xref: /linux/include/linux/mmu_notifier.h (revision 91afb7c373e881d5038a78e1206a0f6469440ec3)
1 #ifndef _LINUX_MMU_NOTIFIER_H
2 #define _LINUX_MMU_NOTIFIER_H
3 
4 #include <linux/list.h>
5 #include <linux/spinlock.h>
6 #include <linux/mm_types.h>
7 #include <linux/srcu.h>
8 
9 struct mmu_notifier;
10 struct mmu_notifier_ops;
11 
12 #ifdef CONFIG_MMU_NOTIFIER
13 
14 /*
15  * The mmu notifier_mm structure is allocated and installed in
16  * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
17  * critical section and it's released only when mm_count reaches zero
18  * in mmdrop().
19  */
20 struct mmu_notifier_mm {
21 	/* all mmu notifiers registerd in this mm are queued in this list */
22 	struct hlist_head list;
23 	/* to serialize the list modifications and hlist_unhashed */
24 	spinlock_t lock;
25 };
26 
27 struct mmu_notifier_ops {
28 	/*
29 	 * Called either by mmu_notifier_unregister or when the mm is
30 	 * being destroyed by exit_mmap, always before all pages are
31 	 * freed. This can run concurrently with other mmu notifier
32 	 * methods (the ones invoked outside the mm context) and it
33 	 * should tear down all secondary mmu mappings and freeze the
34 	 * secondary mmu. If this method isn't implemented you've to
35 	 * be sure that nothing could possibly write to the pages
36 	 * through the secondary mmu by the time the last thread with
37 	 * tsk->mm == mm exits.
38 	 *
39 	 * As side note: the pages freed after ->release returns could
40 	 * be immediately reallocated by the gart at an alias physical
41 	 * address with a different cache model, so if ->release isn't
42 	 * implemented because all _software_ driven memory accesses
43 	 * through the secondary mmu are terminated by the time the
44 	 * last thread of this mm quits, you've also to be sure that
45 	 * speculative _hardware_ operations can't allocate dirty
46 	 * cachelines in the cpu that could not be snooped and made
47 	 * coherent with the other read and write operations happening
48 	 * through the gart alias address, so leading to memory
49 	 * corruption.
50 	 */
51 	void (*release)(struct mmu_notifier *mn,
52 			struct mm_struct *mm);
53 
54 	/*
55 	 * clear_flush_young is called after the VM is
56 	 * test-and-clearing the young/accessed bitflag in the
57 	 * pte. This way the VM will provide proper aging to the
58 	 * accesses to the page through the secondary MMUs and not
59 	 * only to the ones through the Linux pte.
60 	 * Start-end is necessary in case the secondary MMU is mapping the page
61 	 * at a smaller granularity than the primary MMU.
62 	 */
63 	int (*clear_flush_young)(struct mmu_notifier *mn,
64 				 struct mm_struct *mm,
65 				 unsigned long start,
66 				 unsigned long end);
67 
68 	/*
69 	 * clear_young is a lightweight version of clear_flush_young. Like the
70 	 * latter, it is supposed to test-and-clear the young/accessed bitflag
71 	 * in the secondary pte, but it may omit flushing the secondary tlb.
72 	 */
73 	int (*clear_young)(struct mmu_notifier *mn,
74 			   struct mm_struct *mm,
75 			   unsigned long start,
76 			   unsigned long end);
77 
78 	/*
79 	 * test_young is called to check the young/accessed bitflag in
80 	 * the secondary pte. This is used to know if the page is
81 	 * frequently used without actually clearing the flag or tearing
82 	 * down the secondary mapping on the page.
83 	 */
84 	int (*test_young)(struct mmu_notifier *mn,
85 			  struct mm_struct *mm,
86 			  unsigned long address);
87 
88 	/*
89 	 * change_pte is called in cases that pte mapping to page is changed:
90 	 * for example, when ksm remaps pte to point to a new shared page.
91 	 */
92 	void (*change_pte)(struct mmu_notifier *mn,
93 			   struct mm_struct *mm,
94 			   unsigned long address,
95 			   pte_t pte);
96 
97 	/*
98 	 * Before this is invoked any secondary MMU is still ok to
99 	 * read/write to the page previously pointed to by the Linux
100 	 * pte because the page hasn't been freed yet and it won't be
101 	 * freed until this returns. If required set_page_dirty has to
102 	 * be called internally to this method.
