xref: /linux/fs/gfs2/rgrp.c (revision 6ed7ffddcf61f668114edb676417e5fb33773b59)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19 #include <linux/random.h>
20 
21 #include "gfs2.h"
22 #include "incore.h"
23 #include "glock.h"
24 #include "glops.h"
25 #include "lops.h"
26 #include "meta_io.h"
27 #include "quota.h"
28 #include "rgrp.h"
29 #include "super.h"
30 #include "trans.h"
31 #include "util.h"
32 #include "log.h"
33 #include "inode.h"
34 #include "trace_gfs2.h"
35 
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38 
39 #if BITS_PER_LONG == 32
40 #define LBITMASK   (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
43 #else
44 #define LBITMASK   (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
47 #endif
48 
49 /*
50  * These routines are used by the resource group routines (rgrp.c)
51  * to keep track of block allocation.  Each block is represented by two
52  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
53  *
54  * 0 = Free
55  * 1 = Used (not metadata)
56  * 2 = Unlinked (still in use) inode
57  * 3 = Used (metadata)
58  */
59 
60 static const char valid_change[16] = {
61 	        /* current */
62 	/* n */ 0, 1, 1, 1,
63 	/* e */ 1, 0, 0, 0,
64 	/* w */ 0, 0, 0, 1,
65 	        1, 0, 0, 0
66 };
67 
68 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
69                          const struct gfs2_inode *ip, bool nowrap);
70 
71 
72 /**
73  * gfs2_setbit - Set a bit in the bitmaps
74  * @rbm: The position of the bit to set
75  * @do_clone: Also set the clone bitmap, if it exists
76  * @new_state: the new state of the block
77  *
78  */
79 
80 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
81 			       unsigned char new_state)
82 {
83 	unsigned char *byte1, *byte2, *end, cur_state;
84 	unsigned int buflen = rbm->bi->bi_len;
85 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
86 
87 	byte1 = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
88 	end = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + buflen;
89 
90 	BUG_ON(byte1 >= end);
91 
92 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
93 
94 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
95 		printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, "
96 		       "new_state=%d\n", rbm->offset, cur_state, new_state);
97 		printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n",
98 		       (unsigned long long)rbm->rgd->rd_addr,
99 		       rbm->bi->bi_start);
100 		printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n",
101 		       rbm->bi->bi_offset, rbm->bi->bi_len);
102 		dump_stack();
103 		gfs2_consist_rgrpd(rbm->rgd);
104 		return;
105 	}
106 	*byte1 ^= (cur_state ^ new_state) << bit;
107 
108 	if (do_clone && rbm->bi->bi_clone) {
109 		byte2 = rbm->bi->bi_clone + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
110 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
111 		*byte2 ^= (cur_state ^ new_state) << bit;
112 	}
113 }
114 
115 /**
116  * gfs2_testbit - test a bit in the bitmaps
117  * @rbm: The bit to test
118  *
119  * Returns: The two bit block state of the requested bit
120  */
121 
122 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
123 {
124 	const u8 *buffer = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset;
125 	const u8 *byte;
126 	unsigned int bit;
127 
128 	byte = buffer + (rbm->offset / GFS2_NBBY);
129 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
130 
131 	return (*byte >> bit) & GFS2_BIT_MASK;
132 }
133 
134 /**
135  * gfs2_bit_search
136  * @ptr: Pointer to bitmap data
137  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
138  * @state: The state we are searching for
139  *
140  * We xor the bitmap data with a patter which is the bitwise opposite
141  * of what we are looking for, this gives rise to a pattern of ones
142  * wherever there is a match. Since we have two bits per entry, we
143  * take this pattern, shift it down by one place and then and it with
144  * the original. All the even bit positions (0,2,4, etc) then represent
145  * successful matches, so we mask with 0x55555..... to remove the unwanted
146  * odd bit positions.
147  *
148  * This allows searching of a whole u64 at once (32 blocks) with a
149  * single test (on 64 bit arches).
