xref: /linux/fs/ubifs/lpt_commit.c (revision 14b9f27886ce69c5f11445d107dd020f6fc5754b)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements commit-related functionality of the LEB properties
25  * subsystem.
26  */
27 
28 #include <linux/crc16.h>
29 #include <linux/slab.h>
30 #include "ubifs.h"
31 
32 #ifdef CONFIG_UBIFS_FS_DEBUG
33 static int dbg_populate_lsave(struct ubifs_info *c);
34 #else
35 #define dbg_populate_lsave(c) 0
36 #endif
37 
38 /**
39  * first_dirty_cnode - find first dirty cnode.
40  * @c: UBIFS file-system description object
41  * @nnode: nnode at which to start
42  *
43  * This function returns the first dirty cnode or %NULL if there is not one.
44  */
45 static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
46 {
47 	ubifs_assert(nnode);
48 	while (1) {
49 		int i, cont = 0;
50 
51 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
52 			struct ubifs_cnode *cnode;
53 
54 			cnode = nnode->nbranch[i].cnode;
55 			if (cnode &&
56 			    test_bit(DIRTY_CNODE, &cnode->flags)) {
57 				if (cnode->level == 0)
58 					return cnode;
59 				nnode = (struct ubifs_nnode *)cnode;
60 				cont = 1;
61 				break;
62 			}
63 		}
64 		if (!cont)
65 			return (struct ubifs_cnode *)nnode;
66 	}
67 }
68 
69 /**
70  * next_dirty_cnode - find next dirty cnode.
71  * @cnode: cnode from which to begin searching
72  *
73  * This function returns the next dirty cnode or %NULL if there is not one.
74  */
75 static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
76 {
77 	struct ubifs_nnode *nnode;
78 	int i;
79 
80 	ubifs_assert(cnode);
81 	nnode = cnode->parent;
82 	if (!nnode)
83 		return NULL;
84 	for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
85 		cnode = nnode->nbranch[i].cnode;
86 		if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
87 			if (cnode->level == 0)
88 				return cnode; /* cnode is a pnode */
89 			/* cnode is a nnode */
90 			return first_dirty_cnode((struct ubifs_nnode *)cnode);
91 		}
92 	}
93 	return (struct ubifs_cnode *)nnode;
94 }
95 
96 /**
97  * get_cnodes_to_commit - create list of dirty cnodes to commit.
98  * @c: UBIFS file-system description object
99  *
100  * This function returns the number of cnodes to commit.
101  */
102 static int get_cnodes_to_commit(struct ubifs_info *c)
103 {
104 	struct ubifs_cnode *cnode, *cnext;
105 	int cnt = 0;
106 
107 	if (!c->nroot)
108 		return 0;
109 
110 	if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
111 		return 0;
112 
113 	c->lpt_cnext = first_dirty_cnode(c->nroot);
114 	cnode = c->lpt_cnext;
115 	if (!cnode)
116 		return 0;
117 	cnt += 1;
118 	while (1) {
119 		ubifs_assert(!test_bit(COW_ZNODE, &cnode->flags));
120 		__set_bit(COW_ZNODE, &cnode->flags);
121 		cnext = next_dirty_cnode(cnode);
122 		if (!cnext) {
123 			cnode->cnext = c->lpt_cnext;
124 			break;
125 		}
126 		cnode->cnext = cnext;
127 		cnode = cnext;
128 		cnt += 1;
129 	}
130 	dbg_cmt("committing %d cnodes", cnt);
131 	dbg_lp("committing %d cnodes", cnt);
132 	ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
133 	return cnt;
134 }
135 
136 /**
137  * upd_ltab - update LPT LEB properties.
138  * @c: UBIFS file-system description object
139  * @lnum: LEB number
140  * @free: amount of free space
141  * @dirty: amount of dirty space to add
142  */
143 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
144 {
145 	dbg_lp("LEB %d free %d dirty %d to %d +%d",
146 	       lnum, c->ltab[lnum - c->lpt_first].free,
147 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
148 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
149 	c->ltab[lnum - c->lpt_first].free = free;
150 	c->ltab[lnum - c->lpt_first].dirty += dirty;
151 }
152 
153 /**
154  * alloc_lpt_leb - allocate an LPT LEB that is empty.
155  * @c: UBIFS file-system description object
156  * @lnum: LEB number is passed and returned here
157  *
158  * This function finds the next empty LEB in the ltab starting from @lnum. If a
159  * an empty LEB is found it is returned in @lnum and the function returns %0.
160  * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
161  * never to run out of space.
162  */
163 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
164 {
165 	int i, n;
166 
167 	n = *lnum - c->lpt_first + 1;
168 	for (i = n; i < c->lpt_lebs; i++) {
169 		if (c->ltab[i].tgc || c->ltab[i].cmt)
170 			continue;
171 		if (c->ltab[i].free == c->leb_size) {
172 			c->ltab[i].cmt = 1;
173 			*lnum = i + c->lpt_first;
174 			return 0;
175 		}
176 	}
177 
178 	for (i = 0; i < n; i++) {
179 		if (c->ltab[i].tgc || c->ltab[i].cmt)
180 			continue;
181 		if (c->ltab[i].free == c->leb_size) {
182 			c->ltab[i].cmt = 1;
183 			*lnum = i + c->lpt_first;
184 			return 0;
185 		}
186 	}
187 	return -ENOSPC;
188 }
189 
190 /**
191  * layout_cnodes - layout cnodes for commit.
192  * @c: UBIFS file-system description object
193  *
194  * This function returns %0 on success and a negative error code on failure.
195  */
196 static int layout_cnodes(struct ubifs_info *c)
197 {
198 	int lnum, offs, len, alen, done_lsave, done_ltab, err;
199 	struct ubifs_cnode *cnode;
200 
201 	err = dbg_chk_lpt_sz(c, 0, 0);
202 	if (err)
203 		return err;
204 	cnode = c->lpt_cnext;
205 	if (!cnode)
206 		return 0;
207 	lnum = c->nhead_lnum;
208 	offs = c->nhead_offs;
209 	/* Try to place lsave and ltab nicely */
210 	done_lsave = !c->big_lpt;
211 	done_ltab = 0;
212 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
213 		done_lsave = 1;
214 		c->lsave_lnum = lnum;
215 		c->lsave_offs = offs;
216 		offs += c->lsave_sz;
217 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
218 	}
219 
220 	if (offs + c->ltab_sz <= c->leb_size) {
221 		done_ltab = 1;
222 		c->ltab_lnum = lnum;
223 		c->ltab_offs = offs;
224 		offs += c->ltab_sz;
225 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
226 	}
227 
228 	do {
229 		if (cnode->level) {
230 			len = c->nnode_sz;
231 			c->dirty_nn_cnt -= 1;
232 		} else {
233 			len = c->pnode_sz;
234 			c->dirty_pn_cnt -= 1;
235 		}
236 		while (offs + len > c->leb_size) {
237 			alen = ALIGN(offs, c->min_io_size);
238 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
239 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
240 			err = alloc_lpt_leb(c, &lnum);
241 			if (err)
242 				goto no_space;
243 			offs = 0;
244 			ubifs_assert(lnum >= c->lpt_first &&
245 				     lnum <= c->lpt_last);
246 			/* Try to place lsave and ltab nicely */
247 			if (!done_lsave) {
248 				done_lsave = 1;
249 				c->lsave_lnum = lnum;
250 				c->lsave_offs = offs;
251 				offs += c->lsave_sz;
252 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
253 				continue;
254 			}
255 			if (!done_ltab) {
256 				done_ltab = 1;
257 				c->ltab_lnum = lnum;
258 				c->ltab_offs = offs;
259 				offs += c->ltab_sz;
260 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
261 				continue;
262 			}
263 			break;
264 		}
265 		if (cnode->parent) {
266 			cnode->parent->nbranch[cnode->iip].lnum = lnum;
267 			cnode->parent->nbranch[cnode->iip].offs = offs;
268 		} else {
269 			c->lpt_lnum = lnum;
270 			c->lpt_offs = offs;
271 		}
272 		offs += len;
273 		dbg_chk_lpt_sz(c, 1, len);
274 		cnode = cnode->cnext;
275 	} while (cnode && cnode != c->lpt_cnext);
276 
277 	/* Make sure to place LPT's save table */
278 	if (!done_lsave) {
279 		if (offs + c->lsave_sz > c->leb_size) {
280 			alen = ALIGN(offs, c->min_io_size);
281 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
282 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
283 			err = alloc_lpt_leb(c, &lnum);
284 			if (err)
285 				goto no_space;
286 			offs = 0;
287 			ubifs_assert(lnum >= c->lpt_first &&
288 				     lnum <= c->lpt_last);
289 		}
290 		done_lsave = 1;
291 		c->lsave_lnum = lnum;
292 		c->lsave_offs = offs;
293 		offs += c->lsave_sz;
294 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
295 	}
296 
297 	/* Make sure to place LPT's own lprops table */
298 	if (!done_ltab) {
299 		if (offs + c->ltab_sz > c->leb_size) {
300 			alen = ALIGN(offs, c->min_io_size);
301 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
302 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
303 			err = alloc_lpt_leb(c, &lnum);
304 			if (err)
305 				goto no_space;
306 			offs = 0;
307 			ubifs_assert(lnum >= c->lpt_first &&
308 				     lnum <= c->lpt_last);
309 		}
310 		done_ltab = 1;
311 		c->ltab_lnum = lnum;
312 		c->ltab_offs = offs;
313 		offs += c->ltab_sz;
314 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
315 	}
316 
317 	alen = ALIGN(offs, c->min_io_size);
318 	upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
319 	dbg_chk_lpt_sz(c, 4, alen - offs);
320 	err = dbg_chk_lpt_sz(c, 3, alen);
321 	if (err)
322 		return err;
323 	return 0;
324 
325 no_space:
326 	ubifs_err("LPT out of space");
327 	dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
328 		"done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
329 	dbg_dump_lpt_info(c);
330 	dbg_dump_lpt_lebs(c);
331 	dump_stack();
332 	return err;
333 }
334 
335 /**
336  * realloc_lpt_leb - allocate an LPT LEB that is empty.