103 	 */
104 	void (*invalidate_page)(struct mmu_notifier *mn,
105 				struct mm_struct *mm,
106 				unsigned long address);
107 
108 	/*
109 	 * invalidate_range_start() and invalidate_range_end() must be
110 	 * paired and are called only when the mmap_sem and/or the
111 	 * locks protecting the reverse maps are held. If the subsystem
112 	 * can't guarantee that no additional references are taken to
113 	 * the pages in the range, it has to implement the
114 	 * invalidate_range() notifier to remove any references taken
115 	 * after invalidate_range_start().
116 	 *
117 	 * Invalidation of multiple concurrent ranges may be
118 	 * optionally permitted by the driver. Either way the
119 	 * establishment of sptes is forbidden in the range passed to
120 	 * invalidate_range_begin/end for the whole duration of the
121 	 * invalidate_range_begin/end critical section.
122 	 *
123 	 * invalidate_range_start() is called when all pages in the
124 	 * range are still mapped and have at least a refcount of one.
125 	 *
126 	 * invalidate_range_end() is called when all pages in the
127 	 * range have been unmapped and the pages have been freed by
128 	 * the VM.
129 	 *
130 	 * The VM will remove the page table entries and potentially
131 	 * the page between invalidate_range_start() and
132 	 * invalidate_range_end(). If the page must not be freed
133 	 * because of pending I/O or other circumstances then the
134 	 * invalidate_range_start() callback (or the initial mapping
135 	 * by the driver) must make sure that the refcount is kept
136 	 * elevated.
137 	 *
138 	 * If the driver increases the refcount when the pages are
139 	 * initially mapped into an address space then either
140 	 * invalidate_range_start() or invalidate_range_end() may
141 	 * decrease the refcount. If the refcount is decreased on
142 	 * invalidate_range_start() then the VM can free pages as page
143 	 * table entries are removed.  If the refcount is only
144 	 * droppped on invalidate_range_end() then the driver itself
145 	 * will drop the last refcount but it must take care to flush
146 	 * any secondary tlb before doing the final free on the
147 	 * page. Pages will no longer be referenced by the linux
148 	 * address space but may still be referenced by sptes until
149 	 * the last refcount is dropped.
150 	 */
151 	void (*invalidate_range_start)(struct mmu_notifier *mn,
152 				       struct mm_struct *mm,
153 				       unsigned long start, unsigned long end);
154 	void (*invalidate_range_end)(struct mmu_notifier *mn,
155 				     struct mm_struct *mm,
156 				     unsigned long start, unsigned long end);
157 
158 	/*
159 	 * invalidate_range() is either called between
160 	 * invalidate_range_start() and invalidate_range_end() when the
161 	 * VM has to free pages that where unmapped, but before the
162 	 * pages are actually freed, or outside of _start()/_end() when
163 	 * a (remote) TLB is necessary.
164 	 *
165 	 * If invalidate_range() is used to manage a non-CPU TLB with
166 	 * shared page-tables, it not necessary to implement the
167 	 * invalidate_range_start()/end() notifiers, as
168 	 * invalidate_range() alread catches the points in time when an
169 	 * external TLB range needs to be flushed.
170 	 *
171 	 * The invalidate_range() function is called under the ptl
172 	 * spin-lock and not allowed to sleep.
173 	 *
174 	 * Note that this function might be called with just a sub-range
175 	 * of what was passed to invalidate_range_start()/end(), if
176 	 * called between those functions.
177 	 */
178 	void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm,
179 				 unsigned long start, unsigned long end);
180 };
181 
182 /*
183  * The notifier chains are protected by mmap_sem and/or the reverse map
184  * semaphores. Notifier chains are only changed when all reverse maps and
185  * the mmap_sem locks are taken.
186  *
187  * Therefore notifier chains can only be traversed when either
188  *
189  * 1. mmap_sem is held.
