xref: /linux/fs/mpage.c (revision e9fb13bfec7e017130ddc5c1b5466340470f4900)
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002	Andrew Morton
10  *		Initial version
11  * 27Jun2002	axboe@suse.de
12  *		use bio_add_page() to build bio's just the right size
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 
31 /*
32  * I/O completion handler for multipage BIOs.
33  *
34  * The mpage code never puts partial pages into a BIO (except for end-of-file).
35  * If a page does not map to a contiguous run of blocks then it simply falls
36  * back to block_read_full_page().
37  *
38  * Why is this?  If a page's completion depends on a number of different BIOs
39  * which can complete in any order (or at the same time) then determining the
40  * status of that page is hard.  See end_buffer_async_read() for the details.
41  * There is no point in duplicating all that complexity.
42  */
43 static void mpage_end_io(struct bio *bio, int err)
44 {
45 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
46 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
47 
48 	do {
49 		struct page *page = bvec->bv_page;
50 
51 		if (--bvec >= bio->bi_io_vec)
52 			prefetchw(&bvec->bv_page->flags);
53 		if (bio_data_dir(bio) == READ) {
54 			if (uptodate) {
55 				SetPageUptodate(page);
56 			} else {
57 				ClearPageUptodate(page);
58 				SetPageError(page);
59 			}
60 			unlock_page(page);
61 		} else { /* bio_data_dir(bio) == WRITE */
62 			if (!uptodate) {
63 				SetPageError(page);
64 				if (page->mapping)
65 					set_bit(AS_EIO, &page->mapping->flags);
66 			}
67 			end_page_writeback(page);
68 		}
69 	} while (bvec >= bio->bi_io_vec);
70 	bio_put(bio);
71 }
72 
73 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
74 {
75 	bio->bi_end_io = mpage_end_io;
76 	submit_bio(rw, bio);
77 	return NULL;
78 }
79 
80 static struct bio *
81 mpage_alloc(struct block_device *bdev,
82 		sector_t first_sector, int nr_vecs,
83 		gfp_t gfp_flags)
84 {
85 	struct bio *bio;
86 
87 	bio = bio_alloc(gfp_flags, nr_vecs);
88 
89 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
90 		while (!bio && (nr_vecs /= 2))
91 			bio = bio_alloc(gfp_flags, nr_vecs);
92 	}
93 
94 	if (bio) {
95 		bio->bi_bdev = bdev;
96 		bio->bi_sector = first_sector;
97 	}
98 	return bio;
99 }
100 
101 /*
102  * support function for mpage_readpages.  The fs supplied get_block might
103  * return an up to date buffer.  This is used to map that buffer into
104  * the page, which allows readpage to avoid triggering a duplicate call
105  * to get_block.
106  *
107  * The idea is to avoid adding buffers to pages that don't already have
108  * them.  So when the buffer is up to date and the page size == block size,
109  * this marks the page up to date instead of adding new buffers.
110  */
111 static void
112 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
113 {
114 	struct inode *inode = page->mapping->host;
115 	struct buffer_head *page_bh, *head;
116 	int block = 0;
117 
118 	if (!page_has_buffers(page)) {
119 		/*
120 		 * don't make any buffers if there is only one buffer on
121 		 * the page and the page just needs to be set up to date
122 		 */
123 		if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
124 		    buffer_uptodate(bh)) {
125 			SetPageUptodate(page);
126 			return;
127 		}
128 		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
129 	}
130 	head = page_buffers(page);
131 	page_bh = head;
132 	do {
133 		if (block == page_block) {
134 			page_bh->b_state = bh->b_state;
135 			page_bh->b_bdev = bh->b_bdev;
136 			page_bh->b_blocknr = bh->b_blocknr;
137 			break;
138 		}
139 		page_bh = page_bh->b_this_page;
140 		block++;
141 	} while (page_bh != head);
142 }
143 
144 /*
145  * This is the worker routine which does all the work of mapping the disk
146  * blocks and constructs largest possible bios, submits them for IO if the
147  * blocks are not contiguous on the disk.
148  *
149  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
150  * represent the validity of its disk mapping and to decide when to do the next
151  * get_block() call.
