	@sk_data_ready: callback to indicate there is data to be processed
316   *	@sk_write_space: callback to indicate there is bf sending space available
317   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
318   *	@sk_backlog_rcv: callback to process the backlog
319   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
320  */
321 struct sock {
322 	/*
323 	 * Now struct inet_timewait_sock also uses sock_common, so please just
324 	 * don't add nothing before this first member (__sk_common) --acme
325 	 */
326 	struct sock_common	__sk_common;
327 #define sk_node			__sk_common.skc_node
328 #define sk_nulls_node		__sk_common.skc_nulls_node
329 #define sk_refcnt		__sk_common.skc_refcnt
330 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
331 
332 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
333 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
334 #define sk_hash			__sk_common.skc_hash
335 #define sk_portpair		__sk_common.skc_portpair
336 #define sk_num			__sk_common.skc_num
337 #define sk_dport		__sk_common.skc_dport
338 #define sk_addrpair		__sk_common.skc_addrpair
339 #define sk_daddr		__sk_common.skc_daddr
340 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
341 #define sk_family		__sk_common.skc_family
342 #define sk_state		__sk_common.skc_state
343 #define sk_reuse		__sk_common.skc_reuse
344 #define sk_reuseport		__sk_common.skc_reuseport
345 #define sk_ipv6only		__sk_common.skc_ipv6only
346 #define sk_net_refcnt		__sk_common.skc_net_refcnt
347 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
348 #define sk_bind_node		__sk_common.skc_bind_node
349 #define sk_prot			__sk_common.skc_prot
350 #define sk_net			__sk_common.skc_net
351 #define sk_v6_daddr		__sk_common.skc_v6_daddr
352 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
353 #define sk_cookie		__sk_common.skc_cookie
354 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
355 #define sk_flags		__sk_common.skc_flags
356 #define sk_rxhash		__sk_common.skc_rxhash
357 
358 	socket_lock_t		sk_lock;
359 	struct sk_buff_head	sk_receive_queue;
360 	/*
361 	 * The backlog queue is special, it is always used with
362 	 * the per-socket spinlock held and requires low latency
363 	 * access. Therefore we special case it's implementation.
364 	 * Note : rmem_alloc is in this structure to fill a hole
365 	 * on 64bit arches, not because its logically part of
366 	 * backlog.
367 	 */
368 	struct {
369 		atomic_t	rmem_alloc;
370 		int		len;
371 		struct sk_buff	*head;
372 		struct sk_buff	*tail;
373 	} sk_backlog;
374 #define sk_rmem_alloc sk_backlog.rmem_alloc
375 	int			sk_forward_alloc;
376 
377 	__u32			sk_txhash;
378 #ifdef CONFIG_NET_RX_BUSY_POLL
379 	unsigned int		sk_napi_id;
380 	unsigned int		sk_ll_usec;
381 #endif
382 	atomic_t		sk_drops;
383 	int			sk_rcvbuf;
384 
385 	struct sk_filter __rcu	*sk_filter;
386 	union {
387 		struct socket_wq __rcu	*sk_wq;
388 		struct socket_wq	*sk_wq_raw;
389 	};
390 #ifdef CONFIG_XFRM
391 	struct xfrm_policy __rcu *sk_policy[2];
392 #endif
393 	struct dst_entry	*sk_rx_dst;
394 	struct dst_entry __rcu	*sk_dst_cache;
395 	/* Note: 32bit hole on 64bit arches */
396 	atomic_t		sk_wmem_alloc;
397 	atomic_t		sk_omem_alloc;
398 	int			sk_sndbuf;
399 	struct sk_buff_head	sk_write_queue;
400 	kmemcheck_bitfield_begin(flags);
401 	unsigned int		sk_shutdown  : 2,
402 				sk_no_check_tx : 1,
403 				sk_no_check_rx : 1,
404 				sk_userlocks : 4,
405 				sk_protocol  : 8,
406 				sk_type      : 16;
407 #define SK_PROTOCOL_MAX U8_MAX
408 	kmemcheck_bitfield_end(flags);
409 	int			sk_wmem_queued;
410 	gfp_t			sk_allocation;
411 	u32			sk_pacing_rate; /* bytes per second */
412 	u32			sk_max_pacing_rate;
413 	netdev_features_t	sk_route_caps;
414 	netdev_features_t	sk_route_nocaps;
415 	int			sk_gso_type;
416 	unsigned int		sk_gso_max_size;
417 	u16			sk_gso_max_segs;
418 	int			sk_rcvlowat;
419 	unsigned long	        sk_lingertime;
420 	struct sk_buff_head	sk_error_queue;
421 	struct proto		*sk_prot_creator;
422 	rwlock_t		sk_callback_lock;
423 	int			sk_err,
424 				sk_err_soft;
425 	u32			sk_ack_backlog;
426 	u32			sk_max_ack_backlog;
427 	__u32			sk_priority;
428 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
429 	__u32			sk_cgrp_prioidx;
430 #endif
431 	struct pid		*sk_peer_pid;
432 	const struct cred	*sk_peer_cred;
433 	long			sk_rcvtimeo;
434 	long			sk_sndtimeo;
435 	struct timer_list	sk_timer;
436 	ktime_t			sk_stamp;
437 	u16			sk_tsflags;
438 	u32			sk_tskey;
439 	struct socket		*sk_socket;
440 	void			*sk_user_data;
441 	struct page_frag	sk_frag;
442 	struct sk_buff		*sk_send_head;
443 	__s32			sk_peek_off;
444 	int			sk_write_pending;
445 #ifdef CONFIG_SECURITY
446 	void			*sk_security;
447 #endif
448 	__u32			sk_mark;
449 #ifdef CONFIG_CGROUP_NET_CLASSID
450 	u32			sk_classid;
451 #endif
452 	struct cg_proto		*sk_cgrp;
453 	void			(*sk_state_change)(struct sock *sk);
454 	void			(*sk_data_ready)(struct sock *sk);
455 	void			(*sk_write_space)(struct sock *sk);
456 	void			(*sk_error_report)(struct sock *sk);
457 	int			(*sk_backlog_rcv)(struct sock *sk,
458 						  struct sk_buff *skb);
459 	void                    (*sk_destruct)(struct sock *sk);
460 };
461 
462 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
463 
464 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
465 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
466 
467 /*
468  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
469  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
470  * on a socket means that the socket will reuse everybody else's port
471  * without looking at the other's sk_reuse value.
472  */
473 
474 #define SK_NO_REUSE	0
475 #define SK_CAN_REUSE	1
476 #define SK_FORCE_REUSE	2
477 
478 static inline int sk_peek_offset(struct sock *sk, int flags)
479 {
480 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
481 		return sk->sk_peek_off;
482 	else
483 		return 0;
484 }
485 
486 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
487 {
488 	if (sk->sk_peek_off >= 0) {
489 		if (sk->sk_peek_off >= val)
490 			sk->sk_peek_off -= val;
491 		else
492 			sk->sk_peek_off = 0;
493 	}
494 }
495 
496 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
497 {
498 	if (sk->sk_peek_off >= 0)
499 		sk->sk_peek_off += val;
500 }
501 
502 /*
503  * Hashed lists helper routines
504  */
505 static inline struct sock *sk_entry(const struct hlist_node *node)
506 {
507 	return hlist_entry(node, struct sock, sk_node);
508 }
509 
510 static inline struct sock *__sk_head(const struct hlist_head *head)
511 {
512 	return hlist_entry(head->first, struct sock, sk_node);
513 }
514 
515 static inline struct sock *sk_head(const struct hlist_head *head)
516 {
517 	return hlist_empty(head) ? NULL : __sk_head(head);
518 }
519 
520 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
521 {
522 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
523 }
524 
525 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
526 {
527 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
528 }
529 
530 static inline struct sock *sk_next(const struct sock *sk)
531 {
532 	return sk->sk_node.next ?