150  */
151 
152 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
153 {
154 	u64 tmp;
155 	static const u64 search[] = {
156 		[0] = 0xffffffffffffffffULL,
157 		[1] = 0xaaaaaaaaaaaaaaaaULL,
158 		[2] = 0x5555555555555555ULL,
159 		[3] = 0x0000000000000000ULL,
160 	};
161 	tmp = le64_to_cpu(*ptr) ^ search[state];
162 	tmp &= (tmp >> 1);
163 	tmp &= mask;
164 	return tmp;
165 }
166 
167 /**
168  * rs_cmp - multi-block reservation range compare
169  * @blk: absolute file system block number of the new reservation
170  * @len: number of blocks in the new reservation
171  * @rs: existing reservation to compare against
172  *
173  * returns: 1 if the block range is beyond the reach of the reservation
174  *         -1 if the block range is before the start of the reservation
175  *          0 if the block range overlaps with the reservation
176  */
177 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
178 {
179 	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
180 
181 	if (blk >= startblk + rs->rs_free)
182 		return 1;
183 	if (blk + len - 1 < startblk)
184 		return -1;
185 	return 0;
186 }
187 
188 /**
189  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
190  *       a block in a given allocation state.
191  * @buf: the buffer that holds the bitmaps
192  * @len: the length (in bytes) of the buffer
193  * @goal: start search at this block's bit-pair (within @buffer)
194  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
195  *
196  * Scope of @goal and returned block number is only within this bitmap buffer,
197  * not entire rgrp or filesystem.  @buffer will be offset from the actual
198  * beginning of a bitmap block buffer, skipping any header structures, but
199  * headers are always a multiple of 64 bits long so that the buffer is
200  * always aligned to a 64 bit boundary.
201  *
202  * The size of the buffer is in bytes, but is it assumed that it is
203  * always ok to read a complete multiple of 64 bits at the end
204  * of the block in case the end is no aligned to a natural boundary.
205  *
206  * Return: the block number (bitmap buffer scope) that was found
207  */
208 
209 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
210 		       u32 goal, u8 state)
211 {
212 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
213 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
214 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
215 	u64 tmp;
216 	u64 mask = 0x5555555555555555ULL;
217 	u32 bit;
218 
219 	/* Mask off bits we don't care about at the start of the search */
220 	mask <<= spoint;
221 	tmp = gfs2_bit_search(ptr, mask, state);
222 	ptr++;
223 	while(tmp == 0 && ptr < end) {
224 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
225 		ptr++;
226 	}
227 	/* Mask off any bits which are more than len bytes from the start */
228 	if (ptr == end && (len & (sizeof(u64) - 1)))
229 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
230 	/* Didn't find anything, so return */
231 	if (tmp == 0)
232 		return BFITNOENT;
233 	ptr--;
234 	bit = __ffs64(tmp);
235 	bit /= 2;	/* two bits per entry in the bitmap */
236 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
237 }
238 
239 /**
240  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
241  * @rbm: The rbm with rgd already set correctly
242  * @block: The block number (filesystem relative)
243  *
244  * This sets the bi and offset members of an rbm based on a
245  * resource group and a filesystem relative block number. The
246  * resource group must be set in the rbm on entry, the bi and
247  * offset members will be set by this function.
248  *
249  * Returns: 0 on success, or an error code
250  */
251 
252 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
253 {
254 	u64 rblock = block - rbm->rgd->rd_data0;
255 	u32 x;
256 
257 	if (WARN_ON_ONCE(rblock > UINT_MAX))
258 		return -EINVAL;
259 	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
260 		return -E2BIG;
261 
262 	rbm->bi = rbm->rgd->rd_bits;
263 	rbm->offset = (u32)(rblock);
264 	/* Check if the block is within the first block */
265 	if (rbm->offset < (rbm->bi->bi_start + rbm->bi->bi_len) * GFS2_NBBY)
266 		return 0;
267 
268 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
269 	rbm->offset += (sizeof(struct gfs2_rgrp) -
270 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
271 	x = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
272 	rbm->offset -= x * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
273 	rbm->bi += x;
274 	return 0;
275 }
276 
277 /**
278  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
279  * @rbm: Position to search (value/result)
280  * @n_unaligned: Number of unaligned blocks to check
