xref: /linux/include/linux/mm_types.h (revision 564eb714f5f09ac733c26860d5f0831f213fbdf1)
1 #ifndef _LINUX_MM_TYPES_H
2 #define _LINUX_MM_TYPES_H
3 
4 #include <linux/auxvec.h>
5 #include <linux/types.h>
6 #include <linux/threads.h>
7 #include <linux/list.h>
8 #include <linux/spinlock.h>
9 #include <linux/rbtree.h>
10 #include <linux/rwsem.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/page-debug-flags.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <asm/page.h>
17 #include <asm/mmu.h>
18 
19 #ifndef AT_VECTOR_SIZE_ARCH
20 #define AT_VECTOR_SIZE_ARCH 0
21 #endif
22 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
23 
24 struct address_space;
25 
26 #define USE_SPLIT_PTE_PTLOCKS	(NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
27 #define USE_SPLIT_PMD_PTLOCKS	(USE_SPLIT_PTE_PTLOCKS && \
28 		IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK))
29 #define ALLOC_SPLIT_PTLOCKS	(SPINLOCK_SIZE > BITS_PER_LONG/8)
30 
31 /*
32  * Each physical page in the system has a struct page associated with
33  * it to keep track of whatever it is we are using the page for at the
34  * moment. Note that we have no way to track which tasks are using
35  * a page, though if it is a pagecache page, rmap structures can tell us
36  * who is mapping it.
37  *
38  * The objects in struct page are organized in double word blocks in
39  * order to allows us to use atomic double word operations on portions
40  * of struct page. That is currently only used by slub but the arrangement
41  * allows the use of atomic double word operations on the flags/mapping
42  * and lru list pointers also.
43  */
44 struct page {
45 	/* First double word block */
46 	unsigned long flags;		/* Atomic flags, some possibly
47 					 * updated asynchronously */
48 	union {
49 		struct address_space *mapping;	/* If low bit clear, points to
50 						 * inode address_space, or NULL.
51 						 * If page mapped as anonymous
52 						 * memory, low bit is set, and
53 						 * it points to anon_vma object:
54 						 * see PAGE_MAPPING_ANON below.
55 						 */
56 		void *s_mem;			/* slab first object */
57 	};
58 
59 	/* Second double word */
60 	struct {
61 		union {
62 			pgoff_t index;		/* Our offset within mapping. */
63 			void *freelist;		/* sl[aou]b first free object */
64 			bool pfmemalloc;	/* If set by the page allocator,
65 						 * ALLOC_NO_WATERMARKS was set
66 						 * and the low watermark was not
67 						 * met implying that the system
68 						 * is under some pressure. The
69 						 * caller should try ensure
70 						 * this page is only used to
71 						 * free other pages.
72 						 */
73 		};
74 
75 		union {
76 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
77 	defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
78 			/* Used for cmpxchg_double in slub */
79 			unsigned long counters;
80 #else
81 			/*
82 			 * Keep _count separate from slub cmpxchg_double data.
83 			 * As the rest of the double word is protected by
84 			 * slab_lock but _count is not.
85 			 */
86 			unsigned counters;
87 #endif
88 
89 			struct {
90 
91 				union {
92 					/*
93 					 * Count of ptes mapped in
94 					 * mms, to show when page is
95 					 * mapped & limit reverse map
96 					 * searches.
97 					 *
98 					 * Used also for tail pages
99 					 * refcounting instead of
100 					 * _count. Tail pages cannot
101 					 * be mapped and keeping the
102 					 * tail page _count zero at
103 					 * all times guarantees
104 					 * get_page_unless_zero() will
105 					 * never succeed on tail
106 					 * pages.
107 					 */
108 					atomic_t _mapcount;
109 
110 					struct { /* SLUB */
111 						unsigned inuse:16;
112 						unsigned objects:15;
113 						unsigned frozen:1;
114 					};
115 					int units;	/* SLOB */
116 				};
117 				atomic_t _count;		/* Usage count, see below. */
118 			};
119 			unsigned int active;	/* SLAB */
120 		};
121 	};
122 
123 	/* Third double word block */
124 	union {
125 		struct list_head lru;	/* Pageout list, eg. active_list
126 					 * protected by zone->lru_lock !