190  * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
191  * 3. No other concurrent thread can access the list (release)
192  */
193 struct mmu_notifier {
194 	struct hlist_node hlist;
195 	const struct mmu_notifier_ops *ops;
196 };
197 
198 static inline int mm_has_notifiers(struct mm_struct *mm)
199 {
200 	return unlikely(mm->mmu_notifier_mm);
201 }
202 
203 extern int mmu_notifier_register(struct mmu_notifier *mn,
204 				 struct mm_struct *mm);
205 extern int __mmu_notifier_register(struct mmu_notifier *mn,
206 				   struct mm_struct *mm);
207 extern void mmu_notifier_unregister(struct mmu_notifier *mn,
208 				    struct mm_struct *mm);
209 extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn,
210 					       struct mm_struct *mm);
211 extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
212 extern void __mmu_notifier_release(struct mm_struct *mm);
213 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
214 					  unsigned long start,
215 					  unsigned long end);
216 extern int __mmu_notifier_clear_young(struct mm_struct *mm,
217 				      unsigned long start,
218 				      unsigned long end);
219 extern int __mmu_notifier_test_young(struct mm_struct *mm,
220 				     unsigned long address);
221 extern void __mmu_notifier_change_pte(struct mm_struct *mm,
222 				      unsigned long address, pte_t pte);
223 extern void __mmu_notifier_invalidate_page(struct mm_struct *mm,
224 					  unsigned long address);
225 extern void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
226 				  unsigned long start, unsigned long end);
227 extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
228 				  unsigned long start, unsigned long end);
229 extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
230 				  unsigned long start, unsigned long end);
231 
232 static inline void mmu_notifier_release(struct mm_struct *mm)
233 {
234 	if (mm_has_notifiers(mm))
235 		__mmu_notifier_release(mm);
236 }
237 
238 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
239 					  unsigned long start,
240 					  unsigned long end)
241 {
242 	if (mm_has_notifiers(mm))
243 		return __mmu_notifier_clear_flush_young(mm, start, end);
244 	return 0;
245 }
246 
247 static inline int mmu_notifier_clear_young(struct mm_struct *mm,
248 					   unsigned long start,
249 					   unsigned long end)
250 {
251 	if (mm_has_notifiers(mm))
252 		return __mmu_notifier_clear_young(mm, start, end);
253 	return 0;
254 }
255 
256 static inline int mmu_notifier_test_young(struct mm_struct *mm,
257 					  unsigned long address)
258 {
259 	if (mm_has_notifiers(mm))
260 		return __mmu_notifier_test_young(mm, address);
261 	return 0;
262 }
263 
264 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
265 					   unsigned long address, pte_t pte)
266 {
267 	if (mm_has_notifiers(mm))
268 		__mmu_notifier_change_pte(mm, address, pte);
269 }
270 
271 static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
272 					  unsigned long address)
273 {
274 	if (mm_has_notifiers(mm))
275 		__mmu_notifier_invalidate_page(mm, address);
276 }
277 
278 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
279 				  unsigned long start, unsigned long end)
280 {
281 	if (mm_has_notifiers(mm))
282 		__mmu_notifier_invalidate_range_start(mm, start, end);
283 }
284 
285 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
286 				  unsigned long start, unsigned long end)
287 {
288 	if (mm_has_notifiers(mm))
289 		__mmu_notifier_invalidate_range_end(mm, start, end);
290 }
291 
292 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
293 				  unsigned long start, unsigned long end)
294 {
295 	if (mm_has_notifiers(mm))
296 		__mmu_notifier_invalidate_range(mm, start, end);
297 }
298 
299 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
300 {
301 	mm->mmu_notifier_mm = NULL;
302 }
303 
304 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
305 {
306 	if (mm_has_notifiers(mm))
307 		__mmu_notifier_mm_destroy(mm);
308 }
309 
310 #define ptep_clear_flush_young_notify(__vma, __address, __ptep)		\
311 ({									\
312 	int __young;							\
313 	struct vm_area_struct *___vma = __vma;				\
314 	unsigned long ___address = __address;				\
315 	__young = ptep_clear_flush_young(___vma, ___address, __ptep);	\
316 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
317 						  ___address,		\
318 						  ___address +		\
319 							PAGE_SIZE);	\
320 	__young;							\
321 })
322 
323 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp)		\
324 ({									\
325 	int __young;							\
326 	struct vm_area_struct *___vma = __vma;				\
327 	unsigned long ___address = __address;				\
328 	__young = pmdp_clear_flush_young(___vma, ___address, __pmdp);	\
329 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
330 						  ___address,		\
331 						  ___address +		\
332 							PMD_SIZE);	\
333 	__young;							\
334 })
335 
336 #define ptep_clear_young_notify(__vma, __address, __ptep)		\
