xref: /linux/fs/pstore/ram_core.c (revision 58f6259b7a08f8d47d4629609703d358b042f0fd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Google, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/errno.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/list.h>
15 #include <linux/memblock.h>
16 #include <linux/rslib.h>
17 #include <linux/slab.h>
18 #include <linux/uaccess.h>
19 #include <linux/vmalloc.h>
20 #include <asm/page.h>
21 
22 #include "ram_internal.h"
23 
24 /**
25  * struct persistent_ram_buffer - persistent circular RAM buffer
26  *
27  * @sig:
28  *	signature to indicate header (PERSISTENT_RAM_SIG xor PRZ-type value)
29  * @start:
30  *	offset into @data where the beginning of the stored bytes begin
31  * @size:
32  *	number of valid bytes stored in @data
33  */
34 struct persistent_ram_buffer {
35 	uint32_t    sig;
36 	atomic_t    start;
37 	atomic_t    size;
38 	uint8_t     data[];
39 };
40 
41 #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
42 
43 static inline size_t buffer_size(struct persistent_ram_zone *prz)
44 {
45 	return atomic_read(&prz->buffer->size);
46 }
47 
48 static inline size_t buffer_start(struct persistent_ram_zone *prz)
49 {
50 	return atomic_read(&prz->buffer->start);
51 }
52 
53 /* increase and wrap the start pointer, returning the old value */
54 static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
55 {
56 	int old;
57 	int new;
58 	unsigned long flags = 0;
59 
60 	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
61 		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
62 
63 	old = atomic_read(&prz->buffer->start);
64 	new = old + a;
65 	while (unlikely(new >= prz->buffer_size))
66 		new -= prz->buffer_size;
67 	atomic_set(&prz->buffer->start, new);
68 
69 	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
70 		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
71 
72 	return old;
73 }
74 
75 /* increase the size counter until it hits the max size */
76 static void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
77 {
78 	size_t old;
79 	size_t new;
80 	unsigned long flags = 0;
81 
82 	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
83 		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
84 
85 	old = atomic_read(&prz->buffer->size);
86 	if (old == prz->buffer_size)
87 		goto exit;
88 
89 	new = old + a;
90 	if (new > prz->buffer_size)
91 		new = prz->buffer_size;
92 	atomic_set(&prz->buffer->size, new);
93 
94 exit:
95 	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
96 		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
97 }
98 
99 static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
100 	uint8_t *data, size_t len, uint8_t *ecc)
101 {
102 	int i;
103 
104 	/* Initialize the parity buffer */
105 	memset(prz->ecc_info.par, 0,
106 	       prz->ecc_info.ecc_size * sizeof(prz->ecc_info.par[0]));
107 	encode_rs8(prz->rs_decoder, data, len, prz->ecc_info.par, 0);
108 	for (i = 0; i < prz->ecc_info.ecc_size; i++)
109 		ecc[i] = prz->ecc_info.par[i];
110 }
111 
112 static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
113 	void *data, size_t len, uint8_t *ecc)
114 {
115 	int i;
116 
117 	for (i = 0; i < prz->ecc_info.ecc_size; i++)
118 		prz->ecc_info.par[i] = ecc[i];
119 	return decode_rs8(prz->rs_decoder, data, prz->ecc_info.par, len,
120 				NULL, 0, NULL, 0, NULL);
121 }
122 
123 static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
124 	unsigned int start, unsigned int count)
125 {
126 	struct persistent_ram_buffer *buffer = prz->buffer;
127 	uint8_t *buffer_end = buffer->data + prz->buffer_size;
128 	uint8_t *block;
129 	uint8_t *par;
130 	int ecc_block_size = prz->ecc_info.block_size;
131 	int ecc_size = prz->ecc_info.ecc_size;
132 	int size = ecc_block_size;
133 
134 	if (!ecc_size)
135 		return;
136 
137 	block = buffer->data + (start & ~(ecc_block_size - 1));
138 	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
139 
140 	do {
141 		if (block + ecc_block_size > buffer_end)
142 			size = buffer_end - block;
143 		persistent_ram_encode_rs8(prz, block, size, par);
144 		block += ecc_block_size;
145 		par += ecc_size;
146 	} while (block < buffer->data + start + count);
147 }
148 
149 static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
150 {
151 	struct persistent_ram_buffer *buffer = prz->buffer;