337  * @c: UBIFS file-system description object
338  * @lnum: LEB number is passed and returned here
339  *
340  * This function duplicates exactly the results of the function alloc_lpt_leb.
341  * It is used during end commit to reallocate the same LEB numbers that were
342  * allocated by alloc_lpt_leb during start commit.
343  *
344  * This function finds the next LEB that was allocated by the alloc_lpt_leb
345  * function starting from @lnum. If a LEB is found it is returned in @lnum and
346  * the function returns %0. Otherwise the function returns -ENOSPC.
347  * Note however, that LPT is designed never to run out of space.
348  */
349 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
350 {
351 	int i, n;
352 
353 	n = *lnum - c->lpt_first + 1;
354 	for (i = n; i < c->lpt_lebs; i++)
355 		if (c->ltab[i].cmt) {
356 			c->ltab[i].cmt = 0;
357 			*lnum = i + c->lpt_first;
358 			return 0;
359 		}
360 
361 	for (i = 0; i < n; i++)
362 		if (c->ltab[i].cmt) {
363 			c->ltab[i].cmt = 0;
364 			*lnum = i + c->lpt_first;
365 			return 0;
366 		}
367 	return -ENOSPC;
368 }
369 
370 /**
371  * write_cnodes - write cnodes for commit.
372  * @c: UBIFS file-system description object
373  *
374  * This function returns %0 on success and a negative error code on failure.
375  */
376 static int write_cnodes(struct ubifs_info *c)
377 {
378 	int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
379 	struct ubifs_cnode *cnode;
380 	void *buf = c->lpt_buf;
381 
382 	cnode = c->lpt_cnext;
383 	if (!cnode)
384 		return 0;
385 	lnum = c->nhead_lnum;
386 	offs = c->nhead_offs;
387 	from = offs;
388 	/* Ensure empty LEB is unmapped */
389 	if (offs == 0) {
390 		err = ubifs_leb_unmap(c, lnum);
391 		if (err)
392 			return err;
393 	}
394 	/* Try to place lsave and ltab nicely */
395 	done_lsave = !c->big_lpt;
396 	done_ltab = 0;
397 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
398 		done_lsave = 1;
399 		ubifs_pack_lsave(c, buf + offs, c->lsave);
400 		offs += c->lsave_sz;
401 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
402 	}
403 
404 	if (offs + c->ltab_sz <= c->leb_size) {
405 		done_ltab = 1;
406 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
407 		offs += c->ltab_sz;
408 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
409 	}
410 
411 	/* Loop for each cnode */
412 	do {
413 		if (cnode->level)
414 			len = c->nnode_sz;
415 		else
416 			len = c->pnode_sz;
417 		while (offs + len > c->leb_size) {
418 			wlen = offs - from;
419 			if (wlen) {
420 				alen = ALIGN(wlen, c->min_io_size);
421 				memset(buf + offs, 0xff, alen - wlen);
422 				err = ubifs_leb_write(c, lnum, buf + from, from,
423 						       alen, UBI_SHORTTERM);
424 				if (err)
425 					return err;
426 			}
427 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
428 			err = realloc_lpt_leb(c, &lnum);
429 			if (err)
430 				goto no_space;
431 			offs = from = 0;
432 			ubifs_assert(lnum >= c->lpt_first &&
433 				     lnum <= c->lpt_last);
434 			err = ubifs_leb_unmap(c, lnum);
435 			if (err)
436 				return err;
437 			/* Try to place lsave and ltab nicely */
438 			if (!done_lsave) {
439 				done_lsave = 1;
440 				ubifs_pack_lsave(c, buf + offs, c->lsave);
441 				offs += c->lsave_sz;
442 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
443 				continue;
444 			}
445 			if (!done_ltab) {
446 				done_ltab = 1;
447 				ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
448 				offs += c->ltab_sz;
449 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
450 				continue;
451 			}
452 			break;
453 		}
454 		if (cnode->level)
455 			ubifs_pack_nnode(c, buf + offs,
456 					 (struct ubifs_nnode *)cnode);
457 		else
458 			ubifs_pack_pnode(c, buf + offs,
459 					 (struct ubifs_pnode *)cnode);
460 		/*
461 		 * The reason for the barriers is the same as in case of TNC.
462 		 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
463 		 * 'dirty_cow_pnode()' are the functions for which this is
464 		 * important.
465 		 */
466 		clear_bit(DIRTY_CNODE, &cnode->flags);
467 		smp_mb__before_clear_bit();
468 		clear_bit(COW_ZNODE, &cnode->flags);
469 		smp_mb__after_clear_bit();
470 		offs += len;
471 		dbg_chk_lpt_sz(c, 1, len);
472 		cnode = cnode->cnext;
473 	} while (cnode && cnode != c->lpt_cnext);
474 
475 	/* Make sure to place LPT's save table */
476 	if (!done_lsave) {
477 		if (offs + c->lsave_sz > c->leb_size) {
478 			wlen = offs - from;
479 			alen = ALIGN(wlen, c->min_io_size);
480 			memset(buf + offs, 0xff, alen - wlen);
481 			err = ubifs_leb_write(c, lnum, buf + from, from, alen,
482 					      UBI_SHORTTERM);
483 			if (err)
484 				return err;
485 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
486 			err = realloc_lpt_leb(c, &lnum);
487 			if (err)
488 				goto no_space;
489 			offs = from = 0;
490 			ubifs_assert(lnum >= c->lpt_first &&
491 				     lnum <= c->lpt_last);
492 			err = ubifs_leb_unmap(c, lnum);
493 			if (err)
494 				return err;
495 		}
496 		done_lsave = 1;
497 		ubifs_pack_lsave(c, buf + offs, c->lsave);
498 		offs += c->lsave_sz;
499 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
500 	}
501 
502 	/* Make sure to place LPT's own lprops table */
503 	if (!done_ltab) {
504 		if (offs + c->ltab_sz > c->leb_size) {
505 			wlen = offs - from;
506 			alen = ALIGN(wlen, c->min_io_size);
507 			memset(buf + offs, 0xff, alen - wlen);
508 			err = ubifs_leb_write(c, lnum, buf + from, from, alen,
509 					      UBI_SHORTTERM);
510 			if (err)
511 				return err;
512 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
513 			err = realloc_lpt_leb(c, &lnum);
514 			if (err)
515 				goto no_space;
516 			offs = from = 0;
517 			ubifs_assert(lnum >= c->lpt_first &&
518 				     lnum <= c->lpt_last);
519 			err = ubifs_leb_unmap(c, lnum);
520 			if (err)
521 				return err;
522 		}
523 		done_ltab = 1;
524 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
525 		offs += c->ltab_sz;
526 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
527 	}
528 
529 	/* Write remaining data in buffer */
530 	wlen = offs - from;
531 	alen = ALIGN(wlen, c->min_io_size);
532 	memset(buf + offs, 0xff, alen - wlen);
533 	err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM);
534 	if (err)
535 		return err;
536 
537 	dbg_chk_lpt_sz(c, 4, alen - wlen);
538 	err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
539 	if (err)
540 		return err;
541 
542 	c->nhead_lnum = lnum;
543 	c->nhead_offs = ALIGN(offs, c->min_io_size);
544 
545 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
546 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
547 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
548 	if (c->big_lpt)
549 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
550 
551 	return 0;
552 
553 no_space:
554 	ubifs_err("LPT out of space mismatch");
555 	dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
556 		"%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
557 	dbg_dump_lpt_info(c);
558 	dbg_dump_lpt_lebs(c);
559 	dump_stack();
560 	return err;
561 }
562 
563 /**
564  * next_pnode_to_dirty - find next pnode to dirty.