337 ({									\
338 	int __young;							\
339 	struct vm_area_struct *___vma = __vma;				\
340 	unsigned long ___address = __address;				\
341 	__young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
342 	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
343 					    ___address + PAGE_SIZE);	\
344 	__young;							\
345 })
346 
347 #define pmdp_clear_young_notify(__vma, __address, __pmdp)		\
348 ({									\
349 	int __young;							\
350 	struct vm_area_struct *___vma = __vma;				\
351 	unsigned long ___address = __address;				\
352 	__young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
353 	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
354 					    ___address + PMD_SIZE);	\
355 	__young;							\
356 })
357 
358 #define	ptep_clear_flush_notify(__vma, __address, __ptep)		\
359 ({									\
360 	unsigned long ___addr = __address & PAGE_MASK;			\
361 	struct mm_struct *___mm = (__vma)->vm_mm;			\
362 	pte_t ___pte;							\
363 									\
364 	___pte = ptep_clear_flush(__vma, __address, __ptep);		\
365 	mmu_notifier_invalidate_range(___mm, ___addr,			\
366 					___addr + PAGE_SIZE);		\
367 									\
368 	___pte;								\
369 })
370 
371 #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd)		\
372 ({									\
373 	unsigned long ___haddr = __haddr & HPAGE_PMD_MASK;		\
374 	struct mm_struct *___mm = (__vma)->vm_mm;			\
375 	pmd_t ___pmd;							\
376 									\
377 	___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd);		\
378 	mmu_notifier_invalidate_range(___mm, ___haddr,			\
379 				      ___haddr + HPAGE_PMD_SIZE);	\
380 									\
381 	___pmd;								\
382 })
383 
384 #define pmdp_huge_get_and_clear_notify(__mm, __haddr, __pmd)		\
385 ({									\
386 	unsigned long ___haddr = __haddr & HPAGE_PMD_MASK;		\
387 	pmd_t ___pmd;							\
388 									\
389 	___pmd = pmdp_huge_get_and_clear(__mm, __haddr, __pmd);		\
390 	mmu_notifier_invalidate_range(__mm, ___haddr,			\
391 				      ___haddr + HPAGE_PMD_SIZE);	\
392 									\
393 	___pmd;								\
394 })
395 
396 /*
397  * set_pte_at_notify() sets the pte _after_ running the notifier.
398  * This is safe to start by updating the secondary MMUs, because the primary MMU
399  * pte invalidate must have already happened with a ptep_clear_flush() before
400  * set_pte_at_notify() has been invoked.  Updating the secondary MMUs first is
401  * required when we change both the protection of the mapping from read-only to
402  * read-write and the pfn (like during copy on write page faults). Otherwise the
403  * old page would remain mapped readonly in the secondary MMUs after the new
404  * page is already writable by some CPU through the primary MMU.
405  */
406 #define set_pte_at_notify(__mm, __address, __ptep, __pte)		\
407 ({									\
408 	struct mm_struct *___mm = __mm;					\
409 	unsigned long ___address = __address;				\
410 	pte_t ___pte = __pte;						\
411 									\
412 	mmu_notifier_change_pte(___mm, ___address, ___pte);		\
413 	set_pte_at(___mm, ___address, __ptep, ___pte);			\
414 })
415 
416 extern void mmu_notifier_call_srcu(struct rcu_head *rcu,
417 				   void (*func)(struct rcu_head *rcu));
418 extern void mmu_notifier_synchronize(void);
419 
420 #else /* CONFIG_MMU_NOTIFIER */
421 
422 static inline void mmu_notifier_release(struct mm_struct *mm)
423 {
424 }
425 
426 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
427 					  unsigned long start,
428 					  unsigned long end)
429 {
430 	return 0;
431 }
432 
433 static inline int mmu_notifier_test_young(struct mm_struct *mm,
434 					  unsigned long address)
435 {
436 	return 0;
437 }
438 
439 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
440 					   unsigned long address, pte_t pte)
441 {
442 }
443 
444 static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
445 					  unsigned long address)
446 {
447 }
448 
449 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
450 				  unsigned long start, unsigned long end)
451 {
452 }
453 
454 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
455 				  unsigned long start, unsigned long end)
456 {
457 }
458 
459 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
460 				  unsigned long start, unsigned long end)
461 {
462 }
463 
464 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
465 {
466 }
467 
468 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
469 {
470 }
471 
472 #define ptep_clear_flush_young_notify ptep_clear_flush_young
473 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
474 #define ptep_clear_young_notify ptep_test_and_clear_young
475 #define pmdp_clear_young_notify pmdp_test_and_clear_young
476 #define	ptep_clear_flush_notify ptep_clear_flush
477 #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
478 #define pmdp_huge_get_and_clear_notify pmdp_huge_get_and_clear
479 #define set_pte_at_notify set_pte_at
480 
481 #endif /* CONFIG_MMU_NOTIFIER */
482 
483 #endif /* _LINUX_MMU_NOTIFIER_H */
484