xref: /linux/include/linux/skbuff.h (revision d2912cb15bdda8ba4a5dd73396ad62641af2f520)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/cache.h>
18 #include <linux/rbtree.h>
19 #include <linux/socket.h>
20 #include <linux/refcount.h>
21 
22 #include <linux/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/hrtimer.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdev_features.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <net/flow_dissector.h>
35 #include <linux/splice.h>
36 #include <linux/in6.h>
37 #include <linux/if_packet.h>
38 #include <net/flow.h>
39 
40 /* The interface for checksum offload between the stack and networking drivers
41  * is as follows...
42  *
43  * A. IP checksum related features
44  *
45  * Drivers advertise checksum offload capabilities in the features of a device.
46  * From the stack's point of view these are capabilities offered by the driver,
47  * a driver typically only advertises features that it is capable of offloading
48  * to its device.
49  *
50  * The checksum related features are:
51  *
52  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
53  *			  IP (one's complement) checksum for any combination
54  *			  of protocols or protocol layering. The checksum is
55  *			  computed and set in a packet per the CHECKSUM_PARTIAL
56  *			  interface (see below).
57  *
58  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
59  *			  TCP or UDP packets over IPv4. These are specifically
60  *			  unencapsulated packets of the form IPv4|TCP or
61  *			  IPv4|UDP where the Protocol field in the IPv4 header
62  *			  is TCP or UDP. The IPv4 header may contain IP options
63  *			  This feature cannot be set in features for a device
64  *			  with NETIF_F_HW_CSUM also set. This feature is being
65  *			  DEPRECATED (see below).
66  *
67  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
68  *			  TCP or UDP packets over IPv6. These are specifically
69  *			  unencapsulated packets of the form IPv6|TCP or
70  *			  IPv4|UDP where the Next Header field in the IPv6
71  *			  header is either TCP or UDP. IPv6 extension headers
72  *			  are not supported with this feature. This feature
73  *			  cannot be set in features for a device with
74  *			  NETIF_F_HW_CSUM also set. This feature is being
75  *			  DEPRECATED (see below).
76  *
77  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
78  *			 This flag is used only used to disable the RX checksum
79  *			 feature for a device. The stack will accept receive
80  *			 checksum indication in packets received on a device
81  *			 regardless of whether NETIF_F_RXCSUM is set.
82  *
83  * B. Checksumming of received packets by device. Indication of checksum
84  *    verification is in set skb->ip_summed. Possible values are:
85  *
86  * CHECKSUM_NONE:
87  *
88  *   Device did not checksum this packet e.g. due to lack of capabilities.
89  *   The packet contains full (though not verified) checksum in packet but
90  *   not in skb->csum. Thus, skb->csum is undefined in this case.
91  *
92  * CHECKSUM_UNNECESSARY:
93  *
94  *   The hardware you're dealing with doesn't calculate the full checksum
95  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
96  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
97  *   if their checksums are okay. skb->csum is still undefined in this case
98  *   though. A driver or device must never modify the checksum field in the
99  *   packet even if checksum is verified.
100  *
101  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
102  *     TCP: IPv6 and IPv4.
103  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
104  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
105  *       may perform further validation in this case.
106  *     GRE: only if the checksum is present in the header.
107  *     SCTP: indicates the CRC in SCTP header has been validated.
108  *     FCOE: indicates the CRC in FC frame has been validated.
109  *
110  *   skb->csum_level indicates the number of consecutive checksums found in
111  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
112  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
113  *   and a device is able to verify the checksums for UDP (possibly zero),
114  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
115  *   two. If the device were only able to verify the UDP checksum and not
116  *   GRE, either because it doesn't support GRE checksum of because GRE
117  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
118  *   not considered in this case).
119  *
120  * CHECKSUM_COMPLETE:
121  *
122  *   This is the most generic way. The device supplied checksum of the _whole_
123  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
124  *   hardware doesn't need to parse L3/L4 headers to implement this.
125  *
126  *   Notes:
127  *   - Even if device supports only some protocols, but is able to produce
128  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
129  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
130  *
131  * CHECKSUM_PARTIAL:
132  *
133  *   A checksum is set up to be offloaded to a device as described in the
134  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
135  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
136  *   on the same host, or it may be set in the input path in GRO or remote
137  *   checksum offload. For the purposes of checksum verification, the checksum
138  *   referred to by skb->csum_start + skb->csum_offset and any preceding
139  *   checksums in the packet are considered verified. Any checksums in the
140  *   packet that are after the checksum being offloaded are not considered to
141  *   be verified.
142  *
143  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
144  *    in the skb->ip_summed for a packet. Values are:
145  *
146  * CHECKSUM_PARTIAL:
147  *
148  *   The driver is required to checksum the packet as seen by hard_start_xmit()
149  *   from skb->csum_start up to the end, and to record/write the checksum at
150  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
151  *   csum_start and csum_offset values are valid values given the length and
152  *   offset of the packet, however they should not attempt to validate that the
153  *   checksum refers to a legitimate transport layer checksum-- it is the
154  *   purview of the stack to validate that csum_start and csum_offset are set
155  *   correctly.
156  *
157  *   When the stack requests checksum offload for a packet, the driver MUST
158  *   ensure that the checksum is set correctly. A driver can either offload the
159  *   checksum calculation to the device, or call skb_checksum_help (in the case
160  *   that the device does not support offload for a particular checksum).
161  *
162  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
163  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
164  *   checksum offload capability.
165  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
166  *   on network device checksumming capabilities: if a packet does not match
167  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
168  *   csum_not_inet, see item D.) is called to resolve the checksum.
169  *
170  * CHECKSUM_NONE:
171  *
172  *   The skb was already checksummed by the protocol, or a checksum is not
173  *   required.
174  *
175  * CHECKSUM_UNNECESSARY:
176  *
177  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
178  *   output.
179  *
180  * CHECKSUM_COMPLETE:
181  *   Not used in checksum output. If a driver observes a packet with this value
182  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
183  *
184  * D. Non-IP checksum (CRC) offloads
185  *
186  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
187  *     offloading the SCTP CRC in a packet. To perform this offload the stack
188  *     will set set csum_start and csum_offset accordingly, set ip_summed to
189  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
190  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
191  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
192  *     must verify which offload is configured for a packet by testing the
193  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
194  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
195  *
196  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
197  *     offloading the FCOE CRC in a packet. To perform this offload the stack
198  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
199  *     accordingly. Note the there is no indication in the skbuff that the
200  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
201  *     both IP checksum offload and FCOE CRC offload must verify which offload
202  *     is configured for a packet presumably by inspecting packet headers.
203  *
204  * E. Checksumming on output with GSO.
205  *
206  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
207  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
208  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
209  * part of the GSO operation is implied. If a checksum is being offloaded
210  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
211  * are set to refer to the outermost checksum being offload (two offloaded
212  * checksums are possible with UDP encapsulation).
213  */
214 
215 /* Don't change this without changing skb_csum_unnecessary! */
216 #define CHECKSUM_NONE		0
217 #define CHECKSUM_UNNECESSARY	1
218 #define CHECKSUM_COMPLETE	2
219 #define CHECKSUM_PARTIAL	3
220 
221 /* Maximum value in skb->csum_level */
222 #define SKB_MAX_CSUM_LEVEL	3
223 
224 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
225 #define SKB_WITH_OVERHEAD(X)	\
226 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
227 #define SKB_MAX_ORDER(X, ORDER) \
228 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
229 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
230 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
231 
232 /* return minimum truesize of one skb containing X bytes of data */
233 #define SKB_TRUESIZE(X) ((X) +						\
234 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
235 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
236 
237 struct net_device;
238 struct scatterlist;
239 struct pipe_inode_info;
240 struct iov_iter;
241 struct napi_struct;
242 struct bpf_prog;
243 union bpf_attr;
244 struct skb_ext;
245 
246 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
247 struct nf_conntrack {
248 	atomic_t use;
249 };
250 #endif
251 
252 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
253 struct nf_bridge_info {
254 	enum {
255 		BRNF_PROTO_UNCHANGED,
256 		BRNF_PROTO_8021Q,
257 		BRNF_PROTO_PPPOE
258 	} orig_proto:8;
259 	u8			pkt_otherhost:1;
260 	u8			in_prerouting:1;
261 	u8			bridged_dnat:1;
262 	__u16			frag_max_size;
263 	struct net_device	*physindev;
264 
265 	/* always valid & non-NULL from FORWARD on, for physdev match */
266 	struct net_device	*physoutdev;
267 	union {
268 		/* prerouting: detect dnat in orig/reply direction */
269 		__be32          ipv4_daddr;
270 		struct in6_addr ipv6_daddr;
271 
272 		/* after prerouting + nat detected: store original source
273 		 * mac since neigh resolution overwrites it, only used while
274 		 * skb is out in neigh layer.
275 		 */
276 		char neigh_header[8];
277 	};
278 };
279 #endif
280 
281 struct sk_buff_head {
282 	/* These two members must be first. */
283 	struct sk_buff	*next;
284 	struct sk_buff	*prev;
285 
286 	__u32		qlen;
287 	spinlock_t	lock;
288 };
289 
290 struct sk_buff;
291 
292 /* To allow 64K frame to be packed as single skb without frag_list we
293  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
294  * buffers which do not start on a page boundary.
295  *
296  * Since GRO uses frags we allocate at least 16 regardless of page
297  * size.
298  */
299 #if (65536/PAGE_SIZE + 1) < 16
300 #define MAX_SKB_FRAGS 16UL
301 #else
302 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
303 #endif
304 extern int sysctl_max_skb_frags;
305 
306 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
307  * segment using its current segmentation instead.
308  */
309 #define GSO_BY_FRAGS	0xFFFF
310 
311 typedef struct skb_frag_struct skb_frag_t;
312 
313 struct skb_frag_struct {
314 	struct {
315 		struct page *p;
316 	} page;
317 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
318 	__u32 page_offset;
319 	__u32 size;
320 #else
321 	__u16 page_offset;
322 	__u16 size;
323 #endif
324 };
325 
326 /**
327  * skb_frag_size - Returns the size of a skb fragment
328  * @frag: skb fragment
329  */
330 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
331 {
332 	return frag->size;
333 }
334 
335 /**
336  * skb_frag_size_set - Sets the size of a skb fragment
337  * @frag: skb fragment
338  * @size: size of fragment
339  */
340 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
341 {
342 	frag->size = size;
343 }
344 
345 /**
346  * skb_frag_size_add - Incrementes the size of a skb fragment by %delta
347  * @frag: skb fragment
348  * @delta: value to add
349  */
350 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
351 {
352 	frag->size += delta;
353 }
354 
355 /**
356  * skb_frag_size_sub - Decrements the size of a skb fragment by %delta
357  * @frag: skb fragment
358  * @delta: value to subtract
359  */
360 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
361 {
362 	frag->size -= delta;
363 }
364 
365 /**
366  * skb_frag_must_loop - Test if %p is a high memory page
367  * @p: fragment's page
368  */
369 static inline bool skb_frag_must_loop(struct page *p)
370 {
371 #if defined(CONFIG_HIGHMEM)
372 	if (PageHighMem(p))
373 		return true;
374 #endif
375 	return false;
376 }
377 
378 /**
379  *	skb_frag_foreach_page - loop over pages in a fragment
380  *
381  *	@f:		skb frag to operate on
382  *	@f_off:		offset from start of f->page.p
383  *	@f_len:		length from f_off to loop over
384  *	@p:		(temp var) current page
385  *	@p_off:		(temp var) offset from start of current page,
386  *	                           non-zero only on first page.
387  *	@p_len:		(temp var) length in current page,
388  *				   < PAGE_SIZE only on first and last page.
389  *	@copied:	(temp var) length so far, excluding current p_len.
390  *
391  *	A fragment can hold a compound page, in which case per-page
392  *	operations, notably kmap_atomic, must be called for each
393  *	regular page.
394  */
395 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
396 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
397 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
398 	     p_len = skb_frag_must_loop(p) ?				\
399 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
400 	     copied = 0;						\
401 	     copied < f_len;						\
402 	     copied += p_len, p++, p_off = 0,				\
403 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
404 
405 #define HAVE_HW_TIME_STAMP
406 
407 /**
408  * struct skb_shared_hwtstamps - hardware time stamps
409  * @hwtstamp:	hardware time stamp transformed into duration
410  *		since arbitrary point in time
411  *
412  * Software time stamps generated by ktime_get_real() are stored in
413  * skb->tstamp.
414  *
415  * hwtstamps can only be compared against other hwtstamps from
416  * the same device.
417  *
418  * This structure is attached to packets as part of the
419  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
420  */
421 struct skb_shared_hwtstamps {
422 	ktime_t	hwtstamp;
423 };
424 
425 /* Definitions for tx_flags in struct skb_shared_info */
426 enum {
427 	/* generate hardware time stamp */
428 	SKBTX_HW_TSTAMP = 1 << 0,
429 
430 	/* generate software time stamp when queueing packet to NIC */
431 	SKBTX_SW_TSTAMP = 1 << 1,
432 
433 	/* device driver is going to provide hardware time stamp */
434 	SKBTX_IN_PROGRESS = 1 << 2,
435 
436 	/* device driver supports TX zero-copy buffers */
437 	SKBTX_DEV_ZEROCOPY = 1 << 3,
438 
439 	/* generate wifi status information (where possible) */
440 	SKBTX_WIFI_STATUS = 1 << 4,
441 
442 	/* This indicates at least one fragment might be overwritten
443 	 * (as in vmsplice(), sendfile() ...)
444 	 * If we need to compute a TX checksum, we'll need to copy
445 	 * all frags to avoid possible bad checksum
446 	 */
447 	SKBTX_SHARED_FRAG = 1 << 5,
448 
449 	/* generate software time stamp when entering packet scheduling */
450 	SKBTX_SCHED_TSTAMP = 1 << 6,
451 };
452 
453 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
454 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
455 				 SKBTX_SCHED_TSTAMP)
456 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
457 
458 /*
459  * The callback notifies userspace to release buffers when skb DMA is done in
460  * lower device, the skb last reference should be 0 when calling this.
461  * The zerocopy_success argument is true if zero copy transmit occurred,
462  * false on data copy or out of memory error caused by data copy attempt.
463  * The ctx field is used to track device context.
464  * The desc field is used to track userspace buffer index.
465  */
466 struct ubuf_info {
467 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
468 	union {
469 		struct {
470 			unsigned long desc;
471 			void *ctx;
472 		};
473 		struct {
474 			u32 id;
475 			u16 len;
476 			u16 zerocopy:1;
477 			u32 bytelen;
478 		};
479 	};
480 	refcount_t refcnt;
481 
482 	struct mmpin {
483 		struct user_struct *user;
484 		unsigned int num_pg;
485 	} mmp;
486 };
487 
488 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
489 
490 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
491 void mm_unaccount_pinned_pages(struct mmpin *mmp);
492 
493 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
494 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
495 					struct ubuf_info *uarg);
496 
497 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
498 {
499 	refcount_inc(&uarg->refcnt);
500 }
501 
502 void sock_zerocopy_put(struct ubuf_info *uarg);
503 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
504 
505 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
506 
507 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
508 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
509 			     struct msghdr *msg, int len,
510 			     struct ubuf_info *uarg);
511 
512 /* This data is invariant across clones and lives at
513  * the end of the header data, ie. at skb->end.
