xref: /linux/include/linux/usb.h (revision a13d7201d7deedcbb6ac6efa94a1a7d34d3d79ec)
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 #include <linux/pm_runtime.h>	/* for runtime PM */
24 
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28 
29 /*-------------------------------------------------------------------------*/
30 
31 /*
32  * Host-side wrappers for standard USB descriptors ... these are parsed
33  * from the data provided by devices.  Parsing turns them from a flat
34  * sequence of descriptors into a hierarchy:
35  *
36  *  - devices have one (usually) or more configs;
37  *  - configs have one (often) or more interfaces;
38  *  - interfaces have one (usually) or more settings;
39  *  - each interface setting has zero or (usually) more endpoints.
40  *  - a SuperSpeed endpoint has a companion descriptor
41  *
42  * And there might be other descriptors mixed in with those.
43  *
44  * Devices may also have class-specific or vendor-specific descriptors.
45  */
46 
47 struct ep_device;
48 
49 /**
50  * struct usb_host_endpoint - host-side endpoint descriptor and queue
51  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53  * @urb_list: urbs queued to this endpoint; maintained by usbcore
54  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55  *	with one or more transfer descriptors (TDs) per urb
56  * @ep_dev: ep_device for sysfs info
57  * @extra: descriptors following this endpoint in the configuration
58  * @extralen: how many bytes of "extra" are valid
59  * @enabled: URBs may be submitted to this endpoint
60  * @streams: number of USB-3 streams allocated on the endpoint
61  *
62  * USB requests are always queued to a given endpoint, identified by a
63  * descriptor within an active interface in a given USB configuration.
64  */
65 struct usb_host_endpoint {
66 	struct usb_endpoint_descriptor		desc;
67 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
68 	struct list_head		urb_list;
69 	void				*hcpriv;
70 	struct ep_device		*ep_dev;	/* For sysfs info */
71 
72 	unsigned char *extra;   /* Extra descriptors */
73 	int extralen;
74 	int enabled;
75 	int streams;
76 };
77 
78 /* host-side wrapper for one interface setting's parsed descriptors */
79 struct usb_host_interface {
80 	struct usb_interface_descriptor	desc;
81 
82 	int extralen;
83 	unsigned char *extra;   /* Extra descriptors */
84 
85 	/* array of desc.bNumEndpoints endpoints associated with this
86 	 * interface setting.  these will be in no particular order.
87 	 */
88 	struct usb_host_endpoint *endpoint;
89 
90 	char *string;		/* iInterface string, if present */
91 };
92 
93 enum usb_interface_condition {
94 	USB_INTERFACE_UNBOUND = 0,
95 	USB_INTERFACE_BINDING,
96 	USB_INTERFACE_BOUND,
97 	USB_INTERFACE_UNBINDING,
98 };
99 
100 /**
101  * struct usb_interface - what usb device drivers talk to
102  * @altsetting: array of interface structures, one for each alternate
103  *	setting that may be selected.  Each one includes a set of
104  *	endpoint configurations.  They will be in no particular order.
105  * @cur_altsetting: the current altsetting.
106  * @num_altsetting: number of altsettings defined.
107  * @intf_assoc: interface association descriptor
108  * @minor: the minor number assigned to this interface, if this
109  *	interface is bound to a driver that uses the USB major number.
110  *	If this interface does not use the USB major, this field should
111  *	be unused.  The driver should set this value in the probe()
112  *	function of the driver, after it has been assigned a minor
113  *	number from the USB core by calling usb_register_dev().
114  * @condition: binding state of the interface: not bound, binding
115  *	(in probe()), bound to a driver, or unbinding (in disconnect())
116  * @sysfs_files_created: sysfs attributes exist
117  * @ep_devs_created: endpoint child pseudo-devices exist
118  * @unregistering: flag set when the interface is being unregistered
119  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
120  *	capability during autosuspend.
121  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
122  *	has been deferred.
123  * @needs_binding: flag set when the driver should be re-probed or unbound
124  *	following a reset or suspend operation it doesn't support.
125  * @dev: driver model's view of this device
126  * @usb_dev: if an interface is bound to the USB major, this will point
127  *	to the sysfs representation for that device.
128  * @pm_usage_cnt: PM usage counter for this interface
129  * @reset_ws: Used for scheduling resets from atomic context.
130  * @resetting_device: USB core reset the device, so use alt setting 0 as
131  *	current; needs bandwidth alloc after reset.
132  *
133  * USB device drivers attach to interfaces on a physical device.  Each
134  * interface encapsulates a single high level function, such as feeding
135  * an audio stream to a speaker or reporting a change in a volume control.
136  * Many USB devices only have one interface.  The protocol used to talk to
137  * an interface's endpoints can be defined in a usb "class" specification,
138  * or by a product's vendor.  The (default) control endpoint is part of
139  * every interface, but is never listed among the interface's descriptors.
140  *
141  * The driver that is bound to the interface can use standard driver model
142  * calls such as dev_get_drvdata() on the dev member of this structure.
143  *
144  * Each interface may have alternate settings.  The initial configuration
145  * of a device sets altsetting 0, but the device driver can change
146  * that setting using usb_set_interface().  Alternate settings are often
147  * used to control the use of periodic endpoints, such as by having
148  * different endpoints use different amounts of reserved USB bandwidth.
149  * All standards-conformant USB devices that use isochronous endpoints
150  * will use them in non-default settings.
151  *
152  * The USB specification says that alternate setting numbers must run from
153  * 0 to one less than the total number of alternate settings.  But some
154  * devices manage to mess this up, and the structures aren't necessarily
155  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
156  * look up an alternate setting in the altsetting array based on its number.
157  */
158 struct usb_interface {
159 	/* array of alternate settings for this interface,
160 	 * stored in no particular order */
161 	struct usb_host_interface *altsetting;
162 
163 	struct usb_host_interface *cur_altsetting;	/* the currently
164 					 * active alternate setting */
165 	unsigned num_altsetting;	/* number of alternate settings */
166 
167 	/* If there is an interface association descriptor then it will list
168 	 * the associated interfaces */
169 	struct usb_interface_assoc_descriptor *intf_assoc;
170 
171 	int minor;			/* minor number this interface is
172 					 * bound to */
173 	enum usb_interface_condition condition;		/* state of binding */
174 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
175 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
176 	unsigned unregistering:1;	/* unregistration is in progress */
177 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
178 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
179 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
180 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
181 
182 	struct device dev;		/* interface specific device info */
183 	struct device *usb_dev;
184 	atomic_t pm_usage_cnt;		/* usage counter for autosuspend */
185 	struct work_struct reset_ws;	/* for resets in atomic context */
186 };
187 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
188 
189 static inline void *usb_get_intfdata(struct usb_interface *intf)
190 {
191 	return dev_get_drvdata(&intf->dev);
192 }
193 
194 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
195 {
196 	dev_set_drvdata(&intf->dev, data);
197 }
198 
199 struct usb_interface *usb_get_intf(struct usb_interface *intf);
200 void usb_put_intf(struct usb_interface *intf);
201 
202 /* Hard limit */
203 #define USB_MAXENDPOINTS	30
204 /* this maximum is arbitrary */
205 #define USB_MAXINTERFACES	32
206 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
207 
208 /*
209  * USB Resume Timer: Every Host controller driver should drive the resume
210  * signalling on the bus for the amount of time defined by this macro.
211  *
212  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
213  *
214  * Note that the USB Specification states we should drive resume for *at least*
215  * 20 ms, but it doesn't give an upper bound. This creates two possible
216  * situations which we want to avoid:
217  *
218  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
219  * us to fail USB Electrical Tests, thus failing Certification
220  *
221  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
222  * and while we can argue that's against the USB Specification, we don't have
223  * control over which devices a certification laboratory will be using for
224  * certification. If CertLab uses a device which was tested against Windows and
225  * that happens to have relaxed resume signalling rules, we might fall into
226  * situations where we fail interoperability and electrical tests.
227  *
228  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
229  * should cope with both LPJ calibration errors and devices not following every
230  * detail of the USB Specification.
231  */
232 #define USB_RESUME_TIMEOUT	40 /* ms */
233 
234 /**
235  * struct usb_interface_cache - long-term representation of a device interface
236  * @num_altsetting: number of altsettings defined.
237  * @ref: reference counter.
238  * @altsetting: variable-length array of interface structures, one for
239  *	each alternate setting that may be selected.  Each one includes a
240  *	set of endpoint configurations.  They will be in no particular order.