565  * @c: UBIFS file-system description object
566  * @pnode: pnode
567  *
568  * This function returns the next pnode to dirty or %NULL if there are no more
569  * pnodes.  Note that pnodes that have never been written (lnum == 0) are
570  * skipped.
571  */
572 static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
573 					       struct ubifs_pnode *pnode)
574 {
575 	struct ubifs_nnode *nnode;
576 	int iip;
577 
578 	/* Try to go right */
579 	nnode = pnode->parent;
580 	for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
581 		if (nnode->nbranch[iip].lnum)
582 			return ubifs_get_pnode(c, nnode, iip);
583 	}
584 
585 	/* Go up while can't go right */
586 	do {
587 		iip = nnode->iip + 1;
588 		nnode = nnode->parent;
589 		if (!nnode)
590 			return NULL;
591 		for (; iip < UBIFS_LPT_FANOUT; iip++) {
592 			if (nnode->nbranch[iip].lnum)
593 				break;
594 		}
595 	} while (iip >= UBIFS_LPT_FANOUT);
596 
597 	/* Go right */
598 	nnode = ubifs_get_nnode(c, nnode, iip);
599 	if (IS_ERR(nnode))
600 		return (void *)nnode;
601 
602 	/* Go down to level 1 */
603 	while (nnode->level > 1) {
604 		for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
605 			if (nnode->nbranch[iip].lnum)
606 				break;
607 		}
608 		if (iip >= UBIFS_LPT_FANOUT) {
609 			/*
610 			 * Should not happen, but we need to keep going
611 			 * if it does.
612 			 */
613 			iip = 0;
614 		}
615 		nnode = ubifs_get_nnode(c, nnode, iip);
616 		if (IS_ERR(nnode))
617 			return (void *)nnode;
618 	}
619 
620 	for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
621 		if (nnode->nbranch[iip].lnum)
622 			break;
623 	if (iip >= UBIFS_LPT_FANOUT)
624 		/* Should not happen, but we need to keep going if it does */
625 		iip = 0;
626 	return ubifs_get_pnode(c, nnode, iip);
627 }
628 
629 /**
630  * pnode_lookup - lookup a pnode in the LPT.
631  * @c: UBIFS file-system description object
632  * @i: pnode number (0 to main_lebs - 1)
633  *
634  * This function returns a pointer to the pnode on success or a negative
635  * error code on failure.
636  */
637 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
638 {
639 	int err, h, iip, shft;
640 	struct ubifs_nnode *nnode;
641 
642 	if (!c->nroot) {
643 		err = ubifs_read_nnode(c, NULL, 0);
644 		if (err)
645 			return ERR_PTR(err);
646 	}
647 	i <<= UBIFS_LPT_FANOUT_SHIFT;
648 	nnode = c->nroot;
649 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
650 	for (h = 1; h < c->lpt_hght; h++) {
651 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
652 		shft -= UBIFS_LPT_FANOUT_SHIFT;
653 		nnode = ubifs_get_nnode(c, nnode, iip);
654 		if (IS_ERR(nnode))
655 			return ERR_CAST(nnode);
656 	}
657 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
658 	return ubifs_get_pnode(c, nnode, iip);
659 }
660 
661 /**
662  * add_pnode_dirt - add dirty space to LPT LEB properties.
663  * @c: UBIFS file-system description object
664  * @pnode: pnode for which to add dirt
665  */
666 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
667 {
668 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
669 			   c->pnode_sz);
670 }
671 
672 /**
673  * do_make_pnode_dirty - mark a pnode dirty.
674  * @c: UBIFS file-system description object
675  * @pnode: pnode to mark dirty
676  */
677 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
678 {
679 	/* Assumes cnext list is empty i.e. not called during commit */
680 	if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
681 		struct ubifs_nnode *nnode;
682 
683 		c->dirty_pn_cnt += 1;
684 		add_pnode_dirt(c, pnode);
685 		/* Mark parent and ancestors dirty too */
686 		nnode = pnode->parent;
687 		while (nnode) {
688 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
689 				c->dirty_nn_cnt += 1;
690 				ubifs_add_nnode_dirt(c, nnode);
691 				nnode = nnode->parent;
692 			} else
693 				break;
694 		}
695 	}
696 }
697 
698 /**
699  * make_tree_dirty - mark the entire LEB properties tree dirty.
700  * @c: UBIFS file-system description object
701  *
702  * This function is used by the "small" LPT model to cause the entire LEB
703  * properties tree to be written.  The "small" LPT model does not use LPT
704  * garbage collection because it is more efficient to write the entire tree
705  * (because it is small).
706  *
707  * This function returns %0 on success and a negative error code on failure.
708  */
709 static int make_tree_dirty(struct ubifs_info *c)
710 {
711 	struct ubifs_pnode *pnode;
712 
713 	pnode = pnode_lookup(c, 0);
714 	if (IS_ERR(pnode))
715 		return PTR_ERR(pnode);
716 
717 	while (pnode) {
718 		do_make_pnode_dirty(c, pnode);
719 		pnode = next_pnode_to_dirty(c, pnode);
720 		if (IS_ERR(pnode))
721 			return PTR_ERR(pnode);
722 	}
723 	return 0;
724 }
725 
726 /**
727  * need_write_all - determine if the LPT area is running out of free space.
728  * @c: UBIFS file-system description object
729  *
730  * This function returns %1 if the LPT area is running out of free space and %0
731  * if it is not.
732  */
733 static int need_write_all(struct ubifs_info *c)
734 {
735 	long long free = 0;
736 	int i;
737 
738 	for (i = 0; i < c->lpt_lebs; i++) {
739 		if (i + c->lpt_first == c->nhead_lnum)
740 			free += c->leb_size - c->nhead_offs;
741 		else if (c->ltab[i].free == c->leb_size)
742 			free += c->leb_size;
743 		else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
744 			free += c->leb_size;
745 	}
746 	/* Less than twice the size left */
747 	if (free <= c->lpt_sz * 2)
748 		return 1;
749 	return 0;
750 }
751 
752 /**
753  * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
754  * @c: UBIFS file-system description object
755  *
756  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
757  * free space and so may be reused as soon as the next commit is completed.
758  * This function is called during start commit to mark LPT LEBs for trivial GC.
759  */
760 static void lpt_tgc_start(struct ubifs_info *c)
761 {
762 	int i;
763 
764 	for (i = 0; i < c->lpt_lebs; i++) {
765 		if (i + c->lpt_first == c->nhead_lnum)
766 			continue;
767 		if (c->ltab[i].dirty > 0 &&
768 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
769 			c->ltab[i].tgc = 1;
770 			c->ltab[i].free = c->leb_size;
771 			c->ltab[i].dirty = 0;
772 			dbg_lp("LEB %d", i + c->lpt_first);
773 		}
774 	}
775 }
776 
777 /**
778  * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
779  * @c: UBIFS file-system description object
780  *
781  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
782  * free space and so may be reused as soon as the next commit is completed.
783  * This function is called after the commit is completed (master node has been
784  * written) and un-maps LPT LEBs that were marked for trivial GC.