533 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
534 }
535 
536 static inline struct sock *sk_nulls_next(const struct sock *sk)
537 {
538 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
539 		hlist_nulls_entry(sk->sk_nulls_node.next,
540 				  struct sock, sk_nulls_node) :
541 		NULL;
542 }
543 
544 static inline bool sk_unhashed(const struct sock *sk)
545 {
546 	return hlist_unhashed(&sk->sk_node);
547 }
548 
549 static inline bool sk_hashed(const struct sock *sk)
550 {
551 	return !sk_unhashed(sk);
552 }
553 
554 static inline void sk_node_init(struct hlist_node *node)
555 {
556 	node->pprev = NULL;
557 }
558 
559 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
560 {
561 	node->pprev = NULL;
562 }
563 
564 static inline void __sk_del_node(struct sock *sk)
565 {
566 	__hlist_del(&sk->sk_node);
567 }
568 
569 /* NB: equivalent to hlist_del_init_rcu */
570 static inline bool __sk_del_node_init(struct sock *sk)
571 {
572 	if (sk_hashed(sk)) {
573 		__sk_del_node(sk);
574 		sk_node_init(&sk->sk_node);
575 		return true;
576 	}
577 	return false;
578 }
579 
580 /* Grab socket reference count. This operation is valid only
581    when sk is ALREADY grabbed f.e. it is found in hash table
582    or a list and the lookup is made under lock preventing hash table
583    modifications.
584  */
585 
586 static inline void sock_hold(struct sock *sk)
587 {
588 	atomic_inc(&sk->sk_refcnt);
589 }
590 
591 /* Ungrab socket in the context, which assumes that socket refcnt
592    cannot hit zero, f.e. it is true in context of any socketcall.
593  */
594 static inline void __sock_put(struct sock *sk)
595 {
596 	atomic_dec(&sk->sk_refcnt);
597 }
598 
599 static inline bool sk_del_node_init(struct sock *sk)
600 {
601 	bool rc = __sk_del_node_init(sk);
602 
603 	if (rc) {
604 		/* paranoid for a while -acme */
605 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
606 		__sock_put(sk);
607 	}
608 	return rc;
609 }
610 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
611 
612 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
613 {
614 	if (sk_hashed(sk)) {
615 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
616 		return true;
617 	}
618 	return false;
619 }
620 
621 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
622 {
623 	bool rc = __sk_nulls_del_node_init_rcu(sk);
624 
625 	if (rc) {
626 		/* paranoid for a while -acme */
627 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
628 		__sock_put(sk);
629 	}
630 	return rc;
631 }
632 
633 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
634 {
635 	hlist_add_head(&sk->sk_node, list);
636 }
637 
638 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
639 {
640 	sock_hold(sk);
641 	__sk_add_node(sk, list);
642 }
643 
644 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
645 {
646 	sock_hold(sk);
647 	hlist_add_head_rcu(&sk->sk_node, list);
648 }
649 
650 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
651 {
652 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
653 }
654 
655 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
656 {
657 	sock_hold(sk);
658 	__sk_nulls_add_node_rcu(sk, list);
659 }
660 
661 static inline void __sk_del_bind_node(struct sock *sk)
662 {
663 	__hlist_del(&sk->sk_bind_node);
664 }
665 
666 static inline void sk_add_bind_node(struct sock *sk,
667 					struct hlist_head *list)
668 {
669 	hlist_add_head(&sk->sk_bind_node, list);
670 }
671 
672 #define sk_for_each(__sk, list) \
673 	hlist_for_each_entry(__sk, list, sk_node)
674 #define sk_for_each_rcu(__sk, list) \
675 	hlist_for_each_entry_rcu(__sk, list, sk_node)
676 #define sk_nulls_for_each(__sk, node, list) \
677 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
678 #define sk_nulls_for_each_rcu(__sk, node, list) \
679 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
680 #define sk_for_each_from(__sk) \
681 	hlist_for_each_entry_from(__sk, sk_node)
682 #define sk_nulls_for_each_from(__sk, node) \
683 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
684 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
685 #define sk_for_each_safe(__sk, tmp, list) \
686 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
687 #define sk_for_each_bound(__sk, list) \
688 	hlist_for_each_entry(__sk, list, sk_bind_node)
689 
690 /**
691  * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
692  * @tpos:	the type * to use as a loop cursor.
693  * @pos:	the &struct hlist_node to use as a loop cursor.
694  * @head:	the head for your list.
695  * @offset:	offset of hlist_node within the struct.
696  *
697  */
698 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset)		       \
699 	for (pos = (head)->first;					       \
700 	     (!is_a_nulls(pos)) &&					       \
701 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
702 	     pos = pos->next)
703 
704 static inline struct user_namespace *sk_user_ns(struct sock *sk)
705 {
706 	/* Careful only use this in a context where these parameters
707 	 * can not change and must all be valid, such as recvmsg from
708 	 * userspace.
709 	 */
710 	return sk->sk_socket->file->f_cred->user_ns;
711 }
712 
713 /* Sock flags */
714 enum sock_flags {
715 	SOCK_DEAD,
716 	SOCK_DONE,
717 	SOCK_URGINLINE,
718 	SOCK_KEEPOPEN,
719 	SOCK_LINGER,
720 	SOCK_DESTROY,
721 	SOCK_BROADCAST,
722 	SOCK_TIMESTAMP,
723 	SOCK_ZAPPED,
724 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
725 	SOCK_DBG, /* %SO_DEBUG setting */
726 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
727 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
728 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
729 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
730 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
731 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
732 	SOCK_FASYNC, /* fasync() active */
733 	SOCK_RXQ_OVFL,
734 	SOCK_ZEROCOPY, /* buffers from userspace */
735 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
736 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
737 		     * Will use last 4 bytes of packet sent from
738 		     * user-space instead.
739 		     */
740 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
741 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
742 };
743 
744 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
745 
746 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
747 {
748 	nsk->sk_flags = osk->sk_flags;
749 }
750 
751 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
752 {
753 	__set_bit(flag, &sk->sk_flags);
754 }
755 
756 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
757 {
758 	__clear_bit(flag, &sk->sk_flags);
759 }
760 
761 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
762 {
763 	return test_bit(flag, &sk->sk_flags);
764 }
765 
766 #ifdef CONFIG_NET
767 extern struct static_key memalloc_socks;
768 static inline int sk_memalloc_socks(void)
769 {
770 	return static_key_false(&memalloc_socks);
771 }
772 #else
773 
774 static inline int sk_memalloc_socks(void)
775 {
776 	return 0;
777 }
778 
779 #endif
780 
781 static inline gfp_t sk_gfp_atomic(const struct sock *sk, gfp_t gfp_mask)
782 {
783 	return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
784 }
785 
786 static inline void sk_acceptq_removed(struct sock *sk)
787 {
788 	sk->sk_ack_backlog--;
789 }
790 
791 static inline void sk_acceptq_added(struct sock *sk)
792 {
793 	sk->sk_ack_backlog++;
794 }
795 
796 static inline bool sk_acceptq_is_full(const struct sock *sk)
797 {
798 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
799 }
800 
801 /*
802  * Compute minimal free write space needed to queue new packets.