241  *
242  * These structures persist for the lifetime of a usb_device, unlike
243  * struct usb_interface (which persists only as long as its configuration
244  * is installed).  The altsetting arrays can be accessed through these
245  * structures at any time, permitting comparison of configurations and
246  * providing support for the /proc/bus/usb/devices pseudo-file.
247  */
248 struct usb_interface_cache {
249 	unsigned num_altsetting;	/* number of alternate settings */
250 	struct kref ref;		/* reference counter */
251 
252 	/* variable-length array of alternate settings for this interface,
253 	 * stored in no particular order */
254 	struct usb_host_interface altsetting[0];
255 };
256 #define	ref_to_usb_interface_cache(r) \
257 		container_of(r, struct usb_interface_cache, ref)
258 #define	altsetting_to_usb_interface_cache(a) \
259 		container_of(a, struct usb_interface_cache, altsetting[0])
260 
261 /**
262  * struct usb_host_config - representation of a device's configuration
263  * @desc: the device's configuration descriptor.
264  * @string: pointer to the cached version of the iConfiguration string, if
265  *	present for this configuration.
266  * @intf_assoc: list of any interface association descriptors in this config
267  * @interface: array of pointers to usb_interface structures, one for each
268  *	interface in the configuration.  The number of interfaces is stored
269  *	in desc.bNumInterfaces.  These pointers are valid only while the
270  *	the configuration is active.
271  * @intf_cache: array of pointers to usb_interface_cache structures, one
272  *	for each interface in the configuration.  These structures exist
273  *	for the entire life of the device.
274  * @extra: pointer to buffer containing all extra descriptors associated
275  *	with this configuration (those preceding the first interface
276  *	descriptor).
277  * @extralen: length of the extra descriptors buffer.
278  *
279  * USB devices may have multiple configurations, but only one can be active
280  * at any time.  Each encapsulates a different operational environment;
281  * for example, a dual-speed device would have separate configurations for
282  * full-speed and high-speed operation.  The number of configurations
283  * available is stored in the device descriptor as bNumConfigurations.
284  *
285  * A configuration can contain multiple interfaces.  Each corresponds to
286  * a different function of the USB device, and all are available whenever
287  * the configuration is active.  The USB standard says that interfaces
288  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
289  * of devices get this wrong.  In addition, the interface array is not
290  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
291  * look up an interface entry based on its number.
292  *
293  * Device drivers should not attempt to activate configurations.  The choice
294  * of which configuration to install is a policy decision based on such
295  * considerations as available power, functionality provided, and the user's
296  * desires (expressed through userspace tools).  However, drivers can call
297  * usb_reset_configuration() to reinitialize the current configuration and
298  * all its interfaces.
299  */
300 struct usb_host_config {
301 	struct usb_config_descriptor	desc;
302 
303 	char *string;		/* iConfiguration string, if present */
304 
305 	/* List of any Interface Association Descriptors in this
306 	 * configuration. */
307 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
308 
309 	/* the interfaces associated with this configuration,
310 	 * stored in no particular order */
311 	struct usb_interface *interface[USB_MAXINTERFACES];
312 
313 	/* Interface information available even when this is not the
314 	 * active configuration */
315 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
316 
317 	unsigned char *extra;   /* Extra descriptors */
318 	int extralen;
319 };
320 
321 /* USB2.0 and USB3.0 device BOS descriptor set */
322 struct usb_host_bos {
323 	struct usb_bos_descriptor	*desc;
324 
325 	/* wireless cap descriptor is handled by wusb */
326 	struct usb_ext_cap_descriptor	*ext_cap;
327 	struct usb_ss_cap_descriptor	*ss_cap;
328 	struct usb_ss_container_id_descriptor	*ss_id;
329 };
330 
331 int __usb_get_extra_descriptor(char *buffer, unsigned size,
332 	unsigned char type, void **ptr);
333 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
334 				__usb_get_extra_descriptor((ifpoint)->extra, \
335 				(ifpoint)->extralen, \
336 				type, (void **)ptr)
337 
338 /* ----------------------------------------------------------------------- */
339 
340 /* USB device number allocation bitmap */
341 struct usb_devmap {
342 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
343 };
344 
345 /*
346  * Allocated per bus (tree of devices) we have:
347  */
348 struct usb_bus {
349 	struct device *controller;	/* host/master side hardware */
350 	int busnum;			/* Bus number (in order of reg) */
351 	const char *bus_name;		/* stable id (PCI slot_name etc) */
352 	u8 uses_dma;			/* Does the host controller use DMA? */
353 	u8 uses_pio_for_control;	/*
354 					 * Does the host controller use PIO
355 					 * for control transfers?
356 					 */
357 	u8 otg_port;			/* 0, or number of OTG/HNP port */
358 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
359 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
360 	unsigned no_stop_on_short:1;    /*
361 					 * Quirk: some controllers don't stop
362 					 * the ep queue on a short transfer
363 					 * with the URB_SHORT_NOT_OK flag set.
364 					 */
365 	unsigned no_sg_constraint:1;	/* no sg constraint */
366 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
367 
368 	int devnum_next;		/* Next open device number in
369 					 * round-robin allocation */
370 
371 	struct usb_devmap devmap;	/* device address allocation map */
372 	struct usb_device *root_hub;	/* Root hub */
373 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
374 	struct list_head bus_list;	/* list of busses */
375 
376 	struct mutex usb_address0_mutex; /* unaddressed device mutex */
377 
378 	int bandwidth_allocated;	/* on this bus: how much of the time
379 					 * reserved for periodic (intr/iso)
380 					 * requests is used, on average?
381 					 * Units: microseconds/frame.
382 					 * Limits: Full/low speed reserve 90%,
383 					 * while high speed reserves 80%.
384 					 */
385 	int bandwidth_int_reqs;		/* number of Interrupt requests */
386 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
387 
388 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
389 
390 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
391 	struct mon_bus *mon_bus;	/* non-null when associated */
392 	int monitored;			/* non-zero when monitored */
393 #endif
394 };
395 
396 struct usb_dev_state;
397 
398 /* ----------------------------------------------------------------------- */
399 
400 struct usb_tt;
401 
402 enum usb_device_removable {
403 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
404 	USB_DEVICE_REMOVABLE,
405 	USB_DEVICE_FIXED,
406 };
407 
408 enum usb_port_connect_type {
409 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
410 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
411 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
412 	USB_PORT_NOT_USED,
413 };
414 
415 /*
416  * USB 2.0 Link Power Management (LPM) parameters.
417  */
418 struct usb2_lpm_parameters {
419 	/* Best effort service latency indicate how long the host will drive
420 	 * resume on an exit from L1.
421 	 */
422 	unsigned int besl;
423 
424 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
425 	 * When the timer counts to zero, the parent hub will initiate a LPM
426 	 * transition to L1.
427 	 */
428 	int timeout;
429 };
430 
431 /*
432  * USB 3.0 Link Power Management (LPM) parameters.
433  *
434  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
435  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
436  * All three are stored in nanoseconds.
437  */
438 struct usb3_lpm_parameters {
439 	/*
440 	 * Maximum exit latency (MEL) for the host to send a packet to the
441 	 * device (either a Ping for isoc endpoints, or a data packet for
442 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
443 	 * in the path to transition the links to U0.
444 	 */
445 	unsigned int mel;
446 	/*
447 	 * Maximum exit latency for a device-initiated LPM transition to bring
448 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
449 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
450 	 */
451 	unsigned int pel;
452 
453 	/*
454 	 * The System Exit Latency (SEL) includes PEL, and three other
455 	 * latencies.  After a device initiates a U0 transition, it will take
456 	 * some time from when the device sends the ERDY to when it will finally
457 	 * receive the data packet.  Basically, SEL should be the worse-case
458 	 * latency from when a device starts initiating a U0 transition to when
459 	 * it will get data.
460 	 */
461 	unsigned int sel;
462 	/*
463 	 * The idle timeout value that is currently programmed into the parent
464 	 * hub for this device.  When the timer counts to zero, the parent hub
465 	 * will initiate an LPM transition to either U1 or U2.
466 	 */
467 	int timeout;
468 };
469 
470 /**
471  * struct usb_device - kernel's representation of a USB device
472  * @devnum: device number; address on a USB bus
473  * @devpath: device ID string for use in messages (e.g., /port/...)
474  * @route: tree topology hex string for use with xHCI
475  * @state: device state: configured, not attached, etc.