514  */
515 struct skb_shared_info {
516 	__u8		__unused;
517 	__u8		meta_len;
518 	__u8		nr_frags;
519 	__u8		tx_flags;
520 	unsigned short	gso_size;
521 	/* Warning: this field is not always filled in (UFO)! */
522 	unsigned short	gso_segs;
523 	struct sk_buff	*frag_list;
524 	struct skb_shared_hwtstamps hwtstamps;
525 	unsigned int	gso_type;
526 	u32		tskey;
527 
528 	/*
529 	 * Warning : all fields before dataref are cleared in __alloc_skb()
530 	 */
531 	atomic_t	dataref;
532 
533 	/* Intermediate layers must ensure that destructor_arg
534 	 * remains valid until skb destructor */
535 	void *		destructor_arg;
536 
537 	/* must be last field, see pskb_expand_head() */
538 	skb_frag_t	frags[MAX_SKB_FRAGS];
539 };
540 
541 /* We divide dataref into two halves.  The higher 16 bits hold references
542  * to the payload part of skb->data.  The lower 16 bits hold references to
543  * the entire skb->data.  A clone of a headerless skb holds the length of
544  * the header in skb->hdr_len.
545  *
546  * All users must obey the rule that the skb->data reference count must be
547  * greater than or equal to the payload reference count.
548  *
549  * Holding a reference to the payload part means that the user does not
550  * care about modifications to the header part of skb->data.
551  */
552 #define SKB_DATAREF_SHIFT 16
553 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
554 
555 
556 enum {
557 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
558 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
559 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
560 };
561 
562 enum {
563 	SKB_GSO_TCPV4 = 1 << 0,
564 
565 	/* This indicates the skb is from an untrusted source. */
566 	SKB_GSO_DODGY = 1 << 1,
567 
568 	/* This indicates the tcp segment has CWR set. */
569 	SKB_GSO_TCP_ECN = 1 << 2,
570 
571 	SKB_GSO_TCP_FIXEDID = 1 << 3,
572 
573 	SKB_GSO_TCPV6 = 1 << 4,
574 
575 	SKB_GSO_FCOE = 1 << 5,
576 
577 	SKB_GSO_GRE = 1 << 6,
578 
579 	SKB_GSO_GRE_CSUM = 1 << 7,
580 
581 	SKB_GSO_IPXIP4 = 1 << 8,
582 
583 	SKB_GSO_IPXIP6 = 1 << 9,
584 
585 	SKB_GSO_UDP_TUNNEL = 1 << 10,
586 
587 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
588 
589 	SKB_GSO_PARTIAL = 1 << 12,
590 
591 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
592 
593 	SKB_GSO_SCTP = 1 << 14,
594 
595 	SKB_GSO_ESP = 1 << 15,
596 
597 	SKB_GSO_UDP = 1 << 16,
598 
599 	SKB_GSO_UDP_L4 = 1 << 17,
600 };
601 
602 #if BITS_PER_LONG > 32
603 #define NET_SKBUFF_DATA_USES_OFFSET 1
604 #endif
605 
606 #ifdef NET_SKBUFF_DATA_USES_OFFSET
607 typedef unsigned int sk_buff_data_t;
608 #else
609 typedef unsigned char *sk_buff_data_t;
610 #endif
611 
612 /**
613  *	struct sk_buff - socket buffer
614  *	@next: Next buffer in list
615  *	@prev: Previous buffer in list
616  *	@tstamp: Time we arrived/left
617  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
618  *	@sk: Socket we are owned by
619  *	@dev: Device we arrived on/are leaving by
620  *	@cb: Control buffer. Free for use by every layer. Put private vars here
621  *	@_skb_refdst: destination entry (with norefcount bit)
622  *	@sp: the security path, used for xfrm
623  *	@len: Length of actual data
624  *	@data_len: Data length
625  *	@mac_len: Length of link layer header
626  *	@hdr_len: writable header length of cloned skb
627  *	@csum: Checksum (must include start/offset pair)
628  *	@csum_start: Offset from skb->head where checksumming should start
629  *	@csum_offset: Offset from csum_start where checksum should be stored
630  *	@priority: Packet queueing priority
631  *	@ignore_df: allow local fragmentation
632  *	@cloned: Head may be cloned (check refcnt to be sure)
633  *	@ip_summed: Driver fed us an IP checksum
634  *	@nohdr: Payload reference only, must not modify header
635  *	@pkt_type: Packet class
636  *	@fclone: skbuff clone status
637  *	@ipvs_property: skbuff is owned by ipvs
638  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
639  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
640  *	@tc_skip_classify: do not classify packet. set by IFB device
641  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
642  *	@tc_redirected: packet was redirected by a tc action
643  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
644  *	@peeked: this packet has been seen already, so stats have been
645  *		done for it, don't do them again
646  *	@nf_trace: netfilter packet trace flag
647  *	@protocol: Packet protocol from driver
648  *	@destructor: Destruct function
649  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
650  *	@_nfct: Associated connection, if any (with nfctinfo bits)
651  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
652  *	@skb_iif: ifindex of device we arrived on
653  *	@tc_index: Traffic control index
654  *	@hash: the packet hash
655  *	@queue_mapping: Queue mapping for multiqueue devices
656  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
657  *	@active_extensions: active extensions (skb_ext_id types)
658  *	@ndisc_nodetype: router type (from link layer)
659  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
660  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
661  *		ports.
662  *	@sw_hash: indicates hash was computed in software stack
663  *	@wifi_acked_valid: wifi_acked was set
664  *	@wifi_acked: whether frame was acked on wifi or not
665  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
666  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
667  *	@dst_pending_confirm: need to confirm neighbour
668  *	@decrypted: Decrypted SKB
669  *	@napi_id: id of the NAPI struct this skb came from
670  *	@secmark: security marking
671  *	@mark: Generic packet mark
672  *	@vlan_proto: vlan encapsulation protocol
673  *	@vlan_tci: vlan tag control information
674  *	@inner_protocol: Protocol (encapsulation)
675  *	@inner_transport_header: Inner transport layer header (encapsulation)
676  *	@inner_network_header: Network layer header (encapsulation)
677  *	@inner_mac_header: Link layer header (encapsulation)
678  *	@transport_header: Transport layer header
679  *	@network_header: Network layer header
680  *	@mac_header: Link layer header
681  *	@tail: Tail pointer
682  *	@end: End pointer
683  *	@head: Head of buffer
684  *	@data: Data head pointer
685  *	@truesize: Buffer size
686  *	@users: User count - see {datagram,tcp}.c
687  *	@extensions: allocated extensions, valid if active_extensions is nonzero
688  */
689 
690 struct sk_buff {
691 	union {
692 		struct {
693 			/* These two members must be first. */
694 			struct sk_buff		*next;
695 			struct sk_buff		*prev;
696 
697 			union {
698 				struct net_device	*dev;
699 				/* Some protocols might use this space to store information,
700 				 * while device pointer would be NULL.
701 				 * UDP receive path is one user.
702 				 */
703 				unsigned long		dev_scratch;
704 			};
705 		};
706 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
707 		struct list_head	list;
708 	};
709 
710 	union {
711 		struct sock		*sk;
712 		int			ip_defrag_offset;
713 	};
714 
715 	union {
716 		ktime_t		tstamp;
717 		u64		skb_mstamp_ns; /* earliest departure time */
718 	};
719 	/*
720 	 * This is the control buffer. It is free to use for every
721 	 * layer. Please put your private variables there. If you
722 	 * want to keep them across layers you have to do a skb_clone()
723 	 * first. This is owned by whoever has the skb queued ATM.
724 	 */
725 	char			cb[48] __aligned(8);
726 
727 	union {
728 		struct {
729 			unsigned long	_skb_refdst;
730 			void		(*destructor)(struct sk_buff *skb);
731 		};
732 		struct list_head	tcp_tsorted_anchor;
733 	};
734 
735 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
736 	unsigned long		 _nfct;
737 #endif
738 	unsigned int		len,
739 				data_len;
740 	__u16			mac_len,
741 				hdr_len;
742 
743 	/* Following fields are _not_ copied in __copy_skb_header()
744 	 * Note that queue_mapping is here mostly to fill a hole.
745 	 */
746 	__u16			queue_mapping;
747 
748 /* if you move cloned around you also must adapt those constants */
749 #ifdef __BIG_ENDIAN_BITFIELD
750 #define CLONED_MASK	(1 << 7)
751 #else
752 #define CLONED_MASK	1
753 #endif
754 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
755 
756 	__u8			__cloned_offset[0];
757 	__u8			cloned:1,
758 				nohdr:1,
759 				fclone:2,
760 				peeked:1,
761 				head_frag:1,
762 				pfmemalloc:1;
763 #ifdef CONFIG_SKB_EXTENSIONS
764 	__u8			active_extensions;
765 #endif
766 	/* fields enclosed in headers_start/headers_end are copied
767 	 * using a single memcpy() in __copy_skb_header()
768 	 */
769 	/* private: */
770 	__u32			headers_start[0];
771 	/* public: */
772 
773 /* if you move pkt_type around you also must adapt those constants */
774 #ifdef __BIG_ENDIAN_BITFIELD
775 #define PKT_TYPE_MAX	(7 << 5)
776 #else
777 #define PKT_TYPE_MAX	7
778 #endif
779 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
780 
781 	__u8			__pkt_type_offset[0];
782 	__u8			pkt_type:3;
783 	__u8			ignore_df:1;
784 	__u8			nf_trace:1;
785 	__u8			ip_summed:2;
786 	__u8			ooo_okay:1;
787 
788 	__u8			l4_hash:1;
789 	__u8			sw_hash:1;
790 	__u8			wifi_acked_valid:1;
791 	__u8			wifi_acked:1;
792 	__u8			no_fcs:1;
793 	/* Indicates the inner headers are valid in the skbuff. */
794 	__u8			encapsulation:1;
795 	__u8			encap_hdr_csum:1;
796 	__u8			csum_valid:1;
797 
798 #ifdef __BIG_ENDIAN_BITFIELD
799 #define PKT_VLAN_PRESENT_BIT	7
800 #else
801 #define PKT_VLAN_PRESENT_BIT	0
802 #endif
803 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
804 	__u8			__pkt_vlan_present_offset[0];
805 	__u8			vlan_present:1;
806 	__u8			csum_complete_sw:1;
807 	__u8			csum_level:2;
808 	__u8			csum_not_inet:1;
809 	__u8			dst_pending_confirm:1;
810 #ifdef CONFIG_IPV6_NDISC_NODETYPE
811 	__u8			ndisc_nodetype:2;
812 #endif
813 
814 	__u8			ipvs_property:1;
815 	__u8			inner_protocol_type:1;
816 	__u8			remcsum_offload:1;
817 #ifdef CONFIG_NET_SWITCHDEV
818 	__u8			offload_fwd_mark:1;
819 	__u8			offload_l3_fwd_mark:1;
820 #endif
821 #ifdef CONFIG_NET_CLS_ACT
822 	__u8			tc_skip_classify:1;
823 	__u8			tc_at_ingress:1;
824 	__u8			tc_redirected:1;
825 	__u8			tc_from_ingress:1;
826 #endif
827 #ifdef CONFIG_TLS_DEVICE
828 	__u8			decrypted:1;
829 #endif
830 
831 #ifdef CONFIG_NET_SCHED
832 	__u16			tc_index;	/* traffic control index */
833 #endif
834 
835 	union {
836 		__wsum		csum;
837 		struct {
838 			__u16	csum_start;
839 			__u16	csum_offset;
840 		};
841 	};
842 	__u32			priority;
843 	int			skb_iif;
844 	__u32			hash;
845 	__be16			vlan_proto;
846 	__u16			vlan_tci;
847 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
848 	union {
849 		unsigned int	napi_id;
850 		unsigned int	sender_cpu;
851 	};
852 #endif
853 #ifdef CONFIG_NETWORK_SECMARK
854 	__u32		secmark;
855 #endif
856 
857 	union {
858 		__u32		mark;
859 		__u32		reserved_tailroom;
860 	};
861 
862 	union {
863 		__be16		inner_protocol;
864 		__u8		inner_ipproto;
865 	};
866 
867 	__u16			inner_transport_header;
868 	__u16			inner_network_header;
869 	__u16			inner_mac_header;
870 
871 	__be16			protocol;
872 	__u16			transport_header;
873 	__u16			network_header;
874 	__u16			mac_header;
875 
876 	/* private: */
877 	__u32			headers_end[0];
878 	/* public: */
879 
880 	/* These elements must be at the end, see alloc_skb() for details.  */
881 	sk_buff_data_t		tail;
882 	sk_buff_data_t		end;
883 	unsigned char		*head,
884 				*data;
885 	unsigned int		truesize;
886 	refcount_t		users;
887 
888 #ifdef CONFIG_SKB_EXTENSIONS
889 	/* only useable after checking ->active_extensions != 0 */
890 	struct skb_ext		*extensions;
891 #endif
892 };
893 
894 #ifdef __KERNEL__
895 /*
896  *	Handling routines are only of interest to the kernel
897  */
898 
899 #define SKB_ALLOC_FCLONE	0x01
900 #define SKB_ALLOC_RX		0x02
901 #define SKB_ALLOC_NAPI		0x04
902 
903 /**
904  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
905  * @skb: buffer
906  */
907 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
908 {
909 	return unlikely(skb->pfmemalloc);
910 }
911 
912 /*
913  * skb might have a dst pointer attached, refcounted or not.
914  * _skb_refdst low order bit is set if refcount was _not_ taken
915  */
916 #define SKB_DST_NOREF	1UL
917 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
918 
919 #define SKB_NFCT_PTRMASK	~(7UL)
920 /**
921  * skb_dst - returns skb dst_entry
922  * @skb: buffer
923  *
924  * Returns skb dst_entry, regardless of reference taken or not.
925  */
926 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
927 {
928 	/* If refdst was not refcounted, check we still are in a
929 	 * rcu_read_lock section
930 	 */
931 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
932 		!rcu_read_lock_held() &&
933 		!rcu_read_lock_bh_held());
934 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
935 }
936 
937 /**
938  * skb_dst_set - sets skb dst
939  * @skb: buffer
940  * @dst: dst entry
941  *
942  * Sets skb dst, assuming a reference was taken on dst and should
943  * be released by skb_dst_drop()
944  */
945 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
946 {
947 	skb->_skb_refdst = (unsigned long)dst;
948 }
949 
950 /**
951  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
952  * @skb: buffer
953  * @dst: dst entry
954  *
955  * Sets skb dst, assuming a reference was not taken on dst.
956  * If dst entry is cached, we do not take reference and dst_release
957  * will be avoided by refdst_drop. If dst entry is not cached, we take
958  * reference, so that last dst_release can destroy the dst immediately.
959  */
960 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
961 {
962 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
963 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
964 }
965 
966 /**
967  * skb_dst_is_noref - Test if skb dst isn't refcounted
968  * @skb: buffer
969  */
970 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
971 {
972 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
973 }
974 
975 /**
976  * skb_rtable - Returns the skb &rtable
977  * @skb: buffer
978  */
979 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
980 {
981 	return (struct rtable *)skb_dst(skb);
982 }
983 
984 /* For mangling skb->pkt_type from user space side from applications
985  * such as nft, tc, etc, we only allow a conservative subset of
986  * possible pkt_types to be set.
987 */
988 static inline bool skb_pkt_type_ok(u32 ptype)
989 {
990 	return ptype <= PACKET_OTHERHOST;
991 }
992 
993 /**
994  * skb_napi_id - Returns the skb's NAPI id
995  * @skb: buffer
996  */
997 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
998 {
999 #ifdef CONFIG_NET_RX_BUSY_POLL
1000 	return skb->napi_id;
1001 #else
1002 	return 0;
1003 #endif
1004 }
1005 
1006 /**
1007  * skb_unref - decrement the skb's reference count
1008  * @skb: buffer
1009  *
1010  * Returns true if we can free the skb.