785  */
786 static int lpt_tgc_end(struct ubifs_info *c)
787 {
788 	int i, err;
789 
790 	for (i = 0; i < c->lpt_lebs; i++)
791 		if (c->ltab[i].tgc) {
792 			err = ubifs_leb_unmap(c, i + c->lpt_first);
793 			if (err)
794 				return err;
795 			c->ltab[i].tgc = 0;
796 			dbg_lp("LEB %d", i + c->lpt_first);
797 		}
798 	return 0;
799 }
800 
801 /**
802  * populate_lsave - fill the lsave array with important LEB numbers.
803  * @c: the UBIFS file-system description object
804  *
805  * This function is only called for the "big" model. It records a small number
806  * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
807  * most important to least important): empty, freeable, freeable index, dirty
808  * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
809  * their pnodes into memory.  That will stop us from having to scan the LPT
810  * straight away. For the "small" model we assume that scanning the LPT is no
811  * big deal.
812  */
813 static void populate_lsave(struct ubifs_info *c)
814 {
815 	struct ubifs_lprops *lprops;
816 	struct ubifs_lpt_heap *heap;
817 	int i, cnt = 0;
818 
819 	ubifs_assert(c->big_lpt);
820 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
821 		c->lpt_drty_flgs |= LSAVE_DIRTY;
822 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
823 	}
824 
825 	if (dbg_populate_lsave(c))
826 		return;
827 
828 	list_for_each_entry(lprops, &c->empty_list, list) {
829 		c->lsave[cnt++] = lprops->lnum;
830 		if (cnt >= c->lsave_cnt)
831 			return;
832 	}
833 	list_for_each_entry(lprops, &c->freeable_list, list) {
834 		c->lsave[cnt++] = lprops->lnum;
835 		if (cnt >= c->lsave_cnt)
836 			return;
837 	}
838 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
839 		c->lsave[cnt++] = lprops->lnum;
840 		if (cnt >= c->lsave_cnt)
841 			return;
842 	}
843 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
844 	for (i = 0; i < heap->cnt; i++) {
845 		c->lsave[cnt++] = heap->arr[i]->lnum;
846 		if (cnt >= c->lsave_cnt)
847 			return;
848 	}
849 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
850 	for (i = 0; i < heap->cnt; i++) {
851 		c->lsave[cnt++] = heap->arr[i]->lnum;
852 		if (cnt >= c->lsave_cnt)
853 			return;
854 	}
855 	heap = &c->lpt_heap[LPROPS_FREE - 1];
856 	for (i = 0; i < heap->cnt; i++) {
857 		c->lsave[cnt++] = heap->arr[i]->lnum;
858 		if (cnt >= c->lsave_cnt)
859 			return;
860 	}
861 	/* Fill it up completely */
862 	while (cnt < c->lsave_cnt)
863 		c->lsave[cnt++] = c->main_first;
864 }
865 
866 /**
867  * nnode_lookup - lookup a nnode in the LPT.
868  * @c: UBIFS file-system description object
869  * @i: nnode number
870  *
871  * This function returns a pointer to the nnode on success or a negative
872  * error code on failure.
873  */
874 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
875 {
876 	int err, iip;
877 	struct ubifs_nnode *nnode;
878 
879 	if (!c->nroot) {
880 		err = ubifs_read_nnode(c, NULL, 0);
881 		if (err)
882 			return ERR_PTR(err);
883 	}
884 	nnode = c->nroot;
885 	while (1) {
886 		iip = i & (UBIFS_LPT_FANOUT - 1);
887 		i >>= UBIFS_LPT_FANOUT_SHIFT;
888 		if (!i)
889 			break;
890 		nnode = ubifs_get_nnode(c, nnode, iip);
891 		if (IS_ERR(nnode))
892 			return nnode;
893 	}
894 	return nnode;
895 }
896 
897 /**
898  * make_nnode_dirty - find a nnode and, if found, make it dirty.
899  * @c: UBIFS file-system description object
900  * @node_num: nnode number of nnode to make dirty
901  * @lnum: LEB number where nnode was written
902  * @offs: offset where nnode was written
903  *
904  * This function is used by LPT garbage collection.  LPT garbage collection is
905  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
906  * simply involves marking all the nodes in the LEB being garbage-collected as
907  * dirty.  The dirty nodes are written next commit, after which the LEB is free
908  * to be reused.
909  *
910  * This function returns %0 on success and a negative error code on failure.
911  */
912 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
913 			    int offs)
914 {
915 	struct ubifs_nnode *nnode;
916 
917 	nnode = nnode_lookup(c, node_num);
918 	if (IS_ERR(nnode))
919 		return PTR_ERR(nnode);
920 	if (nnode->parent) {
921 		struct ubifs_nbranch *branch;
922 
923 		branch = &nnode->parent->nbranch[nnode->iip];
924 		if (branch->lnum != lnum || branch->offs != offs)
925 			return 0; /* nnode is obsolete */
926 	} else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
927 			return 0; /* nnode is obsolete */
928 	/* Assumes cnext list is empty i.e. not called during commit */
929 	if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
930 		c->dirty_nn_cnt += 1;
931 		ubifs_add_nnode_dirt(c, nnode);
932 		/* Mark parent and ancestors dirty too */
933 		nnode = nnode->parent;
934 		while (nnode) {
935 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
936 				c->dirty_nn_cnt += 1;
937 				ubifs_add_nnode_dirt(c, nnode);
938 				nnode = nnode->parent;
939 			} else
940 				break;
941 		}
942 	}
943 	return 0;
944 }
945 
946 /**
947  * make_pnode_dirty - find a pnode and, if found, make it dirty.
948  * @c: UBIFS file-system description object
949  * @node_num: pnode number of pnode to make dirty
950  * @lnum: LEB number where pnode was written
951  * @offs: offset where pnode was written
952  *
953  * This function is used by LPT garbage collection.  LPT garbage collection is
954  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
955  * simply involves marking all the nodes in the LEB being garbage-collected as
956  * dirty.  The dirty nodes are written next commit, after which the LEB is free
957  * to be reused.
958  *
959  * This function returns %0 on success and a negative error code on failure.
960  */
961 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
962 			    int offs)
963 {
964 	struct ubifs_pnode *pnode;
965 	struct ubifs_nbranch *branch;
966 
967 	pnode = pnode_lookup(c, node_num);
968 	if (IS_ERR(pnode))
969 		return PTR_ERR(pnode);
970 	branch = &pnode->parent->nbranch[pnode->iip];
971 	if (branch->lnum != lnum || branch->offs != offs)
972 		return 0;
973 	do_make_pnode_dirty(c, pnode);
974 	return 0;
975 }
976 
977 /**
978  * make_ltab_dirty - make ltab node dirty.
979  * @c: UBIFS file-system description object
980  * @lnum: LEB number where ltab was written
981  * @offs: offset where ltab was written
982  *
983  * This function is used by LPT garbage collection.  LPT garbage collection is
984  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
985  * simply involves marking all the nodes in the LEB being garbage-collected as
986  * dirty.  The dirty nodes are written next commit, after which the LEB is free
987  * to be reused.
988  *
989  * This function returns %0 on success and a negative error code on failure.
990  */
991 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
992 {
993 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
994 		return 0; /* This ltab node is obsolete */
995 	if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
996 		c->lpt_drty_flgs |= LTAB_DIRTY;
997 		ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
998 	}
999 	return 0;
1000 }
1001 
1002 /**
1003  * make_lsave_dirty - make lsave node dirty.
1004  * @c: UBIFS file-system description object
1005  * @lnum: LEB number where lsave was written
1006  * @offs: offset where lsave was written
1007  *
1008  * This function is used by LPT garbage collection.  LPT garbage collection is
1009  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1010  * simply involves marking all the nodes in the LEB being garbage-collected as
1011  * dirty.  The dirty nodes are written next commit, after which the LEB is free
1012  * to be reused.
1013  *
1014  * This function returns %0 on success and a negative error code on failure.
1015  */
1016 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1017 {
1018 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1019 		return 0; /* This lsave node is obsolete */
1020 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1021 		c->lpt_drty_flgs |= LSAVE_DIRTY;
1022 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1023 	}
1024 	return 0;
1025 }
1026 
1027 /**
1028  * make_node_dirty - make node dirty.