476  * @speed: device speed: high/full/low (or error)
477  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
478  * @ttport: device port on that tt hub
479  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
480  * @parent: our hub, unless we're the root
481  * @bus: bus we're part of
482  * @ep0: endpoint 0 data (default control pipe)
483  * @dev: generic device interface
484  * @descriptor: USB device descriptor
485  * @bos: USB device BOS descriptor set
486  * @config: all of the device's configs
487  * @actconfig: the active configuration
488  * @ep_in: array of IN endpoints
489  * @ep_out: array of OUT endpoints
490  * @rawdescriptors: raw descriptors for each config
491  * @bus_mA: Current available from the bus
492  * @portnum: parent port number (origin 1)
493  * @level: number of USB hub ancestors
494  * @can_submit: URBs may be submitted
495  * @persist_enabled:  USB_PERSIST enabled for this device
496  * @have_langid: whether string_langid is valid
497  * @authorized: policy has said we can use it;
498  *	(user space) policy determines if we authorize this device to be
499  *	used or not. By default, wired USB devices are authorized.
500  *	WUSB devices are not, until we authorize them from user space.
501  *	FIXME -- complete doc
502  * @authenticated: Crypto authentication passed
503  * @wusb: device is Wireless USB
504  * @lpm_capable: device supports LPM
505  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
506  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
507  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
508  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
509  * @usb3_lpm_enabled: USB3 hardware LPM enabled
510  * @string_langid: language ID for strings
511  * @product: iProduct string, if present (static)
512  * @manufacturer: iManufacturer string, if present (static)
513  * @serial: iSerialNumber string, if present (static)
514  * @filelist: usbfs files that are open to this device
515  * @maxchild: number of ports if hub
516  * @quirks: quirks of the whole device
517  * @urbnum: number of URBs submitted for the whole device
518  * @active_duration: total time device is not suspended
519  * @connect_time: time device was first connected
520  * @do_remote_wakeup:  remote wakeup should be enabled
521  * @reset_resume: needs reset instead of resume
522  * @port_is_suspended: the upstream port is suspended (L2 or U3)
523  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
524  *	specific data for the device.
525  * @slot_id: Slot ID assigned by xHCI
526  * @removable: Device can be physically removed from this port
527  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
528  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
529  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
530  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
531  *	to keep track of the number of functions that require USB 3.0 Link Power
532  *	Management to be disabled for this usb_device.  This count should only
533  *	be manipulated by those functions, with the bandwidth_mutex is held.
534  *
535  * Notes:
536  * Usbcore drivers should not set usbdev->state directly.  Instead use
537  * usb_set_device_state().
538  */
539 struct usb_device {
540 	int		devnum;
541 	char		devpath[16];
542 	u32		route;
543 	enum usb_device_state	state;
544 	enum usb_device_speed	speed;
545 
546 	struct usb_tt	*tt;
547 	int		ttport;
548 
549 	unsigned int toggle[2];
550 
551 	struct usb_device *parent;
552 	struct usb_bus *bus;
553 	struct usb_host_endpoint ep0;
554 
555 	struct device dev;
556 
557 	struct usb_device_descriptor descriptor;
558 	struct usb_host_bos *bos;
559 	struct usb_host_config *config;
560 
561 	struct usb_host_config *actconfig;
562 	struct usb_host_endpoint *ep_in[16];
563 	struct usb_host_endpoint *ep_out[16];
564 
565 	char **rawdescriptors;
566 
567 	unsigned short bus_mA;
568 	u8 portnum;
569 	u8 level;
570 
571 	unsigned can_submit:1;
572 	unsigned persist_enabled:1;
573 	unsigned have_langid:1;
574 	unsigned authorized:1;
575 	unsigned authenticated:1;
576 	unsigned wusb:1;
577 	unsigned lpm_capable:1;
578 	unsigned usb2_hw_lpm_capable:1;
579 	unsigned usb2_hw_lpm_besl_capable:1;
580 	unsigned usb2_hw_lpm_enabled:1;
581 	unsigned usb2_hw_lpm_allowed:1;
582 	unsigned usb3_lpm_enabled:1;
583 	int string_langid;
584 
585 	/* static strings from the device */
586 	char *product;
587 	char *manufacturer;
588 	char *serial;
589 
590 	struct list_head filelist;
591 
592 	int maxchild;
593 
594 	u32 quirks;
595 	atomic_t urbnum;
596 
597 	unsigned long active_duration;
598 
599 #ifdef CONFIG_PM
600 	unsigned long connect_time;
601 
602 	unsigned do_remote_wakeup:1;
603 	unsigned reset_resume:1;
604 	unsigned port_is_suspended:1;
605 #endif
606 	struct wusb_dev *wusb_dev;
607 	int slot_id;
608 	enum usb_device_removable removable;
609 	struct usb2_lpm_parameters l1_params;
610 	struct usb3_lpm_parameters u1_params;
611 	struct usb3_lpm_parameters u2_params;
612 	unsigned lpm_disable_count;
613 };
614 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
615 
616 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
617 {
618 	return to_usb_device(intf->dev.parent);
619 }
620 
621 extern struct usb_device *usb_get_dev(struct usb_device *dev);
622 extern void usb_put_dev(struct usb_device *dev);
623 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
624 	int port1);
625 
626 /**
627  * usb_hub_for_each_child - iterate over all child devices on the hub
628  * @hdev:  USB device belonging to the usb hub
629  * @port1: portnum associated with child device
630  * @child: child device pointer
631  */
632 #define usb_hub_for_each_child(hdev, port1, child) \
633 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
634 			port1 <= hdev->maxchild; \
635 			child = usb_hub_find_child(hdev, ++port1)) \
636 		if (!child) continue; else
637 
638 /* USB device locking */
639 #define usb_lock_device(udev)		device_lock(&(udev)->dev)
640 #define usb_unlock_device(udev)		device_unlock(&(udev)->dev)
641 #define usb_trylock_device(udev)	device_trylock(&(udev)->dev)
642 extern int usb_lock_device_for_reset(struct usb_device *udev,
643 				     const struct usb_interface *iface);
644 
645 /* USB port reset for device reinitialization */
646 extern int usb_reset_device(struct usb_device *dev);
647 extern void usb_queue_reset_device(struct usb_interface *dev);
648 
649 #ifdef CONFIG_ACPI
650 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
651 	bool enable);
652 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
653 #else
654 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
655 	bool enable) { return 0; }
656 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
657 	{ return true; }
658 #endif
659 
660 /* USB autosuspend and autoresume */
661 #ifdef CONFIG_PM
662 extern void usb_enable_autosuspend(struct usb_device *udev);
663 extern void usb_disable_autosuspend(struct usb_device *udev);
664 
665 extern int usb_autopm_get_interface(struct usb_interface *intf);
666 extern void usb_autopm_put_interface(struct usb_interface *intf);
667 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
668 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
669 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
670 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
671 
672 static inline void usb_mark_last_busy(struct usb_device *udev)
673 {
674 	pm_runtime_mark_last_busy(&udev->dev);
675 }
676 
677 #else
678 
679 static inline int usb_enable_autosuspend(struct usb_device *udev)
680 { return 0; }
681 static inline int usb_disable_autosuspend(struct usb_device *udev)
682 { return 0; }
683 
684 static inline int usb_autopm_get_interface(struct usb_interface *intf)
685 { return 0; }
686 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
687 { return 0; }
688 
689 static inline void usb_autopm_put_interface(struct usb_interface *intf)
690 { }
691 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
692 { }
693 static inline void usb_autopm_get_interface_no_resume(
694 		struct usb_interface *intf)
695 { }
696 static inline void usb_autopm_put_interface_no_suspend(
697 		struct usb_interface *intf)
698 { }
699 static inline void usb_mark_last_busy(struct usb_device *udev)
700 { }
701 #endif
702 
703 extern int usb_disable_lpm(struct usb_device *udev);
704 extern void usb_enable_lpm(struct usb_device *udev);
705 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
706 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
707 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
708 
709 extern int usb_disable_ltm(struct usb_device *udev);
710 extern void usb_enable_ltm(struct usb_device *udev);
711 
712 static inline bool usb_device_supports_ltm(struct usb_device *udev)
713 {
714 	if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
715 		return false;
716 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
717 }
718 
719 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
720 {
721 	return udev && udev->bus && udev->bus->no_sg_constraint;
722 }
723 
724 
725 /*-------------------------------------------------------------------------*/
726 
727 /* for drivers using iso endpoints */
728 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
729 
730 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
731 extern int usb_alloc_streams(struct usb_interface *interface,
732 		struct usb_host_endpoint **eps, unsigned int num_eps,
733 		unsigned int num_streams, gfp_t mem_flags);
734 
735 /* Reverts a group of bulk endpoints back to not using stream IDs. */
736 extern int usb_free_streams(struct usb_interface *interface,
737 		struct usb_host_endpoint **eps, unsigned int num_eps,
738 		gfp_t mem_flags);
739 
740 /* used these for multi-interface device registration */
741 extern int usb_driver_claim_interface(struct usb_driver *driver,
742 			struct usb_interface *iface, void *priv);
743 
744 /**
745  * usb_interface_claimed - returns true iff an interface is claimed
746  * @iface: the interface being checked
747  *
748  * Return: %true (nonzero) iff the interface is claimed, else %false
749  * (zero).