152 
153 	if (!prz->ecc_info.ecc_size)
154 		return;
155 
156 	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
157 				  prz->par_header);
158 }
159 
160 static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
161 {
162 	struct persistent_ram_buffer *buffer = prz->buffer;
163 	uint8_t *block;
164 	uint8_t *par;
165 
166 	if (!prz->ecc_info.ecc_size)
167 		return;
168 
169 	block = buffer->data;
170 	par = prz->par_buffer;
171 	while (block < buffer->data + buffer_size(prz)) {
172 		int numerr;
173 		int size = prz->ecc_info.block_size;
174 		if (block + size > buffer->data + prz->buffer_size)
175 			size = buffer->data + prz->buffer_size - block;
176 		numerr = persistent_ram_decode_rs8(prz, block, size, par);
177 		if (numerr > 0) {
178 			pr_devel("error in block %p, %d\n", block, numerr);
179 			prz->corrected_bytes += numerr;
180 		} else if (numerr < 0) {
181 			pr_devel("uncorrectable error in block %p\n", block);
182 			prz->bad_blocks++;
183 		}
184 		block += prz->ecc_info.block_size;
185 		par += prz->ecc_info.ecc_size;
186 	}
187 }
188 
189 static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
190 				   struct persistent_ram_ecc_info *ecc_info)
191 {
192 	int numerr;
193 	struct persistent_ram_buffer *buffer = prz->buffer;
194 	int ecc_blocks;
195 	size_t ecc_total;
196 
197 	if (!ecc_info || !ecc_info->ecc_size)
198 		return 0;
199 
200 	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
201 	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
202 	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
203 	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
204 
205 	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
206 				  prz->ecc_info.block_size +
207 				  prz->ecc_info.ecc_size);
208 	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
209 	if (ecc_total >= prz->buffer_size) {
210 		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
211 		       __func__, prz->ecc_info.ecc_size,
212 		       ecc_total, prz->buffer_size);
213 		return -EINVAL;
214 	}
215 
216 	prz->buffer_size -= ecc_total;
217 	prz->par_buffer = buffer->data + prz->buffer_size;
218 	prz->par_header = prz->par_buffer +
219 			  ecc_blocks * prz->ecc_info.ecc_size;
220 
221 	/*
222 	 * first consecutive root is 0
223 	 * primitive element to generate roots = 1
224 	 */
225 	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
226 				  0, 1, prz->ecc_info.ecc_size);
227 	if (prz->rs_decoder == NULL) {
228 		pr_info("init_rs failed\n");
229 		return -EINVAL;
230 	}
231 
232 	/* allocate workspace instead of using stack VLA */
233 	prz->ecc_info.par = kmalloc_array(prz->ecc_info.ecc_size,
234 					  sizeof(*prz->ecc_info.par),
235 					  GFP_KERNEL);
236 	if (!prz->ecc_info.par) {
237 		pr_err("cannot allocate ECC parity workspace\n");
238 		return -ENOMEM;
239 	}
240 
241 	prz->corrected_bytes = 0;
242 	prz->bad_blocks = 0;
243 
244 	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
245 					   prz->par_header);
246 	if (numerr > 0) {
247 		pr_info("error in header, %d\n", numerr);
248 		prz->corrected_bytes += numerr;
249 	} else if (numerr < 0) {
250 		pr_info_ratelimited("uncorrectable error in header\n");
251 		prz->bad_blocks++;
252 	}
253 
254 	return 0;
255 }
256 
257 ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
258 	char *str, size_t len)
259 {
260 	ssize_t ret;
261 
262 	if (!prz->ecc_info.ecc_size)
263 		return 0;
264 
265 	if (prz->corrected_bytes || prz->bad_blocks)
266 		ret = snprintf(str, len, ""
267 			"\nECC: %d Corrected bytes, %d unrecoverable blocks\n",
268 			prz->corrected_bytes, prz->bad_blocks);
269 	else
270 		ret = snprintf(str, len, "\nECC: No errors detected\n");
271 
272 	return ret;
273 }
274 
275 static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
276 	const void *s, unsigned int start, unsigned int count)
277 {
278 	struct persistent_ram_buffer *buffer = prz->buffer;
279 	memcpy_toio(buffer->data + start, s, count);
280 	persistent_ram_update_ecc(prz, start, count);
281 }
282 
283 static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz,
284 	const void __user *s, unsigned int start, unsigned int count)
285 {
286 	struct persistent_ram_buffer *buffer = prz->buffer;
287 	int ret = unlikely(copy_from_user(buffer->data + start, s, count)) ?