281  * @len: Decremented for each block found (terminate on zero)
282  *
283  * Returns: true if a non-free block is encountered
284  */
285 
286 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
287 {
288 	u64 block;
289 	u32 n;
290 	u8 res;
291 
292 	for (n = 0; n < n_unaligned; n++) {
293 		res = gfs2_testbit(rbm);
294 		if (res != GFS2_BLKST_FREE)
295 			return true;
296 		(*len)--;
297 		if (*len == 0)
298 			return true;
299 		block = gfs2_rbm_to_block(rbm);
300 		if (gfs2_rbm_from_block(rbm, block + 1))
301 			return true;
302 	}
303 
304 	return false;
305 }
306 
307 /**
308  * gfs2_free_extlen - Return extent length of free blocks
309  * @rbm: Starting position
310  * @len: Max length to check
311  *
312  * Starting at the block specified by the rbm, see how many free blocks
313  * there are, not reading more than len blocks ahead. This can be done
314  * using memchr_inv when the blocks are byte aligned, but has to be done
315  * on a block by block basis in case of unaligned blocks. Also this
316  * function can cope with bitmap boundaries (although it must stop on
317  * a resource group boundary)
318  *
319  * Returns: Number of free blocks in the extent
320  */
321 
322 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
323 {
324 	struct gfs2_rbm rbm = *rrbm;
325 	u32 n_unaligned = rbm.offset & 3;
326 	u32 size = len;
327 	u32 bytes;
328 	u32 chunk_size;
329 	u8 *ptr, *start, *end;
330 	u64 block;
331 
332 	if (n_unaligned &&
333 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
334 		goto out;
335 
336 	n_unaligned = len & 3;
337 	/* Start is now byte aligned */
338 	while (len > 3) {
339 		start = rbm.bi->bi_bh->b_data;
340 		if (rbm.bi->bi_clone)
341 			start = rbm.bi->bi_clone;
342 		end = start + rbm.bi->bi_bh->b_size;
343 		start += rbm.bi->bi_offset;
344 		BUG_ON(rbm.offset & 3);
345 		start += (rbm.offset / GFS2_NBBY);
346 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
347 		ptr = memchr_inv(start, 0, bytes);
348 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
349 		chunk_size *= GFS2_NBBY;
350 		BUG_ON(len < chunk_size);
351 		len -= chunk_size;
352 		block = gfs2_rbm_to_block(&rbm);
353 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
354 			n_unaligned = 0;
355 			break;
356 		}
357 		if (ptr) {
358 			n_unaligned = 3;
359 			break;
360 		}
361 		n_unaligned = len & 3;
362 	}
363 
364 	/* Deal with any bits left over at the end */
365 	if (n_unaligned)
366 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
367 out:
368 	return size - len;
369 }
370 
371 /**
372  * gfs2_bitcount - count the number of bits in a certain state
373  * @rgd: the resource group descriptor
374  * @buffer: the buffer that holds the bitmaps
375  * @buflen: the length (in bytes) of the buffer
376  * @state: the state of the block we're looking for
377  *
378  * Returns: The number of bits
379  */
380 
381 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
382 			 unsigned int buflen, u8 state)
383 {
384 	const u8 *byte = buffer;
385 	const u8 *end = buffer + buflen;
386 	const u8 state1 = state << 2;
387 	const u8 state2 = state << 4;
388 	const u8 state3 = state << 6;
389 	u32 count = 0;
390 
391 	for (; byte < end; byte++) {
392 		if (((*byte) & 0x03) == state)
393 			count++;
394 		if (((*byte) & 0x0C) == state1)
395 			count++;
396 		if (((*byte) & 0x30) == state2)
397 			count++;
398 		if (((*byte) & 0xC0) == state3)
399 			count++;
400 	}
401 
402 	return count;
403 }
404 
405 /**
406  * gfs2_rgrp_verify - Verify that a resource group is consistent
407  * @rgd: the rgrp
408  *
409  */
410 
411 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
412 {
413 	struct gfs2_sbd *sdp = rgd->rd_sbd;
414 	struct gfs2_bitmap *bi = NULL;
415 	u32 length = rgd->rd_length;
416 	u32 count[4], tmp;
417 	int buf, x;
418 
419 	memset(count, 0, 4 * sizeof(u32));
420 
421 	/* Count # blocks in each of 4 possible allocation states */
422 	for (buf = 0; buf < length; buf++) {
423 		bi = rgd->rd_bits + buf;
424 		for (x = 0; x < 4; x++)
425 			count[x] += gfs2_bitcount(rgd,
426 						  bi->bi_bh->b_data +
427 						  bi->bi_offset,
428 						  bi->bi_len, x);
429 	}
430 
431 	if (count[0] != rgd->rd_free) {
432 		if (gfs2_consist_rgrpd(rgd))
433 			fs_err(sdp, "free data mismatch:  %u != %u\n",
434 			       count[0], rgd->rd_free);
435 		return;
436 	}
437 
438 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
439 	if (count[1] != tmp) {
440 		if (gfs2_consist_rgrpd(rgd))
441 			fs_err(sdp, "used data mismatch:  %u != %u\n",
442 			       count[1], tmp);
443 		return;
444 	}
445 
446 	if (count[2] + count[3] != rgd->rd_dinodes) {