750  *
751  * Note:
752  * Callers must own the driver model's usb bus readlock.  So driver
753  * probe() entries don't need extra locking, but other call contexts
754  * may need to explicitly claim that lock.
755  *
756  */
757 static inline int usb_interface_claimed(struct usb_interface *iface)
758 {
759 	return (iface->dev.driver != NULL);
760 }
761 
762 extern void usb_driver_release_interface(struct usb_driver *driver,
763 			struct usb_interface *iface);
764 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
765 					 const struct usb_device_id *id);
766 extern int usb_match_one_id(struct usb_interface *interface,
767 			    const struct usb_device_id *id);
768 
769 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
770 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
771 		int minor);
772 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
773 		unsigned ifnum);
774 extern struct usb_host_interface *usb_altnum_to_altsetting(
775 		const struct usb_interface *intf, unsigned int altnum);
776 extern struct usb_host_interface *usb_find_alt_setting(
777 		struct usb_host_config *config,
778 		unsigned int iface_num,
779 		unsigned int alt_num);
780 
781 /* port claiming functions */
782 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
783 		struct usb_dev_state *owner);
784 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
785 		struct usb_dev_state *owner);
786 
787 /**
788  * usb_make_path - returns stable device path in the usb tree
789  * @dev: the device whose path is being constructed
790  * @buf: where to put the string
791  * @size: how big is "buf"?
792  *
793  * Return: Length of the string (> 0) or negative if size was too small.
794  *
795  * Note:
796  * This identifier is intended to be "stable", reflecting physical paths in
797  * hardware such as physical bus addresses for host controllers or ports on
798  * USB hubs.  That makes it stay the same until systems are physically
799  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
800  * controllers.  Adding and removing devices, including virtual root hubs
801  * in host controller driver modules, does not change these path identifiers;
802  * neither does rebooting or re-enumerating.  These are more useful identifiers
803  * than changeable ("unstable") ones like bus numbers or device addresses.
804  *
805  * With a partial exception for devices connected to USB 2.0 root hubs, these
806  * identifiers are also predictable.  So long as the device tree isn't changed,
807  * plugging any USB device into a given hub port always gives it the same path.
808  * Because of the use of "companion" controllers, devices connected to ports on
809  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
810  * high speed, and a different one if they are full or low speed.
811  */
812 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
813 {
814 	int actual;
815 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
816 			  dev->devpath);
817 	return (actual >= (int)size) ? -1 : actual;
818 }
819 
820 /*-------------------------------------------------------------------------*/
821 
822 #define USB_DEVICE_ID_MATCH_DEVICE \
823 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
824 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
825 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
826 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
827 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
828 #define USB_DEVICE_ID_MATCH_DEV_INFO \
829 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
830 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
831 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
832 #define USB_DEVICE_ID_MATCH_INT_INFO \
833 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
834 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
835 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
836 
837 /**
838  * USB_DEVICE - macro used to describe a specific usb device
839  * @vend: the 16 bit USB Vendor ID
840  * @prod: the 16 bit USB Product ID
841  *
842  * This macro is used to create a struct usb_device_id that matches a
843  * specific device.
844  */
845 #define USB_DEVICE(vend, prod) \
846 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
847 	.idVendor = (vend), \
848 	.idProduct = (prod)
849 /**
850  * USB_DEVICE_VER - describe a specific usb device with a version range
851  * @vend: the 16 bit USB Vendor ID
852  * @prod: the 16 bit USB Product ID
853  * @lo: the bcdDevice_lo value
854  * @hi: the bcdDevice_hi value
855  *
856  * This macro is used to create a struct usb_device_id that matches a
857  * specific device, with a version range.
858  */
859 #define USB_DEVICE_VER(vend, prod, lo, hi) \
860 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
861 	.idVendor = (vend), \
862 	.idProduct = (prod), \
863 	.bcdDevice_lo = (lo), \
864 	.bcdDevice_hi = (hi)
865 
866 /**
867  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
868  * @vend: the 16 bit USB Vendor ID
869  * @prod: the 16 bit USB Product ID
870  * @cl: bInterfaceClass value
871  *
872  * This macro is used to create a struct usb_device_id that matches a
873  * specific interface class of devices.
874  */
875 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
876 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
877 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
878 	.idVendor = (vend), \
879 	.idProduct = (prod), \
880 	.bInterfaceClass = (cl)
881 
882 /**
883  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
884  * @vend: the 16 bit USB Vendor ID
885  * @prod: the 16 bit USB Product ID
886  * @pr: bInterfaceProtocol value
887  *
888  * This macro is used to create a struct usb_device_id that matches a
889  * specific interface protocol of devices.
890  */
891 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
892 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
893 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
894 	.idVendor = (vend), \
895 	.idProduct = (prod), \
896 	.bInterfaceProtocol = (pr)
897 
898 /**
899  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
900  * @vend: the 16 bit USB Vendor ID
901  * @prod: the 16 bit USB Product ID
902  * @num: bInterfaceNumber value
903  *
904  * This macro is used to create a struct usb_device_id that matches a
905  * specific interface number of devices.
906  */
907 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
908 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
909 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
910 	.idVendor = (vend), \
911 	.idProduct = (prod), \
912 	.bInterfaceNumber = (num)
913 
914 /**
915  * USB_DEVICE_INFO - macro used to describe a class of usb devices
916  * @cl: bDeviceClass value
917  * @sc: bDeviceSubClass value
918  * @pr: bDeviceProtocol value
919  *
920  * This macro is used to create a struct usb_device_id that matches a
921  * specific class of devices.
922  */
923 #define USB_DEVICE_INFO(cl, sc, pr) \
924 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
925 	.bDeviceClass = (cl), \
926 	.bDeviceSubClass = (sc), \
927 	.bDeviceProtocol = (pr)
928 
929 /**
930  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
931  * @cl: bInterfaceClass value
932  * @sc: bInterfaceSubClass value
933  * @pr: bInterfaceProtocol value
934  *
935  * This macro is used to create a struct usb_device_id that matches a
936  * specific class of interfaces.
937  */
938 #define USB_INTERFACE_INFO(cl, sc, pr) \
939 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
940 	.bInterfaceClass = (cl), \
941 	.bInterfaceSubClass = (sc), \
942 	.bInterfaceProtocol = (pr)
943 
944 /**
945  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
946  * @vend: the 16 bit USB Vendor ID
947  * @prod: the 16 bit USB Product ID
948  * @cl: bInterfaceClass value
949  * @sc: bInterfaceSubClass value
950  * @pr: bInterfaceProtocol value
951  *
952  * This macro is used to create a struct usb_device_id that matches a
953  * specific device with a specific class of interfaces.
954  *
955  * This is especially useful when explicitly matching devices that have
956  * vendor specific bDeviceClass values, but standards-compliant interfaces.
957  */
958 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
959 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
960 		| USB_DEVICE_ID_MATCH_DEVICE, \
961 	.idVendor = (vend), \
962 	.idProduct = (prod), \
963 	.bInterfaceClass = (cl), \
964 	.bInterfaceSubClass = (sc), \
965 	.bInterfaceProtocol = (pr)
966 
967 /**
968  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
969  * @vend: the 16 bit USB Vendor ID
970  * @cl: bInterfaceClass value
971  * @sc: bInterfaceSubClass value
972  * @pr: bInterfaceProtocol value
973  *
974  * This macro is used to create a struct usb_device_id that matches a
975  * specific vendor with a specific class of interfaces.
976  *
977  * This is especially useful when explicitly matching devices that have
978  * vendor specific bDeviceClass values, but standards-compliant interfaces.