803  */
804 static inline int sk_stream_min_wspace(const struct sock *sk)
805 {
806 	return sk->sk_wmem_queued >> 1;
807 }
808 
809 static inline int sk_stream_wspace(const struct sock *sk)
810 {
811 	return sk->sk_sndbuf - sk->sk_wmem_queued;
812 }
813 
814 void sk_stream_write_space(struct sock *sk);
815 
816 /* OOB backlog add */
817 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
818 {
819 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
820 	skb_dst_force_safe(skb);
821 
822 	if (!sk->sk_backlog.tail)
823 		sk->sk_backlog.head = skb;
824 	else
825 		sk->sk_backlog.tail->next = skb;
826 
827 	sk->sk_backlog.tail = skb;
828 	skb->next = NULL;
829 }
830 
831 /*
832  * Take into account size of receive queue and backlog queue
833  * Do not take into account this skb truesize,
834  * to allow even a single big packet to come.
835  */
836 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
837 {
838 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
839 
840 	return qsize > limit;
841 }
842 
843 /* The per-socket spinlock must be held here. */
844 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
845 					      unsigned int limit)
846 {
847 	if (sk_rcvqueues_full(sk, limit))
848 		return -ENOBUFS;
849 
850 	/*
851 	 * If the skb was allocated from pfmemalloc reserves, only
852 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
853 	 * helping free memory
854 	 */
855 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
856 		return -ENOMEM;
857 
858 	__sk_add_backlog(sk, skb);
859 	sk->sk_backlog.len += skb->truesize;
860 	return 0;
861 }
862 
863 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
864 
865 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
866 {
867 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
868 		return __sk_backlog_rcv(sk, skb);
869 
870 	return sk->sk_backlog_rcv(sk, skb);
871 }
872 
873 static inline void sk_incoming_cpu_update(struct sock *sk)
874 {
875 	sk->sk_incoming_cpu = raw_smp_processor_id();
876 }
877 
878 static inline void sock_rps_record_flow_hash(__u32 hash)
879 {
880 #ifdef CONFIG_RPS
881 	struct rps_sock_flow_table *sock_flow_table;
882 
883 	rcu_read_lock();
884 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
885 	rps_record_sock_flow(sock_flow_table, hash);
886 	rcu_read_unlock();
887 #endif
888 }
889 
890 static inline void sock_rps_record_flow(const struct sock *sk)
891 {
892 #ifdef CONFIG_RPS
893 	sock_rps_record_flow_hash(sk->sk_rxhash);
894 #endif
895 }
896 
897 static inline void sock_rps_save_rxhash(struct sock *sk,
898 					const struct sk_buff *skb)
899 {
900 #ifdef CONFIG_RPS
901 	if (unlikely(sk->sk_rxhash != skb->hash))
902 		sk->sk_rxhash = skb->hash;
903 #endif
904 }
905 
906 static inline void sock_rps_reset_rxhash(struct sock *sk)
907 {
908 #ifdef CONFIG_RPS
909 	sk->sk_rxhash = 0;
910 #endif
911 }
912 
913 #define sk_wait_event(__sk, __timeo, __condition)			\
914 	({	int __rc;						\
915 		release_sock(__sk);					\
916 		__rc = __condition;					\
917 		if (!__rc) {						\
918 			*(__timeo) = schedule_timeout(*(__timeo));	\
919 		}							\
920 		sched_annotate_sleep();						\
921 		lock_sock(__sk);					\
922 		__rc = __condition;					\
923 		__rc;							\
924 	})
925 
926 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
927 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
928 void sk_stream_wait_close(struct sock *sk, long timeo_p);
929 int sk_stream_error(struct sock *sk, int flags, int err);
930 void sk_stream_kill_queues(struct sock *sk);
931 void sk_set_memalloc(struct sock *sk);
932 void sk_clear_memalloc(struct sock *sk);
933 
934 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
935 
936 struct request_sock_ops;
937 struct timewait_sock_ops;
938 struct inet_hashinfo;
939 struct raw_hashinfo;
940 struct module;
941 
942 /*
943  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
944  * un-modified. Special care is taken when initializing object to zero.
945  */
946 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
947 {
948 	if (offsetof(struct sock, sk_node.next) != 0)
949 		memset(sk, 0, offsetof(struct sock, sk_node.next));
950 	memset(&sk->sk_node.pprev, 0,
951 	       size - offsetof(struct sock, sk_node.pprev));
952 }
953 
954 /* Networking protocol blocks we attach to sockets.
955  * socket layer -> transport layer interface
956  */
957 struct proto {
958 	void			(*close)(struct sock *sk,
959 					long timeout);
960 	int			(*connect)(struct sock *sk,
961 					struct sockaddr *uaddr,
962 					int addr_len);
963 	int			(*disconnect)(struct sock *sk, int flags);
964 
965 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
966 
967 	int			(*ioctl)(struct sock *sk, int cmd,
968 					 unsigned long arg);
969 	int			(*init)(struct sock *sk);
970 	void			(*destroy)(struct sock *sk);
971 	void			(*shutdown)(struct sock *sk, int how);
972 	int			(*setsockopt)(struct sock *sk, int level,
973 					int optname, char __user *optval,
974 					unsigned int optlen);
975 	int			(*getsockopt)(struct sock *sk, int level,
976 					int optname, char __user *optval,
977 					int __user *option);
978 #ifdef CONFIG_COMPAT
979 	int			(*compat_setsockopt)(struct sock *sk,
980 					int level,
981 					int optname, char __user *optval,
982 					unsigned int optlen);
983 	int			(*compat_getsockopt)(struct sock *sk,
984 					int level,
985 					int optname, char __user *optval,
986 					int __user *option);
987 	int			(*compat_ioctl)(struct sock *sk,
988 					unsigned int cmd, unsigned long arg);
989 #endif
990 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
991 					   size_t len);
992 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
993 					   size_t len, int noblock, int flags,
994 					   int *addr_len);
995 	int			(*sendpage)(struct sock *sk, struct page *page,
996 					int offset, size_t size, int flags);
997 	int			(*bind)(struct sock *sk,
998 					struct sockaddr *uaddr, int addr_len);
999 
1000 	int			(*backlog_rcv) (struct sock *sk,
1001 						struct sk_buff *skb);
1002 
1003 	void		(*release_cb)(struct sock *sk);
1004 
1005 	/* Keeping track of sk's, looking them up, and port selection methods. */
1006 	void			(*hash)(struct sock *sk);
1007 	void			(*unhash)(struct sock *sk);
1008 	void			(*rehash)(struct sock *sk);
1009 	int			(*get_port)(struct sock *sk, unsigned short snum);
1010 	void			(*clear_sk)(struct sock *sk, int size);
1011 
1012 	/* Keeping track of sockets in use */
1013 #ifdef CONFIG_PROC_FS
1014 	unsigned int		inuse_idx;
1015 #endif
1016 
1017 	bool			(*stream_memory_free)(const struct sock *sk);
1018 	/* Memory pressure */
1019 	void			(*enter_memory_pressure)(struct sock *sk);
1020 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1021 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1022 	/*
1023 	 * Pressure flag: try to collapse.
1024 	 * Technical note: it is used by multiple contexts non atomically.
1025 	 * All the __sk_mem_schedule() is of this nature: accounting
1026 	 * is strict, actions are advisory and have some latency.