288 		-EFAULT : 0;
289 	persistent_ram_update_ecc(prz, start, count);
290 	return ret;
291 }
292 
293 void persistent_ram_save_old(struct persistent_ram_zone *prz)
294 {
295 	struct persistent_ram_buffer *buffer = prz->buffer;
296 	size_t size = buffer_size(prz);
297 	size_t start = buffer_start(prz);
298 
299 	if (!size)
300 		return;
301 
302 	if (!prz->old_log) {
303 		persistent_ram_ecc_old(prz);
304 		prz->old_log = kmalloc(size, GFP_KERNEL);
305 	}
306 	if (!prz->old_log) {
307 		pr_err("failed to allocate buffer\n");
308 		return;
309 	}
310 
311 	prz->old_log_size = size;
312 	memcpy_fromio(prz->old_log, &buffer->data[start], size - start);
313 	memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start);
314 }
315 
316 int notrace persistent_ram_write(struct persistent_ram_zone *prz,
317 	const void *s, unsigned int count)
318 {
319 	int rem;
320 	int c = count;
321 	size_t start;
322 
323 	if (unlikely(c > prz->buffer_size)) {
324 		s += c - prz->buffer_size;
325 		c = prz->buffer_size;
326 	}
327 
328 	buffer_size_add(prz, c);
329 
330 	start = buffer_start_add(prz, c);
331 
332 	rem = prz->buffer_size - start;
333 	if (unlikely(rem < c)) {
334 		persistent_ram_update(prz, s, start, rem);
335 		s += rem;
336 		c -= rem;
337 		start = 0;
338 	}
339 	persistent_ram_update(prz, s, start, c);
340 
341 	persistent_ram_update_header_ecc(prz);
342 
343 	return count;
344 }
345 
346 int notrace persistent_ram_write_user(struct persistent_ram_zone *prz,
347 	const void __user *s, unsigned int count)
348 {
349 	int rem, ret = 0, c = count;
350 	size_t start;
351 
352 	if (unlikely(c > prz->buffer_size)) {
353 		s += c - prz->buffer_size;
354 		c = prz->buffer_size;
355 	}
356 
357 	buffer_size_add(prz, c);
358 
359 	start = buffer_start_add(prz, c);
360 
361 	rem = prz->buffer_size - start;
362 	if (unlikely(rem < c)) {
363 		ret = persistent_ram_update_user(prz, s, start, rem);
364 		s += rem;
365 		c -= rem;
366 		start = 0;
367 	}
368 	if (likely(!ret))
369 		ret = persistent_ram_update_user(prz, s, start, c);
370 
371 	persistent_ram_update_header_ecc(prz);
372 
373 	return unlikely(ret) ? ret : count;
374 }
375 
376 size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
377 {
378 	return prz->old_log_size;
379 }
380 
381 void *persistent_ram_old(struct persistent_ram_zone *prz)
382 {
383 	return prz->old_log;
384 }
385 
386 void persistent_ram_free_old(struct persistent_ram_zone *prz)
387 {
388 	kfree(prz->old_log);
389 	prz->old_log = NULL;
390 	prz->old_log_size = 0;
391 }
392 