979  */
980 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
981 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
982 		| USB_DEVICE_ID_MATCH_VENDOR, \
983 	.idVendor = (vend), \
984 	.bInterfaceClass = (cl), \
985 	.bInterfaceSubClass = (sc), \
986 	.bInterfaceProtocol = (pr)
987 
988 /* ----------------------------------------------------------------------- */
989 
990 /* Stuff for dynamic usb ids */
991 struct usb_dynids {
992 	spinlock_t lock;
993 	struct list_head list;
994 };
995 
996 struct usb_dynid {
997 	struct list_head node;
998 	struct usb_device_id id;
999 };
1000 
1001 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1002 				const struct usb_device_id *id_table,
1003 				struct device_driver *driver,
1004 				const char *buf, size_t count);
1005 
1006 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1007 
1008 /**
1009  * struct usbdrv_wrap - wrapper for driver-model structure
1010  * @driver: The driver-model core driver structure.
1011  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1012  */
1013 struct usbdrv_wrap {
1014 	struct device_driver driver;
1015 	int for_devices;
1016 };
1017 
1018 /**
1019  * struct usb_driver - identifies USB interface driver to usbcore
1020  * @name: The driver name should be unique among USB drivers,
1021  *	and should normally be the same as the module name.
1022  * @probe: Called to see if the driver is willing to manage a particular
1023  *	interface on a device.  If it is, probe returns zero and uses
1024  *	usb_set_intfdata() to associate driver-specific data with the
1025  *	interface.  It may also use usb_set_interface() to specify the
1026  *	appropriate altsetting.  If unwilling to manage the interface,
1027  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1028  *	negative errno value.
1029  * @disconnect: Called when the interface is no longer accessible, usually
1030  *	because its device has been (or is being) disconnected or the
1031  *	driver module is being unloaded.
1032  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1033  *	the "usbfs" filesystem.  This lets devices provide ways to
1034  *	expose information to user space regardless of where they
1035  *	do (or don't) show up otherwise in the filesystem.
1036  * @suspend: Called when the device is going to be suspended by the
1037  *	system either from system sleep or runtime suspend context. The
1038  *	return value will be ignored in system sleep context, so do NOT
1039  *	try to continue using the device if suspend fails in this case.
1040  *	Instead, let the resume or reset-resume routine recover from
1041  *	the failure.
1042  * @resume: Called when the device is being resumed by the system.
1043  * @reset_resume: Called when the suspended device has been reset instead
1044  *	of being resumed.
1045  * @pre_reset: Called by usb_reset_device() when the device is about to be
1046  *	reset.  This routine must not return until the driver has no active
1047  *	URBs for the device, and no more URBs may be submitted until the
1048  *	post_reset method is called.
1049  * @post_reset: Called by usb_reset_device() after the device
1050  *	has been reset
1051  * @id_table: USB drivers use ID table to support hotplugging.
1052  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1053  *	or your driver's probe function will never get called.
1054  * @dynids: used internally to hold the list of dynamically added device
1055  *	ids for this driver.
1056  * @drvwrap: Driver-model core structure wrapper.
1057  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1058  *	added to this driver by preventing the sysfs file from being created.
1059  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1060  *	for interfaces bound to this driver.
1061  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1062  *	endpoints before calling the driver's disconnect method.
1063  * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1064  *	to initiate lower power link state transitions when an idle timeout
1065  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1066  *
1067  * USB interface drivers must provide a name, probe() and disconnect()
1068  * methods, and an id_table.  Other driver fields are optional.
1069  *
1070  * The id_table is used in hotplugging.  It holds a set of descriptors,
1071  * and specialized data may be associated with each entry.  That table
1072  * is used by both user and kernel mode hotplugging support.
1073  *
1074  * The probe() and disconnect() methods are called in a context where
1075  * they can sleep, but they should avoid abusing the privilege.  Most
1076  * work to connect to a device should be done when the device is opened,
1077  * and undone at the last close.  The disconnect code needs to address
1078  * concurrency issues with respect to open() and close() methods, as
1079  * well as forcing all pending I/O requests to complete (by unlinking
1080  * them as necessary, and blocking until the unlinks complete).
1081  */
1082 struct usb_driver {
1083 	const char *name;
1084 
1085 	int (*probe) (struct usb_interface *intf,
1086 		      const struct usb_device_id *id);
1087 
1088 	void (*disconnect) (struct usb_interface *intf);
1089 
1090 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1091 			void *buf);
1092 
1093 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1094 	int (*resume) (struct usb_interface *intf);
1095 	int (*reset_resume)(struct usb_interface *intf);
1096 
1097 	int (*pre_reset)(struct usb_interface *intf);
1098 	int (*post_reset)(struct usb_interface *intf);
1099 
1100 	const struct usb_device_id *id_table;
1101 
1102 	struct usb_dynids dynids;
1103 	struct usbdrv_wrap drvwrap;
1104 	unsigned int no_dynamic_id:1;
1105 	unsigned int supports_autosuspend:1;
1106 	unsigned int disable_hub_initiated_lpm:1;
1107 	unsigned int soft_unbind:1;
1108 };
1109 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1110 
1111 /**
1112  * struct usb_device_driver - identifies USB device driver to usbcore
1113  * @name: The driver name should be unique among USB drivers,
1114  *	and should normally be the same as the module name.
1115  * @probe: Called to see if the driver is willing to manage a particular
1116  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1117  *	to associate driver-specific data with the device.  If unwilling
1118  *	to manage the device, return a negative errno value.
1119  * @disconnect: Called when the device is no longer accessible, usually
1120  *	because it has been (or is being) disconnected or the driver's
1121  *	module is being unloaded.
1122  * @suspend: Called when the device is going to be suspended by the system.
1123  * @resume: Called when the device is being resumed by the system.
1124  * @drvwrap: Driver-model core structure wrapper.
1125  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1126  *	for devices bound to this driver.
1127  *
1128  * USB drivers must provide all the fields listed above except drvwrap.
1129  */
1130 struct usb_device_driver {
1131 	const char *name;
1132 
1133 	int (*probe) (struct usb_device *udev);
1134 	void (*disconnect) (struct usb_device *udev);
1135 
1136 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1137 	int (*resume) (struct usb_device *udev, pm_message_t message);
1138 	struct usbdrv_wrap drvwrap;
1139 	unsigned int supports_autosuspend:1;
1140 };
1141 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1142 		drvwrap.driver)
1143 
1144 extern struct bus_type usb_bus_type;
1145 
1146 /**
1147  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1148  * @name: the usb class device name for this driver.  Will show up in sysfs.
1149  * @devnode: Callback to provide a naming hint for a possible
1150  *	device node to create.
1151  * @fops: pointer to the struct file_operations of this driver.
1152  * @minor_base: the start of the minor range for this driver.
1153  *
1154  * This structure is used for the usb_register_dev() and
1155  * usb_unregister_dev() functions, to consolidate a number of the
1156  * parameters used for them.
1157  */
1158 struct usb_class_driver {
1159 	char *name;
1160 	char *(*devnode)(struct device *dev, umode_t *mode);
1161 	const struct file_operations *fops;
1162 	int minor_base;
1163 };
1164 
1165 /*
1166  * use these in module_init()/module_exit()
1167  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1168  */
1169 extern int usb_register_driver(struct usb_driver *, struct module *,
1170 			       const char *);
1171 
1172 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1173 #define usb_register(driver) \
1174 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1175 
1176 extern void usb_deregister(struct usb_driver *);
1177 
1178 /**
1179  * module_usb_driver() - Helper macro for registering a USB driver
1180  * @__usb_driver: usb_driver struct
1181  *
1182  * Helper macro for USB drivers which do not do anything special in module
1183  * init/exit. This eliminates a lot of boilerplate. Each module may only
1184  * use this macro once, and calling it replaces module_init() and module_exit()
1185  */
1186 #define module_usb_driver(__usb_driver) \
1187 	module_driver(__usb_driver, usb_register, \
1188 		       usb_deregister)
1189 
1190 extern int usb_register_device_driver(struct usb_device_driver *,
1191 			struct module *);
1192 extern void usb_deregister_device_driver(struct usb_device_driver *);
1193 
1194 extern int usb_register_dev(struct usb_interface *intf,
1195 			    struct usb_class_driver *class_driver);
1196 extern void usb_deregister_dev(struct usb_interface *intf,
1197 			       struct usb_class_driver *class_driver);
1198 
1199 extern int usb_disabled(void);
1200 
1201 /* ----------------------------------------------------------------------- */
1202 
1203 /*
1204  * URB support, for asynchronous request completions
1205  */
1206 
1207 /*
1208  * urb->transfer_flags:
1209  *
1210  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1211  */
1212 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1213 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1214 					 * slot in the schedule */
1215 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1216 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
1217 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1218 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1219 					 * needed */
1220 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1221 
1222 /* The following flags are used internally by usbcore and HCDs */
1223 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1224 #define URB_DIR_OUT		0
1225 #define URB_DIR_MASK		URB_DIR_IN
1226 
1227 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1228 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1229 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1230 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1231 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1232 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1233 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1234 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1235 
1236 struct usb_iso_packet_descriptor {
1237 	unsigned int offset;
1238 	unsigned int length;		/* expected length */
1239 	unsigned int actual_length;
1240 	int status;
1241 };
1242 
1243 struct urb;
1244 
1245 struct usb_anchor {
1246 	struct list_head urb_list;
1247 	wait_queue_head_t wait;
1248 	spinlock_t lock;
1249 	atomic_t suspend_wakeups;
1250 	unsigned int poisoned:1;
1251 };
1252 
1253 static inline void init_usb_anchor(struct usb_anchor *anchor)
1254 {
1255 	memset(anchor, 0, sizeof(*anchor));
1256 	INIT_LIST_HEAD(&anchor->urb_list);
1257 	init_waitqueue_head(&anchor->wait);
1258 	spin_lock_init(&anchor->lock);
1259 }
1260 
1261 typedef void (*usb_complete_t)(struct urb *);
1262 
1263 /**
1264  * struct urb - USB Request Block
1265  * @urb_list: For use by current owner of the URB.