1011  */
1012 static inline bool skb_unref(struct sk_buff *skb)
1013 {
1014 	if (unlikely(!skb))
1015 		return false;
1016 	if (likely(refcount_read(&skb->users) == 1))
1017 		smp_rmb();
1018 	else if (likely(!refcount_dec_and_test(&skb->users)))
1019 		return false;
1020 
1021 	return true;
1022 }
1023 
1024 void skb_release_head_state(struct sk_buff *skb);
1025 void kfree_skb(struct sk_buff *skb);
1026 void kfree_skb_list(struct sk_buff *segs);
1027 void skb_tx_error(struct sk_buff *skb);
1028 void consume_skb(struct sk_buff *skb);
1029 void __consume_stateless_skb(struct sk_buff *skb);
1030 void  __kfree_skb(struct sk_buff *skb);
1031 extern struct kmem_cache *skbuff_head_cache;
1032 
1033 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1034 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1035 		      bool *fragstolen, int *delta_truesize);
1036 
1037 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1038 			    int node);
1039 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1040 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1041 struct sk_buff *build_skb_around(struct sk_buff *skb,
1042 				 void *data, unsigned int frag_size);
1043 
1044 /**
1045  * alloc_skb - allocate a network buffer
1046  * @size: size to allocate
1047  * @priority: allocation mask
1048  *
1049  * This function is a convenient wrapper around __alloc_skb().
1050  */
1051 static inline struct sk_buff *alloc_skb(unsigned int size,
1052 					gfp_t priority)
1053 {
1054 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1055 }
1056 
1057 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1058 				     unsigned long data_len,
1059 				     int max_page_order,
1060 				     int *errcode,
1061 				     gfp_t gfp_mask);
1062 
1063 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1064 struct sk_buff_fclones {
1065 	struct sk_buff	skb1;
1066 
1067 	struct sk_buff	skb2;
1068 
1069 	refcount_t	fclone_ref;
1070 };
1071 
1072 /**
1073  *	skb_fclone_busy - check if fclone is busy
1074  *	@sk: socket
1075  *	@skb: buffer
1076  *
1077  * Returns true if skb is a fast clone, and its clone is not freed.
1078  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1079  * so we also check that this didnt happen.
1080  */
1081 static inline bool skb_fclone_busy(const struct sock *sk,
1082 				   const struct sk_buff *skb)
1083 {
1084 	const struct sk_buff_fclones *fclones;
1085 
1086 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1087 
1088 	return skb->fclone == SKB_FCLONE_ORIG &&
1089 	       refcount_read(&fclones->fclone_ref) > 1 &&
1090 	       fclones->skb2.sk == sk;
1091 }
1092 
1093 /**
1094  * alloc_skb_fclone - allocate a network buffer from fclone cache
1095  * @size: size to allocate
1096  * @priority: allocation mask
1097  *
1098  * This function is a convenient wrapper around __alloc_skb().
1099  */
1100 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1101 					       gfp_t priority)
1102 {
1103 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1104 }
1105 
1106 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1107 void skb_headers_offset_update(struct sk_buff *skb, int off);
1108 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1109 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1110 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1111 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1112 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1113 				   gfp_t gfp_mask, bool fclone);
1114 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1115 					  gfp_t gfp_mask)
1116 {
1117 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1118 }
1119 
1120 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1121 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1122 				     unsigned int headroom);
1123 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1124 				int newtailroom, gfp_t priority);
1125 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1126 				     int offset, int len);
1127 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1128 			      int offset, int len);
1129 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1130 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1131 
1132 /**
1133  *	skb_pad			-	zero pad the tail of an skb
1134  *	@skb: buffer to pad
1135  *	@pad: space to pad
1136  *
1137  *	Ensure that a buffer is followed by a padding area that is zero
1138  *	filled. Used by network drivers which may DMA or transfer data
1139  *	beyond the buffer end onto the wire.
1140  *
1141  *	May return error in out of memory cases. The skb is freed on error.
1142  */
1143 static inline int skb_pad(struct sk_buff *skb, int pad)
1144 {
1145 	return __skb_pad(skb, pad, true);
1146 }
1147 #define dev_kfree_skb(a)	consume_skb(a)
1148 
1149 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1150 			 int offset, size_t size);
1151 
1152 struct skb_seq_state {
1153 	__u32		lower_offset;
1154 	__u32		upper_offset;
1155 	__u32		frag_idx;
1156 	__u32		stepped_offset;
1157 	struct sk_buff	*root_skb;
1158 	struct sk_buff	*cur_skb;
1159 	__u8		*frag_data;
1160 };
1161 
1162 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1163 			  unsigned int to, struct skb_seq_state *st);
1164 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1165 			  struct skb_seq_state *st);
1166 void skb_abort_seq_read(struct skb_seq_state *st);
1167 
1168 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1169 			   unsigned int to, struct ts_config *config);
1170 
1171 /*
1172  * Packet hash types specify the type of hash in skb_set_hash.
1173  *
1174  * Hash types refer to the protocol layer addresses which are used to
1175  * construct a packet's hash. The hashes are used to differentiate or identify
1176  * flows of the protocol layer for the hash type. Hash types are either
1177  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1178  *
1179  * Properties of hashes:
1180  *
1181  * 1) Two packets in different flows have different hash values
1182  * 2) Two packets in the same flow should have the same hash value
1183  *
1184  * A hash at a higher layer is considered to be more specific. A driver should
1185  * set the most specific hash possible.
1186  *
1187  * A driver cannot indicate a more specific hash than the layer at which a hash
1188  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1189  *
1190  * A driver may indicate a hash level which is less specific than the
1191  * actual layer the hash was computed on. For instance, a hash computed
1192  * at L4 may be considered an L3 hash. This should only be done if the
1193  * driver can't unambiguously determine that the HW computed the hash at
1194  * the higher layer. Note that the "should" in the second property above
1195  * permits this.
1196  */
1197 enum pkt_hash_types {
1198 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1199 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1200 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1201 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1202 };
1203 
1204 static inline void skb_clear_hash(struct sk_buff *skb)
1205 {
1206 	skb->hash = 0;
1207 	skb->sw_hash = 0;
1208 	skb->l4_hash = 0;
1209 }
1210 
1211 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1212 {
1213 	if (!skb->l4_hash)
1214 		skb_clear_hash(skb);
1215 }
1216 
1217 static inline void
1218 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1219 {
1220 	skb->l4_hash = is_l4;
1221 	skb->sw_hash = is_sw;
1222 	skb->hash = hash;
1223 }
1224 
1225 static inline void
1226 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1227 {
1228 	/* Used by drivers to set hash from HW */
1229 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1230 }
1231 
1232 static inline void
1233 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1234 {
1235 	__skb_set_hash(skb, hash, true, is_l4);
1236 }
1237 
1238 void __skb_get_hash(struct sk_buff *skb);
1239 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1240 u32 skb_get_poff(const struct sk_buff *skb);
1241 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1242 		   const struct flow_keys_basic *keys, int hlen);
1243 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1244 			    void *data, int hlen_proto);
1245 
1246 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1247 					int thoff, u8 ip_proto)
1248 {
1249 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1250 }
1251 
1252 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1253 			     const struct flow_dissector_key *key,
1254 			     unsigned int key_count);
1255 
1256 #ifdef CONFIG_NET
1257 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1258 				  union bpf_attr __user *uattr);
1259 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1260 				       struct bpf_prog *prog);
1261 
1262 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1263 #else
1264 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1265 						union bpf_attr __user *uattr)
1266 {
1267 	return -EOPNOTSUPP;
1268 }
1269 
1270 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1271 						     struct bpf_prog *prog)
1272 {
1273 	return -EOPNOTSUPP;
1274 }
1275 
1276 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1277 {
1278 	return -EOPNOTSUPP;
1279 }
1280 #endif
1281 
1282 struct bpf_flow_dissector;
1283 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1284 		      __be16 proto, int nhoff, int hlen);
1285 
1286 bool __skb_flow_dissect(const struct net *net,
1287 			const struct sk_buff *skb,
1288 			struct flow_dissector *flow_dissector,
1289 			void *target_container,
1290 			void *data, __be16 proto, int nhoff, int hlen,
1291 			unsigned int flags);
1292 
1293 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1294 				    struct flow_dissector *flow_dissector,
1295 				    void *target_container, unsigned int flags)
1296 {
1297 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1298 				  target_container, NULL, 0, 0, 0, flags);
1299 }
1300 
1301 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1302 					      struct flow_keys *flow,
1303 					      unsigned int flags)
1304 {
1305 	memset(flow, 0, sizeof(*flow));
1306 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1307 				  flow, NULL, 0, 0, 0, flags);
1308 }
1309 
1310 static inline bool
1311 skb_flow_dissect_flow_keys_basic(const struct net *net,
1312 				 const struct sk_buff *skb,
1313 				 struct flow_keys_basic *flow, void *data,
1314 				 __be16 proto, int nhoff, int hlen,
1315 				 unsigned int flags)
1316 {
1317 	memset(flow, 0, sizeof(*flow));
1318 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1319 				  data, proto, nhoff, hlen, flags);
1320 }
1321 
1322 void
1323 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1324 			     struct flow_dissector *flow_dissector,
1325 			     void *target_container);
1326 
1327 static inline __u32 skb_get_hash(struct sk_buff *skb)
1328 {
1329 	if (!skb->l4_hash && !skb->sw_hash)
1330 		__skb_get_hash(skb);
1331 
1332 	return skb->hash;
1333 }
1334 
1335 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1336 {
1337 	if (!skb->l4_hash && !skb->sw_hash) {
1338 		struct flow_keys keys;
1339 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1340 
1341 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1342 	}
1343 
1344 	return skb->hash;
1345 }
1346 
1347 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1348 
1349 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1350 {
1351 	return skb->hash;
1352 }
1353 
1354 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1355 {
1356 	to->hash = from->hash;
1357 	to->sw_hash = from->sw_hash;
1358 	to->l4_hash = from->l4_hash;
1359 };
1360 
1361 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1362 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1363 {
1364 	return skb->head + skb->end;
1365 }
1366 
1367 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1368 {
1369 	return skb->end;
1370 }
1371 #else
1372 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1373 {
1374 	return skb->end;
1375 }
1376 
1377 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1378 {
1379 	return skb->end - skb->head;
1380 }
1381 #endif
1382 
1383 /* Internal */
1384 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1385 
1386 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1387 {
1388 	return &skb_shinfo(skb)->hwtstamps;
1389 }
1390 
1391 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1392 {
1393 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1394 
1395 	return is_zcopy ? skb_uarg(skb) : NULL;
1396 }
1397 
1398 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1399 				 bool *have_ref)
1400 {
1401 	if (skb && uarg && !skb_zcopy(skb)) {
1402 		if (unlikely(have_ref && *have_ref))
1403 			*have_ref = false;
1404 		else
1405 			sock_zerocopy_get(uarg);
1406 		skb_shinfo(skb)->destructor_arg = uarg;
1407 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1408 	}
1409 }
1410 
1411 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1412 {
1413 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1414 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1415 }
1416 
1417 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1418 {
1419 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1420 }
1421 
1422 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1423 {
1424 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1425 }
1426 
1427 /* Release a reference on a zerocopy structure */
1428 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1429 {
1430 	struct ubuf_info *uarg = skb_zcopy(skb);
1431 
1432 	if (uarg) {
1433 		if (skb_zcopy_is_nouarg(skb)) {
1434 			/* no notification callback */
1435 		} else if (uarg->callback == sock_zerocopy_callback) {
1436 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1437 			sock_zerocopy_put(uarg);
1438 		} else {
1439 			uarg->callback(uarg, zerocopy);
1440 		}
1441 
1442 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1443 	}
1444 }
1445 
1446 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1447 static inline void skb_zcopy_abort(struct sk_buff *skb)
1448 {
1449 	struct ubuf_info *uarg = skb_zcopy(skb);
1450 
1451 	if (uarg) {
1452 		sock_zerocopy_put_abort(uarg, false);
1453 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1454 	}
1455 }
1456 
1457 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1458 {
1459 	skb->next = NULL;
1460 }
1461 
1462 static inline void skb_list_del_init(struct sk_buff *skb)
1463 {
1464 	__list_del_entry(&skb->list);
1465 	skb_mark_not_on_list(skb);
1466 }
1467 
1468 /**
1469  *	skb_queue_empty - check if a queue is empty
1470  *	@list: queue head
1471  *
1472  *	Returns true if the queue is empty, false otherwise.
1473  */
1474 static inline int skb_queue_empty(const struct sk_buff_head *list)
1475 {
1476 	return list->next == (const struct sk_buff *) list;
1477 }
1478 
1479 /**
1480  *	skb_queue_is_last - check if skb is the last entry in the queue
1481  *	@list: queue head
1482  *	@skb: buffer
1483  *
1484  *	Returns true if @skb is the last buffer on the list.
1485  */
1486 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1487 				     const struct sk_buff *skb)
1488 {
1489 	return skb->next == (const struct sk_buff *) list;
1490 }
1491 
1492 /**
1493  *	skb_queue_is_first - check if skb is the first entry in the queue
1494  *	@list: queue head
1495  *	@skb: buffer
1496  *
1497  *	Returns true if @skb is the first buffer on the list.
1498  */
1499 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1500 				      const struct sk_buff *skb)
1501 {
1502 	return skb->prev == (const struct sk_buff *) list;
1503 }
1504 
1505 /**
1506  *	skb_queue_next - return the next packet in the queue
1507  *	@list: queue head
1508  *	@skb: current buffer
1509  *
1510  *	Return the next packet in @list after @skb.  It is only valid to
1511  *	call this if skb_queue_is_last() evaluates to false.
1512  */
1513 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1514 					     const struct sk_buff *skb)
1515 {
1516 	/* This BUG_ON may seem severe, but if we just return then we
1517 	 * are going to dereference garbage.
1518 	 */
1519 	BUG_ON(skb_queue_is_last(list, skb));
1520 	return skb->next;
1521 }
1522 
1523 /**
1524  *	skb_queue_prev - return the prev packet in the queue
1525  *	@list: queue head
1526  *	@skb: current buffer
1527  *
1528  *	Return the prev packet in @list before @skb.  It is only valid to
1529  *	call this if skb_queue_is_first() evaluates to false.
1530  */
1531 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1532 					     const struct sk_buff *skb)
1533 {
1534 	/* This BUG_ON may seem severe, but if we just return then we
1535 	 * are going to dereference garbage.
1536 	 */
1537 	BUG_ON(skb_queue_is_first(list, skb));
1538 	return skb->prev;
1539 }
1540 
1541 /**
1542  *	skb_get - reference buffer
1543  *	@skb: buffer to reference
1544  *
1545  *	Makes another reference to a socket buffer and returns a pointer
1546  *	to the buffer.
1547  */
1548 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1549 {
1550 	refcount_inc(&skb->users);
1551 	return skb;
1552 }
1553 
1554 /*
1555  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1556  */
1557 
1558 /**
1559  *	skb_cloned - is the buffer a clone
1560  *	@skb: buffer to check
1561  *
1562  *	Returns true if the buffer was generated with skb_clone() and is
1563  *	one of multiple shared copies of the buffer. Cloned buffers are
1564  *	shared data so must not be written to under normal circumstances.
1565  */
1566 static inline int skb_cloned(const struct sk_buff *skb)
1567 {
1568 	return skb->cloned &&
1569 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1570 }
1571 
1572 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1573 {
1574 	might_sleep_if(gfpflags_allow_blocking(pri));
1575 
1576 	if (skb_cloned(skb))
1577 		return pskb_expand_head(skb, 0, 0, pri);
1578 
1579 	return 0;
1580 }
1581 
1582 /**
1583  *	skb_header_cloned - is the header a clone
1584  *	@skb: buffer to check
1585  *
1586  *	Returns true if modifying the header part of the buffer requires
1587  *	the data to be copied.