1027 	 */
1028 	int			*memory_pressure;
1029 	long			*sysctl_mem;
1030 	int			*sysctl_wmem;
1031 	int			*sysctl_rmem;
1032 	int			max_header;
1033 	bool			no_autobind;
1034 
1035 	struct kmem_cache	*slab;
1036 	unsigned int		obj_size;
1037 	int			slab_flags;
1038 
1039 	struct percpu_counter	*orphan_count;
1040 
1041 	struct request_sock_ops	*rsk_prot;
1042 	struct timewait_sock_ops *twsk_prot;
1043 
1044 	union {
1045 		struct inet_hashinfo	*hashinfo;
1046 		struct udp_table	*udp_table;
1047 		struct raw_hashinfo	*raw_hash;
1048 	} h;
1049 
1050 	struct module		*owner;
1051 
1052 	char			name[32];
1053 
1054 	struct list_head	node;
1055 #ifdef SOCK_REFCNT_DEBUG
1056 	atomic_t		socks;
1057 #endif
1058 #ifdef CONFIG_MEMCG_KMEM
1059 	/*
1060 	 * cgroup specific init/deinit functions. Called once for all
1061 	 * protocols that implement it, from cgroups populate function.
1062 	 * This function has to setup any files the protocol want to
1063 	 * appear in the kmem cgroup filesystem.
1064 	 */
1065 	int			(*init_cgroup)(struct mem_cgroup *memcg,
1066 					       struct cgroup_subsys *ss);
1067 	void			(*destroy_cgroup)(struct mem_cgroup *memcg);
1068 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
1069 #endif
1070 };
1071 
1072 int proto_register(struct proto *prot, int alloc_slab);
1073 void proto_unregister(struct proto *prot);
1074 
1075 #ifdef SOCK_REFCNT_DEBUG
1076 static inline void sk_refcnt_debug_inc(struct sock *sk)
1077 {
1078 	atomic_inc(&sk->sk_prot->socks);
1079 }
1080 
1081 static inline void sk_refcnt_debug_dec(struct sock *sk)
1082 {
1083 	atomic_dec(&sk->sk_prot->socks);
1084 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1085 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1086 }
1087 
1088 static inline void sk_refcnt_debug_release(const struct sock *sk)
1089 {
1090 	if (atomic_read(&sk->sk_refcnt) != 1)
1091 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1092 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1093 }
1094 #else /* SOCK_REFCNT_DEBUG */
1095 #define sk_refcnt_debug_inc(sk) do { } while (0)
1096 #define sk_refcnt_debug_dec(sk) do { } while (0)
1097 #define sk_refcnt_debug_release(sk) do { } while (0)
1098 #endif /* SOCK_REFCNT_DEBUG */
1099 
1100 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1101 extern struct static_key memcg_socket_limit_enabled;
1102 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1103 					       struct cg_proto *cg_proto)
1104 {
1105 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1106 }
1107 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1108 #else
1109 #define mem_cgroup_sockets_enabled 0
1110 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1111 					       struct cg_proto *cg_proto)
1112 {
1113 	return NULL;
1114 }
1115 #endif
1116 
1117 static inline bool sk_stream_memory_free(const struct sock *sk)
1118 {
1119 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1120 		return false;
1121 
1122 	return sk->sk_prot->stream_memory_free ?
1123 		sk->sk_prot->stream_memory_free(sk) : true;
1124 }
1125 
1126 static inline bool sk_stream_is_writeable(const struct sock *sk)
1127 {
1128 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1129 	       sk_stream_memory_free(sk);
1130 }
1131 
1132 
1133 static inline bool sk_has_memory_pressure(const struct sock *sk)
1134 {
1135 	return sk->sk_prot->memory_pressure != NULL;
1136 }
1137 
1138 static inline bool sk_under_memory_pressure(const struct sock *sk)
1139 {
1140 	if (!sk->sk_prot->memory_pressure)
1141 		return false;
1142 
1143 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1144 		return !!sk->sk_cgrp->memory_pressure;
1145 
1146 	return !!*sk->sk_prot->memory_pressure;
1147 }
1148 
1149 static inline void sk_leave_memory_pressure(struct sock *sk)
1150 {
1151 	int *memory_pressure = sk->sk_prot->memory_pressure;
1152 
1153 	if (!memory_pressure)
1154 		return;
1155 
1156 	if (*memory_pressure)
1157 		*memory_pressure = 0;
1158 
1159 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1160 		struct cg_proto *cg_proto = sk->sk_cgrp;
1161 		struct proto *prot = sk->sk_prot;
1162 
1163 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1164 			cg_proto->memory_pressure = 0;
1165 	}
1166 
1167 }
1168 
1169 static inline void sk_enter_memory_pressure(struct sock *sk)
1170 {
1171 	if (!sk->sk_prot->enter_memory_pressure)
1172 		return;
1173 
1174 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1175 		struct cg_proto *cg_proto = sk->sk_cgrp;
1176 		struct proto *prot = sk->sk_prot;
1177 
1178 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1179 			cg_proto->memory_pressure = 1;
1180 	}
1181 
1182 	sk->sk_prot->enter_memory_pressure(sk);
1183 }
1184 
1185 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1186 {
1187 	long *prot = sk->sk_prot->sysctl_mem;
1188 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1189 		prot = sk->sk_cgrp->sysctl_mem;
1190 	return prot[index];
1191 }
1192 
1193 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1194 					      unsigned long amt,
1195 					      int *parent_status)
1196 {
1197 	page_counter_charge(&prot->memory_allocated, amt);
1198 
1199 	if (page_counter_read(&prot->memory_allocated) >
1200 	    prot->memory_allocated.limit)
1201 		*parent_status = OVER_LIMIT;
1202 }
1203 
1204 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1205 					      unsigned long amt)
1206 {
1207 	page_counter_uncharge(&prot->memory_allocated, amt);
1208 }
1209 
1210 static inline long
1211 sk_memory_allocated(const struct sock *sk)
1212 {
1213 	struct proto *prot = sk->sk_prot;
1214 
1215 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1216 		return page_counter_read(&sk->sk_cgrp->memory_allocated);
1217 
1218 	return atomic_long_read(prot->memory_allocated);
1219 }
1220 
1221 static inline long
1222 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1223 {
1224 	struct proto *prot = sk->sk_prot;
1225 
1226 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1227 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1228 		/* update the root cgroup regardless */
1229 		atomic_long_add_return(amt, prot->memory_allocated);
1230 		return page_counter_read(&sk->sk_cgrp->memory_allocated);
1231 	}
1232 
1233 	return atomic_long_add_return(amt, prot->memory_allocated);
1234 }
1235 
1236 static inline void
1237 sk_memory_allocated_sub(struct sock *sk, int amt)
1238 {
1239 	struct proto *prot = sk->sk_prot;
1240 
1241 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1242 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1243 
1244 	atomic_long_sub(amt, prot->memory_allocated);
1245 }
1246 
1247 static inline void sk_sockets_allocated_dec(struct sock *sk)
1248 {
1249 	struct proto *prot = sk->sk_prot;
1250 
1251 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1252 		struct cg_proto *cg_proto = sk->sk_cgrp;
1253 
1254 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1255 			percpu_counter_dec(&cg_proto->sockets_allocated);
1256 	}
1257 
1258 	percpu_counter_dec(prot->sockets_allocated);
1259 }
1260 
1261 static inline void sk_sockets_allocated_inc(struct sock *sk)
1262 {
1263 	struct proto *prot = sk->sk_prot;
1264 
1265 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1266 		struct cg_proto *cg_proto = sk->sk_cgrp;
1267 
1268 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1269 			percpu_counter_inc(&cg_proto->sockets_allocated);
1270 	}
1271 
1272 	percpu_counter_inc(prot->sockets_allocated);
1273 }
1274 
1275 static inline int
1276 sk_sockets_allocated_read_positive(struct sock *sk)
1277 {
1278 	struct proto *prot = sk->sk_prot;
1279 
1280 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1281 		return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1282 
1283 	return percpu_counter_read_positive(prot->sockets_allocated);
1284 }
1285 
1286 static inline int
1287 proto_sockets_allocated_sum_positive(struct proto *prot)
1288 {
1289 	return percpu_counter_sum_positive(prot->sockets_allocated);
1290 }
1291 
1292 static inline long
1293 proto_memory_allocated(struct proto *prot)
1294 {
1295 	return atomic_long_read(prot->memory_allocated);
1296 }
1297 
1298 static inline bool
1299 proto_memory_pressure(struct proto *prot)
1300 {
1301 	if (!prot->memory_pressure)
1302 		return false;
1303 	return !!*prot->memory_pressure;
1304 }
1305 
1306 
1307 #ifdef CONFIG_PROC_FS
1308 /* Called with local bh disabled */
1309 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1310 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1311 #else
1312 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1313 		int inc)
1314 {
1315 }
1316 #endif
1317 
1318 
1319 /* With per-bucket locks this operation is not-atomic, so that
1320  * this version is not worse.