447 		if (gfs2_consist_rgrpd(rgd))
448 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
449 			       count[2] + count[3], rgd->rd_dinodes);
450 		return;
451 	}
452 }
453 
454 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
455 {
456 	u64 first = rgd->rd_data0;
457 	u64 last = first + rgd->rd_data;
458 	return first <= block && block < last;
459 }
460 
461 /**
462  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
463  * @sdp: The GFS2 superblock
464  * @blk: The data block number
465  * @exact: True if this needs to be an exact match
466  *
467  * Returns: The resource group, or NULL if not found
468  */
469 
470 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
471 {
472 	struct rb_node *n, *next;
473 	struct gfs2_rgrpd *cur;
474 
475 	spin_lock(&sdp->sd_rindex_spin);
476 	n = sdp->sd_rindex_tree.rb_node;
477 	while (n) {
478 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
479 		next = NULL;
480 		if (blk < cur->rd_addr)
481 			next = n->rb_left;
482 		else if (blk >= cur->rd_data0 + cur->rd_data)
483 			next = n->rb_right;
484 		if (next == NULL) {
485 			spin_unlock(&sdp->sd_rindex_spin);
486 			if (exact) {
487 				if (blk < cur->rd_addr)
488 					return NULL;
489 				if (blk >= cur->rd_data0 + cur->rd_data)
490 					return NULL;
491 			}
492 			return cur;
493 		}
494 		n = next;
495 	}
496 	spin_unlock(&sdp->sd_rindex_spin);
497 
498 	return NULL;
499 }
500 
501 /**
502  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
503  * @sdp: The GFS2 superblock
504  *
505  * Returns: The first rgrp in the filesystem
506  */
507 
508 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
509 {
510 	const struct rb_node *n;
511 	struct gfs2_rgrpd *rgd;
512 
513 	spin_lock(&sdp->sd_rindex_spin);
514 	n = rb_first(&sdp->sd_rindex_tree);
515 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
516 	spin_unlock(&sdp->sd_rindex_spin);
517 
518 	return rgd;
519 }
520 
521 /**
522  * gfs2_rgrpd_get_next - get the next RG
523  * @rgd: the resource group descriptor
524  *
525  * Returns: The next rgrp
526  */
527 
528 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
529 {
530 	struct gfs2_sbd *sdp = rgd->rd_sbd;
531 	const struct rb_node *n;
532 
533 	spin_lock(&sdp->sd_rindex_spin);
534 	n = rb_next(&rgd->rd_node);
535 	if (n == NULL)
536 		n = rb_first(&sdp->sd_rindex_tree);
537 
538 	if (unlikely(&rgd->rd_node == n)) {
539 		spin_unlock(&sdp->sd_rindex_spin);
540 		return NULL;
541 	}
542 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
543 	spin_unlock(&sdp->sd_rindex_spin);
544 	return rgd;
545 }
546 
547 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
548 {
549 	int x;
550 
551 	for (x = 0; x < rgd->rd_length; x++) {
552 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
553 		kfree(bi->bi_clone);
554 		bi->bi_clone = NULL;
555 	}
556 }
557 
558 /**
559  * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
560  * @ip: the inode for this reservation
561  */
562 int gfs2_rs_alloc(struct gfs2_inode *ip)
563 {
564 	int error = 0;
565 
566 	down_write(&ip->i_rw_mutex);
567 	if (ip->i_res)
568 		goto out;
569 
570 	ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
571 	if (!ip->i_res) {
572 		error = -ENOMEM;
573 		goto out;
574 	}
575 
576 	RB_CLEAR_NODE(&ip->i_res->rs_node);
577 out:
578 	up_write(&ip->i_rw_mutex);
579 	return 0;
580 }
581 
582 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
583 {
584 	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
585 		       (unsigned long long)rs->rs_inum,
586 		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
587 		       rs->rs_rbm.offset, rs->rs_free);
588 }
589 
590 /**
591  * __rs_deltree - remove a multi-block reservation from the rgd tree
592  * @rs: The reservation to remove
593  *
594  */
595 static void __rs_deltree(struct gfs2_inode *ip, struct gfs2_blkreserv *rs)
596 {
597 	struct gfs2_rgrpd *rgd;
598 
599 	if (!gfs2_rs_active(rs))
600 		return;
601 
602 	rgd = rs->rs_rbm.rgd;
603 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
604 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
605 	RB_CLEAR_NODE(&rs->rs_node);
606 
607 	if (rs->rs_free) {
608 		/* return reserved blocks to the rgrp and the ip */
609 		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
610 		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
611 		rs->rs_free = 0;
612 		clear_bit(GBF_FULL, &rs->rs_rbm.bi->bi_flags);
613 		smp_mb__after_clear_bit();
614 	}
615 }
616 
617 /**
618  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
619  * @rs: The reservation to remove
620  *
621  */
622 void gfs2_rs_deltree(struct gfs2_inode *ip, struct gfs2_blkreserv *rs)
623 {