1266  * @anchor_list: membership in the list of an anchor
1267  * @anchor: to anchor URBs to a common mooring
1268  * @ep: Points to the endpoint's data structure.  Will eventually
1269  *	replace @pipe.
1270  * @pipe: Holds endpoint number, direction, type, and more.
1271  *	Create these values with the eight macros available;
1272  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1273  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1274  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1275  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1276  *	is a different endpoint (and pipe) from "out" endpoint two.
1277  *	The current configuration controls the existence, type, and
1278  *	maximum packet size of any given endpoint.
1279  * @stream_id: the endpoint's stream ID for bulk streams
1280  * @dev: Identifies the USB device to perform the request.
1281  * @status: This is read in non-iso completion functions to get the
1282  *	status of the particular request.  ISO requests only use it
1283  *	to tell whether the URB was unlinked; detailed status for
1284  *	each frame is in the fields of the iso_frame-desc.
1285  * @transfer_flags: A variety of flags may be used to affect how URB
1286  *	submission, unlinking, or operation are handled.  Different
1287  *	kinds of URB can use different flags.
1288  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1289  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1290  *	(however, do not leave garbage in transfer_buffer even then).
1291  *	This buffer must be suitable for DMA; allocate it with
1292  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1293  *	of this buffer will be modified.  This buffer is used for the data
1294  *	stage of control transfers.
1295  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1296  *	the device driver is saying that it provided this DMA address,
1297  *	which the host controller driver should use in preference to the
1298  *	transfer_buffer.
1299  * @sg: scatter gather buffer list, the buffer size of each element in
1300  * 	the list (except the last) must be divisible by the endpoint's
1301  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1302  * @num_mapped_sgs: (internal) number of mapped sg entries
1303  * @num_sgs: number of entries in the sg list
1304  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1305  *	be broken up into chunks according to the current maximum packet
1306  *	size for the endpoint, which is a function of the configuration
1307  *	and is encoded in the pipe.  When the length is zero, neither
1308  *	transfer_buffer nor transfer_dma is used.
1309  * @actual_length: This is read in non-iso completion functions, and
1310  *	it tells how many bytes (out of transfer_buffer_length) were
1311  *	transferred.  It will normally be the same as requested, unless
1312  *	either an error was reported or a short read was performed.
1313  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1314  *	short reads be reported as errors.
1315  * @setup_packet: Only used for control transfers, this points to eight bytes
1316  *	of setup data.  Control transfers always start by sending this data
1317  *	to the device.  Then transfer_buffer is read or written, if needed.
1318  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1319  *	this field; setup_packet must point to a valid buffer.
1320  * @start_frame: Returns the initial frame for isochronous transfers.
1321  * @number_of_packets: Lists the number of ISO transfer buffers.
1322  * @interval: Specifies the polling interval for interrupt or isochronous
1323  *	transfers.  The units are frames (milliseconds) for full and low
1324  *	speed devices, and microframes (1/8 millisecond) for highspeed
1325  *	and SuperSpeed devices.
1326  * @error_count: Returns the number of ISO transfers that reported errors.
1327  * @context: For use in completion functions.  This normally points to
1328  *	request-specific driver context.
1329  * @complete: Completion handler. This URB is passed as the parameter to the
1330  *	completion function.  The completion function may then do what
1331  *	it likes with the URB, including resubmitting or freeing it.
1332  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1333  *	collect the transfer status for each buffer.
1334  *
1335  * This structure identifies USB transfer requests.  URBs must be allocated by
1336  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1337  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1338  * are submitted using usb_submit_urb(), and pending requests may be canceled
1339  * using usb_unlink_urb() or usb_kill_urb().
1340  *
1341  * Data Transfer Buffers:
1342  *
1343  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1344  * taken from the general page pool.  That is provided by transfer_buffer
1345  * (control requests also use setup_packet), and host controller drivers
1346  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1347  * mapping operations can be expensive on some platforms (perhaps using a dma
1348  * bounce buffer or talking to an IOMMU),
1349  * although they're cheap on commodity x86 and ppc hardware.
1350  *
1351  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1352  * which tells the host controller driver that no such mapping is needed for
1353  * the transfer_buffer since
1354  * the device driver is DMA-aware.  For example, a device driver might
1355  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1356  * When this transfer flag is provided, host controller drivers will
1357  * attempt to use the dma address found in the transfer_dma
1358  * field rather than determining a dma address themselves.
1359  *
1360  * Note that transfer_buffer must still be set if the controller
1361  * does not support DMA (as indicated by bus.uses_dma) and when talking
1362  * to root hub. If you have to trasfer between highmem zone and the device
1363  * on such controller, create a bounce buffer or bail out with an error.
1364  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1365  * capable, assign NULL to it, so that usbmon knows not to use the value.
1366  * The setup_packet must always be set, so it cannot be located in highmem.
1367  *
1368  * Initialization:
1369  *
1370  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1371  * zero), and complete fields.  All URBs must also initialize
1372  * transfer_buffer and transfer_buffer_length.  They may provide the
1373  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1374  * to be treated as errors; that flag is invalid for write requests.
1375  *
1376  * Bulk URBs may
1377  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1378  * should always terminate with a short packet, even if it means adding an
1379  * extra zero length packet.
1380  *
1381  * Control URBs must provide a valid pointer in the setup_packet field.
1382  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1383  * beforehand.
1384  *
1385  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1386  * or, for highspeed devices, 125 microsecond units)
1387  * to poll for transfers.  After the URB has been submitted, the interval
1388  * field reflects how the transfer was actually scheduled.
1389  * The polling interval may be more frequent than requested.
1390  * For example, some controllers have a maximum interval of 32 milliseconds,
1391  * while others support intervals of up to 1024 milliseconds.
1392  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1393  * endpoints, as well as high speed interrupt endpoints, the encoding of
1394  * the transfer interval in the endpoint descriptor is logarithmic.
1395  * Device drivers must convert that value to linear units themselves.)
1396  *
1397  * If an isochronous endpoint queue isn't already running, the host
1398  * controller will schedule a new URB to start as soon as bandwidth
1399  * utilization allows.  If the queue is running then a new URB will be
1400  * scheduled to start in the first transfer slot following the end of the
1401  * preceding URB, if that slot has not already expired.  If the slot has
1402  * expired (which can happen when IRQ delivery is delayed for a long time),
1403  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1404  * is clear then the URB will be scheduled to start in the expired slot,
1405  * implying that some of its packets will not be transferred; if the flag
1406  * is set then the URB will be scheduled in the first unexpired slot,
1407  * breaking the queue's synchronization.  Upon URB completion, the
1408  * start_frame field will be set to the (micro)frame number in which the
1409  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1410  * and can go from as low as 256 to as high as 65536 frames.
1411  *
1412  * Isochronous URBs have a different data transfer model, in part because
1413  * the quality of service is only "best effort".  Callers provide specially
1414  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1415  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1416  * URBs are normally queued, submitted by drivers to arrange that
1417  * transfers are at least double buffered, and then explicitly resubmitted
1418  * in completion handlers, so
1419  * that data (such as audio or video) streams at as constant a rate as the
1420  * host controller scheduler can support.