1321  */
1322 static inline void __sk_prot_rehash(struct sock *sk)
1323 {
1324 	sk->sk_prot->unhash(sk);
1325 	sk->sk_prot->hash(sk);
1326 }
1327 
1328 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1329 
1330 /* About 10 seconds */
1331 #define SOCK_DESTROY_TIME (10*HZ)
1332 
1333 /* Sockets 0-1023 can't be bound to unless you are superuser */
1334 #define PROT_SOCK	1024
1335 
1336 #define SHUTDOWN_MASK	3
1337 #define RCV_SHUTDOWN	1
1338 #define SEND_SHUTDOWN	2
1339 
1340 #define SOCK_SNDBUF_LOCK	1
1341 #define SOCK_RCVBUF_LOCK	2
1342 #define SOCK_BINDADDR_LOCK	4
1343 #define SOCK_BINDPORT_LOCK	8
1344 
1345 struct socket_alloc {
1346 	struct socket socket;
1347 	struct inode vfs_inode;
1348 };
1349 
1350 static inline struct socket *SOCKET_I(struct inode *inode)
1351 {
1352 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1353 }
1354 
1355 static inline struct inode *SOCK_INODE(struct socket *socket)
1356 {
1357 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1358 }
1359 
1360 /*
1361  * Functions for memory accounting
1362  */
1363 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1364 void __sk_mem_reclaim(struct sock *sk, int amount);
1365 
1366 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1367 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1368 #define SK_MEM_SEND	0
1369 #define SK_MEM_RECV	1
1370 
1371 static inline int sk_mem_pages(int amt)
1372 {
1373 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1374 }
1375 
1376 static inline bool sk_has_account(struct sock *sk)
1377 {
1378 	/* return true if protocol supports memory accounting */
1379 	return !!sk->sk_prot->memory_allocated;
1380 }
1381 
1382 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1383 {
1384 	if (!sk_has_account(sk))
1385 		return true;
1386 	return size <= sk->sk_forward_alloc ||
1387 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1388 }
1389 
1390 static inline bool
1391 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1392 {
1393 	if (!sk_has_account(sk))
1394 		return true;
1395 	return size<= sk->sk_forward_alloc ||
1396 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1397 		skb_pfmemalloc(skb);
1398 }
1399 
1400 static inline void sk_mem_reclaim(struct sock *sk)
1401 {
1402 	if (!sk_has_account(sk))
1403 		return;
1404 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1405 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1406 }
1407 
1408 static inline void sk_mem_reclaim_partial(struct sock *sk)
1409 {
1410 	if (!sk_has_account(sk))
1411 		return;
1412 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1413 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1414 }
1415 
1416 static inline void sk_mem_charge(struct sock *sk, int size)
1417 {
1418 	if (!sk_has_account(sk))
1419 		return;
1420 	sk->sk_forward_alloc -= size;
1421 }
1422 
1423 static inline void sk_mem_uncharge(struct sock *sk, int size)
1424 {
1425 	if (!sk_has_account(sk))
1426 		return;
1427 	sk->sk_forward_alloc += size;
1428 }
1429 
1430 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1431 {
1432 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1433 	sk->sk_wmem_queued -= skb->truesize;
1434 	sk_mem_uncharge(sk, skb->truesize);
1435 	__kfree_skb(skb);
1436 }
1437 
1438 /* Used by processes to "lock" a socket state, so that
1439  * interrupts and bottom half handlers won't change it
1440  * from under us. It essentially blocks any incoming
1441  * packets, so that we won't get any new data or any
1442  * packets that change the state of the socket.
1443  *
1444  * While locked, BH processing will add new packets to
1445  * the backlog queue.  This queue is processed by the
1446  * owner of the socket lock right before it is released.
1447  *
1448  * Since ~2.3.5 it is also exclusive sleep lock serializing
1449  * accesses from user process context.
1450  */
1451 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1452 
1453 static inline void sock_release_ownership(struct sock *sk)
1454 {
1455 	sk->sk_lock.owned = 0;
1456 }
1457 
1458 /*
1459  * Macro so as to not evaluate some arguments when
1460  * lockdep is not enabled.
1461  *
1462  * Mark both the sk_lock and the sk_lock.slock as a
1463  * per-address-family lock class.
1464  */
1465 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1466 do {									\
1467 	sk->sk_lock.owned = 0;						\
1468 	init_waitqueue_head(&sk->sk_lock.wq);				\
1469 	spin_lock_init(&(sk)->sk_lock.slock);				\
1470 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1471 			sizeof((sk)->sk_lock));				\
1472 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1473 				(skey), (sname));				\
1474 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1475 } while (0)
1476 
1477 void lock_sock_nested(struct sock *sk, int subclass);
1478 
1479 static inline void lock_sock(struct sock *sk)
1480 {
1481 	lock_sock_nested(sk, 0);
1482 }
1483 
1484 void release_sock(struct sock *sk);
1485 
1486 /* BH context may only use the following locking interface. */
1487 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1488 #define bh_lock_sock_nested(__sk) \
1489 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1490 				SINGLE_DEPTH_NESTING)
1491 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1492 
1493 bool lock_sock_fast(struct sock *sk);
1494 /**
1495  * unlock_sock_fast - complement of lock_sock_fast
1496  * @sk: socket
1497  * @slow: slow mode
1498  *
1499  * fast unlock socket for user context.