127 					 */
128 		struct {		/* slub per cpu partial pages */
129 			struct page *next;	/* Next partial slab */
130 #ifdef CONFIG_64BIT
131 			int pages;	/* Nr of partial slabs left */
132 			int pobjects;	/* Approximate # of objects */
133 #else
134 			short int pages;
135 			short int pobjects;
136 #endif
137 		};
138 
139 		struct list_head list;	/* slobs list of pages */
140 		struct slab *slab_page; /* slab fields */
141 		struct rcu_head rcu_head;	/* Used by SLAB
142 						 * when destroying via RCU
143 						 */
144 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
145 		pgtable_t pmd_huge_pte; /* protected by page->ptl */
146 #endif
147 	};
148 
149 	/* Remainder is not double word aligned */
150 	union {
151 		unsigned long private;		/* Mapping-private opaque data:
152 					 	 * usually used for buffer_heads
153 						 * if PagePrivate set; used for
154 						 * swp_entry_t if PageSwapCache;
155 						 * indicates order in the buddy
156 						 * system if PG_buddy is set.
157 						 */
158 #if USE_SPLIT_PTE_PTLOCKS
159 #if ALLOC_SPLIT_PTLOCKS
160 		spinlock_t *ptl;
161 #else
162 		spinlock_t ptl;
163 #endif
164 #endif
165 		struct kmem_cache *slab_cache;	/* SL[AU]B: Pointer to slab */
166 		struct page *first_page;	/* Compound tail pages */
167 	};
168 
169 	/*
170 	 * On machines where all RAM is mapped into kernel address space,
171 	 * we can simply calculate the virtual address. On machines with
172 	 * highmem some memory is mapped into kernel virtual memory
173 	 * dynamically, so we need a place to store that address.
174 	 * Note that this field could be 16 bits on x86 ... ;)
175 	 *
176 	 * Architectures with slow multiplication can define
177 	 * WANT_PAGE_VIRTUAL in asm/page.h
178 	 */
179 #if defined(WANT_PAGE_VIRTUAL)
180 	void *virtual;			/* Kernel virtual address (NULL if
181 					   not kmapped, ie. highmem) */
182 #endif /* WANT_PAGE_VIRTUAL */
183 #ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS
184 	unsigned long debug_flags;	/* Use atomic bitops on this */
185 #endif
186 
187 #ifdef CONFIG_KMEMCHECK
188 	/*
189 	 * kmemcheck wants to track the status of each byte in a page; this
190 	 * is a pointer to such a status block. NULL if not tracked.
191 	 */
192 	void *shadow;
193 #endif
194 
195 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
196 	int _last_cpupid;
197 #endif
198 }
199 /*
200  * The struct page can be forced to be double word aligned so that atomic ops
201  * on double words work. The SLUB allocator can make use of such a feature.
202  */
203 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
204 	__aligned(2 * sizeof(unsigned long))
205 #endif
206 ;
207 
208 struct page_frag {
209 	struct page *page;
210 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
211 	__u32 offset;
212 	__u32 size;
213 #else
214 	__u16 offset;
215 	__u16 size;
216 #endif
217 };
218 
219 typedef unsigned long __nocast vm_flags_t;
220 
221 /*
222  * A region containing a mapping of a non-memory backed file under NOMMU
223  * conditions.  These are held in a global tree and are pinned by the VMAs that
224  * map parts of them.
225  */
226 struct vm_region {
227 	struct rb_node	vm_rb;		/* link in global region tree */
228 	vm_flags_t	vm_flags;	/* VMA vm_flags */
229 	unsigned long	vm_start;	/* start address of region */
230 	unsigned long	vm_end;		/* region initialised to here */
231 	unsigned long	vm_top;		/* region allocated to here */
232 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
233 	struct file	*vm_file;	/* the backing file or NULL */
234 
235 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
236 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
237 						* this region */
238 };
239 
240 /*
241  * This struct defines a memory VMM memory area. There is one of these
242  * per VM-area/task.  A VM area is any part of the process virtual memory
243  * space that has a special rule for the page-fault handlers (ie a shared
244  * library, the executable area etc).
245  */
246 struct vm_area_struct {
247 	/* The first cache line has the info for VMA tree walking. */
248 
249 	unsigned long vm_start;		/* Our start address within vm_mm. */
250 	unsigned long vm_end;		/* The first byte after our end address
251 					   within vm_mm. */
252 
253 	/* linked list of VM areas per task, sorted by address */
254 	struct vm_area_struct *vm_next, *vm_prev;
255 
256 	struct rb_node vm_rb;
257 
258 	/*
259 	 * Largest free memory gap in bytes to the left of this VMA.