1421  *
1422  * Completion Callbacks:
1423  *
1424  * The completion callback is made in_interrupt(), and one of the first
1425  * things that a completion handler should do is check the status field.
1426  * The status field is provided for all URBs.  It is used to report
1427  * unlinked URBs, and status for all non-ISO transfers.  It should not
1428  * be examined before the URB is returned to the completion handler.
1429  *
1430  * The context field is normally used to link URBs back to the relevant
1431  * driver or request state.
1432  *
1433  * When the completion callback is invoked for non-isochronous URBs, the
1434  * actual_length field tells how many bytes were transferred.  This field
1435  * is updated even when the URB terminated with an error or was unlinked.
1436  *
1437  * ISO transfer status is reported in the status and actual_length fields
1438  * of the iso_frame_desc array, and the number of errors is reported in
1439  * error_count.  Completion callbacks for ISO transfers will normally
1440  * (re)submit URBs to ensure a constant transfer rate.
1441  *
1442  * Note that even fields marked "public" should not be touched by the driver
1443  * when the urb is owned by the hcd, that is, since the call to
1444  * usb_submit_urb() till the entry into the completion routine.
1445  */
1446 struct urb {
1447 	/* private: usb core and host controller only fields in the urb */
1448 	struct kref kref;		/* reference count of the URB */
1449 	void *hcpriv;			/* private data for host controller */
1450 	atomic_t use_count;		/* concurrent submissions counter */
1451 	atomic_t reject;		/* submissions will fail */
1452 	int unlinked;			/* unlink error code */
1453 
1454 	/* public: documented fields in the urb that can be used by drivers */
1455 	struct list_head urb_list;	/* list head for use by the urb's
1456 					 * current owner */
1457 	struct list_head anchor_list;	/* the URB may be anchored */
1458 	struct usb_anchor *anchor;
1459 	struct usb_device *dev;		/* (in) pointer to associated device */
1460 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1461 	unsigned int pipe;		/* (in) pipe information */
1462 	unsigned int stream_id;		/* (in) stream ID */
1463 	int status;			/* (return) non-ISO status */
1464 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1465 	void *transfer_buffer;		/* (in) associated data buffer */
1466 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1467 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1468 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1469 	int num_sgs;			/* (in) number of entries in the sg list */
1470 	u32 transfer_buffer_length;	/* (in) data buffer length */
1471 	u32 actual_length;		/* (return) actual transfer length */
1472 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1473 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1474 	int start_frame;		/* (modify) start frame (ISO) */
1475 	int number_of_packets;		/* (in) number of ISO packets */
1476 	int interval;			/* (modify) transfer interval
1477 					 * (INT/ISO) */
1478 	int error_count;		/* (return) number of ISO errors */
1479 	void *context;			/* (in) context for completion */
1480 	usb_complete_t complete;	/* (in) completion routine */
1481 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1482 					/* (in) ISO ONLY */
1483 };
1484 
1485 /* ----------------------------------------------------------------------- */
1486 
1487 /**
1488  * usb_fill_control_urb - initializes a control urb
1489  * @urb: pointer to the urb to initialize.
1490  * @dev: pointer to the struct usb_device for this urb.
1491  * @pipe: the endpoint pipe
1492  * @setup_packet: pointer to the setup_packet buffer
1493  * @transfer_buffer: pointer to the transfer buffer
1494  * @buffer_length: length of the transfer buffer
1495  * @complete_fn: pointer to the usb_complete_t function
1496  * @context: what to set the urb context to.
1497  *
1498  * Initializes a control urb with the proper information needed to submit
1499  * it to a device.
1500  */
1501 static inline void usb_fill_control_urb(struct urb *urb,
1502 					struct usb_device *dev,
1503 					unsigned int pipe,
1504 					unsigned char *setup_packet,
1505 					void *transfer_buffer,
1506 					int buffer_length,
1507 					usb_complete_t complete_fn,
1508 					void *context)
1509 {
1510 	urb->dev = dev;
1511 	urb->pipe = pipe;
1512 	urb->setup_packet = setup_packet;
1513 	urb->transfer_buffer = transfer_buffer;
1514 	urb->transfer_buffer_length = buffer_length;
1515 	urb->complete = complete_fn;
1516 	urb->context = context;
1517 }
1518 
1519 /**
1520  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1521  * @urb: pointer to the urb to initialize.
1522  * @dev: pointer to the struct usb_device for this urb.
1523  * @pipe: the endpoint pipe
1524  * @transfer_buffer: pointer to the transfer buffer
1525  * @buffer_length: length of the transfer buffer
1526  * @complete_fn: pointer to the usb_complete_t function
1527  * @context: what to set the urb context to.
1528  *
1529  * Initializes a bulk urb with the proper information needed to submit it
1530  * to a device.
1531  */
1532 static inline void usb_fill_bulk_urb(struct urb *urb,
1533 				     struct usb_device *dev,
1534 				     unsigned int pipe,
1535 				     void *transfer_buffer,
1536 				     int buffer_length,
1537 				     usb_complete_t complete_fn,
1538 				     void *context)
1539 {
1540 	urb->dev = dev;
1541 	urb->pipe = pipe;
1542 	urb->transfer_buffer = transfer_buffer;
1543 	urb->transfer_buffer_length = buffer_length;
1544 	urb->complete = complete_fn;
1545 	urb->context = context;
1546 }
1547 
1548 /**
1549  * usb_fill_int_urb - macro to help initialize a interrupt urb
1550  * @urb: pointer to the urb to initialize.
1551  * @dev: pointer to the struct usb_device for this urb.
1552  * @pipe: the endpoint pipe
1553  * @transfer_buffer: pointer to the transfer buffer
1554  * @buffer_length: length of the transfer buffer
1555  * @complete_fn: pointer to the usb_complete_t function
1556  * @context: what to set the urb context to.
1557  * @interval: what to set the urb interval to, encoded like
1558  *	the endpoint descriptor's bInterval value.
1559  *
1560  * Initializes a interrupt urb with the proper information needed to submit
1561  * it to a device.
1562  *
1563  * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1564  * encoding of the endpoint interval, and express polling intervals in
1565  * microframes (eight per millisecond) rather than in frames (one per
1566  * millisecond).
1567  *
1568  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1569  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1570  * through to the host controller, rather than being translated into microframe
1571  * units.
1572  */
1573 static inline void usb_fill_int_urb(struct urb *urb,
1574 				    struct usb_device *dev,
1575 				    unsigned int pipe,
1576 				    void *transfer_buffer,
1577 				    int buffer_length,
1578 				    usb_complete_t complete_fn,
1579 				    void *context,
1580 				    int interval)
1581 {
1582 	urb->dev = dev;
1583 	urb->pipe = pipe;
1584 	urb->transfer_buffer = transfer_buffer;
1585 	urb->transfer_buffer_length = buffer_length;
1586 	urb->complete = complete_fn;
1587 	urb->context = context;
1588 
1589 	if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1590 		/* make sure interval is within allowed range */
1591 		interval = clamp(interval, 1, 16);
1592 
1593 		urb->interval = 1 << (interval - 1);
1594 	} else {
1595 		urb->interval = interval;
1596 	}
1597 
1598 	urb->start_frame = -1;
1599 }
1600 
1601 extern void usb_init_urb(struct urb *urb);
1602 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1603 extern void usb_free_urb(struct urb *urb);
1604 #define usb_put_urb usb_free_urb
1605 extern struct urb *usb_get_urb(struct urb *urb);
1606 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1607 extern int usb_unlink_urb(struct urb *urb);
1608 extern void usb_kill_urb(struct urb *urb);
1609 extern void usb_poison_urb(struct urb *urb);
1610 extern void usb_unpoison_urb(struct urb *urb);
1611 extern void usb_block_urb(struct urb *urb);
1612 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1613 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1614 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1615 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1616 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1617 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1618 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1619 extern void usb_unanchor_urb(struct urb *urb);
1620 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1621 					 unsigned int timeout);
1622 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1623 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1624 extern int usb_anchor_empty(struct usb_anchor *anchor);
1625 
1626 #define usb_unblock_urb	usb_unpoison_urb
1627 
1628 /**
1629  * usb_urb_dir_in - check if an URB describes an IN transfer
1630  * @urb: URB to be checked
1631  *
1632  * Return: 1 if @urb describes an IN transfer (device-to-host),
1633  * otherwise 0.