1500  * If slow mode is on, we call regular release_sock()
1501  */
1502 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1503 {
1504 	if (slow)
1505 		release_sock(sk);
1506 	else
1507 		spin_unlock_bh(&sk->sk_lock.slock);
1508 }
1509 
1510 
1511 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1512 		      struct proto *prot, int kern);
1513 void sk_free(struct sock *sk);
1514 void sk_destruct(struct sock *sk);
1515 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1516 
1517 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1518 			     gfp_t priority);
1519 void sock_wfree(struct sk_buff *skb);
1520 void skb_orphan_partial(struct sk_buff *skb);
1521 void sock_rfree(struct sk_buff *skb);
1522 void sock_efree(struct sk_buff *skb);
1523 #ifdef CONFIG_INET
1524 void sock_edemux(struct sk_buff *skb);
1525 #else
1526 #define sock_edemux(skb) sock_efree(skb)
1527 #endif
1528 
1529 int sock_setsockopt(struct socket *sock, int level, int op,
1530 		    char __user *optval, unsigned int optlen);
1531 
1532 int sock_getsockopt(struct socket *sock, int level, int op,
1533 		    char __user *optval, int __user *optlen);
1534 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1535 				    int noblock, int *errcode);
1536 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1537 				     unsigned long data_len, int noblock,
1538 				     int *errcode, int max_page_order);
1539 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1540 void sock_kfree_s(struct sock *sk, void *mem, int size);
1541 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1542 void sk_send_sigurg(struct sock *sk);
1543 
1544 struct sockcm_cookie {
1545 	u32 mark;
1546 };
1547 
1548 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1549 		   struct sockcm_cookie *sockc);
1550 
1551 /*
1552  * Functions to fill in entries in struct proto_ops when a protocol
1553  * does not implement a particular function.
1554  */
1555 int sock_no_bind(struct socket *, struct sockaddr *, int);
1556 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1557 int sock_no_socketpair(struct socket *, struct socket *);
1558 int sock_no_accept(struct socket *, struct socket *, int);
1559 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1560 unsigned int sock_no_poll(struct file *, struct socket *,
1561 			  struct poll_table_struct *);
1562 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1563 int sock_no_listen(struct socket *, int);
1564 int sock_no_shutdown(struct socket *, int);
1565 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1566 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1567 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1568 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1569 int sock_no_mmap(struct file *file, struct socket *sock,
1570 		 struct vm_area_struct *vma);
1571 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1572 			 size_t size, int flags);
1573 
1574 /*
1575  * Functions to fill in entries in struct proto_ops when a protocol
1576  * uses the inet style.
1577  */
1578 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1579 				  char __user *optval, int __user *optlen);
1580 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1581 			int flags);
1582 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1583 				  char __user *optval, unsigned int optlen);
1584 int compat_sock_common_getsockopt(struct socket *sock, int level,
1585 		int optname, char __user *optval, int __user *optlen);
1586 int compat_sock_common_setsockopt(struct socket *sock, int level,
1587 		int optname, char __user *optval, unsigned int optlen);
1588 
1589 void sk_common_release(struct sock *sk);
1590 
1591 /*
1592  *	Default socket callbacks and setup code
1593  */
1594 
1595 /* Initialise core socket variables */
1596 void sock_init_data(struct socket *sock, struct sock *sk);
1597 
1598 /*
1599  * Socket reference counting postulates.
1600  *
1601  * * Each user of socket SHOULD hold a reference count.
1602  * * Each access point to socket (an hash table bucket, reference from a list,
1603  *   running timer, skb in flight MUST hold a reference count.
1604  * * When reference count hits 0, it means it will never increase back.
1605  * * When reference count hits 0, it means that no references from
1606  *   outside exist to this socket and current process on current CPU
1607  *   is last user and may/should destroy this socket.
1608  * * sk_free is called from any context: process, BH, IRQ. When
1609  *   it is called, socket has no references from outside -> sk_free
1610  *   may release descendant resources allocated by the socket, but
1611  *   to the time when it is called, socket is NOT referenced by any
1612  *   hash tables, lists etc.
1613  * * Packets, delivered from outside (from network or from another process)
1614  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1615  *   when they sit in queue. Otherwise, packets will leak to hole, when
1616  *   socket is looked up by one cpu and unhasing is made by another CPU.
1617  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1618  *   (leak to backlog). Packet socket does all the processing inside
1619  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1620  *   use separate SMP lock, so that they are prone too.
1621  */
1622 
1623 /* Ungrab socket and destroy it, if it was the last reference. */
1624 static inline void sock_put(struct sock *sk)
1625 {
1626 	if (atomic_dec_and_test(&sk->sk_refcnt))
1627 		sk_free(sk);
1628 }
1629 /* Generic version of sock_put(), dealing with all sockets
1630  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1631  */
1632 void sock_gen_put(struct sock *sk);
1633 
1634 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1635 
1636 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1637 {
1638 	sk->sk_tx_queue_mapping = tx_queue;
1639 }
1640 
1641 static inline void sk_tx_queue_clear(struct sock *sk)
1642 {
1643 	sk->sk_tx_queue_mapping = -1;
1644 }
1645 
1646 static inline int sk_tx_queue_get(const struct sock *sk)
1647 {
1648 	return sk ? sk->sk_tx_queue_mapping : -1;
1649 }
1650 
1651 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1652 {
1653 	sk_tx_queue_clear(sk);
1654 	sk->sk_socket = sock;
1655 }
1656 
1657 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1658 {
1659 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1660 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1661 }
1662 /* Detach socket from process context.
1663  * Announce socket dead, detach it from wait queue and inode.
1664  * Note that parent inode held reference count on this struct sock,
1665  * we do not release it in this function, because protocol
1666  * probably wants some additional cleanups or even continuing
1667  * to work with this socket (TCP).
1668  */
1669 static inline void sock_orphan(struct sock *sk)
1670 {
1671 	write_lock_bh(&sk->sk_callback_lock);
1672 	sock_set_flag(sk, SOCK_DEAD);
1673 	sk_set_socket(sk, NULL);
1674 	sk->sk_wq  = NULL;
1675 	write_unlock_bh(&sk->sk_callback_lock);
1676 }
1677 
1678 static inline void sock_graft(struct sock *sk, struct socket *parent)
1679 {
1680 	write_lock_bh(&sk->sk_callback_lock);
1681 	sk->sk_wq = parent->wq;
1682 	parent->sk = sk;
1683 	sk_set_socket(sk, parent);
1684 	security_sock_graft(sk, parent);
1685 	write_unlock_bh(&sk->sk_callback_lock);
1686 }
1687 
1688 kuid_t sock_i_uid(struct sock *sk);
1689 unsigned long sock_i_ino(struct sock *sk);
1690 
1691 static inline u32 net_tx_rndhash(void)
1692 {
1693 	u32 v = prandom_u32();
1694 
1695 	return v ?: 1;
1696 }
1697 
1698 static inline void sk_set_txhash(struct sock *sk)
1699 {
1700 	sk->sk_txhash = net_tx_rndhash();
1701 }
1702 
1703 static inline void sk_rethink_txhash(struct sock *sk)
1704 {
1705 	if (sk->sk_txhash)
1706 		sk_set_txhash(sk);
1707 }
1708 
1709 static inline struct dst_entry *
1710 __sk_dst_get(struct sock *sk)
1711 {
1712 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1713 						       lockdep_is_held(&sk->sk_lock.slock));
1714 }
1715 
1716 static inline struct dst_entry *
1717 sk_dst_get(struct sock *sk)
1718 {
1719 	struct dst_entry *dst;
1720 
1721 	rcu_read_lock();
1722 	dst = rcu_dereference(sk->sk_dst_cache);
1723 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1724 		dst = NULL;
1725 	rcu_read_unlock();