1588  */
1589 static inline int skb_header_cloned(const struct sk_buff *skb)
1590 {
1591 	int dataref;
1592 
1593 	if (!skb->cloned)
1594 		return 0;
1595 
1596 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1597 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1598 	return dataref != 1;
1599 }
1600 
1601 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1602 {
1603 	might_sleep_if(gfpflags_allow_blocking(pri));
1604 
1605 	if (skb_header_cloned(skb))
1606 		return pskb_expand_head(skb, 0, 0, pri);
1607 
1608 	return 0;
1609 }
1610 
1611 /**
1612  *	__skb_header_release - release reference to header
1613  *	@skb: buffer to operate on
1614  */
1615 static inline void __skb_header_release(struct sk_buff *skb)
1616 {
1617 	skb->nohdr = 1;
1618 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1619 }
1620 
1621 
1622 /**
1623  *	skb_shared - is the buffer shared
1624  *	@skb: buffer to check
1625  *
1626  *	Returns true if more than one person has a reference to this
1627  *	buffer.
1628  */
1629 static inline int skb_shared(const struct sk_buff *skb)
1630 {
1631 	return refcount_read(&skb->users) != 1;
1632 }
1633 
1634 /**
1635  *	skb_share_check - check if buffer is shared and if so clone it
1636  *	@skb: buffer to check
1637  *	@pri: priority for memory allocation
1638  *
1639  *	If the buffer is shared the buffer is cloned and the old copy
1640  *	drops a reference. A new clone with a single reference is returned.
1641  *	If the buffer is not shared the original buffer is returned. When
1642  *	being called from interrupt status or with spinlocks held pri must
1643  *	be GFP_ATOMIC.
1644  *
1645  *	NULL is returned on a memory allocation failure.
1646  */
1647 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1648 {
1649 	might_sleep_if(gfpflags_allow_blocking(pri));
1650 	if (skb_shared(skb)) {
1651 		struct sk_buff *nskb = skb_clone(skb, pri);
1652 
1653 		if (likely(nskb))
1654 			consume_skb(skb);
1655 		else
1656 			kfree_skb(skb);
1657 		skb = nskb;
1658 	}
1659 	return skb;
1660 }
1661 
1662 /*
1663  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1664  *	packets to handle cases where we have a local reader and forward
1665  *	and a couple of other messy ones. The normal one is tcpdumping
1666  *	a packet thats being forwarded.
1667  */
1668 
1669 /**
1670  *	skb_unshare - make a copy of a shared buffer
1671  *	@skb: buffer to check
1672  *	@pri: priority for memory allocation
1673  *
1674  *	If the socket buffer is a clone then this function creates a new
1675  *	copy of the data, drops a reference count on the old copy and returns
1676  *	the new copy with the reference count at 1. If the buffer is not a clone
1677  *	the original buffer is returned. When called with a spinlock held or
1678  *	from interrupt state @pri must be %GFP_ATOMIC
1679  *
1680  *	%NULL is returned on a memory allocation failure.
1681  */
1682 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1683 					  gfp_t pri)
1684 {
1685 	might_sleep_if(gfpflags_allow_blocking(pri));
1686 	if (skb_cloned(skb)) {
1687 		struct sk_buff *nskb = skb_copy(skb, pri);
1688 
1689 		/* Free our shared copy */
1690 		if (likely(nskb))
1691 			consume_skb(skb);
1692 		else
1693 			kfree_skb(skb);
1694 		skb = nskb;
1695 	}
1696 	return skb;
1697 }
1698 
1699 /**
1700  *	skb_peek - peek at the head of an &sk_buff_head
1701  *	@list_: list to peek at
1702  *
1703  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1704  *	be careful with this one. A peek leaves the buffer on the
1705  *	list and someone else may run off with it. You must hold
1706  *	the appropriate locks or have a private queue to do this.
1707  *
1708  *	Returns %NULL for an empty list or a pointer to the head element.
1709  *	The reference count is not incremented and the reference is therefore
1710  *	volatile. Use with caution.
1711  */
1712 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1713 {
1714 	struct sk_buff *skb = list_->next;
1715 
1716 	if (skb == (struct sk_buff *)list_)
1717 		skb = NULL;
1718 	return skb;
1719 }
1720 
1721 /**
1722  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1723  *	@list_: list to peek at
1724  *
1725  *	Like skb_peek(), but the caller knows that the list is not empty.
1726  */
1727 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1728 {
1729 	return list_->next;
1730 }
1731 
1732 /**
1733  *	skb_peek_next - peek skb following the given one from a queue
1734  *	@skb: skb to start from
1735  *	@list_: list to peek at
1736  *
1737  *	Returns %NULL when the end of the list is met or a pointer to the
1738  *	next element. The reference count is not incremented and the
1739  *	reference is therefore volatile. Use with caution.
1740  */
1741 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1742 		const struct sk_buff_head *list_)
1743 {
1744 	struct sk_buff *next = skb->next;
1745 
1746 	if (next == (struct sk_buff *)list_)
1747 		next = NULL;
1748 	return next;
1749 }
1750 
1751 /**
1752  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1753  *	@list_: list to peek at
1754  *
1755  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1756  *	be careful with this one. A peek leaves the buffer on the
1757  *	list and someone else may run off with it. You must hold
1758  *	the appropriate locks or have a private queue to do this.
1759  *
1760  *	Returns %NULL for an empty list or a pointer to the tail element.
1761  *	The reference count is not incremented and the reference is therefore
1762  *	volatile. Use with caution.
1763  */
1764 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1765 {
1766 	struct sk_buff *skb = list_->prev;
1767 
1768 	if (skb == (struct sk_buff *)list_)
1769 		skb = NULL;
1770 	return skb;
1771 
1772 }
1773 
1774 /**
1775  *	skb_queue_len	- get queue length
1776  *	@list_: list to measure
1777  *
1778  *	Return the length of an &sk_buff queue.
1779  */
1780 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1781 {
1782 	return list_->qlen;
1783 }
1784 
1785 /**
1786  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1787  *	@list: queue to initialize
1788  *
1789  *	This initializes only the list and queue length aspects of
1790  *	an sk_buff_head object.  This allows to initialize the list
1791  *	aspects of an sk_buff_head without reinitializing things like
1792  *	the spinlock.  It can also be used for on-stack sk_buff_head
1793  *	objects where the spinlock is known to not be used.
1794  */
1795 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1796 {
1797 	list->prev = list->next = (struct sk_buff *)list;
1798 	list->qlen = 0;
1799 }
1800 
1801 /*
1802  * This function creates a split out lock class for each invocation;
1803  * this is needed for now since a whole lot of users of the skb-queue
1804  * infrastructure in drivers have different locking usage (in hardirq)
1805  * than the networking core (in softirq only). In the long run either the
1806  * network layer or drivers should need annotation to consolidate the
1807  * main types of usage into 3 classes.
1808  */
1809 static inline void skb_queue_head_init(struct sk_buff_head *list)
1810 {
1811 	spin_lock_init(&list->lock);
1812 	__skb_queue_head_init(list);
1813 }
1814 
1815 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1816 		struct lock_class_key *class)
1817 {
1818 	skb_queue_head_init(list);
1819 	lockdep_set_class(&list->lock, class);
1820 }
1821 
1822 /*
1823  *	Insert an sk_buff on a list.
1824  *
1825  *	The "__skb_xxxx()" functions are the non-atomic ones that
1826  *	can only be called with interrupts disabled.
1827  */
1828 static inline void __skb_insert(struct sk_buff *newsk,
1829 				struct sk_buff *prev, struct sk_buff *next,
1830 				struct sk_buff_head *list)
1831 {
1832 	newsk->next = next;
1833 	newsk->prev = prev;
1834 	next->prev  = prev->next = newsk;
1835 	list->qlen++;
1836 }
1837 
1838 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1839 				      struct sk_buff *prev,
1840 				      struct sk_buff *next)
1841 {
1842 	struct sk_buff *first = list->next;
1843 	struct sk_buff *last = list->prev;
1844 
1845 	first->prev = prev;
1846 	prev->next = first;
1847 
1848 	last->next = next;
1849 	next->prev = last;
1850 }
1851 
1852 /**
1853  *	skb_queue_splice - join two skb lists, this is designed for stacks
1854  *	@list: the new list to add
1855  *	@head: the place to add it in the first list
1856  */
1857 static inline void skb_queue_splice(const struct sk_buff_head *list,
1858 				    struct sk_buff_head *head)
1859 {
1860 	if (!skb_queue_empty(list)) {
1861 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1862 		head->qlen += list->qlen;
1863 	}
1864 }
1865 
1866 /**
1867  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1868  *	@list: the new list to add
1869  *	@head: the place to add it in the first list
1870  *
1871  *	The list at @list is reinitialised
1872  */
1873 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1874 					 struct sk_buff_head *head)
1875 {
1876 	if (!skb_queue_empty(list)) {
1877 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1878 		head->qlen += list->qlen;
1879 		__skb_queue_head_init(list);
1880 	}
1881 }
1882 
1883 /**
1884  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1885  *	@list: the new list to add
1886  *	@head: the place to add it in the first list
1887  */
1888 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1889 					 struct sk_buff_head *head)
1890 {
1891 	if (!skb_queue_empty(list)) {
1892 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1893 		head->qlen += list->qlen;
1894 	}
1895 }
1896 
1897 /**
1898  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1899  *	@list: the new list to add
1900  *	@head: the place to add it in the first list
1901  *
1902  *	Each of the lists is a queue.
1903  *	The list at @list is reinitialised
1904  */
1905 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1906 					      struct sk_buff_head *head)
1907 {
1908 	if (!skb_queue_empty(list)) {
1909 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1910 		head->qlen += list->qlen;
1911 		__skb_queue_head_init(list);
1912 	}
1913 }
1914 
1915 /**
1916  *	__skb_queue_after - queue a buffer at the list head
1917  *	@list: list to use
1918  *	@prev: place after this buffer
1919  *	@newsk: buffer to queue
1920  *
1921  *	Queue a buffer int the middle of a list. This function takes no locks
1922  *	and you must therefore hold required locks before calling it.
1923  *
1924  *	A buffer cannot be placed on two lists at the same time.
1925  */
1926 static inline void __skb_queue_after(struct sk_buff_head *list,
1927 				     struct sk_buff *prev,
1928 				     struct sk_buff *newsk)
1929 {
1930 	__skb_insert(newsk, prev, prev->next, list);
1931 }
1932 
1933 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1934 		struct sk_buff_head *list);
1935 
1936 static inline void __skb_queue_before(struct sk_buff_head *list,
1937 				      struct sk_buff *next,
1938 				      struct sk_buff *newsk)
1939 {
1940 	__skb_insert(newsk, next->prev, next, list);
1941 }
1942 
1943 /**
1944  *	__skb_queue_head - queue a buffer at the list head
1945  *	@list: list to use
1946  *	@newsk: buffer to queue
1947  *
1948  *	Queue a buffer at the start of a list. This function takes no locks
1949  *	and you must therefore hold required locks before calling it.
1950  *
1951  *	A buffer cannot be placed on two lists at the same time.
1952  */
1953 static inline void __skb_queue_head(struct sk_buff_head *list,
1954 				    struct sk_buff *newsk)
1955 {
1956 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1957 }
1958 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1959 
1960 /**
1961  *	__skb_queue_tail - queue a buffer at the list tail
1962  *	@list: list to use
1963  *	@newsk: buffer to queue
1964  *
1965  *	Queue a buffer at the end of a list. This function takes no locks
1966  *	and you must therefore hold required locks before calling it.
1967  *
1968  *	A buffer cannot be placed on two lists at the same time.
1969  */
1970 static inline void __skb_queue_tail(struct sk_buff_head *list,
1971 				   struct sk_buff *newsk)
1972 {
1973 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1974 }
1975 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1976 
1977 /*
1978  * remove sk_buff from list. _Must_ be called atomically, and with
1979  * the list known..
1980  */
1981 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1982 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1983 {
1984 	struct sk_buff *next, *prev;
1985 
1986 	list->qlen--;
1987 	next	   = skb->next;
1988 	prev	   = skb->prev;
1989 	skb->next  = skb->prev = NULL;
1990 	next->prev = prev;
1991 	prev->next = next;
1992 }
1993 
1994 /**
1995  *	__skb_dequeue - remove from the head of the queue
1996  *	@list: list to dequeue from
1997  *
1998  *	Remove the head of the list. This function does not take any locks
1999  *	so must be used with appropriate locks held only. The head item is
2000  *	returned or %NULL if the list is empty.
2001  */
2002 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2003 {
2004 	struct sk_buff *skb = skb_peek(list);
2005 	if (skb)
2006 		__skb_unlink(skb, list);
2007 	return skb;
2008 }
2009 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2010 
2011 /**
2012  *	__skb_dequeue_tail - remove from the tail of the queue
2013  *	@list: list to dequeue from
2014  *
2015  *	Remove the tail of the list. This function does not take any locks
2016  *	so must be used with appropriate locks held only. The tail item is
2017  *	returned or %NULL if the list is empty.
2018  */
2019 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2020 {
2021 	struct sk_buff *skb = skb_peek_tail(list);
2022 	if (skb)
2023 		__skb_unlink(skb, list);
2024 	return skb;
2025 }
2026 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2027 
2028 
2029 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2030 {
2031 	return skb->data_len;
2032 }
2033 
2034 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2035 {
2036 	return skb->len - skb->data_len;
2037 }
2038 
2039 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2040 {
2041 	unsigned int i, len = 0;
2042 
2043 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2044 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2045 	return len;
2046 }
2047 
2048 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2049 {
2050 	return skb_headlen(skb) + __skb_pagelen(skb);
2051 }
2052 
2053 /**
2054  * __skb_fill_page_desc - initialise a paged fragment in an skb
2055  * @skb: buffer containing fragment to be initialised
2056  * @i: paged fragment index to initialise
2057  * @page: the page to use for this fragment
2058  * @off: the offset to the data with @page
2059  * @size: the length of the data
2060  *
2061  * Initialises the @i'th fragment of @skb to point to &size bytes at
2062  * offset @off within @page.
2063  *
2064  * Does not take any additional reference on the fragment.
2065  */
2066 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2067 					struct page *page, int off, int size)
2068 {
2069 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2070 
2071 	/*
2072 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2073 	 * that not all callers have unique ownership of the page but rely
2074 	 * on page_is_pfmemalloc doing the right thing(tm).
2075 	 */
2076 	frag->page.p		  = page;
2077 	frag->page_offset	  = off;
2078 	skb_frag_size_set(frag, size);
2079 
2080 	page = compound_head(page);
2081 	if (page_is_pfmemalloc(page))
2082 		skb->pfmemalloc	= true;
2083 }
2084 
2085 /**
2086  * skb_fill_page_desc - initialise a paged fragment in an skb
2087  * @skb: buffer containing fragment to be initialised
2088  * @i: paged fragment index to initialise
2089  * @page: the page to use for this fragment
2090  * @off: the offset to the data with @page
2091  * @size: the length of the data
2092  *
2093  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2094  * @skb to point to @size bytes at offset @off within @page. In
2095  * addition updates @skb such that @i is the last fragment.
2096  *
2097  * Does not take any additional reference on the fragment.