624 	struct gfs2_rgrpd *rgd;
625 
626 	rgd = rs->rs_rbm.rgd;
627 	if (rgd) {
628 		spin_lock(&rgd->rd_rsspin);
629 		__rs_deltree(ip, rs);
630 		spin_unlock(&rgd->rd_rsspin);
631 	}
632 }
633 
634 /**
635  * gfs2_rs_delete - delete a multi-block reservation
636  * @ip: The inode for this reservation
637  *
638  */
639 void gfs2_rs_delete(struct gfs2_inode *ip)
640 {
641 	down_write(&ip->i_rw_mutex);
642 	if (ip->i_res) {
643 		gfs2_rs_deltree(ip, ip->i_res);
644 		BUG_ON(ip->i_res->rs_free);
645 		kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
646 		ip->i_res = NULL;
647 	}
648 	up_write(&ip->i_rw_mutex);
649 }
650 
651 /**
652  * return_all_reservations - return all reserved blocks back to the rgrp.
653  * @rgd: the rgrp that needs its space back
654  *
655  * We previously reserved a bunch of blocks for allocation. Now we need to
656  * give them back. This leave the reservation structures in tact, but removes
657  * all of their corresponding "no-fly zones".
658  */
659 static void return_all_reservations(struct gfs2_rgrpd *rgd)
660 {
661 	struct rb_node *n;
662 	struct gfs2_blkreserv *rs;
663 
664 	spin_lock(&rgd->rd_rsspin);
665 	while ((n = rb_first(&rgd->rd_rstree))) {
666 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
667 		__rs_deltree(NULL, rs);
668 	}
669 	spin_unlock(&rgd->rd_rsspin);
670 }
671 
672 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
673 {
674 	struct rb_node *n;
675 	struct gfs2_rgrpd *rgd;
676 	struct gfs2_glock *gl;
677 
678 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
679 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
680 		gl = rgd->rd_gl;
681 
682 		rb_erase(n, &sdp->sd_rindex_tree);
683 
684 		if (gl) {
685 			spin_lock(&gl->gl_spin);
686 			gl->gl_object = NULL;
687 			spin_unlock(&gl->gl_spin);
688 			gfs2_glock_add_to_lru(gl);
689 			gfs2_glock_put(gl);
690 		}
691 
692 		gfs2_free_clones(rgd);
693 		kfree(rgd->rd_bits);
694 		return_all_reservations(rgd);
695 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
696 	}
697 }
698 
699 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
700 {
701 	printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
702 	printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
703 	printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
704 	printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
705 	printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
706 }
707 
708 /**
709  * gfs2_compute_bitstructs - Compute the bitmap sizes
710  * @rgd: The resource group descriptor
711  *
712  * Calculates bitmap descriptors, one for each block that contains bitmap data
713  *
714  * Returns: errno
715  */
716 
717 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
718 {
719 	struct gfs2_sbd *sdp = rgd->rd_sbd;
720 	struct gfs2_bitmap *bi;
721 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
722 	u32 bytes_left, bytes;
723 	int x;
724 
725 	if (!length)
726 		return -EINVAL;
727 
728 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
729 	if (!rgd->rd_bits)
730 		return -ENOMEM;
731 
732 	bytes_left = rgd->rd_bitbytes;
733 
734 	for (x = 0; x < length; x++) {
735 		bi = rgd->rd_bits + x;
736 
737 		bi->bi_flags = 0;
738 		/* small rgrp; bitmap stored completely in header block */
739 		if (length == 1) {
740 			bytes = bytes_left;
741 			bi->bi_offset = sizeof(struct gfs2_rgrp);
742 			bi->bi_start = 0;
743 			bi->bi_len = bytes;
744 		/* header block */
745 		} else if (x == 0) {
746 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
747 			bi->bi_offset = sizeof(struct gfs2_rgrp);
748 			bi->bi_start = 0;
749 			bi->bi_len = bytes;
750 		/* last block */
751 		} else if (x + 1 == length) {
752 			bytes = bytes_left;
753 			bi->bi_offset = sizeof(struct gfs2_meta_header);
754 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
755 			bi->bi_len = bytes;
756 		/* other blocks */
757 		} else {
758 			bytes = sdp->sd_sb.sb_bsize -
759 				sizeof(struct gfs2_meta_header);
760 			bi->bi_offset = sizeof(struct gfs2_meta_header);
761 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
762 			bi->bi_len = bytes;
763 		}
764 
765 		bytes_left -= bytes;
766 	}
767 
768 	if (bytes_left) {
769 		gfs2_consist_rgrpd(rgd);
770 		return -EIO;
771 	}
772 	bi = rgd->rd_bits + (length - 1);
773 	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
774 		if (gfs2_consist_rgrpd(rgd)) {
775 			gfs2_rindex_print(rgd);
776 			fs_err(sdp, "start=%u len=%u offset=%u\n",
777 			       bi->bi_start, bi->bi_len, bi->bi_offset);
778 		}
779 		return -EIO;
780 	}
781 
782 	return 0;
783 }
784 
785 /**
786  * gfs2_ri_total - Total up the file system space, according to the rindex.