1029  * @c: UBIFS file-system description object
1030  * @node_type: LPT node type
1031  * @node_num: node number
1032  * @lnum: LEB number where node was written
1033  * @offs: offset where node was written
1034  *
1035  * This function is used by LPT garbage collection.  LPT garbage collection is
1036  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1037  * simply involves marking all the nodes in the LEB being garbage-collected as
1038  * dirty.  The dirty nodes are written next commit, after which the LEB is free
1039  * to be reused.
1040  *
1041  * This function returns %0 on success and a negative error code on failure.
1042  */
1043 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1044 			   int lnum, int offs)
1045 {
1046 	switch (node_type) {
1047 	case UBIFS_LPT_NNODE:
1048 		return make_nnode_dirty(c, node_num, lnum, offs);
1049 	case UBIFS_LPT_PNODE:
1050 		return make_pnode_dirty(c, node_num, lnum, offs);
1051 	case UBIFS_LPT_LTAB:
1052 		return make_ltab_dirty(c, lnum, offs);
1053 	case UBIFS_LPT_LSAVE:
1054 		return make_lsave_dirty(c, lnum, offs);
1055 	}
1056 	return -EINVAL;
1057 }
1058 
1059 /**
1060  * get_lpt_node_len - return the length of a node based on its type.
1061  * @c: UBIFS file-system description object
1062  * @node_type: LPT node type
1063  */
1064 static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1065 {
1066 	switch (node_type) {
1067 	case UBIFS_LPT_NNODE:
1068 		return c->nnode_sz;
1069 	case UBIFS_LPT_PNODE:
1070 		return c->pnode_sz;
1071 	case UBIFS_LPT_LTAB:
1072 		return c->ltab_sz;
1073 	case UBIFS_LPT_LSAVE:
1074 		return c->lsave_sz;
1075 	}
1076 	return 0;
1077 }
1078 
1079 /**
1080  * get_pad_len - return the length of padding in a buffer.
1081  * @c: UBIFS file-system description object
1082  * @buf: buffer
1083  * @len: length of buffer
1084  */
1085 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1086 {
1087 	int offs, pad_len;
1088 
1089 	if (c->min_io_size == 1)
1090 		return 0;
1091 	offs = c->leb_size - len;
1092 	pad_len = ALIGN(offs, c->min_io_size) - offs;
1093 	return pad_len;
1094 }
1095 
1096 /**
1097  * get_lpt_node_type - return type (and node number) of a node in a buffer.
1098  * @c: UBIFS file-system description object
1099  * @buf: buffer
1100  * @node_num: node number is returned here
1101  */
1102 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1103 			     int *node_num)
1104 {
1105 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1106 	int pos = 0, node_type;
1107 
1108 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1109 	*node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1110 	return node_type;
1111 }
1112 
1113 /**
1114  * is_a_node - determine if a buffer contains a node.
1115  * @c: UBIFS file-system description object
1116  * @buf: buffer
1117  * @len: length of buffer
1118  *
1119  * This function returns %1 if the buffer contains a node or %0 if it does not.
1120  */
1121 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1122 {
1123 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1124 	int pos = 0, node_type, node_len;
1125 	uint16_t crc, calc_crc;
1126 
1127 	if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1128 		return 0;
1129 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1130 	if (node_type == UBIFS_LPT_NOT_A_NODE)
1131 		return 0;
1132 	node_len = get_lpt_node_len(c, node_type);
1133 	if (!node_len || node_len > len)
1134 		return 0;
1135 	pos = 0;
1136 	addr = buf;
1137 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1138 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1139 			 node_len - UBIFS_LPT_CRC_BYTES);
1140 	if (crc != calc_crc)
1141 		return 0;
1142 	return 1;
1143 }
1144 
1145 /**
1146  * lpt_gc_lnum - garbage collect a LPT LEB.
1147  * @c: UBIFS file-system description object
1148  * @lnum: LEB number to garbage collect
1149  *
1150  * LPT garbage collection is used only for the "big" LPT model
1151  * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1152  * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1153  * next commit, after which the LEB is free to be reused.
1154  *
1155  * This function returns %0 on success and a negative error code on failure.
1156  */
1157 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1158 {
1159 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1160 	void *buf = c->lpt_buf;
1161 
1162 	dbg_lp("LEB %d", lnum);
1163 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1164 	if (err) {
1165 		ubifs_err("cannot read LEB %d, error %d", lnum, err);
1166 		return err;
1167 	}
1168 	while (1) {
1169 		if (!is_a_node(c, buf, len)) {
1170 			int pad_len;
1171 
1172 			pad_len = get_pad_len(c, buf, len);
1173 			if (pad_len) {
1174 				buf += pad_len;
1175 				len -= pad_len;
1176 				continue;
1177 			}
1178 			return 0;
1179 		}
1180 		node_type = get_lpt_node_type(c, buf, &node_num);
1181 		node_len = get_lpt_node_len(c, node_type);
1182 		offs = c->leb_size - len;
1183 		ubifs_assert(node_len != 0);
1184 		mutex_lock(&c->lp_mutex);
1185 		err = make_node_dirty(c, node_type, node_num, lnum, offs);
1186 		mutex_unlock(&c->lp_mutex);
1187 		if (err)
1188 			return err;
1189 		buf += node_len;
1190 		len -= node_len;
1191 	}
1192 	return 0;
1193 }
1194 
1195 /**
1196  * lpt_gc - LPT garbage collection.
1197  * @c: UBIFS file-system description object
1198  *
1199  * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1200  * Returns %0 on success and a negative error code on failure.
1201  */
1202 static int lpt_gc(struct ubifs_info *c)
1203 {
1204 	int i, lnum = -1, dirty = 0;
1205 
1206 	mutex_lock(&c->lp_mutex);
1207 	for (i = 0; i < c->lpt_lebs; i++) {
1208 		ubifs_assert(!c->ltab[i].tgc);
1209 		if (i + c->lpt_first == c->nhead_lnum ||
1210 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1211 			continue;
1212 		if (c->ltab[i].dirty > dirty) {
1213 			dirty = c->ltab[i].dirty;
1214 			lnum = i + c->lpt_first;
1215 		}
1216 	}
1217 	mutex_unlock(&c->lp_mutex);
1218 	if (lnum == -1)
1219 		return -ENOSPC;
1220 	return lpt_gc_lnum(c, lnum);
1221 }
1222 
1223 /**
1224  * ubifs_lpt_start_commit - UBIFS commit starts.
1225  * @c: the UBIFS file-system description object
1226  *
1227  * This function has to be called when UBIFS starts the commit operation.
1228  * This function "freezes" all currently dirty LEB properties and does not
1229  * change them anymore. Further changes are saved and tracked separately
1230  * because they are not part of this commit. This function returns zero in case
1231  * of success and a negative error code in case of failure.
1232  */
1233 int ubifs_lpt_start_commit(struct ubifs_info *c)
1234 {
1235 	int err, cnt;
1236 
1237 	dbg_lp("");
1238 
1239 	mutex_lock(&c->lp_mutex);
1240 	err = dbg_chk_lpt_free_spc(c);
1241 	if (err)
1242 		goto out;
1243 	err = dbg_check_ltab(c);
1244 	if (err)
1245 		goto out;
1246 
1247 	if (c->check_lpt_free) {
1248 		/*
1249 		 * We ensure there is enough free space in
1250 		 * ubifs_lpt_post_commit() by marking nodes dirty. That
1251 		 * information is lost when we unmount, so we also need
1252 		 * to check free space once after mounting also.
1253 		 */
1254 		c->check_lpt_free = 0;
1255 		while (need_write_all(c)) {
1256 			mutex_unlock(&c->lp_mutex);
1257 			err = lpt_gc(c);
1258 			if (err)
1259 				return err;
1260 			mutex_lock(&c->lp_mutex);
1261 		}
1262 	}
1263 
1264 	lpt_tgc_start(c);
1265 
1266 	if (!c->dirty_pn_cnt) {
1267 		dbg_cmt("no cnodes to commit");
1268 		err = 0;
1269 		goto out;
1270 	}
1271 
1272 	if (!c->big_lpt && need_write_all(c)) {
1273 		/* If needed, write everything */
1274 		err = make_tree_dirty(c);
1275 		if (err)
1276 			goto out;
1277 		lpt_tgc_start(c);
1278 	}
1279 
1280 	if (c->big_lpt)
1281 		populate_lsave(c);
1282 
1283 	cnt = get_cnodes_to_commit(c);
1284 	ubifs_assert(cnt != 0);
1285 
1286 	err = layout_cnodes(c);
1287 	if (err)
1288 		goto out;
1289 
1290 	/* Copy the LPT's own lprops for end commit to write */
1291 	memcpy(c->ltab_cmt, c->ltab,
1292 	       sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1293 	c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1294 
1295 out:
1296 	mutex_unlock(&c->lp_mutex);
1297 	return err;
1298 }
1299 
1300 /**
1301  * free_obsolete_cnodes - free obsolete cnodes for commit end.