2098  */
2099 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2100 				      struct page *page, int off, int size)
2101 {
2102 	__skb_fill_page_desc(skb, i, page, off, size);
2103 	skb_shinfo(skb)->nr_frags = i + 1;
2104 }
2105 
2106 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2107 		     int size, unsigned int truesize);
2108 
2109 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2110 			  unsigned int truesize);
2111 
2112 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2113 
2114 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2115 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2116 {
2117 	return skb->head + skb->tail;
2118 }
2119 
2120 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2121 {
2122 	skb->tail = skb->data - skb->head;
2123 }
2124 
2125 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2126 {
2127 	skb_reset_tail_pointer(skb);
2128 	skb->tail += offset;
2129 }
2130 
2131 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2132 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2133 {
2134 	return skb->tail;
2135 }
2136 
2137 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2138 {
2139 	skb->tail = skb->data;
2140 }
2141 
2142 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2143 {
2144 	skb->tail = skb->data + offset;
2145 }
2146 
2147 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2148 
2149 /*
2150  *	Add data to an sk_buff
2151  */
2152 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2153 void *skb_put(struct sk_buff *skb, unsigned int len);
2154 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2155 {
2156 	void *tmp = skb_tail_pointer(skb);
2157 	SKB_LINEAR_ASSERT(skb);
2158 	skb->tail += len;
2159 	skb->len  += len;
2160 	return tmp;
2161 }
2162 
2163 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2164 {
2165 	void *tmp = __skb_put(skb, len);
2166 
2167 	memset(tmp, 0, len);
2168 	return tmp;
2169 }
2170 
2171 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2172 				   unsigned int len)
2173 {
2174 	void *tmp = __skb_put(skb, len);
2175 
2176 	memcpy(tmp, data, len);
2177 	return tmp;
2178 }
2179 
2180 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2181 {
2182 	*(u8 *)__skb_put(skb, 1) = val;
2183 }
2184 
2185 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2186 {
2187 	void *tmp = skb_put(skb, len);
2188 
2189 	memset(tmp, 0, len);
2190 
2191 	return tmp;
2192 }
2193 
2194 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2195 				 unsigned int len)
2196 {
2197 	void *tmp = skb_put(skb, len);
2198 
2199 	memcpy(tmp, data, len);
2200 
2201 	return tmp;
2202 }
2203 
2204 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2205 {
2206 	*(u8 *)skb_put(skb, 1) = val;
2207 }
2208 
2209 void *skb_push(struct sk_buff *skb, unsigned int len);
2210 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2211 {
2212 	skb->data -= len;
2213 	skb->len  += len;
2214 	return skb->data;
2215 }
2216 
2217 void *skb_pull(struct sk_buff *skb, unsigned int len);
2218 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2219 {
2220 	skb->len -= len;
2221 	BUG_ON(skb->len < skb->data_len);
2222 	return skb->data += len;
2223 }
2224 
2225 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2226 {
2227 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2228 }
2229 
2230 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2231 
2232 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2233 {
2234 	if (len > skb_headlen(skb) &&
2235 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2236 		return NULL;
2237 	skb->len -= len;
2238 	return skb->data += len;
2239 }
2240 
2241 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2242 {
2243 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2244 }
2245 
2246 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2247 {
2248 	if (likely(len <= skb_headlen(skb)))
2249 		return 1;
2250 	if (unlikely(len > skb->len))
2251 		return 0;
2252 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2253 }
2254 
2255 void skb_condense(struct sk_buff *skb);
2256 
2257 /**
2258  *	skb_headroom - bytes at buffer head
2259  *	@skb: buffer to check
2260  *
2261  *	Return the number of bytes of free space at the head of an &sk_buff.
2262  */
2263 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2264 {
2265 	return skb->data - skb->head;
2266 }
2267 
2268 /**
2269  *	skb_tailroom - bytes at buffer end
2270  *	@skb: buffer to check
2271  *
2272  *	Return the number of bytes of free space at the tail of an sk_buff
2273  */
2274 static inline int skb_tailroom(const struct sk_buff *skb)
2275 {
2276 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2277 }
2278 
2279 /**
2280  *	skb_availroom - bytes at buffer end
2281  *	@skb: buffer to check
2282  *
2283  *	Return the number of bytes of free space at the tail of an sk_buff
2284  *	allocated by sk_stream_alloc()
2285  */
2286 static inline int skb_availroom(const struct sk_buff *skb)
2287 {
2288 	if (skb_is_nonlinear(skb))
2289 		return 0;
2290 
2291 	return skb->end - skb->tail - skb->reserved_tailroom;
2292 }
2293 
2294 /**
2295  *	skb_reserve - adjust headroom
2296  *	@skb: buffer to alter
2297  *	@len: bytes to move
2298  *
2299  *	Increase the headroom of an empty &sk_buff by reducing the tail
2300  *	room. This is only allowed for an empty buffer.
2301  */
2302 static inline void skb_reserve(struct sk_buff *skb, int len)
2303 {
2304 	skb->data += len;
2305 	skb->tail += len;
2306 }
2307 
2308 /**
2309  *	skb_tailroom_reserve - adjust reserved_tailroom
2310  *	@skb: buffer to alter
2311  *	@mtu: maximum amount of headlen permitted
2312  *	@needed_tailroom: minimum amount of reserved_tailroom
2313  *
2314  *	Set reserved_tailroom so that headlen can be as large as possible but
2315  *	not larger than mtu and tailroom cannot be smaller than
2316  *	needed_tailroom.
2317  *	The required headroom should already have been reserved before using
2318  *	this function.
2319  */
2320 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2321 					unsigned int needed_tailroom)
2322 {
2323 	SKB_LINEAR_ASSERT(skb);
2324 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2325 		/* use at most mtu */
2326 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2327 	else
2328 		/* use up to all available space */
2329 		skb->reserved_tailroom = needed_tailroom;
2330 }
2331 
2332 #define ENCAP_TYPE_ETHER	0
2333 #define ENCAP_TYPE_IPPROTO	1
2334 
2335 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2336 					  __be16 protocol)
2337 {
2338 	skb->inner_protocol = protocol;
2339 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2340 }
2341 
2342 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2343 					 __u8 ipproto)
2344 {
2345 	skb->inner_ipproto = ipproto;
2346 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2347 }
2348 
2349 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2350 {
2351 	skb->inner_mac_header = skb->mac_header;
2352 	skb->inner_network_header = skb->network_header;
2353 	skb->inner_transport_header = skb->transport_header;
2354 }
2355 
2356 static inline void skb_reset_mac_len(struct sk_buff *skb)
2357 {
2358 	skb->mac_len = skb->network_header - skb->mac_header;
2359 }
2360 
2361 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2362 							*skb)
2363 {
2364 	return skb->head + skb->inner_transport_header;
2365 }
2366 
2367 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2368 {
2369 	return skb_inner_transport_header(skb) - skb->data;
2370 }
2371 
2372 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2373 {
2374 	skb->inner_transport_header = skb->data - skb->head;
2375 }
2376 
2377 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2378 						   const int offset)
2379 {
2380 	skb_reset_inner_transport_header(skb);
2381 	skb->inner_transport_header += offset;
2382 }
2383 
2384 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2385 {
2386 	return skb->head + skb->inner_network_header;
2387 }
2388 
2389 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2390 {
2391 	skb->inner_network_header = skb->data - skb->head;
2392 }
2393 
2394 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2395 						const int offset)
2396 {
2397 	skb_reset_inner_network_header(skb);
2398 	skb->inner_network_header += offset;
2399 }
2400 
2401 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2402 {
2403 	return skb->head + skb->inner_mac_header;
2404 }
2405 
2406 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2407 {
2408 	skb->inner_mac_header = skb->data - skb->head;
2409 }
2410 
2411 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2412 					    const int offset)
2413 {
2414 	skb_reset_inner_mac_header(skb);
2415 	skb->inner_mac_header += offset;
2416 }
2417 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2418 {
2419 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2420 }
2421 
2422 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2423 {
2424 	return skb->head + skb->transport_header;
2425 }
2426 
2427 static inline void skb_reset_transport_header(struct sk_buff *skb)
2428 {
2429 	skb->transport_header = skb->data - skb->head;
2430 }
2431 
2432 static inline void skb_set_transport_header(struct sk_buff *skb,
2433 					    const int offset)
2434 {
2435 	skb_reset_transport_header(skb);
2436 	skb->transport_header += offset;
2437 }
2438 
2439 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2440 {
2441 	return skb->head + skb->network_header;
2442 }
2443 
2444 static inline void skb_reset_network_header(struct sk_buff *skb)
2445 {
2446 	skb->network_header = skb->data - skb->head;
2447 }
2448 
2449 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2450 {
2451 	skb_reset_network_header(skb);
2452 	skb->network_header += offset;
2453 }
2454 
2455 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2456 {
2457 	return skb->head + skb->mac_header;
2458 }
2459 
2460 static inline int skb_mac_offset(const struct sk_buff *skb)
2461 {
2462 	return skb_mac_header(skb) - skb->data;
2463 }
2464 
2465 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2466 {
2467 	return skb->network_header - skb->mac_header;
2468 }
2469 
2470 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2471 {
2472 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2473 }
2474 
2475 static inline void skb_reset_mac_header(struct sk_buff *skb)
2476 {
2477 	skb->mac_header = skb->data - skb->head;
2478 }
2479 
2480 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2481 {
2482 	skb_reset_mac_header(skb);
2483 	skb->mac_header += offset;
2484 }
2485 
2486 static inline void skb_pop_mac_header(struct sk_buff *skb)
2487 {
2488 	skb->mac_header = skb->network_header;
2489 }
2490 
2491 static inline void skb_probe_transport_header(struct sk_buff *skb)
2492 {
2493 	struct flow_keys_basic keys;
2494 
2495 	if (skb_transport_header_was_set(skb))
2496 		return;
2497 
2498 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2499 					     NULL, 0, 0, 0, 0))
2500 		skb_set_transport_header(skb, keys.control.thoff);
2501 }
2502 
2503 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2504 {
2505 	if (skb_mac_header_was_set(skb)) {
2506 		const unsigned char *old_mac = skb_mac_header(skb);
2507 
2508 		skb_set_mac_header(skb, -skb->mac_len);
2509 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2510 	}
2511 }
2512 
2513 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2514 {
2515 	return skb->csum_start - skb_headroom(skb);
2516 }
2517 
2518 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2519 {
2520 	return skb->head + skb->csum_start;
2521 }
2522 
2523 static inline int skb_transport_offset(const struct sk_buff *skb)
2524 {
2525 	return skb_transport_header(skb) - skb->data;
2526 }
2527 
2528 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2529 {
2530 	return skb->transport_header - skb->network_header;
2531 }
2532 
2533 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2534 {
2535 	return skb->inner_transport_header - skb->inner_network_header;
2536 }
2537 
2538 static inline int skb_network_offset(const struct sk_buff *skb)
2539 {
2540 	return skb_network_header(skb) - skb->data;
2541 }
2542 
2543 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2544 {
2545 	return skb_inner_network_header(skb) - skb->data;
2546 }
2547 
2548 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2549 {
2550 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2551 }
2552 
2553 /*
2554  * CPUs often take a performance hit when accessing unaligned memory
2555  * locations. The actual performance hit varies, it can be small if the
2556  * hardware handles it or large if we have to take an exception and fix it
2557  * in software.
2558  *
2559  * Since an ethernet header is 14 bytes network drivers often end up with
2560  * the IP header at an unaligned offset. The IP header can be aligned by
2561  * shifting the start of the packet by 2 bytes. Drivers should do this
2562  * with:
2563  *
2564  * skb_reserve(skb, NET_IP_ALIGN);
2565  *
2566  * The downside to this alignment of the IP header is that the DMA is now
2567  * unaligned. On some architectures the cost of an unaligned DMA is high
2568  * and this cost outweighs the gains made by aligning the IP header.
2569  *
2570  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2571  * to be overridden.
2572  */
2573 #ifndef NET_IP_ALIGN
2574 #define NET_IP_ALIGN	2
2575 #endif
2576 
2577 /*
2578  * The networking layer reserves some headroom in skb data (via
2579  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2580  * the header has to grow. In the default case, if the header has to grow
2581  * 32 bytes or less we avoid the reallocation.
2582  *
2583  * Unfortunately this headroom changes the DMA alignment of the resulting
2584  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2585  * on some architectures. An architecture can override this value,
2586  * perhaps setting it to a cacheline in size (since that will maintain
2587  * cacheline alignment of the DMA). It must be a power of 2.
2588  *
2589  * Various parts of the networking layer expect at least 32 bytes of
2590  * headroom, you should not reduce this.
2591  *
2592  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2593  * to reduce average number of cache lines per packet.
2594  * get_rps_cpus() for example only access one 64 bytes aligned block :
2595  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2596  */
2597 #ifndef NET_SKB_PAD
2598 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2599 #endif
2600 
2601 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2602 
2603 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2604 {
2605 	if (WARN_ON(skb_is_nonlinear(skb)))
2606 		return;
2607 	skb->len = len;
2608 	skb_set_tail_pointer(skb, len);
2609 }
2610 
2611 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2612 {
2613 	__skb_set_length(skb, len);
2614 }
2615 
2616 void skb_trim(struct sk_buff *skb, unsigned int len);
2617 
2618 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2619 {
2620 	if (skb->data_len)
2621 		return ___pskb_trim(skb, len);
2622 	__skb_trim(skb, len);
2623 	return 0;
2624 }
2625 
2626 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2627 {
2628 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2629 }
2630 
2631 /**
2632  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2633  *	@skb: buffer to alter
2634  *	@len: new length
2635  *
2636  *	This is identical to pskb_trim except that the caller knows that
2637  *	the skb is not cloned so we should never get an error due to out-
2638  *	of-memory.
2639  */
2640 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2641 {
2642 	int err = pskb_trim(skb, len);
2643 	BUG_ON(err);
2644 }
2645 
2646 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2647 {
2648 	unsigned int diff = len - skb->len;
2649 
2650 	if (skb_tailroom(skb) < diff) {
2651 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2652 					   GFP_ATOMIC);
2653 		if (ret)
2654 			return ret;
2655 	}
2656 	__skb_set_length(skb, len);
2657 	return 0;
2658 }
2659 
2660 /**
2661  *	skb_orphan - orphan a buffer
2662  *	@skb: buffer to orphan
2663  *
2664  *	If a buffer currently has an owner then we call the owner's
2665  *	destructor function and make the @skb unowned. The buffer continues
2666  *	to exist but is no longer charged to its former owner.
2667  */
2668 static inline void skb_orphan(struct sk_buff *skb)
2669 {
2670 	if (skb->destructor) {
2671 		skb->destructor(skb);
2672 		skb->destructor = NULL;
2673 		skb->sk		= NULL;
2674 	} else {
2675 		BUG_ON(skb->sk);
2676 	}
2677 }
2678 
2679 /**
2680  *	skb_orphan_frags - orphan the frags contained in a buffer
2681  *	@skb: buffer to orphan frags from
2682  *	@gfp_mask: allocation mask for replacement pages
2683  *
2684  *	For each frag in the SKB which needs a destructor (i.e. has an
2685  *	owner) create a copy of that frag and release the original
2686  *	page by calling the destructor.
2687  */
2688 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2689 {
2690 	if (likely(!skb_zcopy(skb)))
2691 		return 0;
2692 	if (!skb_zcopy_is_nouarg(skb) &&
2693 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2694 		return 0;
2695 	return skb_copy_ubufs(skb, gfp_mask);
2696 }
2697 
2698 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2699 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2700 {
2701 	if (likely(!skb_zcopy(skb)))
2702 		return 0;
2703 	return skb_copy_ubufs(skb, gfp_mask);
2704 }
2705 
2706 /**
2707  *	__skb_queue_purge - empty a list
2708  *	@list: list to empty
2709  *
2710  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2711  *	the list and one reference dropped. This function does not take the
2712  *	list lock and the caller must hold the relevant locks to use it.