393 void persistent_ram_zap(struct persistent_ram_zone *prz)
394 {
395 	atomic_set(&prz->buffer->start, 0);
396 	atomic_set(&prz->buffer->size, 0);
397 	persistent_ram_update_header_ecc(prz);
398 }
399 
400 #define MEM_TYPE_WCOMBINE	0
401 #define MEM_TYPE_NONCACHED	1
402 #define MEM_TYPE_NORMAL		2
403 
404 static void *persistent_ram_vmap(phys_addr_t start, size_t size,
405 		unsigned int memtype)
406 {
407 	struct page **pages;
408 	phys_addr_t page_start;
409 	unsigned int page_count;
410 	pgprot_t prot;
411 	unsigned int i;
412 	void *vaddr;
413 
414 	page_start = start - offset_in_page(start);
415 	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
416 
417 	switch (memtype) {
418 	case MEM_TYPE_NORMAL:
419 		prot = PAGE_KERNEL;
420 		break;
421 	case MEM_TYPE_NONCACHED:
422 		prot = pgprot_noncached(PAGE_KERNEL);
423 		break;
424 	case MEM_TYPE_WCOMBINE:
425 		prot = pgprot_writecombine(PAGE_KERNEL);
426 		break;
427 	default:
428 		pr_err("invalid mem_type=%d\n", memtype);
429 		return NULL;
430 	}
431 
432 	pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
433 	if (!pages) {
434 		pr_err("%s: Failed to allocate array for %u pages\n",
435 		       __func__, page_count);
436 		return NULL;
437 	}
438 
439 	for (i = 0; i < page_count; i++) {
440 		phys_addr_t addr = page_start + i * PAGE_SIZE;
441 		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
442 	}
443 	/*
444 	 * VM_IOREMAP used here to bypass this region during vread()
445 	 * and kmap_atomic() (i.e. kcore) to avoid __va() failures.
446 	 */
447 	vaddr = vmap(pages, page_count, VM_MAP | VM_IOREMAP, prot);
448 	kfree(pages);
449 
450 	/*
451 	 * Since vmap() uses page granularity, we must add the offset
452 	 * into the page here, to get the byte granularity address
453 	 * into the mapping to represent the actual "start" location.
454 	 */
455 	return vaddr + offset_in_page(start);
456 }
457 
458 static void *persistent_ram_iomap(phys_addr_t start, size_t size,
459 		unsigned int memtype, char *label)
460 {
461 	void *va;
462 
463 	if (!request_mem_region(start, size, label ?: "ramoops")) {
464 		pr_err("request mem region (%s 0x%llx@0x%llx) failed\n",
465 			label ?: "ramoops",
466 			(unsigned long long)size, (unsigned long long)start);
467 		return NULL;
468 	}
469 
470 	if (memtype)
471 		va = ioremap(start, size);
472 	else
473 		va = ioremap_wc(start, size);
474 
475 	/*
476 	 * Since request_mem_region() and ioremap() are byte-granularity
477 	 * there is no need handle anything special like we do when the
478 	 * vmap() case in persistent_ram_vmap() above.