260 	 * Either between this VMA and vma->vm_prev, or between one of the
261 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
262 	 * get_unmapped_area find a free area of the right size.
263 	 */
264 	unsigned long rb_subtree_gap;
265 
266 	/* Second cache line starts here. */
267 
268 	struct mm_struct *vm_mm;	/* The address space we belong to. */
269 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
270 	unsigned long vm_flags;		/* Flags, see mm.h. */
271 
272 	/*
273 	 * For areas with an address space and backing store,
274 	 * linkage into the address_space->i_mmap interval tree, or
275 	 * linkage of vma in the address_space->i_mmap_nonlinear list.
276 	 */
277 	union {
278 		struct {
279 			struct rb_node rb;
280 			unsigned long rb_subtree_last;
281 		} linear;
282 		struct list_head nonlinear;
283 	} shared;
284 
285 	/*
286 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
287 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
288 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
289 	 * or brk vma (with NULL file) can only be in an anon_vma list.
290 	 */
291 	struct list_head anon_vma_chain; /* Serialized by mmap_sem &
292 					  * page_table_lock */
293 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
294 
295 	/* Function pointers to deal with this struct. */
296 	const struct vm_operations_struct *vm_ops;
297 
298 	/* Information about our backing store: */
299 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
300 					   units, *not* PAGE_CACHE_SIZE */
301 	struct file * vm_file;		/* File we map to (can be NULL). */
302 	void * vm_private_data;		/* was vm_pte (shared mem) */
303 
304 #ifndef CONFIG_MMU
305 	struct vm_region *vm_region;	/* NOMMU mapping region */
306 #endif
307 #ifdef CONFIG_NUMA
308 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
309 #endif
310 };
311 
312 struct core_thread {
313 	struct task_struct *task;
314 	struct core_thread *next;
315 };
316 
317 struct core_state {
318 	atomic_t nr_threads;
319 	struct core_thread dumper;
320 	struct completion startup;
321 };
322 
323 enum {
324 	MM_FILEPAGES,
325 	MM_ANONPAGES,
326 	MM_SWAPENTS,
327 	NR_MM_COUNTERS
328 };
329 
330 #if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU)
331 #define SPLIT_RSS_COUNTING
332 /* per-thread cached information, */
333 struct task_rss_stat {
334 	int events;	/* for synchronization threshold */
335 	int count[NR_MM_COUNTERS];
336 };
337 #endif /* USE_SPLIT_PTE_PTLOCKS */
338 
339 struct mm_rss_stat {
340 	atomic_long_t count[NR_MM_COUNTERS];
341 };
342 
343 struct kioctx_table;
344 struct mm_struct {
345 	struct vm_area_struct * mmap;		/* list of VMAs */
346 	struct rb_root mm_rb;
347 	struct vm_area_struct * mmap_cache;	/* last find_vma result */
348 #ifdef CONFIG_MMU
349 	unsigned long (*get_unmapped_area) (struct file *filp,
350 				unsigned long addr, unsigned long len,
351 				unsigned long pgoff, unsigned long flags);
352 #endif
353 	unsigned long mmap_base;		/* base of mmap area */
354 	unsigned long mmap_legacy_base;         /* base of mmap area in bottom-up allocations */
355 	unsigned long task_size;		/* size of task vm space */
356 	unsigned long highest_vm_end;		/* highest vma end address */
357 	pgd_t * pgd;
358 	atomic_t mm_users;			/* How many users with user space? */
359 	atomic_t mm_count;			/* How many references to "struct mm_struct" (users count as 1) */
360 	atomic_long_t nr_ptes;			/* Page table pages */
361 	int map_count;				/* number of VMAs */
362 
363 	spinlock_t page_table_lock;		/* Protects page tables and some counters */
364 	struct rw_semaphore mmap_sem;
365 
366 	struct list_head mmlist;		/* List of maybe swapped mm's.	These are globally strung
367 						 * together off init_mm.mmlist, and are protected
368 						 * by mmlist_lock
369 						 */
370 
371 
372 	unsigned long hiwater_rss;	/* High-watermark of RSS usage */
373 	unsigned long hiwater_vm;	/* High-water virtual memory usage */
374 
375 	unsigned long total_vm;		/* Total pages mapped */
376 	unsigned long locked_vm;	/* Pages that have PG_mlocked set */
377 	unsigned long pinned_vm;	/* Refcount permanently increased */
378 	unsigned long shared_vm;	/* Shared pages (files) */
379 	unsigned long exec_vm;		/* VM_EXEC & ~VM_WRITE */
380 	unsigned long stack_vm;		/* VM_GROWSUP/DOWN */
381 	unsigned long def_flags;
382 	unsigned long start_code, end_code, start_data, end_data;
383 	unsigned long start_brk, brk, start_stack;
384 	unsigned long arg_start, arg_end, env_start, env_end;
385 
386 	unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
387 
388 	/*
389 	 * Special counters, in some configurations protected by the
390 	 * page_table_lock, in other configurations by being atomic.