2713  */
2714 static inline void __skb_queue_purge(struct sk_buff_head *list)
2715 {
2716 	struct sk_buff *skb;
2717 	while ((skb = __skb_dequeue(list)) != NULL)
2718 		kfree_skb(skb);
2719 }
2720 void skb_queue_purge(struct sk_buff_head *list);
2721 
2722 unsigned int skb_rbtree_purge(struct rb_root *root);
2723 
2724 void *netdev_alloc_frag(unsigned int fragsz);
2725 
2726 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2727 				   gfp_t gfp_mask);
2728 
2729 /**
2730  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2731  *	@dev: network device to receive on
2732  *	@length: length to allocate
2733  *
2734  *	Allocate a new &sk_buff and assign it a usage count of one. The
2735  *	buffer has unspecified headroom built in. Users should allocate
2736  *	the headroom they think they need without accounting for the
2737  *	built in space. The built in space is used for optimisations.
2738  *
2739  *	%NULL is returned if there is no free memory. Although this function
2740  *	allocates memory it can be called from an interrupt.
2741  */
2742 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2743 					       unsigned int length)
2744 {
2745 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2746 }
2747 
2748 /* legacy helper around __netdev_alloc_skb() */
2749 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2750 					      gfp_t gfp_mask)
2751 {
2752 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2753 }
2754 
2755 /* legacy helper around netdev_alloc_skb() */
2756 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2757 {
2758 	return netdev_alloc_skb(NULL, length);
2759 }
2760 
2761 
2762 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2763 		unsigned int length, gfp_t gfp)
2764 {
2765 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2766 
2767 	if (NET_IP_ALIGN && skb)
2768 		skb_reserve(skb, NET_IP_ALIGN);
2769 	return skb;
2770 }
2771 
2772 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2773 		unsigned int length)
2774 {
2775 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2776 }
2777 
2778 static inline void skb_free_frag(void *addr)
2779 {
2780 	page_frag_free(addr);
2781 }
2782 
2783 void *napi_alloc_frag(unsigned int fragsz);
2784 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2785 				 unsigned int length, gfp_t gfp_mask);
2786 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2787 					     unsigned int length)
2788 {
2789 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2790 }
2791 void napi_consume_skb(struct sk_buff *skb, int budget);
2792 
2793 void __kfree_skb_flush(void);
2794 void __kfree_skb_defer(struct sk_buff *skb);
2795 
2796 /**
2797  * __dev_alloc_pages - allocate page for network Rx
2798  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2799  * @order: size of the allocation
2800  *
2801  * Allocate a new page.
2802  *
2803  * %NULL is returned if there is no free memory.
2804 */
2805 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2806 					     unsigned int order)
2807 {
2808 	/* This piece of code contains several assumptions.
2809 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2810 	 * 2.  The expectation is the user wants a compound page.
2811 	 * 3.  If requesting a order 0 page it will not be compound
2812 	 *     due to the check to see if order has a value in prep_new_page
2813 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2814 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2815 	 */
2816 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2817 
2818 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2819 }
2820 
2821 static inline struct page *dev_alloc_pages(unsigned int order)
2822 {
2823 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2824 }
2825 
2826 /**
2827  * __dev_alloc_page - allocate a page for network Rx
2828  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2829  *
2830  * Allocate a new page.
2831  *
2832  * %NULL is returned if there is no free memory.
2833  */
2834 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2835 {
2836 	return __dev_alloc_pages(gfp_mask, 0);
2837 }
2838 
2839 static inline struct page *dev_alloc_page(void)
2840 {
2841 	return dev_alloc_pages(0);
2842 }
2843 
2844 /**
2845  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2846  *	@page: The page that was allocated from skb_alloc_page
2847  *	@skb: The skb that may need pfmemalloc set
2848  */
2849 static inline void skb_propagate_pfmemalloc(struct page *page,
2850 					     struct sk_buff *skb)
2851 {
2852 	if (page_is_pfmemalloc(page))
2853 		skb->pfmemalloc = true;
2854 }
2855 
2856 /**
2857  * skb_frag_page - retrieve the page referred to by a paged fragment
2858  * @frag: the paged fragment
2859  *
2860  * Returns the &struct page associated with @frag.
2861  */
2862 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2863 {
2864 	return frag->page.p;
2865 }
2866 
2867 /**
2868  * __skb_frag_ref - take an addition reference on a paged fragment.
2869  * @frag: the paged fragment
2870  *
2871  * Takes an additional reference on the paged fragment @frag.
2872  */
2873 static inline void __skb_frag_ref(skb_frag_t *frag)
2874 {
2875 	get_page(skb_frag_page(frag));
2876 }
2877 
2878 /**
2879  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2880  * @skb: the buffer
2881  * @f: the fragment offset.
2882  *
2883  * Takes an additional reference on the @f'th paged fragment of @skb.
2884  */
2885 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2886 {
2887 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2888 }
2889 
2890 /**
2891  * __skb_frag_unref - release a reference on a paged fragment.
2892  * @frag: the paged fragment
2893  *
2894  * Releases a reference on the paged fragment @frag.
2895  */
2896 static inline void __skb_frag_unref(skb_frag_t *frag)
2897 {
2898 	put_page(skb_frag_page(frag));
2899 }
2900 
2901 /**
2902  * skb_frag_unref - release a reference on a paged fragment of an skb.
2903  * @skb: the buffer
2904  * @f: the fragment offset
2905  *
2906  * Releases a reference on the @f'th paged fragment of @skb.
2907  */
2908 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2909 {
2910 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2911 }
2912 
2913 /**
2914  * skb_frag_address - gets the address of the data contained in a paged fragment
2915  * @frag: the paged fragment buffer
2916  *
2917  * Returns the address of the data within @frag. The page must already
2918  * be mapped.
2919  */
2920 static inline void *skb_frag_address(const skb_frag_t *frag)
2921 {
2922 	return page_address(skb_frag_page(frag)) + frag->page_offset;
2923 }
2924 
2925 /**
2926  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2927  * @frag: the paged fragment buffer
2928  *
2929  * Returns the address of the data within @frag. Checks that the page
2930  * is mapped and returns %NULL otherwise.
2931  */
2932 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2933 {
2934 	void *ptr = page_address(skb_frag_page(frag));
2935 	if (unlikely(!ptr))
2936 		return NULL;
2937 
2938 	return ptr + frag->page_offset;
2939 }
2940 
2941 /**
2942  * __skb_frag_set_page - sets the page contained in a paged fragment
2943  * @frag: the paged fragment
2944  * @page: the page to set
2945  *
2946  * Sets the fragment @frag to contain @page.
2947  */
2948 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2949 {
2950 	frag->page.p = page;
2951 }
2952 
2953 /**
2954  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2955  * @skb: the buffer
2956  * @f: the fragment offset
2957  * @page: the page to set
2958  *
2959  * Sets the @f'th fragment of @skb to contain @page.
2960  */
2961 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2962 				     struct page *page)
2963 {
2964 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2965 }
2966 
2967 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2968 
2969 /**
2970  * skb_frag_dma_map - maps a paged fragment via the DMA API
2971  * @dev: the device to map the fragment to
2972  * @frag: the paged fragment to map
2973  * @offset: the offset within the fragment (starting at the
2974  *          fragment's own offset)
2975  * @size: the number of bytes to map
2976  * @dir: the direction of the mapping (``PCI_DMA_*``)
2977  *
2978  * Maps the page associated with @frag to @device.
2979  */
2980 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2981 					  const skb_frag_t *frag,
2982 					  size_t offset, size_t size,
2983 					  enum dma_data_direction dir)
2984 {
2985 	return dma_map_page(dev, skb_frag_page(frag),
2986 			    frag->page_offset + offset, size, dir);
2987 }
2988 
2989 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2990 					gfp_t gfp_mask)
2991 {
2992 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2993 }
2994 
2995 
2996 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2997 						  gfp_t gfp_mask)
2998 {
2999 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3000 }
3001 
3002 
3003 /**
3004  *	skb_clone_writable - is the header of a clone writable
3005  *	@skb: buffer to check
3006  *	@len: length up to which to write
3007  *
3008  *	Returns true if modifying the header part of the cloned buffer
3009  *	does not requires the data to be copied.
3010  */
3011 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3012 {
3013 	return !skb_header_cloned(skb) &&
3014 	       skb_headroom(skb) + len <= skb->hdr_len;
3015 }
3016 
3017 static inline int skb_try_make_writable(struct sk_buff *skb,
3018 					unsigned int write_len)
3019 {
3020 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3021 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3022 }
3023 
3024 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3025 			    int cloned)
3026 {
3027 	int delta = 0;
3028 
3029 	if (headroom > skb_headroom(skb))
3030 		delta = headroom - skb_headroom(skb);
3031 
3032 	if (delta || cloned)
3033 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3034 					GFP_ATOMIC);
3035 	return 0;
3036 }
3037 
3038 /**
3039  *	skb_cow - copy header of skb when it is required
3040  *	@skb: buffer to cow
3041  *	@headroom: needed headroom
3042  *
3043  *	If the skb passed lacks sufficient headroom or its data part
3044  *	is shared, data is reallocated. If reallocation fails, an error
3045  *	is returned and original skb is not changed.
3046  *
3047  *	The result is skb with writable area skb->head...skb->tail
3048  *	and at least @headroom of space at head.
3049  */
3050 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3051 {
3052 	return __skb_cow(skb, headroom, skb_cloned(skb));
3053 }
3054 
3055 /**
3056  *	skb_cow_head - skb_cow but only making the head writable
3057  *	@skb: buffer to cow
3058  *	@headroom: needed headroom
3059  *
3060  *	This function is identical to skb_cow except that we replace the
3061  *	skb_cloned check by skb_header_cloned.  It should be used when
3062  *	you only need to push on some header and do not need to modify
3063  *	the data.
3064  */
3065 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3066 {
3067 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3068 }
3069 
3070 /**
3071  *	skb_padto	- pad an skbuff up to a minimal size
3072  *	@skb: buffer to pad
3073  *	@len: minimal length
3074  *
3075  *	Pads up a buffer to ensure the trailing bytes exist and are
3076  *	blanked. If the buffer already contains sufficient data it
3077  *	is untouched. Otherwise it is extended. Returns zero on
3078  *	success. The skb is freed on error.
3079  */
3080 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3081 {
3082 	unsigned int size = skb->len;
3083 	if (likely(size >= len))
3084 		return 0;
3085 	return skb_pad(skb, len - size);
3086 }
3087 
3088 /**
3089  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3090  *	@skb: buffer to pad
3091  *	@len: minimal length
3092  *	@free_on_error: free buffer on error
3093  *
3094  *	Pads up a buffer to ensure the trailing bytes exist and are
3095  *	blanked. If the buffer already contains sufficient data it
3096  *	is untouched. Otherwise it is extended. Returns zero on
3097  *	success. The skb is freed on error if @free_on_error is true.
3098  */
3099 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3100 				  bool free_on_error)
3101 {
3102 	unsigned int size = skb->len;
3103 
3104 	if (unlikely(size < len)) {
3105 		len -= size;
3106 		if (__skb_pad(skb, len, free_on_error))
3107 			return -ENOMEM;
3108 		__skb_put(skb, len);
3109 	}
3110 	return 0;
3111 }
3112 
3113 /**
3114  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3115  *	@skb: buffer to pad
3116  *	@len: minimal length
3117  *
3118  *	Pads up a buffer to ensure the trailing bytes exist and are
3119  *	blanked. If the buffer already contains sufficient data it
3120  *	is untouched. Otherwise it is extended. Returns zero on
3121  *	success. The skb is freed on error.
3122  */
3123 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3124 {
3125 	return __skb_put_padto(skb, len, true);
3126 }
3127 
3128 static inline int skb_add_data(struct sk_buff *skb,
3129 			       struct iov_iter *from, int copy)
3130 {
3131 	const int off = skb->len;
3132 
3133 	if (skb->ip_summed == CHECKSUM_NONE) {
3134 		__wsum csum = 0;
3135 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3136 					         &csum, from)) {
3137 			skb->csum = csum_block_add(skb->csum, csum, off);
3138 			return 0;
3139 		}
3140 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3141 		return 0;
3142 
3143 	__skb_trim(skb, off);
3144 	return -EFAULT;
3145 }
3146 
3147 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3148 				    const struct page *page, int off)
3149 {
3150 	if (skb_zcopy(skb))
3151 		return false;
3152 	if (i) {
3153 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3154 
3155 		return page == skb_frag_page(frag) &&
3156 		       off == frag->page_offset + skb_frag_size(frag);
3157 	}
3158 	return false;
3159 }
3160 
3161 static inline int __skb_linearize(struct sk_buff *skb)
3162 {
3163 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3164 }
3165 
3166 /**
3167  *	skb_linearize - convert paged skb to linear one
3168  *	@skb: buffer to linarize
3169  *
3170  *	If there is no free memory -ENOMEM is returned, otherwise zero
3171  *	is returned and the old skb data released.
3172  */
3173 static inline int skb_linearize(struct sk_buff *skb)
3174 {
3175 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3176 }
3177 
3178 /**
3179  * skb_has_shared_frag - can any frag be overwritten
3180  * @skb: buffer to test
3181  *
3182  * Return true if the skb has at least one frag that might be modified
3183  * by an external entity (as in vmsplice()/sendfile())
3184  */
3185 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3186 {
3187 	return skb_is_nonlinear(skb) &&
3188 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3189 }
3190 
3191 /**
3192  *	skb_linearize_cow - make sure skb is linear and writable
3193  *	@skb: buffer to process
3194  *
3195  *	If there is no free memory -ENOMEM is returned, otherwise zero
3196  *	is returned and the old skb data released.
3197  */
3198 static inline int skb_linearize_cow(struct sk_buff *skb)
3199 {
3200 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3201 	       __skb_linearize(skb) : 0;
3202 }
3203 
3204 static __always_inline void
3205 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3206 		     unsigned int off)
3207 {
3208 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3209 		skb->csum = csum_block_sub(skb->csum,
3210 					   csum_partial(start, len, 0), off);
3211 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3212 		 skb_checksum_start_offset(skb) < 0)
3213 		skb->ip_summed = CHECKSUM_NONE;
3214 }
3215 
3216 /**
3217  *	skb_postpull_rcsum - update checksum for received skb after pull
3218  *	@skb: buffer to update
3219  *	@start: start of data before pull
3220  *	@len: length of data pulled
3221  *
3222  *	After doing a pull on a received packet, you need to call this to
3223  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3224  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3225  */
3226 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3227 				      const void *start, unsigned int len)
3228 {
3229 	__skb_postpull_rcsum(skb, start, len, 0);
3230 }
3231 
3232 static __always_inline void
3233 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3234 		     unsigned int off)
3235 {
3236 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3237 		skb->csum = csum_block_add(skb->csum,
3238 					   csum_partial(start, len, 0), off);
3239 }
3240 
3241 /**
3242  *	skb_postpush_rcsum - update checksum for received skb after push
3243  *	@skb: buffer to update
3244  *	@start: start of data after push
3245  *	@len: length of data pushed
3246  *
3247  *	After doing a push on a received packet, you need to call this to
3248  *	update the CHECKSUM_COMPLETE checksum.