1634  */
1635 static inline int usb_urb_dir_in(struct urb *urb)
1636 {
1637 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1638 }
1639 
1640 /**
1641  * usb_urb_dir_out - check if an URB describes an OUT transfer
1642  * @urb: URB to be checked
1643  *
1644  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1645  * otherwise 0.
1646  */
1647 static inline int usb_urb_dir_out(struct urb *urb)
1648 {
1649 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1650 }
1651 
1652 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1653 	gfp_t mem_flags, dma_addr_t *dma);
1654 void usb_free_coherent(struct usb_device *dev, size_t size,
1655 	void *addr, dma_addr_t dma);
1656 
1657 #if 0
1658 struct urb *usb_buffer_map(struct urb *urb);
1659 void usb_buffer_dmasync(struct urb *urb);
1660 void usb_buffer_unmap(struct urb *urb);
1661 #endif
1662 
1663 struct scatterlist;
1664 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1665 		      struct scatterlist *sg, int nents);
1666 #if 0
1667 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1668 			   struct scatterlist *sg, int n_hw_ents);
1669 #endif
1670 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1671 			 struct scatterlist *sg, int n_hw_ents);
1672 
1673 /*-------------------------------------------------------------------*
1674  *                         SYNCHRONOUS CALL SUPPORT                  *
1675  *-------------------------------------------------------------------*/
1676 
1677 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1678 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1679 	void *data, __u16 size, int timeout);
1680 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1681 	void *data, int len, int *actual_length, int timeout);
1682 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1683 	void *data, int len, int *actual_length,
1684 	int timeout);
1685 
1686 /* wrappers around usb_control_msg() for the most common standard requests */
1687 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1688 	unsigned char descindex, void *buf, int size);
1689 extern int usb_get_status(struct usb_device *dev,
1690 	int type, int target, void *data);
1691 extern int usb_string(struct usb_device *dev, int index,
1692 	char *buf, size_t size);
1693 
1694 /* wrappers that also update important state inside usbcore */
1695 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1696 extern int usb_reset_configuration(struct usb_device *dev);
1697 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1698 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1699 
1700 /* this request isn't really synchronous, but it belongs with the others */
1701 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1702 
1703 /* choose and set configuration for device */
1704 extern int usb_choose_configuration(struct usb_device *udev);
1705 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1706 
1707 /*
1708  * timeouts, in milliseconds, used for sending/receiving control messages
1709  * they typically complete within a few frames (msec) after they're issued
1710  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1711  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1712  */
1713 #define USB_CTRL_GET_TIMEOUT	5000
1714 #define USB_CTRL_SET_TIMEOUT	5000
1715 
1716 
1717 /**
1718  * struct usb_sg_request - support for scatter/gather I/O
1719  * @status: zero indicates success, else negative errno
1720  * @bytes: counts bytes transferred.
1721  *
1722  * These requests are initialized using usb_sg_init(), and then are used
1723  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1724  * members of the request object aren't for driver access.
1725  *
1726  * The status and bytecount values are valid only after usb_sg_wait()
1727  * returns.  If the status is zero, then the bytecount matches the total
1728  * from the request.
1729  *
1730  * After an error completion, drivers may need to clear a halt condition
1731  * on the endpoint.
1732  */
1733 struct usb_sg_request {
1734 	int			status;
1735 	size_t			bytes;
1736 
1737 	/* private:
1738 	 * members below are private to usbcore,
1739 	 * and are not provided for driver access!
1740 	 */
1741 	spinlock_t		lock;
1742 
1743 	struct usb_device	*dev;
1744 	int			pipe;
1745 
1746 	int			entries;
1747 	struct urb		**urbs;
1748 
1749 	int			count;
1750 	struct completion	complete;
1751 };
1752 
1753 int usb_sg_init(
1754 	struct usb_sg_request	*io,
1755 	struct usb_device	*dev,
1756 	unsigned		pipe,
1757 	unsigned		period,
1758 	struct scatterlist	*sg,
1759 	int			nents,
1760 	size_t			length,
1761 	gfp_t			mem_flags
1762 );
1763 void usb_sg_cancel(struct usb_sg_request *io);
1764 void usb_sg_wait(struct usb_sg_request *io);
1765 
1766 
1767 /* ----------------------------------------------------------------------- */
1768 
1769 /*
1770  * For various legacy reasons, Linux has a small cookie that's paired with
1771  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1772  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1773  * an unsigned int encoded as:
1774  *
1775  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1776  *					 1 = Device-to-Host [In] ...
1777  *					like endpoint bEndpointAddress)
1778  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1779  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1780  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1781  *					 10 = control, 11 = bulk)
1782  *
1783  * Given the device address and endpoint descriptor, pipes are redundant.
1784  */
1785 
1786 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1787 /* (yet ... they're the values used by usbfs) */
1788 #define PIPE_ISOCHRONOUS		0
1789 #define PIPE_INTERRUPT			1
1790 #define PIPE_CONTROL			2
1791 #define PIPE_BULK			3
1792 
1793 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1794 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1795 
1796 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1797 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1798 
1799 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1800 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1801 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1802 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1803 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1804 
1805 static inline unsigned int __create_pipe(struct usb_device *dev,
1806 		unsigned int endpoint)
1807 {
1808 	return (dev->devnum << 8) | (endpoint << 15);
1809 }
1810 
1811 /* Create various pipes... */
1812 #define usb_sndctrlpipe(dev, endpoint)	\
1813 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1814 #define usb_rcvctrlpipe(dev, endpoint)	\
1815 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1816 #define usb_sndisocpipe(dev, endpoint)	\
1817 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1818 #define usb_rcvisocpipe(dev, endpoint)	\
1819 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1820 #define usb_sndbulkpipe(dev, endpoint)	\
1821 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1822 #define usb_rcvbulkpipe(dev, endpoint)	\
1823 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1824 #define usb_sndintpipe(dev, endpoint)	\
1825 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1826 #define usb_rcvintpipe(dev, endpoint)	\
1827 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1828 
1829 static inline struct usb_host_endpoint *
1830 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1831 {
1832 	struct usb_host_endpoint **eps;
1833 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1834 	return eps[usb_pipeendpoint(pipe)];
1835 }
1836 
1837 /*-------------------------------------------------------------------------*/
1838 
1839 static inline __u16
1840 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1841 {
1842 	struct usb_host_endpoint	*ep;
1843 	unsigned			epnum = usb_pipeendpoint(pipe);
1844 
1845 	if (is_out) {
1846 		WARN_ON(usb_pipein(pipe));
1847 		ep = udev->ep_out[epnum];
1848 	} else {
1849 		WARN_ON(usb_pipeout(pipe));
1850 		ep = udev->ep_in[epnum];
1851 	}
1852 	if (!ep)
1853 		return 0;
1854 
1855 	/* NOTE:  only 0x07ff bits are for packet size... */
1856 	return usb_endpoint_maxp(&ep->desc);
1857 }
1858 
1859 /* ----------------------------------------------------------------------- */
1860 
1861 /* translate USB error codes to codes user space understands */
1862 static inline int usb_translate_errors(int error_code)
1863 {
1864 	switch (error_code) {
1865 	case 0:
1866 	case -ENOMEM:
1867 	case -ENODEV:
1868 	case -EOPNOTSUPP:
1869 		return error_code;
1870 	default:
1871 		return -EIO;
1872 	}
1873 }
1874 
1875 /* Events from the usb core */
1876 #define USB_DEVICE_ADD		0x0001
1877 #define USB_DEVICE_REMOVE	0x0002
1878 #define USB_BUS_ADD		0x0003
1879 #define USB_BUS_REMOVE		0x0004
1880 extern void usb_register_notify(struct notifier_block *nb);
1881 extern void usb_unregister_notify(struct notifier_block *nb);
1882 
1883 /* debugfs stuff */
1884 extern struct dentry *usb_debug_root;
1885 
1886 /* LED triggers */
1887 enum usb_led_event {
1888 	USB_LED_EVENT_HOST = 0,
1889 	USB_LED_EVENT_GADGET = 1,
1890 };
1891 
1892 #ifdef CONFIG_USB_LED_TRIG
1893 extern void usb_led_activity(enum usb_led_event ev);
1894 #else
1895 static inline void usb_led_activity(enum usb_led_event ev) {}
1896 #endif
1897 
1898 #endif  /* __KERNEL__ */
1899 
1900 #endif
1901