391 	 */
392 	struct mm_rss_stat rss_stat;
393 
394 	struct linux_binfmt *binfmt;
395 
396 	cpumask_var_t cpu_vm_mask_var;
397 
398 	/* Architecture-specific MM context */
399 	mm_context_t context;
400 
401 	unsigned long flags; /* Must use atomic bitops to access the bits */
402 
403 	struct core_state *core_state; /* coredumping support */
404 #ifdef CONFIG_AIO
405 	spinlock_t			ioctx_lock;
406 	struct kioctx_table __rcu	*ioctx_table;
407 #endif
408 #ifdef CONFIG_MM_OWNER
409 	/*
410 	 * "owner" points to a task that is regarded as the canonical
411 	 * user/owner of this mm. All of the following must be true in
412 	 * order for it to be changed:
413 	 *
414 	 * current == mm->owner
415 	 * current->mm != mm
416 	 * new_owner->mm == mm
417 	 * new_owner->alloc_lock is held
418 	 */
419 	struct task_struct __rcu *owner;
420 #endif
421 
422 	/* store ref to file /proc/<pid>/exe symlink points to */
423 	struct file *exe_file;
424 #ifdef CONFIG_MMU_NOTIFIER
425 	struct mmu_notifier_mm *mmu_notifier_mm;
426 #endif
427 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
428 	pgtable_t pmd_huge_pte; /* protected by page_table_lock */
429 #endif
430 #ifdef CONFIG_CPUMASK_OFFSTACK
431 	struct cpumask cpumask_allocation;
432 #endif
433 #ifdef CONFIG_NUMA_BALANCING
434 	/*
435 	 * numa_next_scan is the next time that the PTEs will be marked
436 	 * pte_numa. NUMA hinting faults will gather statistics and migrate
437 	 * pages to new nodes if necessary.
438 	 */
439 	unsigned long numa_next_scan;
440 
441 	/* Restart point for scanning and setting pte_numa */
442 	unsigned long numa_scan_offset;
443 
444 	/* numa_scan_seq prevents two threads setting pte_numa */
445 	int numa_scan_seq;
446 #endif
447 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
448 	/*
449 	 * An operation with batched TLB flushing is going on. Anything that
450 	 * can move process memory needs to flush the TLB when moving a
451 	 * PROT_NONE or PROT_NUMA mapped page.
452 	 */
453 	bool tlb_flush_pending;
454 #endif
455 	struct uprobes_state uprobes_state;
456 };
457 
458 static inline void mm_init_cpumask(struct mm_struct *mm)
459 {
460 #ifdef CONFIG_CPUMASK_OFFSTACK
461 	mm->cpu_vm_mask_var = &mm->cpumask_allocation;
462 #endif
463 }
464 
465 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
466 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
467 {
468 	return mm->cpu_vm_mask_var;
469 }
470 
471 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
472 /*
473  * Memory barriers to keep this state in sync are graciously provided by
474  * the page table locks, outside of which no page table modifications happen.
475  * The barriers below prevent the compiler from re-ordering the instructions
476  * around the memory barriers that are already present in the code.
477  */
478 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
479 {
480 	barrier();
481 	return mm->tlb_flush_pending;
482 }
483 static inline void set_tlb_flush_pending(struct mm_struct *mm)
484 {
485 	mm->tlb_flush_pending = true;
486 
487 	/*
488 	 * Guarantee that the tlb_flush_pending store does not leak into the
489 	 * critical section updating the page tables
490 	 */
491 	smp_mb__before_spinlock();
492 }
493 /* Clearing is done after a TLB flush, which also provides a barrier. */
494 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
495 {
496 	barrier();
497 	mm->tlb_flush_pending = false;
498 }
499 #else
500 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
501 {
502 	return false;
503 }
504 static inline void set_tlb_flush_pending(struct mm_struct *mm)
505 {
506 }
507 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
508 {
509 }
510 #endif
511 
512 #endif /* _LINUX_MM_TYPES_H */
513