3249  */
3250 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3251 				      const void *start, unsigned int len)
3252 {
3253 	__skb_postpush_rcsum(skb, start, len, 0);
3254 }
3255 
3256 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3257 
3258 /**
3259  *	skb_push_rcsum - push skb and update receive checksum
3260  *	@skb: buffer to update
3261  *	@len: length of data pulled
3262  *
3263  *	This function performs an skb_push on the packet and updates
3264  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3265  *	receive path processing instead of skb_push unless you know
3266  *	that the checksum difference is zero (e.g., a valid IP header)
3267  *	or you are setting ip_summed to CHECKSUM_NONE.
3268  */
3269 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3270 {
3271 	skb_push(skb, len);
3272 	skb_postpush_rcsum(skb, skb->data, len);
3273 	return skb->data;
3274 }
3275 
3276 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3277 /**
3278  *	pskb_trim_rcsum - trim received skb and update checksum
3279  *	@skb: buffer to trim
3280  *	@len: new length
3281  *
3282  *	This is exactly the same as pskb_trim except that it ensures the
3283  *	checksum of received packets are still valid after the operation.
3284  *	It can change skb pointers.
3285  */
3286 
3287 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3288 {
3289 	if (likely(len >= skb->len))
3290 		return 0;
3291 	return pskb_trim_rcsum_slow(skb, len);
3292 }
3293 
3294 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3295 {
3296 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3297 		skb->ip_summed = CHECKSUM_NONE;
3298 	__skb_trim(skb, len);
3299 	return 0;
3300 }
3301 
3302 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3303 {
3304 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3305 		skb->ip_summed = CHECKSUM_NONE;
3306 	return __skb_grow(skb, len);
3307 }
3308 
3309 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3310 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3311 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3312 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3313 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3314 
3315 #define skb_queue_walk(queue, skb) \
3316 		for (skb = (queue)->next;					\
3317 		     skb != (struct sk_buff *)(queue);				\
3318 		     skb = skb->next)
3319 
3320 #define skb_queue_walk_safe(queue, skb, tmp)					\
3321 		for (skb = (queue)->next, tmp = skb->next;			\
3322 		     skb != (struct sk_buff *)(queue);				\
3323 		     skb = tmp, tmp = skb->next)
3324 
3325 #define skb_queue_walk_from(queue, skb)						\
3326 		for (; skb != (struct sk_buff *)(queue);			\
3327 		     skb = skb->next)
3328 
3329 #define skb_rbtree_walk(skb, root)						\
3330 		for (skb = skb_rb_first(root); skb != NULL;			\
3331 		     skb = skb_rb_next(skb))
3332 
3333 #define skb_rbtree_walk_from(skb)						\
3334 		for (; skb != NULL;						\
3335 		     skb = skb_rb_next(skb))
3336 
3337 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3338 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3339 		     skb = tmp)
3340 
3341 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3342 		for (tmp = skb->next;						\
3343 		     skb != (struct sk_buff *)(queue);				\
3344 		     skb = tmp, tmp = skb->next)
3345 
3346 #define skb_queue_reverse_walk(queue, skb) \
3347 		for (skb = (queue)->prev;					\
3348 		     skb != (struct sk_buff *)(queue);				\
3349 		     skb = skb->prev)
3350 
3351 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3352 		for (skb = (queue)->prev, tmp = skb->prev;			\
3353 		     skb != (struct sk_buff *)(queue);				\
3354 		     skb = tmp, tmp = skb->prev)
3355 
3356 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3357 		for (tmp = skb->prev;						\
3358 		     skb != (struct sk_buff *)(queue);				\
3359 		     skb = tmp, tmp = skb->prev)
3360 
3361 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3362 {
3363 	return skb_shinfo(skb)->frag_list != NULL;
3364 }
3365 
3366 static inline void skb_frag_list_init(struct sk_buff *skb)
3367 {
3368 	skb_shinfo(skb)->frag_list = NULL;
3369 }
3370 
3371 #define skb_walk_frags(skb, iter)	\
3372 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3373 
3374 
3375 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3376 				const struct sk_buff *skb);
3377 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3378 					  struct sk_buff_head *queue,
3379 					  unsigned int flags,
3380 					  void (*destructor)(struct sock *sk,
3381 							   struct sk_buff *skb),
3382 					  int *off, int *err,
3383 					  struct sk_buff **last);
3384 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3385 					void (*destructor)(struct sock *sk,
3386 							   struct sk_buff *skb),
3387 					int *off, int *err,
3388 					struct sk_buff **last);
3389 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3390 				    void (*destructor)(struct sock *sk,
3391 						       struct sk_buff *skb),
3392 				    int *off, int *err);
3393 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3394 				  int *err);
3395 __poll_t datagram_poll(struct file *file, struct socket *sock,
3396 			   struct poll_table_struct *wait);
3397 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3398 			   struct iov_iter *to, int size);
3399 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3400 					struct msghdr *msg, int size)
3401 {
3402 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3403 }
3404 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3405 				   struct msghdr *msg);
3406 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3407 			   struct iov_iter *to, int len,
3408 			   struct ahash_request *hash);
3409 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3410 				 struct iov_iter *from, int len);
3411 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3412 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3413 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3414 static inline void skb_free_datagram_locked(struct sock *sk,
3415 					    struct sk_buff *skb)
3416 {
3417 	__skb_free_datagram_locked(sk, skb, 0);
3418 }
3419 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3420 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3421 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3422 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3423 			      int len, __wsum csum);
3424 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3425 		    struct pipe_inode_info *pipe, unsigned int len,
3426 		    unsigned int flags);
3427 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3428 			 int len);
3429 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3430 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3431 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3432 		 int len, int hlen);
3433 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3434 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3435 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3436 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3437 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3438 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3439 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3440 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3441 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3442 int skb_vlan_pop(struct sk_buff *skb);
3443 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3444 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3445 			     gfp_t gfp);
3446 
3447 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3448 {
3449 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3450 }
3451 
3452 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3453 {
3454 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3455 }
3456 
3457 struct skb_checksum_ops {
3458 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3459 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3460 };
3461 
3462 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3463 
3464 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3465 		      __wsum csum, const struct skb_checksum_ops *ops);
3466 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3467 		    __wsum csum);
3468 
3469 static inline void * __must_check
3470 __skb_header_pointer(const struct sk_buff *skb, int offset,
3471 		     int len, void *data, int hlen, void *buffer)
3472 {
3473 	if (hlen - offset >= len)
3474 		return data + offset;
3475 
3476 	if (!skb ||
3477 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3478 		return NULL;
3479 
3480 	return buffer;
3481 }
3482 
3483 static inline void * __must_check
3484 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3485 {
3486 	return __skb_header_pointer(skb, offset, len, skb->data,
3487 				    skb_headlen(skb), buffer);
3488 }
3489 
3490 /**
3491  *	skb_needs_linearize - check if we need to linearize a given skb
3492  *			      depending on the given device features.
3493  *	@skb: socket buffer to check
3494  *	@features: net device features
3495  *
3496  *	Returns true if either:
3497  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3498  *	2. skb is fragmented and the device does not support SG.
3499  */
3500 static inline bool skb_needs_linearize(struct sk_buff *skb,
3501 				       netdev_features_t features)
3502 {
3503 	return skb_is_nonlinear(skb) &&
3504 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3505 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3506 }
3507 
3508 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3509 					     void *to,
3510 					     const unsigned int len)
3511 {
3512 	memcpy(to, skb->data, len);
3513 }
3514 
3515 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3516 						    const int offset, void *to,
3517 						    const unsigned int len)
3518 {
3519 	memcpy(to, skb->data + offset, len);
3520 }
3521 
3522 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3523 					   const void *from,
3524 					   const unsigned int len)
3525 {
3526 	memcpy(skb->data, from, len);
3527 }
3528 
3529 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3530 						  const int offset,
3531 						  const void *from,
3532 						  const unsigned int len)
3533 {
3534 	memcpy(skb->data + offset, from, len);
3535 }
3536 
3537 void skb_init(void);
3538 
3539 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3540 {
3541 	return skb->tstamp;
3542 }
3543 
3544 /**
3545  *	skb_get_timestamp - get timestamp from a skb
3546  *	@skb: skb to get stamp from
3547  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3548  *
3549  *	Timestamps are stored in the skb as offsets to a base timestamp.
3550  *	This function converts the offset back to a struct timeval and stores
3551  *	it in stamp.
3552  */
3553 static inline void skb_get_timestamp(const struct sk_buff *skb,
3554 				     struct __kernel_old_timeval *stamp)
3555 {
3556 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3557 }
3558 
3559 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3560 					 struct __kernel_sock_timeval *stamp)
3561 {
3562 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3563 
3564 	stamp->tv_sec = ts.tv_sec;
3565 	stamp->tv_usec = ts.tv_nsec / 1000;
3566 }
3567 
3568 static inline void skb_get_timestampns(const struct sk_buff *skb,
3569 				       struct timespec *stamp)
3570 {
3571 	*stamp = ktime_to_timespec(skb->tstamp);
3572 }
3573 
3574 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3575 					   struct __kernel_timespec *stamp)
3576 {
3577 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3578 
3579 	stamp->tv_sec = ts.tv_sec;
3580 	stamp->tv_nsec = ts.tv_nsec;
3581 }
3582 
3583 static inline void __net_timestamp(struct sk_buff *skb)
3584 {
3585 	skb->tstamp = ktime_get_real();
3586 }
3587 
3588 static inline ktime_t net_timedelta(ktime_t t)
3589 {
3590 	return ktime_sub(ktime_get_real(), t);
3591 }
3592 
3593 static inline ktime_t net_invalid_timestamp(void)
3594 {
3595 	return 0;
3596 }
3597 
3598 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3599 {
3600 	return skb_shinfo(skb)->meta_len;
3601 }
3602 
3603 static inline void *skb_metadata_end(const struct sk_buff *skb)
3604 {
3605 	return skb_mac_header(skb);
3606 }
3607 
3608 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3609 					  const struct sk_buff *skb_b,
3610 					  u8 meta_len)
3611 {
3612 	const void *a = skb_metadata_end(skb_a);
3613 	const void *b = skb_metadata_end(skb_b);
3614 	/* Using more efficient varaiant than plain call to memcmp(). */
3615 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3616 	u64 diffs = 0;
3617 
3618 	switch (meta_len) {
3619 #define __it(x, op) (x -= sizeof(u##op))
3620 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3621 	case 32: diffs |= __it_diff(a, b, 64);
3622 		 /* fall through */
3623 	case 24: diffs |= __it_diff(a, b, 64);
3624 		 /* fall through */
3625 	case 16: diffs |= __it_diff(a, b, 64);
3626 		 /* fall through */
3627 	case  8: diffs |= __it_diff(a, b, 64);
3628 		break;
3629 	case 28: diffs |= __it_diff(a, b, 64);
3630 		 /* fall through */
3631 	case 20: diffs |= __it_diff(a, b, 64);
3632 		 /* fall through */
3633 	case 12: diffs |= __it_diff(a, b, 64);
3634 		 /* fall through */
3635 	case  4: diffs |= __it_diff(a, b, 32);
3636 		break;
3637 	}
3638 	return diffs;
3639 #else
3640 	return memcmp(a - meta_len, b - meta_len, meta_len);
3641 #endif
3642 }
3643 
3644 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3645 					const struct sk_buff *skb_b)
3646 {
3647 	u8 len_a = skb_metadata_len(skb_a);
3648 	u8 len_b = skb_metadata_len(skb_b);
3649 
3650 	if (!(len_a | len_b))
3651 		return false;
3652 
3653 	return len_a != len_b ?
3654 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3655 }
3656 
3657 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3658 {
3659 	skb_shinfo(skb)->meta_len = meta_len;
3660 }
3661 
3662 static inline void skb_metadata_clear(struct sk_buff *skb)
3663 {
3664 	skb_metadata_set(skb, 0);
3665 }
3666 
3667 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3668 
3669 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3670 
3671 void skb_clone_tx_timestamp(struct sk_buff *skb);
3672 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3673 
3674 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3675 
3676 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3677 {
3678 }
3679 
3680 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3681 {
3682 	return false;
3683 }
3684 
3685 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3686 
3687 /**
3688  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3689  *
3690  * PHY drivers may accept clones of transmitted packets for
3691  * timestamping via their phy_driver.txtstamp method. These drivers
3692  * must call this function to return the skb back to the stack with a
3693  * timestamp.
3694  *
3695  * @skb: clone of the the original outgoing packet
3696  * @hwtstamps: hardware time stamps
3697  *
3698  */
3699 void skb_complete_tx_timestamp(struct sk_buff *skb,
3700 			       struct skb_shared_hwtstamps *hwtstamps);
3701 
3702 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3703 		     struct skb_shared_hwtstamps *hwtstamps,
3704 		     struct sock *sk, int tstype);
3705 
3706 /**
3707  * skb_tstamp_tx - queue clone of skb with send time stamps
3708  * @orig_skb:	the original outgoing packet
3709  * @hwtstamps:	hardware time stamps, may be NULL if not available
3710  *
3711  * If the skb has a socket associated, then this function clones the
3712  * skb (thus sharing the actual data and optional structures), stores
3713  * the optional hardware time stamping information (if non NULL) or
3714  * generates a software time stamp (otherwise), then queues the clone
3715  * to the error queue of the socket.  Errors are silently ignored.
3716  */
3717 void skb_tstamp_tx(struct sk_buff *orig_skb,
3718 		   struct skb_shared_hwtstamps *hwtstamps);
3719 
3720 /**
3721  * skb_tx_timestamp() - Driver hook for transmit timestamping
3722  *
3723  * Ethernet MAC Drivers should call this function in their hard_xmit()
3724  * function immediately before giving the sk_buff to the MAC hardware.
3725  *
3726  * Specifically, one should make absolutely sure that this function is
3727  * called before TX completion of this packet can trigger.  Otherwise
3728  * the packet could potentially already be freed.
3729  *
3730  * @skb: A socket buffer.
3731  */
3732 static inline void skb_tx_timestamp(struct sk_buff *skb)
3733 {
3734 	skb_clone_tx_timestamp(skb);
3735 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3736 		skb_tstamp_tx(skb, NULL);
3737 }
3738 
3739 /**
3740  * skb_complete_wifi_ack - deliver skb with wifi status
3741  *
3742  * @skb: the original outgoing packet
3743  * @acked: ack status
3744  *
3745  */
3746 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3747 
3748 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3749 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3750 
3751 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3752 {
3753 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3754 		skb->csum_valid ||
3755 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3756 		 skb_checksum_start_offset(skb) >= 0));
3757 }
3758 
3759 /**
3760  *	skb_checksum_complete - Calculate checksum of an entire packet
3761  *	@skb: packet to process
3762  *
3763  *	This function calculates the checksum over the entire packet plus
3764  *	the value of skb->csum.  The latter can be used to supply the
3765  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3766  *	checksum.
3767  *
3768  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3769  *	this function can be used to verify that checksum on received
3770  *	packets.  In that case the function should return zero if the
3771  *	checksum is correct.  In particular, this function will return zero
3772  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3773  *	hardware has already verified the correctness of the checksum.
3774  */
3775 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3776 {
3777 	return skb_csum_unnecessary(skb) ?
3778 	       0 : __skb_checksum_complete(skb);
3779 }
3780 
3781 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3782 {
3783 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3784 		if (skb->csum_level == 0)
3785 			skb->ip_summed = CHECKSUM_NONE;
3786 		else
3787 			skb->csum_level--;
3788 	}
3789 }
3790 
3791 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3792 {
3793 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3794 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3795 			skb->csum_level++;
3796 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3797 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3798 		skb->csum_level = 0;
3799 	}
3800 }
3801 
3802 /* Check if we need to perform checksum complete validation.
3803  *
3804  * Returns true if checksum complete is needed, false otherwise
3805  * (either checksum is unnecessary or zero checksum is allowed).