787  * @sdp: the filesystem
788  *
789  */
790 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
791 {
792 	u64 total_data = 0;
793 	struct inode *inode = sdp->sd_rindex;
794 	struct gfs2_inode *ip = GFS2_I(inode);
795 	char buf[sizeof(struct gfs2_rindex)];
796 	int error, rgrps;
797 
798 	for (rgrps = 0;; rgrps++) {
799 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
800 
801 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
802 			break;
803 		error = gfs2_internal_read(ip, buf, &pos,
804 					   sizeof(struct gfs2_rindex));
805 		if (error != sizeof(struct gfs2_rindex))
806 			break;
807 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
808 	}
809 	return total_data;
810 }
811 
812 static int rgd_insert(struct gfs2_rgrpd *rgd)
813 {
814 	struct gfs2_sbd *sdp = rgd->rd_sbd;
815 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
816 
817 	/* Figure out where to put new node */
818 	while (*newn) {
819 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
820 						  rd_node);
821 
822 		parent = *newn;
823 		if (rgd->rd_addr < cur->rd_addr)
824 			newn = &((*newn)->rb_left);
825 		else if (rgd->rd_addr > cur->rd_addr)
826 			newn = &((*newn)->rb_right);
827 		else
828 			return -EEXIST;
829 	}
830 
831 	rb_link_node(&rgd->rd_node, parent, newn);
832 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
833 	sdp->sd_rgrps++;
834 	return 0;
835 }
836 
837 /**
838  * read_rindex_entry - Pull in a new resource index entry from the disk
839  * @ip: Pointer to the rindex inode
840  *
841  * Returns: 0 on success, > 0 on EOF, error code otherwise
842  */
843 
844 static int read_rindex_entry(struct gfs2_inode *ip)
845 {
846 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
847 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
848 	struct gfs2_rindex buf;
849 	int error;
850 	struct gfs2_rgrpd *rgd;
851 
852 	if (pos >= i_size_read(&ip->i_inode))
853 		return 1;
854 
855 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
856 				   sizeof(struct gfs2_rindex));
857 
858 	if (error != sizeof(struct gfs2_rindex))
859 		return (error == 0) ? 1 : error;
860 
861 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
862 	error = -ENOMEM;
863 	if (!rgd)
864 		return error;
865 
866 	rgd->rd_sbd = sdp;
867 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
868 	rgd->rd_length = be32_to_cpu(buf.ri_length);
869 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
870 	rgd->rd_data = be32_to_cpu(buf.ri_data);
871 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
872 	spin_lock_init(&rgd->rd_rsspin);
873 
874 	error = compute_bitstructs(rgd);
875 	if (error)
876 		goto fail;
877 
878 	error = gfs2_glock_get(sdp, rgd->rd_addr,
879 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
880 	if (error)
881 		goto fail;
882 
883 	rgd->rd_gl->gl_object = rgd;
884 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
885 	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
886 	if (rgd->rd_data > sdp->sd_max_rg_data)
887 		sdp->sd_max_rg_data = rgd->rd_data;
888 	spin_lock(&sdp->sd_rindex_spin);
889 	error = rgd_insert(rgd);
890 	spin_unlock(&sdp->sd_rindex_spin);
891 	if (!error)
892 		return 0;
893 
894 	error = 0; /* someone else read in the rgrp; free it and ignore it */
895 	gfs2_glock_put(rgd->rd_gl);
896 
897 fail:
898 	kfree(rgd->rd_bits);
899 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
900 	return error;
901 }
902 
903 /**
904  * gfs2_ri_update - Pull in a new resource index from the disk
905  * @ip: pointer to the rindex inode
906  *
907  * Returns: 0 on successful update, error code otherwise
908  */
909 
910 static int gfs2_ri_update(struct gfs2_inode *ip)
911 {
912 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
913 	int error;
914 
915 	do {
916 		error = read_rindex_entry(ip);
917 	} while (error == 0);
918 
919 	if (error < 0)
920 		return error;
921 
922 	sdp->sd_rindex_uptodate = 1;
923 	return 0;
924 }
925 
926 /**
927  * gfs2_rindex_update - Update the rindex if required
928  * @sdp: The GFS2 superblock
929  *