152  */
153 static struct bio *
154 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
155 		sector_t *last_block_in_bio, struct buffer_head *map_bh,
156 		unsigned long *first_logical_block, get_block_t get_block)
157 {
158 	struct inode *inode = page->mapping->host;
159 	const unsigned blkbits = inode->i_blkbits;
160 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
161 	const unsigned blocksize = 1 << blkbits;
162 	sector_t block_in_file;
163 	sector_t last_block;
164 	sector_t last_block_in_file;
165 	sector_t blocks[MAX_BUF_PER_PAGE];
166 	unsigned page_block;
167 	unsigned first_hole = blocks_per_page;
168 	struct block_device *bdev = NULL;
169 	int length;
170 	int fully_mapped = 1;
171 	unsigned nblocks;
172 	unsigned relative_block;
173 
174 	if (page_has_buffers(page))
175 		goto confused;
176 
177 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
178 	last_block = block_in_file + nr_pages * blocks_per_page;
179 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
180 	if (last_block > last_block_in_file)
181 		last_block = last_block_in_file;
182 	page_block = 0;
183 
184 	/*
185 	 * Map blocks using the result from the previous get_blocks call first.
186 	 */
187 	nblocks = map_bh->b_size >> blkbits;
188 	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
189 			block_in_file < (*first_logical_block + nblocks)) {
190 		unsigned map_offset = block_in_file - *first_logical_block;
191 		unsigned last = nblocks - map_offset;
192 
193 		for (relative_block = 0; ; relative_block++) {
194 			if (relative_block == last) {
195 				clear_buffer_mapped(map_bh);
196 				break;
197 			}
198 			if (page_block == blocks_per_page)
199 				break;
200 			blocks[page_block] = map_bh->b_blocknr + map_offset +
201 						relative_block;
202 			page_block++;
203 			block_in_file++;
204 		}
205 		bdev = map_bh->b_bdev;
206 	}
207 
208 	/*
209 	 * Then do more get_blocks calls until we are done with this page.
210 	 */
211 	map_bh->b_page = page;
212 	while (page_block < blocks_per_page) {
213 		map_bh->b_state = 0;
214 		map_bh->b_size = 0;
215 
216 		if (block_in_file < last_block) {
217 			map_bh->b_size = (last_block-block_in_file) << blkbits;
218 			if (get_block(inode, block_in_file, map_bh, 0))
219 				goto confused;
220 			*first_logical_block = block_in_file;
221 		}
222 
223 		if (!buffer_mapped(map_bh)) {
224 			fully_mapped = 0;
225 			if (first_hole == blocks_per_page)
226 				first_hole = page_block;
227 			page_block++;
228 			block_in_file++;
229 			continue;
230 		}
231 
232 		/* some filesystems will copy data into the page during
233 		 * the get_block call, in which case we don't want to
234 		 * read it again.  map_buffer_to_page copies the data
235 		 * we just collected from get_block into the page's buffers
236 		 * so readpage doesn't have to repeat the get_block call
237 		 */
238 		if (buffer_uptodate(map_bh)) {
239 			map_buffer_to_page(page, map_bh, page_block);
240 			goto confused;
241 		}
242 
243 		if (first_hole != blocks_per_page)
244 			goto confused;		/* hole -> non-hole */
245 
246 		/* Contiguous blocks? */
247 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
248 			goto confused;
249 		nblocks = map_bh->b_size >> blkbits;
250 		for (relative_block = 0; ; relative_block++) {
251 			if (relative_block == nblocks) {
252 				clear_buffer_mapped(map_bh);
253 				break;
254 			} else if (page_block == blocks_per_page)
255 				break;
256 			blocks[page_block] = map_bh->b_blocknr+relative_block;
257 			page_block++;
258 			block_in_file++;
259 		}
260 		bdev = map_bh->b_bdev;
261 	}
262 
263 	if (first_hole != blocks_per_page) {
264 		zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
265 		if (first_hole == 0) {
266 			SetPageUptodate(page);
267 			unlock_page(page);
268 			goto out;
269 		}
270 	} else if (fully_mapped) {
271 		SetPageMappedToDisk(page);
272 	}
273 
274 	/*
275 	 * This page will go to BIO.  Do we need to send this BIO off first?
276 	 */
277 	if (bio && (*last_block_in_bio != blocks[0] - 1))
278 		bio = mpage_bio_submit(READ, bio);
279 
280 alloc_new:
281 	if (bio == NULL) {
282 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
283 			  	min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
284 				GFP_KERNEL);
285 		if (bio == NULL)
286 			goto confused;
287 	}
288 
289 	length = first_hole << blkbits;
290 	if (bio_add_page(bio, page, length, 0) < length) {
291 		bio = mpage_bio_submit(READ, bio);
292 		goto alloc_new;
293 	}
294 
295 	relative_block = block_in_file - *first_logical_block;
296 	nblocks = map_bh->b_size >> blkbits;
297 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
298 	    (first_hole != blocks_per_page))
299 		bio = mpage_bio_submit(READ, bio);
300 	else
301 		*last_block_in_bio = blocks[blocks_per_page - 1];
302 out:
303 	return bio;
304 
305 confused:
306 	if (bio)
307 		bio = mpage_bio_submit(READ, bio);
308 	if (!PageUptodate(page))
309 	        block_read_full_page(page, get_block);
310 	else
311 		unlock_page(page);
312 	goto out;
313 }
314 
315 /**
316  * mpage_readpages - populate an address space with some pages & start reads against them
317  * @mapping: the address_space
318  * @pages: The address of a list_head which contains the target pages.  These
319  *   pages have their ->index populated and are otherwise uninitialised.