1726 	return dst;
1727 }
1728 
1729 static inline void dst_negative_advice(struct sock *sk)
1730 {
1731 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1732 
1733 	sk_rethink_txhash(sk);
1734 
1735 	if (dst && dst->ops->negative_advice) {
1736 		ndst = dst->ops->negative_advice(dst);
1737 
1738 		if (ndst != dst) {
1739 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1740 			sk_tx_queue_clear(sk);
1741 		}
1742 	}
1743 }
1744 
1745 static inline void
1746 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1747 {
1748 	struct dst_entry *old_dst;
1749 
1750 	sk_tx_queue_clear(sk);
1751 	/*
1752 	 * This can be called while sk is owned by the caller only,
1753 	 * with no state that can be checked in a rcu_dereference_check() cond
1754 	 */
1755 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1756 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1757 	dst_release(old_dst);
1758 }
1759 
1760 static inline void
1761 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1762 {
1763 	struct dst_entry *old_dst;
1764 
1765 	sk_tx_queue_clear(sk);
1766 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1767 	dst_release(old_dst);
1768 }
1769 
1770 static inline void
1771 __sk_dst_reset(struct sock *sk)
1772 {
1773 	__sk_dst_set(sk, NULL);
1774 }
1775 
1776 static inline void
1777 sk_dst_reset(struct sock *sk)
1778 {
1779 	sk_dst_set(sk, NULL);
1780 }
1781 
1782 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1783 
1784 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1785 
1786 bool sk_mc_loop(struct sock *sk);
1787 
1788 static inline bool sk_can_gso(const struct sock *sk)
1789 {
1790 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1791 }
1792 
1793 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1794 
1795 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1796 {
1797 	sk->sk_route_nocaps |= flags;
1798 	sk->sk_route_caps &= ~flags;
1799 }
1800 
1801 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1802 					   struct iov_iter *from, char *to,
1803 					   int copy, int offset)
1804 {
1805 	if (skb->ip_summed == CHECKSUM_NONE) {
1806 		__wsum csum = 0;
1807 		if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1808 			return -EFAULT;
1809 		skb->csum = csum_block_add(skb->csum, csum, offset);
1810 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1811 		if (copy_from_iter_nocache(to, copy, from) != copy)
1812 			return -EFAULT;
1813 	} else if (copy_from_iter(to, copy, from) != copy)
1814 		return -EFAULT;
1815 
1816 	return 0;
1817 }
1818 
1819 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1820 				       struct iov_iter *from, int copy)
1821 {
1822 	int err, offset = skb->len;
1823 
1824 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1825 				       copy, offset);
1826 	if (err)
1827 		__skb_trim(skb, offset);
1828 
1829 	return err;
1830 }
1831 
1832 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1833 					   struct sk_buff *skb,
1834 					   struct page *page,
1835 					   int off, int copy)
1836 {
1837 	int err;
1838 
1839 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1840 				       copy, skb->len);
1841 	if (err)
1842 		return err;
1843 
1844 	skb->len	     += copy;
1845 	skb->data_len	     += copy;
1846 	skb->truesize	     += copy;
1847 	sk->sk_wmem_queued   += copy;
1848 	sk_mem_charge(sk, copy);
1849 	return 0;
1850 }
1851 
1852 /**
1853  * sk_wmem_alloc_get - returns write allocations
1854  * @sk: socket
1855  *
1856  * Returns sk_wmem_alloc minus initial offset of one
1857  */
1858 static inline int sk_wmem_alloc_get(const struct sock *sk)
1859 {
1860 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1861 }
1862 
1863 /**
1864  * sk_rmem_alloc_get - returns read allocations
1865  * @sk: socket
1866  *
1867  * Returns sk_rmem_alloc
1868  */
1869 static inline int sk_rmem_alloc_get(const struct sock *sk)
1870 {
1871 	return atomic_read(&sk->sk_rmem_alloc);
1872 }
1873 
1874 /**
1875  * sk_has_allocations - check if allocations are outstanding
1876  * @sk: socket
1877  *
1878  * Returns true if socket has write or read allocations
1879  */
1880 static inline bool sk_has_allocations(const struct sock *sk)
1881 {
1882 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1883 }
1884 
1885 /**
1886  * wq_has_sleeper - check if there are any waiting processes
1887  * @wq: struct socket_wq
1888  *
1889  * Returns true if socket_wq has waiting processes
1890  *
1891  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1892  * barrier call. They were added due to the race found within the tcp code.
1893  *
1894  * Consider following tcp code paths:
1895  *
1896  * CPU1                  CPU2
1897  *
1898  * sys_select            receive packet
1899  *   ...                 ...
1900  *   __add_wait_queue    update tp->rcv_nxt
1901  *   ...                 ...
1902  *   tp->rcv_nxt check   sock_def_readable
1903  *   ...                 {
1904  *   schedule               rcu_read_lock();
1905  *                          wq = rcu_dereference(sk->sk_wq);
1906  *                          if (wq && waitqueue_active(&wq->wait))
1907  *                              wake_up_interruptible(&wq->wait)
1908  *                          ...
1909  *                       }
1910  *
1911  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1912  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1913  * could then endup calling schedule and sleep forever if there are no more
1914  * data on the socket.
1915  *
1916  */
1917 static inline bool wq_has_sleeper(struct socket_wq *wq)
1918 {
1919 	/* We need to be sure we are in sync with the
1920 	 * add_wait_queue modifications to the wait queue.
1921 	 *
1922 	 * This memory barrier is paired in the sock_poll_wait.
1923 	 */
1924 	smp_mb();
1925 	return wq && waitqueue_active(&wq->wait);
1926 }
1927 
1928 /**
1929  * sock_poll_wait - place memory barrier behind the poll_wait call.
1930  * @filp:           file
1931  * @wait_address:   socket wait queue
1932  * @p:              poll_table
1933  *
1934  * See the comments in the wq_has_sleeper function.
1935  */
1936 static inline void sock_poll_wait(struct file *filp,
1937 		wait_queue_head_t *wait_address, poll_table *p)
1938 {
1939 	if (!poll_does_not_wait(p) && wait_address) {
1940 		poll_wait(filp, wait_address, p);
1941 		/* We need to be sure we are in sync with the
1942 		 * socket flags modification.
1943 		 *
1944 		 * This memory barrier is paired in the wq_has_sleeper.
1945 		 */
1946 		smp_mb();
1947 	}
1948 }
1949 
1950 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1951 {
1952 	if (sk->sk_txhash) {
1953 		skb->l4_hash = 1;
1954 		skb->hash = sk->sk_txhash;
1955 	}
1956 }
1957 
1958 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1959 
1960 /*
1961  *	Queue a received datagram if it will fit. Stream and sequenced
1962  *	protocols can't normally use this as they need to fit buffers in
1963  *	and play with them.
1964  *
1965  *	Inlined as it's very short and called for pretty much every
1966  *	packet ever received.
1967  */
1968 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1969 {
1970 	skb_orphan(skb);
1971 	skb->sk = sk;
1972 	skb->destructor = sock_rfree;
1973 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1974 	sk_mem_charge(sk, skb->truesize);
1975 }
1976 
1977 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1978 		    unsigned long expires);
1979 
1980 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1981 
1982 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1983 
1984 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1985 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1986 
1987 /*
1988  *	Recover an error report and clear atomically
1989  */
1990 
1991 static inline int sock_error(struct sock *sk)
1992 {
1993 	int err;
1994 	if (likely(!sk->sk_err))
1995 		return 0;
1996 	err = xchg(&sk->sk_err, 0);
1997 	return -err;
1998 }
1999 
2000 static inline unsigned long sock_wspace(struct sock *sk)
2001 {
2002 	int amt = 0;
2003 
2004 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2005 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2006 		if (amt < 0)
2007 			amt = 0;
2008 	}
2009 	return amt;
2010 }
2011 
2012 /* Note:
2013  *  We use sk->sk_wq_raw, from contexts knowing this
2014  *  pointer is not NULL and cannot disappear/change.