930  * We grab a lock on the rindex inode to make sure that it doesn't
931  * change whilst we are performing an operation. We keep this lock
932  * for quite long periods of time compared to other locks. This
933  * doesn't matter, since it is shared and it is very, very rarely
934  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
935  *
936  * This makes sure that we're using the latest copy of the resource index
937  * special file, which might have been updated if someone expanded the
938  * filesystem (via gfs2_grow utility), which adds new resource groups.
939  *
940  * Returns: 0 on succeess, error code otherwise
941  */
942 
943 int gfs2_rindex_update(struct gfs2_sbd *sdp)
944 {
945 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
946 	struct gfs2_glock *gl = ip->i_gl;
947 	struct gfs2_holder ri_gh;
948 	int error = 0;
949 	int unlock_required = 0;
950 
951 	/* Read new copy from disk if we don't have the latest */
952 	if (!sdp->sd_rindex_uptodate) {
953 		if (!gfs2_glock_is_locked_by_me(gl)) {
954 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
955 			if (error)
956 				return error;
957 			unlock_required = 1;
958 		}
959 		if (!sdp->sd_rindex_uptodate)
960 			error = gfs2_ri_update(ip);
961 		if (unlock_required)
962 			gfs2_glock_dq_uninit(&ri_gh);
963 	}
964 
965 	return error;
966 }
967 
968 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
969 {
970 	const struct gfs2_rgrp *str = buf;
971 	u32 rg_flags;
972 
973 	rg_flags = be32_to_cpu(str->rg_flags);
974 	rg_flags &= ~GFS2_RDF_MASK;
975 	rgd->rd_flags &= GFS2_RDF_MASK;
976 	rgd->rd_flags |= rg_flags;
977 	rgd->rd_free = be32_to_cpu(str->rg_free);
978 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
979 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
980 }
981 
982 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
983 {
984 	struct gfs2_rgrp *str = buf;
985 
986 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
987 	str->rg_free = cpu_to_be32(rgd->rd_free);
988 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
989 	str->__pad = cpu_to_be32(0);
990 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
991 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
992 }
993 
994 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
995 {
996 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
997 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
998 
999 	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1000 	    rgl->rl_dinodes != str->rg_dinodes ||
1001 	    rgl->rl_igeneration != str->rg_igeneration)
1002 		return 0;
1003 	return 1;
1004 }
1005 
1006 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1007 {
1008 	const struct gfs2_rgrp *str = buf;
1009 
1010 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1011 	rgl->rl_flags = str->rg_flags;
1012 	rgl->rl_free = str->rg_free;
1013 	rgl->rl_dinodes = str->rg_dinodes;
1014 	rgl->rl_igeneration = str->rg_igeneration;
1015 	rgl->__pad = 0UL;
1016 }
1017 
1018 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1019 {
1020 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1021 	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1022 	rgl->rl_unlinked = cpu_to_be32(unlinked);
1023 }
1024 
1025 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1026 {
1027 	struct gfs2_bitmap *bi;
1028 	const u32 length = rgd->rd_length;
1029 	const u8 *buffer = NULL;
1030 	u32 i, goal, count = 0;
1031 
1032 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1033 		goal = 0;
1034 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1035 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1036 		while (goal < bi->bi_len * GFS2_NBBY) {
1037 			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1038 					   GFS2_BLKST_UNLINKED);
1039 			if (goal == BFITNOENT)
1040 				break;
1041 			count++;
1042 			goal++;
1043 		}
1044 	}
1045 
1046 	return count;
1047 }
1048 
1049 
1050 /**
1051  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1052  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1053  *
1054  * Read in all of a Resource Group's header and bitmap blocks.