320  *   The page at @pages->prev has the lowest file offset, and reads should be
321  *   issued in @pages->prev to @pages->next order.
322  * @nr_pages: The number of pages at *@pages
323  * @get_block: The filesystem's block mapper function.
324  *
325  * This function walks the pages and the blocks within each page, building and
326  * emitting large BIOs.
327  *
328  * If anything unusual happens, such as:
329  *
330  * - encountering a page which has buffers
331  * - encountering a page which has a non-hole after a hole
332  * - encountering a page with non-contiguous blocks
333  *
334  * then this code just gives up and calls the buffer_head-based read function.
335  * It does handle a page which has holes at the end - that is a common case:
336  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
337  *
338  * BH_Boundary explanation:
339  *
340  * There is a problem.  The mpage read code assembles several pages, gets all
341  * their disk mappings, and then submits them all.  That's fine, but obtaining
342  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
343  *
344  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
345  * submitted in the following order:
346  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
347  *
348  * because the indirect block has to be read to get the mappings of blocks
349  * 13,14,15,16.  Obviously, this impacts performance.
350  *
351  * So what we do it to allow the filesystem's get_block() function to set
352  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
353  * after this one will require I/O against a block which is probably close to
354  * this one.  So you should push what I/O you have currently accumulated.
355  *
356  * This all causes the disk requests to be issued in the correct order.
357  */
358 int
359 mpage_readpages(struct address_space *mapping, struct list_head *pages,
360 				unsigned nr_pages, get_block_t get_block)
361 {
362 	struct bio *bio = NULL;
363 	unsigned page_idx;
364 	sector_t last_block_in_bio = 0;
365 	struct buffer_head map_bh;
366 	unsigned long first_logical_block = 0;
367 	struct blk_plug plug;
368 
369 	blk_start_plug(&plug);
370 
371 	map_bh.b_state = 0;
372 	map_bh.b_size = 0;
373 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
374 		struct page *page = list_entry(pages->prev, struct page, lru);
375 
376 		prefetchw(&page->flags);
377 		list_del(&page->lru);
378 		if (!add_to_page_cache_lru(page, mapping,
379 					page->index, GFP_KERNEL)) {
380 			bio = do_mpage_readpage(bio, page,
381 					nr_pages - page_idx,
382 					&last_block_in_bio, &map_bh,
383 					&first_logical_block,
384 					get_block);
385 		}
386 		page_cache_release(page);
387 	}
388 	BUG_ON(!list_empty(pages));
389 	if (bio)
390 		mpage_bio_submit(READ, bio);
391 	blk_finish_plug(&plug);
392 	return 0;
393 }
394 EXPORT_SYMBOL(mpage_readpages);
395 
396 /*
397  * This isn't called much at all
398  */
399 int mpage_readpage(struct page *page, get_block_t get_block)
400 {
401 	struct bio *bio = NULL;
402 	sector_t last_block_in_bio = 0;
403 	struct buffer_head map_bh;
404 	unsigned long first_logical_block = 0;
405 
406 	map_bh.b_state = 0;
407 	map_bh.b_size = 0;
408 	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
409 			&map_bh, &first_logical_block, get_block);
410 	if (bio)
411 		mpage_bio_submit(READ, bio);
412 	return 0;
413 }
414 EXPORT_SYMBOL(mpage_readpage);
415 
416 /*
417  * Writing is not so simple.
418  *
419  * If the page has buffers then they will be used for obtaining the disk
420  * mapping.  We only support pages which are fully mapped-and-dirty, with a
421  * special case for pages which are unmapped at the end: end-of-file.
422  *
423  * If the page has no buffers (preferred) then the page is mapped here.
424  *
425  * If all blocks are found to be contiguous then the page can go into the
426  * BIO.  Otherwise fall back to the mapping's writepage().
427  *
428  * FIXME: This code wants an estimate of how many pages are still to be
429  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
430  * just allocate full-size (16-page) BIOs.