3806  */
3807 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3808 						  bool zero_okay,
3809 						  __sum16 check)
3810 {
3811 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3812 		skb->csum_valid = 1;
3813 		__skb_decr_checksum_unnecessary(skb);
3814 		return false;
3815 	}
3816 
3817 	return true;
3818 }
3819 
3820 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3821  * in checksum_init.
3822  */
3823 #define CHECKSUM_BREAK 76
3824 
3825 /* Unset checksum-complete
3826  *
3827  * Unset checksum complete can be done when packet is being modified
3828  * (uncompressed for instance) and checksum-complete value is
3829  * invalidated.
3830  */
3831 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3832 {
3833 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3834 		skb->ip_summed = CHECKSUM_NONE;
3835 }
3836 
3837 /* Validate (init) checksum based on checksum complete.
3838  *
3839  * Return values:
3840  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3841  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3842  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3843  *   non-zero: value of invalid checksum
3844  *
3845  */
3846 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3847 						       bool complete,
3848 						       __wsum psum)
3849 {
3850 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3851 		if (!csum_fold(csum_add(psum, skb->csum))) {
3852 			skb->csum_valid = 1;
3853 			return 0;
3854 		}
3855 	}
3856 
3857 	skb->csum = psum;
3858 
3859 	if (complete || skb->len <= CHECKSUM_BREAK) {
3860 		__sum16 csum;
3861 
3862 		csum = __skb_checksum_complete(skb);
3863 		skb->csum_valid = !csum;
3864 		return csum;
3865 	}
3866 
3867 	return 0;
3868 }
3869 
3870 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3871 {
3872 	return 0;
3873 }
3874 
3875 /* Perform checksum validate (init). Note that this is a macro since we only
3876  * want to calculate the pseudo header which is an input function if necessary.
3877  * First we try to validate without any computation (checksum unnecessary) and
3878  * then calculate based on checksum complete calling the function to compute
3879  * pseudo header.
3880  *
3881  * Return values:
3882  *   0: checksum is validated or try to in skb_checksum_complete
3883  *   non-zero: value of invalid checksum
3884  */
3885 #define __skb_checksum_validate(skb, proto, complete,			\
3886 				zero_okay, check, compute_pseudo)	\
3887 ({									\
3888 	__sum16 __ret = 0;						\
3889 	skb->csum_valid = 0;						\
3890 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3891 		__ret = __skb_checksum_validate_complete(skb,		\
3892 				complete, compute_pseudo(skb, proto));	\
3893 	__ret;								\
3894 })
3895 
3896 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3897 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3898 
3899 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3900 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3901 
3902 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3903 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3904 
3905 #define skb_checksum_validate_zero_check(skb, proto, check,		\
3906 					 compute_pseudo)		\
3907 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3908 
3909 #define skb_checksum_simple_validate(skb)				\
3910 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3911 
3912 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3913 {
3914 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3915 }
3916 
3917 static inline void __skb_checksum_convert(struct sk_buff *skb,
3918 					  __sum16 check, __wsum pseudo)
3919 {
3920 	skb->csum = ~pseudo;
3921 	skb->ip_summed = CHECKSUM_COMPLETE;
3922 }
3923 
3924 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
3925 do {									\
3926 	if (__skb_checksum_convert_check(skb))				\
3927 		__skb_checksum_convert(skb, check,			\
3928 				       compute_pseudo(skb, proto));	\
3929 } while (0)
3930 
3931 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3932 					      u16 start, u16 offset)
3933 {
3934 	skb->ip_summed = CHECKSUM_PARTIAL;
3935 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3936 	skb->csum_offset = offset - start;
3937 }
3938 
3939 /* Update skbuf and packet to reflect the remote checksum offload operation.
3940  * When called, ptr indicates the starting point for skb->csum when
3941  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3942  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3943  */
3944 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3945 				       int start, int offset, bool nopartial)
3946 {
3947 	__wsum delta;
3948 
3949 	if (!nopartial) {
3950 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
3951 		return;
3952 	}
3953 
3954 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3955 		__skb_checksum_complete(skb);
3956 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3957 	}
3958 
3959 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
3960 
3961 	/* Adjust skb->csum since we changed the packet */
3962 	skb->csum = csum_add(skb->csum, delta);
3963 }
3964 
3965 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3966 {
3967 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3968 	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3969 #else
3970 	return NULL;
3971 #endif
3972 }
3973 
3974 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3975 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3976 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3977 {
3978 	if (nfct && atomic_dec_and_test(&nfct->use))
3979 		nf_conntrack_destroy(nfct);
3980 }
3981 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3982 {
3983 	if (nfct)
3984 		atomic_inc(&nfct->use);
3985 }
3986 #endif
3987 
3988 #ifdef CONFIG_SKB_EXTENSIONS
3989 enum skb_ext_id {
3990 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3991 	SKB_EXT_BRIDGE_NF,
3992 #endif
3993 #ifdef CONFIG_XFRM
3994 	SKB_EXT_SEC_PATH,
3995 #endif
3996 	SKB_EXT_NUM, /* must be last */
3997 };
3998 
3999 /**
4000  *	struct skb_ext - sk_buff extensions
4001  *	@refcnt: 1 on allocation, deallocated on 0
4002  *	@offset: offset to add to @data to obtain extension address
4003  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4004  *	@data: start of extension data, variable sized
4005  *
4006  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4007  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4008  */
4009 struct skb_ext {
4010 	refcount_t refcnt;
4011 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4012 	u8 chunks;		/* same */
4013 	char data[0] __aligned(8);
4014 };
4015 
4016 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4017 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4018 void __skb_ext_put(struct skb_ext *ext);
4019 
4020 static inline void skb_ext_put(struct sk_buff *skb)
4021 {
4022 	if (skb->active_extensions)
4023 		__skb_ext_put(skb->extensions);
4024 }
4025 
4026 static inline void __skb_ext_copy(struct sk_buff *dst,
4027 				  const struct sk_buff *src)
4028 {
4029 	dst->active_extensions = src->active_extensions;
4030 
4031 	if (src->active_extensions) {
4032 		struct skb_ext *ext = src->extensions;
4033 
4034 		refcount_inc(&ext->refcnt);
4035 		dst->extensions = ext;
4036 	}
4037 }
4038 
4039 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4040 {
4041 	skb_ext_put(dst);
4042 	__skb_ext_copy(dst, src);
4043 }
4044 
4045 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4046 {
4047 	return !!ext->offset[i];
4048 }
4049 
4050 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4051 {
4052 	return skb->active_extensions & (1 << id);
4053 }
4054 
4055 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4056 {
4057 	if (skb_ext_exist(skb, id))
4058 		__skb_ext_del(skb, id);
4059 }
4060 
4061 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4062 {
4063 	if (skb_ext_exist(skb, id)) {
4064 		struct skb_ext *ext = skb->extensions;
4065 
4066 		return (void *)ext + (ext->offset[id] << 3);
4067 	}
4068 
4069 	return NULL;
4070 }
4071 #else
4072 static inline void skb_ext_put(struct sk_buff *skb) {}
4073 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4074 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4075 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4076 #endif /* CONFIG_SKB_EXTENSIONS */
4077 
4078 static inline void nf_reset(struct sk_buff *skb)
4079 {
4080 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4081 	nf_conntrack_put(skb_nfct(skb));
4082 	skb->_nfct = 0;
4083 #endif
4084 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4085 	skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
4086 #endif
4087 }
4088 
4089 static inline void nf_reset_trace(struct sk_buff *skb)
4090 {
4091 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4092 	skb->nf_trace = 0;
4093 #endif
4094 }
4095 
4096 static inline void ipvs_reset(struct sk_buff *skb)
4097 {
4098 #if IS_ENABLED(CONFIG_IP_VS)
4099 	skb->ipvs_property = 0;
4100 #endif
4101 }
4102 
4103 /* Note: This doesn't put any conntrack info in dst. */
4104 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4105 			     bool copy)
4106 {
4107 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4108 	dst->_nfct = src->_nfct;
4109 	nf_conntrack_get(skb_nfct(src));
4110 #endif
4111 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4112 	if (copy)
4113 		dst->nf_trace = src->nf_trace;
4114 #endif
4115 }
4116 
4117 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4118 {
4119 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4120 	nf_conntrack_put(skb_nfct(dst));
4121 #endif
4122 	__nf_copy(dst, src, true);
4123 }
4124 
4125 #ifdef CONFIG_NETWORK_SECMARK
4126 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4127 {
4128 	to->secmark = from->secmark;
4129 }
4130 
4131 static inline void skb_init_secmark(struct sk_buff *skb)
4132 {
4133 	skb->secmark = 0;
4134 }
4135 #else
4136 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4137 { }
4138 
4139 static inline void skb_init_secmark(struct sk_buff *skb)
4140 { }
4141 #endif
4142 
4143 static inline int secpath_exists(const struct sk_buff *skb)
4144 {
4145 #ifdef CONFIG_XFRM
4146 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4147 #else
4148 	return 0;
4149 #endif
4150 }
4151 
4152 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4153 {
4154 	return !skb->destructor &&
4155 		!secpath_exists(skb) &&
4156 		!skb_nfct(skb) &&
4157 		!skb->_skb_refdst &&
4158 		!skb_has_frag_list(skb);
4159 }
4160 
4161 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4162 {
4163 	skb->queue_mapping = queue_mapping;
4164 }
4165 
4166 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4167 {
4168 	return skb->queue_mapping;
4169 }
4170 
4171 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4172 {
4173 	to->queue_mapping = from->queue_mapping;
4174 }
4175 
4176 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4177 {
4178 	skb->queue_mapping = rx_queue + 1;
4179 }
4180 
4181 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4182 {
4183 	return skb->queue_mapping - 1;
4184 }
4185 
4186 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4187 {
4188 	return skb->queue_mapping != 0;
4189 }
4190 
4191 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4192 {
4193 	skb->dst_pending_confirm = val;
4194 }
4195 
4196 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4197 {
4198 	return skb->dst_pending_confirm != 0;
4199 }
4200 
4201 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4202 {
4203 #ifdef CONFIG_XFRM
4204 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4205 #else
4206 	return NULL;
4207 #endif
4208 }
4209 
4210 /* Keeps track of mac header offset relative to skb->head.
4211  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4212  * For non-tunnel skb it points to skb_mac_header() and for
4213  * tunnel skb it points to outer mac header.
4214  * Keeps track of level of encapsulation of network headers.
4215  */
4216 struct skb_gso_cb {
4217 	union {
4218 		int	mac_offset;
4219 		int	data_offset;
4220 	};
4221 	int	encap_level;
4222 	__wsum	csum;
4223 	__u16	csum_start;
4224 };
4225 #define SKB_SGO_CB_OFFSET	32
4226 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4227 
4228 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4229 {
4230 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4231 		SKB_GSO_CB(inner_skb)->mac_offset;
4232 }
4233 
4234 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4235 {
4236 	int new_headroom, headroom;
4237 	int ret;
4238 
4239 	headroom = skb_headroom(skb);
4240 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4241 	if (ret)
4242 		return ret;
4243 
4244 	new_headroom = skb_headroom(skb);
4245 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4246 	return 0;
4247 }
4248 
4249 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4250 {
4251 	/* Do not update partial checksums if remote checksum is enabled. */
4252 	if (skb->remcsum_offload)
4253 		return;
4254 
4255 	SKB_GSO_CB(skb)->csum = res;
4256 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4257 }
4258 
4259 /* Compute the checksum for a gso segment. First compute the checksum value
4260  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4261  * then add in skb->csum (checksum from csum_start to end of packet).
4262  * skb->csum and csum_start are then updated to reflect the checksum of the
4263  * resultant packet starting from the transport header-- the resultant checksum
4264  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4265  * header.
4266  */
4267 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4268 {
4269 	unsigned char *csum_start = skb_transport_header(skb);
4270 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4271 	__wsum partial = SKB_GSO_CB(skb)->csum;
4272 
4273 	SKB_GSO_CB(skb)->csum = res;
4274 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4275 
4276 	return csum_fold(csum_partial(csum_start, plen, partial));
4277 }
4278 
4279 static inline bool skb_is_gso(const struct sk_buff *skb)
4280 {
4281 	return skb_shinfo(skb)->gso_size;
4282 }
4283 
4284 /* Note: Should be called only if skb_is_gso(skb) is true */
4285 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4286 {
4287 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4288 }
4289 
4290 /* Note: Should be called only if skb_is_gso(skb) is true */
4291 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4292 {
4293 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4294 }
4295 
4296 /* Note: Should be called only if skb_is_gso(skb) is true */
4297 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4298 {
4299 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4300 }
4301 
4302 static inline void skb_gso_reset(struct sk_buff *skb)
4303 {
4304 	skb_shinfo(skb)->gso_size = 0;
4305 	skb_shinfo(skb)->gso_segs = 0;
4306 	skb_shinfo(skb)->gso_type = 0;
4307 }
4308 
4309 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4310 					 u16 increment)
4311 {
4312 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4313 		return;
4314 	shinfo->gso_size += increment;
4315 }
4316 
4317 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4318 					 u16 decrement)
4319 {
4320 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4321 		return;
4322 	shinfo->gso_size -= decrement;
4323 }
4324 
4325 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4326 
4327 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4328 {
4329 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4330 	 * wanted then gso_type will be set. */
4331 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4332 
4333 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4334 	    unlikely(shinfo->gso_type == 0)) {
4335 		__skb_warn_lro_forwarding(skb);
4336 		return true;
4337 	}
4338 	return false;
4339 }
4340 
4341 static inline void skb_forward_csum(struct sk_buff *skb)
4342 {
4343 	/* Unfortunately we don't support this one.  Any brave souls? */
4344 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4345 		skb->ip_summed = CHECKSUM_NONE;
4346 }
4347 
4348 /**
4349  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4350  * @skb: skb to check
4351  *
4352  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4353  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4354  * use this helper, to document places where we make this assertion.
4355  */
4356 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4357 {
4358 #ifdef DEBUG
4359 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4360 #endif
4361 }
4362 
4363 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4364 
4365 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4366 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4367 				     unsigned int transport_len,
4368 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4369 
4370 /**
4371  * skb_head_is_locked - Determine if the skb->head is locked down
4372  * @skb: skb to check
4373  *
4374  * The head on skbs build around a head frag can be removed if they are
4375  * not cloned.  This function returns true if the skb head is locked down
4376  * due to either being allocated via kmalloc, or by being a clone with
4377  * multiple references to the head.
4378  */
4379 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4380 {
4381 	return !skb->head_frag || skb_cloned(skb);
4382 }
4383 
4384 /* Local Checksum Offload.
4385  * Compute outer checksum based on the assumption that the
4386  * inner checksum will be offloaded later.
4387  * See Documentation/networking/checksum-offloads.rst for
4388  * explanation of how this works.
4389  * Fill in outer checksum adjustment (e.g. with sum of outer
4390  * pseudo-header) before calling.
4391  * Also ensure that inner checksum is in linear data area.
4392  */
4393 static inline __wsum lco_csum(struct sk_buff *skb)
4394 {
4395 	unsigned char *csum_start = skb_checksum_start(skb);
4396 	unsigned char *l4_hdr = skb_transport_header(skb);
4397 	__wsum partial;
4398 
4399 	/* Start with complement of inner checksum adjustment */
4400 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4401 						    skb->csum_offset));
4402 
4403 	/* Add in checksum of our headers (incl. outer checksum
4404 	 * adjustment filled in by caller) and return result.
4405 	 */
4406 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4407 }
4408 
4409 #endif	/* __KERNEL__ */
4410 #endif	/* _LINUX_SKBUFF_H */
4411