2015  */
2016 static inline void sk_set_bit(int nr, struct sock *sk)
2017 {
2018 	set_bit(nr, &sk->sk_wq_raw->flags);
2019 }
2020 
2021 static inline void sk_clear_bit(int nr, struct sock *sk)
2022 {
2023 	clear_bit(nr, &sk->sk_wq_raw->flags);
2024 }
2025 
2026 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2027 {
2028 	if (sock_flag(sk, SOCK_FASYNC)) {
2029 		rcu_read_lock();
2030 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2031 		rcu_read_unlock();
2032 	}
2033 }
2034 
2035 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2036  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2037  * Note: for send buffers, TCP works better if we can build two skbs at
2038  * minimum.
2039  */
2040 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2041 
2042 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2043 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2044 
2045 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2046 {
2047 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2048 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2049 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2050 	}
2051 }
2052 
2053 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2054 				    bool force_schedule);
2055 
2056 /**
2057  * sk_page_frag - return an appropriate page_frag
2058  * @sk: socket
2059  *
2060  * If socket allocation mode allows current thread to sleep, it means its
2061  * safe to use the per task page_frag instead of the per socket one.
2062  */
2063 static inline struct page_frag *sk_page_frag(struct sock *sk)
2064 {
2065 	if (gfpflags_allow_blocking(sk->sk_allocation))
2066 		return &current->task_frag;
2067 
2068 	return &sk->sk_frag;
2069 }
2070 
2071 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2072 
2073 /*
2074  *	Default write policy as shown to user space via poll/select/SIGIO
2075  */
2076 static inline bool sock_writeable(const struct sock *sk)
2077 {
2078 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2079 }
2080 
2081 static inline gfp_t gfp_any(void)
2082 {
2083 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2084 }
2085 
2086 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2087 {
2088 	return noblock ? 0 : sk->sk_rcvtimeo;
2089 }
2090 
2091 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2092 {
2093 	return noblock ? 0 : sk->sk_sndtimeo;
2094 }
2095 
2096 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2097 {
2098 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2099 }
2100 
2101 /* Alas, with timeout socket operations are not restartable.
2102  * Compare this to poll().
2103  */
2104 static inline int sock_intr_errno(long timeo)
2105 {
2106 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2107 }
2108 
2109 struct sock_skb_cb {
2110 	u32 dropcount;
2111 };
2112 
2113 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2114  * using skb->cb[] would keep using it directly and utilize its
2115  * alignement guarantee.
2116  */
2117 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2118 			    sizeof(struct sock_skb_cb)))
2119 
2120 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2121 			    SOCK_SKB_CB_OFFSET))
2122 
2123 #define sock_skb_cb_check_size(size) \
2124 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2125 
2126 static inline void
2127 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2128 {
2129 	SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2130 }
2131 
2132 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2133 			   struct sk_buff *skb);
2134 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2135 			     struct sk_buff *skb);
2136 
2137 static inline void
2138 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2139 {
2140 	ktime_t kt = skb->tstamp;
2141 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2142 
2143 	/*
2144 	 * generate control messages if
2145 	 * - receive time stamping in software requested
2146 	 * - software time stamp available and wanted
2147 	 * - hardware time stamps available and wanted
2148 	 */
2149 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2150 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2151 	    (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2152 	    (hwtstamps->hwtstamp.tv64 &&
2153 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2154 		__sock_recv_timestamp(msg, sk, skb);
2155 	else
2156 		sk->sk_stamp = kt;
2157 
2158 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2159 		__sock_recv_wifi_status(msg, sk, skb);
2160 }
2161 
2162 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2163 			      struct sk_buff *skb);
2164 
2165 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2166 					  struct sk_buff *skb)
2167 {
2168 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2169 			   (1UL << SOCK_RCVTSTAMP))
2170 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2171 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2172 
2173 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2174 		__sock_recv_ts_and_drops(msg, sk, skb);
2175 	else
2176 		sk->sk_stamp = skb->tstamp;
2177 }
2178 
2179 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2180 
2181 /**
2182  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2183  * @sk:		socket sending this packet
2184  * @tx_flags:	completed with instructions for time stamping
2185  *
2186  * Note : callers should take care of initial *tx_flags value (usually 0)
2187  */
2188 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2189 {
2190 	if (unlikely(sk->sk_tsflags))
2191 		__sock_tx_timestamp(sk, tx_flags);
2192 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2193 		*tx_flags |= SKBTX_WIFI_STATUS;
2194 }
2195 
2196 /**
2197  * sk_eat_skb - Release a skb if it is no longer needed
2198  * @sk: socket to eat this skb from
2199  * @skb: socket buffer to eat
2200  *
2201  * This routine must be called with interrupts disabled or with the socket
2202  * locked so that the sk_buff queue operation is ok.
2203 */
2204 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2205 {
2206 	__skb_unlink(skb, &sk->sk_receive_queue);
2207 	__kfree_skb(skb);
2208 }
2209 
2210 static inline
2211 struct net *sock_net(const struct sock *sk)
2212 {
2213 	return read_pnet(&sk->sk_net);
2214 }
2215 
2216 static inline
2217 void sock_net_set(struct sock *sk, struct net *net)
2218 {
2219 	write_pnet(&sk->sk_net, net);
2220 }
2221 
2222 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2223 {
2224 	if (skb->sk) {
2225 		struct sock *sk = skb->sk;
2226 
2227 		skb->destructor = NULL;
2228 		skb->sk = NULL;
2229 		return sk;
2230 	}
2231 	return NULL;
2232 }
2233 
2234 /* This helper checks if a socket is a full socket,
2235  * ie _not_ a timewait or request socket.
2236  */
2237 static inline bool sk_fullsock(const struct sock *sk)
2238 {
2239 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2240 }
2241 
2242 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2243  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2244  */
2245 static inline bool sk_listener(const struct sock *sk)
2246 {
2247 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2248 }
2249 
2250 /**
2251  * sk_state_load - read sk->sk_state for lockless contexts
2252  * @sk: socket pointer
2253  *
2254  * Paired with sk_state_store(). Used in places we do not hold socket lock :
2255  * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2256  */
2257 static inline int sk_state_load(const struct sock *sk)
2258 {
2259 	return smp_load_acquire(&sk->sk_state);
2260 }
2261 
2262 /**
2263  * sk_state_store - update sk->sk_state
2264  * @sk: socket pointer
2265  * @newstate: new state
2266  *
2267  * Paired with sk_state_load(). Should be used in contexts where
2268  * state change might impact lockless readers.
2269  */
2270 static inline void sk_state_store(struct sock *sk, int newstate)
2271 {
2272 	smp_store_release(&sk->sk_state, newstate);
2273 }
2274 
2275 void sock_enable_timestamp(struct sock *sk, int flag);
2276 int sock_get_timestamp(struct sock *, struct timeval __user *);
2277 int sock_get_timestampns(struct sock *, struct timespec __user *);
2278 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2279 		       int type);
2280 
2281 bool sk_ns_capable(const struct sock *sk,
2282 		   struct user_namespace *user_ns, int cap);
2283 bool sk_capable(const struct sock *sk, int cap);
2284 bool sk_net_capable(const struct sock *sk, int cap);
2285 
2286 extern __u32 sysctl_wmem_max;
2287 extern __u32 sysctl_rmem_max;
2288 
2289 extern int sysctl_tstamp_allow_data;
2290 extern int sysctl_optmem_max;
2291 
2292 extern __u32 sysctl_wmem_default;
2293 extern __u32 sysctl_rmem_default;
2294 
2295 #endif	/* _SOCK_H */
2296