431  */
432 
433 struct mpage_data {
434 	struct bio *bio;
435 	sector_t last_block_in_bio;
436 	get_block_t *get_block;
437 	unsigned use_writepage;
438 };
439 
440 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
441 		      void *data)
442 {
443 	struct mpage_data *mpd = data;
444 	struct bio *bio = mpd->bio;
445 	struct address_space *mapping = page->mapping;
446 	struct inode *inode = page->mapping->host;
447 	const unsigned blkbits = inode->i_blkbits;
448 	unsigned long end_index;
449 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
450 	sector_t last_block;
451 	sector_t block_in_file;
452 	sector_t blocks[MAX_BUF_PER_PAGE];
453 	unsigned page_block;
454 	unsigned first_unmapped = blocks_per_page;
455 	struct block_device *bdev = NULL;
456 	int boundary = 0;
457 	sector_t boundary_block = 0;
458 	struct block_device *boundary_bdev = NULL;
459 	int length;
460 	struct buffer_head map_bh;
461 	loff_t i_size = i_size_read(inode);
462 	int ret = 0;
463 
464 	if (page_has_buffers(page)) {
465 		struct buffer_head *head = page_buffers(page);
466 		struct buffer_head *bh = head;
467 
468 		/* If they're all mapped and dirty, do it */
469 		page_block = 0;
470 		do {
471 			BUG_ON(buffer_locked(bh));
472 			if (!buffer_mapped(bh)) {
473 				/*
474 				 * unmapped dirty buffers are created by
475 				 * __set_page_dirty_buffers -> mmapped data
476 				 */
477 				if (buffer_dirty(bh))
478 					goto confused;
479 				if (first_unmapped == blocks_per_page)
480 					first_unmapped = page_block;
481 				continue;
482 			}
483 
484 			if (first_unmapped != blocks_per_page)
485 				goto confused;	/* hole -> non-hole */
486 
487 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
488 				goto confused;
489 			if (page_block) {
490 				if (bh->b_blocknr != blocks[page_block-1] + 1)
491 					goto confused;
492 			}
493 			blocks[page_block++] = bh->b_blocknr;
494 			boundary = buffer_boundary(bh);
495 			if (boundary) {
496 				boundary_block = bh->b_blocknr;
497 				boundary_bdev = bh->b_bdev;
498 			}
499 			bdev = bh->b_bdev;
500 		} while ((bh = bh->b_this_page) != head);
501 
502 		if (first_unmapped)
503 			goto page_is_mapped;
504 
505 		/*
506 		 * Page has buffers, but they are all unmapped. The page was
507 		 * created by pagein or read over a hole which was handled by
508 		 * block_read_full_page().  If this address_space is also
509 		 * using mpage_readpages then this can rarely happen.
510 		 */
511 		goto confused;
512 	}
513 
514 	/*
515 	 * The page has no buffers: map it to disk
516 	 */
517 	BUG_ON(!PageUptodate(page));
518 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
519 	last_block = (i_size - 1) >> blkbits;
520 	map_bh.b_page = page;
521 	for (page_block = 0; page_block < blocks_per_page; ) {
522 
523 		map_bh.b_state = 0;
524 		map_bh.b_size = 1 << blkbits;
525 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
526 			goto confused;
527 		if (buffer_new(&map_bh))
528 			unmap_underlying_metadata(map_bh.b_bdev,
529 						map_bh.b_blocknr);
530 		if (buffer_boundary(&map_bh)) {
531 			boundary_block = map_bh.b_blocknr;
532 			boundary_bdev = map_bh.b_bdev;
533 		}
534 		if (page_block) {
535 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
536 				goto confused;
537 		}
538 		blocks[page_block++] = map_bh.b_blocknr;
539 		boundary = buffer_boundary(&map_bh);
540 		bdev = map_bh.b_bdev;
541 		if (block_in_file == last_block)
542 			break;
543 		block_in_file++;
544 	}
545 	BUG_ON(page_block == 0);
546 
547 	first_unmapped = page_block;
548 
549 page_is_mapped:
550 	end_index = i_size >> PAGE_CACHE_SHIFT;
551 	if (page->index >= end_index) {
552 		/*
553 		 * The page straddles i_size.  It must be zeroed out on each
554 		 * and every writepage invocation because it may be mmapped.
555 		 * "A file is mapped in multiples of the page size.  For a file
556 		 * that is not a multiple of the page size, the remaining memory
557 		 * is zeroed when mapped, and writes to that region are not
558 		 * written out to the file."
559 		 */
560 		unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
561 
562 		if (page->index > end_index || !offset)
563 			goto confused;
564 		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
565 	}
566 
567 	/*
568 	 * This page will go to BIO.  Do we need to send this BIO off first?