479 	 */
480 	return va;
481 }
482 
483 static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
484 		struct persistent_ram_zone *prz, int memtype)
485 {
486 	prz->paddr = start;
487 	prz->size = size;
488 
489 	if (pfn_valid(start >> PAGE_SHIFT))
490 		prz->vaddr = persistent_ram_vmap(start, size, memtype);
491 	else
492 		prz->vaddr = persistent_ram_iomap(start, size, memtype,
493 						  prz->label);
494 
495 	if (!prz->vaddr) {
496 		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
497 			(unsigned long long)size, (unsigned long long)start);
498 		return -ENOMEM;
499 	}
500 
501 	prz->buffer = prz->vaddr;
502 	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
503 
504 	return 0;
505 }
506 
507 static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
508 				    struct persistent_ram_ecc_info *ecc_info)
509 {
510 	int ret;
511 	bool zap = !!(prz->flags & PRZ_FLAG_ZAP_OLD);
512 
513 	ret = persistent_ram_init_ecc(prz, ecc_info);
514 	if (ret) {
515 		pr_warn("ECC failed %s\n", prz->label);
516 		return ret;
517 	}
518 
519 	sig ^= PERSISTENT_RAM_SIG;
520 
521 	if (prz->buffer->sig == sig) {
522 		if (buffer_size(prz) == 0) {
523 			pr_debug("found existing empty buffer\n");
524 			return 0;
525 		}
526 
527 		if (buffer_size(prz) > prz->buffer_size ||
528 		    buffer_start(prz) > buffer_size(prz)) {
529 			pr_info("found existing invalid buffer, size %zu, start %zu\n",
530 				buffer_size(prz), buffer_start(prz));
531 			zap = true;
532 		} else {
533 			pr_debug("found existing buffer, size %zu, start %zu\n",
534 				 buffer_size(prz), buffer_start(prz));
535 			persistent_ram_save_old(prz);
536 		}
537 	} else {
538 		pr_debug("no valid data in buffer (sig = 0x%08x)\n",
539 			 prz->buffer->sig);
540 		prz->buffer->sig = sig;
541 		zap = true;
542 	}
543 
544 	/* Reset missing, invalid, or single-use memory area. */
545 	if (zap)
546 		persistent_ram_zap(prz);
547 
548 	return 0;
549 }
550 
551 void persistent_ram_free(struct persistent_ram_zone **_prz)
552 {
553 	struct persistent_ram_zone *prz;
554 
555 	if (!_prz)
556 		return;
557 
558 	prz = *_prz;
559 	if (!prz)
560 		return;
561 
562 	if (prz->vaddr) {
563 		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
564 			/* We must vunmap() at page-granularity. */
565 			vunmap(prz->vaddr - offset_in_page(prz->paddr));
566 		} else {
567 			iounmap(prz->vaddr);
568 			release_mem_region(prz->paddr, prz->size);
569 		}
570 		prz->vaddr = NULL;
571 	}
572 	if (prz->rs_decoder) {
573 		free_rs(prz->rs_decoder);
574 		prz->rs_decoder = NULL;
575 	}
576 	kfree(prz->ecc_info.par);
577 	prz->ecc_info.par = NULL;
578 
579 	persistent_ram_free_old(prz);
580 	kfree(prz->label);
581 	kfree(prz);
582 	*_prz = NULL;
583 }
584 
585 struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
586 			u32 sig, struct persistent_ram_ecc_info *ecc_info,
587 			unsigned int memtype, u32 flags, char *label)
588 {
589 	struct persistent_ram_zone *prz;
590 	int ret = -ENOMEM;
591 
592 	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
593 	if (!prz) {
594 		pr_err("failed to allocate persistent ram zone\n");
595 		goto err;
596 	}
597 
598 	/* Initialize general buffer state. */
599 	raw_spin_lock_init(&prz->buffer_lock);
600 	prz->flags = flags;
601 	prz->label = kstrdup(label, GFP_KERNEL);
602 	if (!prz->label)
603 		goto err;
604 
605 	ret = persistent_ram_buffer_map(start, size, prz, memtype);
606 	if (ret)
607 		goto err;
608 
609 	ret = persistent_ram_post_init(prz, sig, ecc_info);
610 	if (ret)
611 		goto err;
612 
613 	pr_debug("attached %s 0x%zx@0x%llx: %zu header, %zu data, %zu ecc (%d/%d)\n",
614 		prz->label, prz->size, (unsigned long long)prz->paddr,
615 		sizeof(*prz->buffer), prz->buffer_size,
616 		prz->size - sizeof(*prz->buffer) - prz->buffer_size,
617 		prz->ecc_info.ecc_size, prz->ecc_info.block_size);
618 
619 	return prz;
620 err:
621 	persistent_ram_free(&prz);
622 	return ERR_PTR(ret);
623 }
624