1302  * @c: UBIFS file-system description object
1303  */
1304 static void free_obsolete_cnodes(struct ubifs_info *c)
1305 {
1306 	struct ubifs_cnode *cnode, *cnext;
1307 
1308 	cnext = c->lpt_cnext;
1309 	if (!cnext)
1310 		return;
1311 	do {
1312 		cnode = cnext;
1313 		cnext = cnode->cnext;
1314 		if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1315 			kfree(cnode);
1316 		else
1317 			cnode->cnext = NULL;
1318 	} while (cnext != c->lpt_cnext);
1319 	c->lpt_cnext = NULL;
1320 }
1321 
1322 /**
1323  * ubifs_lpt_end_commit - finish the commit operation.
1324  * @c: the UBIFS file-system description object
1325  *
1326  * This function has to be called when the commit operation finishes. It
1327  * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1328  * the media. Returns zero in case of success and a negative error code in case
1329  * of failure.
1330  */
1331 int ubifs_lpt_end_commit(struct ubifs_info *c)
1332 {
1333 	int err;
1334 
1335 	dbg_lp("");
1336 
1337 	if (!c->lpt_cnext)
1338 		return 0;
1339 
1340 	err = write_cnodes(c);
1341 	if (err)
1342 		return err;
1343 
1344 	mutex_lock(&c->lp_mutex);
1345 	free_obsolete_cnodes(c);
1346 	mutex_unlock(&c->lp_mutex);
1347 
1348 	return 0;
1349 }
1350 
1351 /**
1352  * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1353  * @c: UBIFS file-system description object
1354  *
1355  * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1356  * commit for the "big" LPT model.
1357  */
1358 int ubifs_lpt_post_commit(struct ubifs_info *c)
1359 {
1360 	int err;
1361 
1362 	mutex_lock(&c->lp_mutex);
1363 	err = lpt_tgc_end(c);
1364 	if (err)
1365 		goto out;
1366 	if (c->big_lpt)
1367 		while (need_write_all(c)) {
1368 			mutex_unlock(&c->lp_mutex);
1369 			err = lpt_gc(c);
1370 			if (err)
1371 				return err;
1372 			mutex_lock(&c->lp_mutex);
1373 		}
1374 out:
1375 	mutex_unlock(&c->lp_mutex);
1376 	return err;
1377 }
1378 
1379 /**
1380  * first_nnode - find the first nnode in memory.
1381  * @c: UBIFS file-system description object
1382  * @hght: height of tree where nnode found is returned here
1383  *
1384  * This function returns a pointer to the nnode found or %NULL if no nnode is
1385  * found. This function is a helper to 'ubifs_lpt_free()'.
1386  */
1387 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1388 {
1389 	struct ubifs_nnode *nnode;
1390 	int h, i, found;
1391 
1392 	nnode = c->nroot;
1393 	*hght = 0;
1394 	if (!nnode)
1395 		return NULL;
1396 	for (h = 1; h < c->lpt_hght; h++) {
1397 		found = 0;
1398 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1399 			if (nnode->nbranch[i].nnode) {
1400 				found = 1;
1401 				nnode = nnode->nbranch[i].nnode;
1402 				*hght = h;
1403 				break;
1404 			}
1405 		}
1406 		if (!found)
1407 			break;
1408 	}
1409 	return nnode;
1410 }
1411 
1412 /**
1413  * next_nnode - find the next nnode in memory.
1414  * @c: UBIFS file-system description object
1415  * @nnode: nnode from which to start.
1416  * @hght: height of tree where nnode is, is passed and returned here
1417  *
1418  * This function returns a pointer to the nnode found or %NULL if no nnode is
1419  * found. This function is a helper to 'ubifs_lpt_free()'.
1420  */
1421 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1422 				      struct ubifs_nnode *nnode, int *hght)
1423 {
1424 	struct ubifs_nnode *parent;
1425 	int iip, h, i, found;
1426 
1427 	parent = nnode->parent;
1428 	if (!parent)
1429 		return NULL;
1430 	if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1431 		*hght -= 1;
1432 		return parent;
1433 	}
1434 	for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1435 		nnode = parent->nbranch[iip].nnode;
1436 		if (nnode)
1437 			break;
1438 	}
1439 	if (!nnode) {
1440 		*hght -= 1;
1441 		return parent;
1442 	}
1443 	for (h = *hght + 1; h < c->lpt_hght; h++) {
1444 		found = 0;
1445 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1446 			if (nnode->nbranch[i].nnode) {
1447 				found = 1;
1448 				nnode = nnode->nbranch[i].nnode;
1449 				*hght = h;
1450 				break;
1451 			}
1452 		}
1453 		if (!found)
1454 			break;
1455 	}
1456 	return nnode;
1457 }
1458 
1459 /**
1460  * ubifs_lpt_free - free resources owned by the LPT.
1461  * @c: UBIFS file-system description object
1462  * @wr_only: free only resources used for writing
1463  */
1464 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1465 {
1466 	struct ubifs_nnode *nnode;
1467 	int i, hght;
1468 
1469 	/* Free write-only things first */
1470 
1471 	free_obsolete_cnodes(c); /* Leftover from a failed commit */
1472 
1473 	vfree(c->ltab_cmt);
1474 	c->ltab_cmt = NULL;
1475 	vfree(c->lpt_buf);
1476 	c->lpt_buf = NULL;
1477 	kfree(c->lsave);
1478 	c->lsave = NULL;
1479 
1480 	if (wr_only)
1481 		return;
1482 
1483 	/* Now free the rest */
1484 
1485 	nnode = first_nnode(c, &hght);
1486 	while (nnode) {
1487 		for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1488 			kfree(nnode->nbranch[i].nnode);
1489 		nnode = next_nnode(c, nnode, &hght);
1490 	}
1491 	for (i = 0; i < LPROPS_HEAP_CNT; i++)
1492 		kfree(c->lpt_heap[i].arr);
1493 	kfree(c->dirty_idx.arr);
1494 	kfree(c->nroot);
1495 	vfree(c->ltab);
1496 	kfree(c->lpt_nod_buf);
1497 }
1498 
1499 #ifdef CONFIG_UBIFS_FS_DEBUG
1500 
1501 /**
1502  * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1503  * @buf: buffer
1504  * @len: buffer length
1505  */
1506 static int dbg_is_all_ff(uint8_t *buf, int len)
1507 {
1508 	int i;
1509 
1510 	for (i = 0; i < len; i++)
1511 		if (buf[i] != 0xff)
1512 			return 0;
1513 	return 1;
1514 }
1515 
1516 /**
1517  * dbg_is_nnode_dirty - determine if a nnode is dirty.
1518  * @c: the UBIFS file-system description object
1519  * @lnum: LEB number where nnode was written
1520  * @offs: offset where nnode was written
1521  */
1522 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1523 {
1524 	struct ubifs_nnode *nnode;
1525 	int hght;
1526 
1527 	/* Entire tree is in memory so first_nnode / next_nnode are OK */
1528 	nnode = first_nnode(c, &hght);
1529 	for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1530 		struct ubifs_nbranch *branch;
1531 
1532 		cond_resched();
1533 		if (nnode->parent) {
1534 			branch = &nnode->parent->nbranch[nnode->iip];
1535 			if (branch->lnum != lnum || branch->offs != offs)
1536 				continue;
1537 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1538 				return 1;
1539 			return 0;
1540 		} else {
1541 			if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1542 				continue;
1543 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1544 				return 1;
1545 			return 0;
1546 		}
1547 	}
1548 	return 1;
1549 }
1550 
1551 /**
1552  * dbg_is_pnode_dirty - determine if a pnode is dirty.