569 	 */
570 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
571 		bio = mpage_bio_submit(WRITE, bio);
572 
573 alloc_new:
574 	if (bio == NULL) {
575 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
576 				bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
577 		if (bio == NULL)
578 			goto confused;
579 	}
580 
581 	/*
582 	 * Must try to add the page before marking the buffer clean or
583 	 * the confused fail path above (OOM) will be very confused when
584 	 * it finds all bh marked clean (i.e. it will not write anything)
585 	 */
586 	length = first_unmapped << blkbits;
587 	if (bio_add_page(bio, page, length, 0) < length) {
588 		bio = mpage_bio_submit(WRITE, bio);
589 		goto alloc_new;
590 	}
591 
592 	/*
593 	 * OK, we have our BIO, so we can now mark the buffers clean.  Make
594 	 * sure to only clean buffers which we know we'll be writing.
595 	 */
596 	if (page_has_buffers(page)) {
597 		struct buffer_head *head = page_buffers(page);
598 		struct buffer_head *bh = head;
599 		unsigned buffer_counter = 0;
600 
601 		do {
602 			if (buffer_counter++ == first_unmapped)
603 				break;
604 			clear_buffer_dirty(bh);
605 			bh = bh->b_this_page;
606 		} while (bh != head);
607 
608 		/*
609 		 * we cannot drop the bh if the page is not uptodate
610 		 * or a concurrent readpage would fail to serialize with the bh
611 		 * and it would read from disk before we reach the platter.
612 		 */
613 		if (buffer_heads_over_limit && PageUptodate(page))
614 			try_to_free_buffers(page);
615 	}
616 
617 	BUG_ON(PageWriteback(page));
618 	set_page_writeback(page);
619 	unlock_page(page);
620 	if (boundary || (first_unmapped != blocks_per_page)) {
621 		bio = mpage_bio_submit(WRITE, bio);
622 		if (boundary_block) {
623 			write_boundary_block(boundary_bdev,
624 					boundary_block, 1 << blkbits);
625 		}
626 	} else {
627 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
628 	}
629 	goto out;
630 
631 confused:
632 	if (bio)
633 		bio = mpage_bio_submit(WRITE, bio);
634 
635 	if (mpd->use_writepage) {
636 		ret = mapping->a_ops->writepage(page, wbc);
637 	} else {
638 		ret = -EAGAIN;
639 		goto out;
640 	}
641 	/*
642 	 * The caller has a ref on the inode, so *mapping is stable
643 	 */
644 	mapping_set_error(mapping, ret);
645 out:
646 	mpd->bio = bio;
647 	return ret;
648 }
649 
650 /**
651  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
652  * @mapping: address space structure to write
653  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
654  * @get_block: the filesystem's block mapper function.
655  *             If this is NULL then use a_ops->writepage.  Otherwise, go
656  *             direct-to-BIO.
657  *
658  * This is a library function, which implements the writepages()
659  * address_space_operation.
660  *
661  * If a page is already under I/O, generic_writepages() skips it, even
662  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
663  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
664  * and msync() need to guarantee that all the data which was dirty at the time
665  * the call was made get new I/O started against them.  If wbc->sync_mode is
666  * WB_SYNC_ALL then we were called for data integrity and we must wait for
667  * existing IO to complete.
668  */
669 int
670 mpage_writepages(struct address_space *mapping,
671 		struct writeback_control *wbc, get_block_t get_block)
672 {
673 	struct blk_plug plug;
674 	int ret;
675 
676 	blk_start_plug(&plug);
677 
678 	if (!get_block)
679 		ret = generic_writepages(mapping, wbc);
680 	else {
681 		struct mpage_data mpd = {
682 			.bio = NULL,
683 			.last_block_in_bio = 0,
684 			.get_block = get_block,
685 			.use_writepage = 1,
686 		};
687 
688 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
689 		if (mpd.bio)
690 			mpage_bio_submit(WRITE, mpd.bio);
691 	}
692 	blk_finish_plug(&plug);
693 	return ret;
694 }
695 EXPORT_SYMBOL(mpage_writepages);
696 
697 int mpage_writepage(struct page *page, get_block_t get_block,
698 	struct writeback_control *wbc)
699 {
700 	struct mpage_data mpd = {
701 		.bio = NULL,
702 		.last_block_in_bio = 0,
703 		.get_block = get_block,
704 		.use_writepage = 0,
705 	};
706 	int ret = __mpage_writepage(page, wbc, &mpd);
707 	if (mpd.bio)
708 		mpage_bio_submit(WRITE, mpd.bio);
709 	return ret;
710 }
711 EXPORT_SYMBOL(mpage_writepage);
712