1553  * @c: the UBIFS file-system description object
1554  * @lnum: LEB number where pnode was written
1555  * @offs: offset where pnode was written
1556  */
1557 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1558 {
1559 	int i, cnt;
1560 
1561 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1562 	for (i = 0; i < cnt; i++) {
1563 		struct ubifs_pnode *pnode;
1564 		struct ubifs_nbranch *branch;
1565 
1566 		cond_resched();
1567 		pnode = pnode_lookup(c, i);
1568 		if (IS_ERR(pnode))
1569 			return PTR_ERR(pnode);
1570 		branch = &pnode->parent->nbranch[pnode->iip];
1571 		if (branch->lnum != lnum || branch->offs != offs)
1572 			continue;
1573 		if (test_bit(DIRTY_CNODE, &pnode->flags))
1574 			return 1;
1575 		return 0;
1576 	}
1577 	return 1;
1578 }
1579 
1580 /**
1581  * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1582  * @c: the UBIFS file-system description object
1583  * @lnum: LEB number where ltab node was written
1584  * @offs: offset where ltab node was written
1585  */
1586 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1587 {
1588 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1589 		return 1;
1590 	return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1591 }
1592 
1593 /**
1594  * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1595  * @c: the UBIFS file-system description object
1596  * @lnum: LEB number where lsave node was written
1597  * @offs: offset where lsave node was written
1598  */
1599 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1600 {
1601 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1602 		return 1;
1603 	return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1604 }
1605 
1606 /**
1607  * dbg_is_node_dirty - determine if a node is dirty.
1608  * @c: the UBIFS file-system description object
1609  * @node_type: node type
1610  * @lnum: LEB number where node was written
1611  * @offs: offset where node was written
1612  */
1613 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1614 			     int offs)
1615 {
1616 	switch (node_type) {
1617 	case UBIFS_LPT_NNODE:
1618 		return dbg_is_nnode_dirty(c, lnum, offs);
1619 	case UBIFS_LPT_PNODE:
1620 		return dbg_is_pnode_dirty(c, lnum, offs);
1621 	case UBIFS_LPT_LTAB:
1622 		return dbg_is_ltab_dirty(c, lnum, offs);
1623 	case UBIFS_LPT_LSAVE:
1624 		return dbg_is_lsave_dirty(c, lnum, offs);
1625 	}
1626 	return 1;
1627 }
1628 
1629 /**
1630  * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1631  * @c: the UBIFS file-system description object
1632  * @lnum: LEB number where node was written
1633  * @offs: offset where node was written
1634  *
1635  * This function returns %0 on success and a negative error code on failure.
1636  */
1637 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1638 {
1639 	int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1640 	int ret;
1641 	void *buf, *p;
1642 
1643 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1644 		return 0;
1645 
1646 	buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1647 	if (!buf) {
1648 		ubifs_err("cannot allocate memory for ltab checking");
1649 		return 0;
1650 	}
1651 
1652 	dbg_lp("LEB %d", lnum);
1653 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1654 	if (err) {
1655 		dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err);
1656 		goto out;
1657 	}
1658 	while (1) {
1659 		if (!is_a_node(c, p, len)) {
1660 			int i, pad_len;
1661 
1662 			pad_len = get_pad_len(c, p, len);
1663 			if (pad_len) {
1664 				p += pad_len;
1665 				len -= pad_len;
1666 				dirty += pad_len;
1667 				continue;
1668 			}
1669 			if (!dbg_is_all_ff(p, len)) {
1670 				dbg_msg("invalid empty space in LEB %d at %d",
1671 					lnum, c->leb_size - len);
1672 				err = -EINVAL;
1673 			}
1674 			i = lnum - c->lpt_first;
1675 			if (len != c->ltab[i].free) {
1676 				dbg_msg("invalid free space in LEB %d "
1677 					"(free %d, expected %d)",
1678 					lnum, len, c->ltab[i].free);
1679 				err = -EINVAL;
1680 			}
1681 			if (dirty != c->ltab[i].dirty) {
1682 				dbg_msg("invalid dirty space in LEB %d "
1683 					"(dirty %d, expected %d)",
1684 					lnum, dirty, c->ltab[i].dirty);
1685 				err = -EINVAL;
1686 			}
1687 			goto out;
1688 		}
1689 		node_type = get_lpt_node_type(c, p, &node_num);
1690 		node_len = get_lpt_node_len(c, node_type);
1691 		ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1692 		if (ret == 1)
1693 			dirty += node_len;
1694 		p += node_len;
1695 		len -= node_len;
1696 	}
1697 
1698 	err = 0;
1699 out:
1700 	vfree(buf);
1701 	return err;
1702 }
1703 
1704 /**
1705  * dbg_check_ltab - check the free and dirty space in the ltab.
1706  * @c: the UBIFS file-system description object
1707  *
1708  * This function returns %0 on success and a negative error code on failure.
1709  */
1710 int dbg_check_ltab(struct ubifs_info *c)
1711 {
1712 	int lnum, err, i, cnt;
1713 
1714 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1715 		return 0;
1716 
1717 	/* Bring the entire tree into memory */
1718 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1719 	for (i = 0; i < cnt; i++) {
1720 		struct ubifs_pnode *pnode;
1721 
1722 		pnode = pnode_lookup(c, i);
1723 		if (IS_ERR(pnode))
1724 			return PTR_ERR(pnode);
1725 		cond_resched();
1726 	}
1727 
1728 	/* Check nodes */
1729 	err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1730 	if (err)
1731 		return err;
1732 
1733 	/* Check each LEB */
1734 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1735 		err = dbg_check_ltab_lnum(c, lnum);
1736 		if (err) {
1737 			dbg_err("failed at LEB %d", lnum);
1738 			return err;
1739 		}
1740 	}
1741 
1742 	dbg_lp("succeeded");
1743 	return 0;
1744 }
1745 
1746 /**
1747  * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1748  * @c: the UBIFS file-system description object
1749  *
1750  * This function returns %0 on success and a negative error code on failure.
1751  */
1752 int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1753 {
1754 	long long free = 0;
1755 	int i;
1756 
1757 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1758 		return 0;
1759 
1760 	for (i = 0; i < c->lpt_lebs; i++) {
1761 		if (c->ltab[i].tgc || c->ltab[i].cmt)
1762 			continue;
1763 		if (i + c->lpt_first == c->nhead_lnum)
1764 			free += c->leb_size - c->nhead_offs;
1765 		else if (c->ltab[i].free == c->leb_size)
1766 			free += c->leb_size;
1767 	}
1768 	if (free < c->lpt_sz) {
1769 		dbg_err("LPT space error: free %lld lpt_sz %lld",
1770 			free, c->lpt_sz);
1771 		dbg_dump_lpt_info(c);
1772 		dbg_dump_lpt_lebs(c);
1773 		dump_stack();
1774 		return -EINVAL;
1775 	}
1776 	return 0;
1777 }
1778 
1779 /**
1780  * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1781  * @c: the UBIFS file-system description object
1782  * @action: what to do
1783  * @len: length written
1784  *
1785  * This function returns %0 on success and a negative error code on failure.
1786  * The @action argument may be one of:
1787  *   o %0 - LPT debugging checking starts, initialize debugging variables;
1788  *   o %1 - wrote an LPT node, increase LPT size by @len bytes;
1789  *   o %2 - switched to a different LEB and wasted @len bytes;
1790  *   o %3 - check that we've written the right number of bytes.
1791  *   o %4 - wasted @len bytes;
1792  */
1793 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1794 {
1795 	struct ubifs_debug_info *d = c->dbg;
1796 	long long chk_lpt_sz, lpt_sz;
1797 	int err = 0;
1798 
1799 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1800 		return 0;
1801 
1802 	switch (action) {
1803 	case 0:
1804 		d->chk_lpt_sz = 0;
1805 		d->chk_lpt_sz2 = 0;
1806 		d->chk_lpt_lebs = 0;
1807 		d->chk_lpt_wastage = 0;
1808 		if (c->dirty_pn_cnt > c->pnode_cnt) {
1809 			dbg_err("dirty pnodes %d exceed max %d",
1810 				c->dirty_pn_cnt, c->pnode_cnt);
1811 			err = -EINVAL;
1812 		}
1813 		if (c->dirty_nn_cnt > c->nnode_cnt) {
1814 			dbg_err("dirty nnodes %d exceed max %d",
1815 				c->dirty_nn_cnt, c->nnode_cnt);
1816 			err = -EINVAL;
1817 		}
1818 		return err;
1819 	case 1:
1820 		d->chk_lpt_sz += len;
1821 		return 0;
1822 	case 2:
1823 		d->chk_lpt_sz += len;
1824 		d->chk_lpt_wastage += len;
1825 		d->chk_lpt_lebs += 1;
1826 		return 0;
1827 	case 3:
1828 		chk_lpt_sz = c->leb_size;
1829 		chk_lpt_sz *= d->chk_lpt_lebs;
1830 		chk_lpt_sz += len - c->nhead_offs;
1831 		if (d->chk_lpt_sz != chk_lpt_sz) {
1832 			dbg_err("LPT wrote %lld but space used was %lld",
1833 				d->chk_lpt_sz, chk_lpt_sz);
1834 			err = -EINVAL;
1835 		}
1836 		if (d->chk_lpt_sz > c->lpt_sz) {
1837 			dbg_err("LPT wrote %lld but lpt_sz is %lld",
1838 				d->chk_lpt_sz, c->lpt_sz);
1839 			err = -EINVAL;
1840 		}
1841 		if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1842 			dbg_err("LPT layout size %lld but wrote %lld",
1843 				d->chk_lpt_sz, d->chk_lpt_sz2);
1844 			err = -EINVAL;
1845 		}
1846 		if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1847 			dbg_err("LPT new nhead offs: expected %d was %d",
1848 				d->new_nhead_offs, len);
1849 			err = -EINVAL;
1850 		}
1851 		lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1852 		lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1853 		lpt_sz += c->ltab_sz;
1854 		if (c->big_lpt)
1855 			lpt_sz += c->lsave_sz;
1856 		if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1857 			dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1858 				d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1859 			err = -EINVAL;
1860 		}
1861 		if (err) {
1862 			dbg_dump_lpt_info(c);
1863 			dbg_dump_lpt_lebs(c);
1864 			dump_stack();
1865 		}
1866 		d->chk_lpt_sz2 = d->chk_lpt_sz;
1867 		d->chk_lpt_sz = 0;
1868 		d->chk_lpt_wastage = 0;
1869 		d->chk_lpt_lebs = 0;
1870 		d->new_nhead_offs = len;
1871 		return err;
1872 	case 4:
1873 		d->chk_lpt_sz += len;
1874 		d->chk_lpt_wastage += len;
1875 		return 0;
1876 	default:
1877 		return -EINVAL;
1878 	}
1879 }
1880 
1881 /**
1882  * dbg_dump_lpt_leb - dump an LPT LEB.
1883  * @c: UBIFS file-system description object
1884  * @lnum: LEB number to dump
1885  *
1886  * This function dumps an LEB from LPT area. Nodes in this area are very
1887  * different to nodes in the main area (e.g., they do not have common headers,
1888  * they do not have 8-byte alignments, etc), so we have a separate function to
1889  * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1890  */
1891 static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1892 {
1893 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1894 	void *buf, *p;
1895 
1896 	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
1897 	       current->pid, lnum);
1898 	buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1899 	if (!buf) {
1900 		ubifs_err("cannot allocate memory to dump LPT");
1901 		return;
1902 	}
1903 
1904 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1905 	if (err) {
1906 		ubifs_err("cannot read LEB %d, error %d", lnum, err);
1907 		goto out;
1908 	}
1909 	while (1) {
1910 		offs = c->leb_size - len;
1911 		if (!is_a_node(c, p, len)) {
1912 			int pad_len;
1913 
1914 			pad_len = get_pad_len(c, p, len);
1915 			if (pad_len) {
1916 				printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n",
1917 				       lnum, offs, pad_len);
1918 				p += pad_len;
1919 				len -= pad_len;
1920 				continue;
1921 			}
1922 			if (len)
1923 				printk(KERN_DEBUG "LEB %d:%d, free %d bytes\n",
1924 				       lnum, offs, len);
1925 			break;
1926 		}
1927 
1928 		node_type = get_lpt_node_type(c, p, &node_num);
1929 		switch (node_type) {
1930 		case UBIFS_LPT_PNODE:
1931 		{
1932 			node_len = c->pnode_sz;
1933 			if (c->big_lpt)
1934 				printk(KERN_DEBUG "LEB %d:%d, pnode num %d\n",
1935 				       lnum, offs, node_num);
1936 			else
1937 				printk(KERN_DEBUG "LEB %d:%d, pnode\n",
1938 				       lnum, offs);
1939 			break;
1940 		}
1941 		case UBIFS_LPT_NNODE:
1942 		{
1943 			int i;
1944 			struct ubifs_nnode nnode;
1945 
1946 			node_len = c->nnode_sz;
1947 			if (c->big_lpt)
1948 				printk(KERN_DEBUG "LEB %d:%d, nnode num %d, ",
1949 				       lnum, offs, node_num);
1950 			else
1951 				printk(KERN_DEBUG "LEB %d:%d, nnode, ",
1952 				       lnum, offs);
1953 			err = ubifs_unpack_nnode(c, p, &nnode);
1954 			for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1955 				printk(KERN_CONT "%d:%d", nnode.nbranch[i].lnum,
1956 				       nnode.nbranch[i].offs);
1957 				if (i != UBIFS_LPT_FANOUT - 1)
1958 					printk(KERN_CONT ", ");
1959 			}
1960 			printk(KERN_CONT "\n");
1961 			break;
1962 		}
1963 		case UBIFS_LPT_LTAB:
1964 			node_len = c->ltab_sz;
1965 			printk(KERN_DEBUG "LEB %d:%d, ltab\n",
1966 			       lnum, offs);
1967 			break;
1968 		case UBIFS_LPT_LSAVE:
1969 			node_len = c->lsave_sz;
1970 			printk(KERN_DEBUG "LEB %d:%d, lsave len\n", lnum, offs);
1971 			break;
1972 		default:
1973 			ubifs_err("LPT node type %d not recognized", node_type);
1974 			goto out;
1975 		}
1976 
1977 		p += node_len;
1978 		len -= node_len;
1979 	}
1980 
1981 	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
1982 	       current->pid, lnum);
1983 out:
1984 	vfree(buf);
1985 	return;
1986 }
1987 
1988 /**
1989  * dbg_dump_lpt_lebs - dump LPT lebs.
1990  * @c: UBIFS file-system description object
1991  *
1992  * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1993  * locked.
1994  */
1995 void dbg_dump_lpt_lebs(const struct ubifs_info *c)
1996 {
1997 	int i;
1998 
1999 	printk(KERN_DEBUG "(pid %d) start dumping all LPT LEBs\n",
2000 	       current->pid);
2001 	for (i = 0; i < c->lpt_lebs; i++)
2002 		dump_lpt_leb(c, i + c->lpt_first);
2003 	printk(KERN_DEBUG "(pid %d) finish dumping all LPT LEBs\n",
2004 	       current->pid);
2005 }
2006 
2007 /**
2008  * dbg_populate_lsave - debugging version of 'populate_lsave()'
2009  * @c: UBIFS file-system description object
2010  *
2011  * This is a debugging version for 'populate_lsave()' which populates lsave
2012  * with random LEBs instead of useful LEBs, which is good for test coverage.
2013  * Returns zero if lsave has not been populated (this debugging feature is
2014  * disabled) an non-zero if lsave has been populated.
2015  */
2016 static int dbg_populate_lsave(struct ubifs_info *c)
2017 {
2018 	struct ubifs_lprops *lprops;
2019 	struct ubifs_lpt_heap *heap;
2020 	int i;
2021 
2022 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2023 		return 0;
2024 	if (random32() & 3)
2025 		return 0;
2026 
2027 	for (i = 0; i < c->lsave_cnt; i++)
2028 		c->lsave[i] = c->main_first;
2029 
2030 	list_for_each_entry(lprops, &c->empty_list, list)
2031 		c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2032 	list_for_each_entry(lprops, &c->freeable_list, list)
2033 		c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2034 	list_for_each_entry(lprops, &c->frdi_idx_list, list)
2035 		c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2036 
2037 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
2038 	for (i = 0; i < heap->cnt; i++)
2039 		c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2040 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2041 	for (i = 0; i < heap->cnt; i++)
2042 		c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2043 	heap = &c->lpt_heap[LPROPS_FREE - 1];
2044 	for (i = 0; i < heap->cnt; i++)
2045 		c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2046 
2047 	return 1;
2048 }
2049 
2050 #endif /* CONFIG_UBIFS_FS_DEBUG */
2051