1055  * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1056  *
1057  * Returns: errno
1058  */
1059 
1060 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1061 {
1062 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1063 	struct gfs2_glock *gl = rgd->rd_gl;
1064 	unsigned int length = rgd->rd_length;
1065 	struct gfs2_bitmap *bi;
1066 	unsigned int x, y;
1067 	int error;
1068 
1069 	if (rgd->rd_bits[0].bi_bh != NULL)
1070 		return 0;
1071 
1072 	for (x = 0; x < length; x++) {
1073 		bi = rgd->rd_bits + x;
1074 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1075 		if (error)
1076 			goto fail;
1077 	}
1078 
1079 	for (y = length; y--;) {
1080 		bi = rgd->rd_bits + y;
1081 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1082 		if (error)
1083 			goto fail;
1084 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1085 					      GFS2_METATYPE_RG)) {
1086 			error = -EIO;
1087 			goto fail;
1088 		}
1089 	}
1090 
1091 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1092 		for (x = 0; x < length; x++)
1093 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1094 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1095 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1096 		rgd->rd_free_clone = rgd->rd_free;
1097 	}
1098 	if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1099 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1100 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1101 				     rgd->rd_bits[0].bi_bh->b_data);
1102 	}
1103 	else if (sdp->sd_args.ar_rgrplvb) {
1104 		if (!gfs2_rgrp_lvb_valid(rgd)){
1105 			gfs2_consist_rgrpd(rgd);
1106 			error = -EIO;
1107 			goto fail;
1108 		}
1109 		if (rgd->rd_rgl->rl_unlinked == 0)
1110 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1111 	}
1112 	return 0;
1113 
1114 fail:
1115 	while (x--) {
1116 		bi = rgd->rd_bits + x;
1117 		brelse(bi->bi_bh);
1118 		bi->bi_bh = NULL;
1119 		gfs2_assert_warn(sdp, !bi->bi_clone);
1120 	}
1121 
1122 	return error;
1123 }
1124 
1125 int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1126 {
1127 	u32 rl_flags;
1128 
1129 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1130 		return 0;
1131 
1132 	if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1133 		return gfs2_rgrp_bh_get(rgd);
1134 
1135 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1136 	rl_flags &= ~GFS2_RDF_MASK;
1137 	rgd->rd_flags &= GFS2_RDF_MASK;
1138 	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1139 	if (rgd->rd_rgl->rl_unlinked == 0)
1140 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1141 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1142 	rgd->rd_free_clone = rgd->rd_free;
1143 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1144 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1145 	return 0;
1146 }
1147 
1148 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1149 {
1150 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1151 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1152 
1153 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1154 		return 0;
1155 	return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object);
1156 }
1157 
1158 /**
1159  * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1160  * @gh: The glock holder for the resource group
1161  *
1162  */
1163 
1164 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1165 {
1166 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1167 	int x, length = rgd->rd_length;
1168 
1169 	for (x = 0; x < length; x++) {
1170 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1171 		if (bi->bi_bh) {
1172 			brelse(bi->bi_bh);
1173 			bi->bi_bh = NULL;
1174 		}
1175 	}
1176 
1177 }
1178 
1179 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1180 			     struct buffer_head *bh,
1181 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1182 {
1183 	struct super_block *sb = sdp->sd_vfs;
1184 	struct block_device *bdev = sb->s_bdev;
1185 	const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
1186 					   bdev_logical_block_size(sb->s_bdev);
1187 	u64 blk;
1188 	sector_t start = 0;
1189 	sector_t nr_sects = 0;
1190 	int rv;
1191 	unsigned int x;
1192 	u32 trimmed = 0;
1193 	u8 diff;
1194 
1195 	for (x = 0; x < bi->bi_len; x++) {
1196 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1197 		clone += bi->bi_offset;
1198 		clone += x;
1199 		if (bh) {
1200 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1201 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1202 		} else {
1203 			diff = ~(*clone | (*clone >> 1));
1204 		}
1205 		diff &= 0x55;
1206 		if (diff == 0)
1207 			continue;
1208 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1209 		blk *= sects_per_blk; /* convert to sectors */
1210 		while(diff) {
1211 			if (diff & 1) {
1212 				if (nr_sects == 0)
1213 					goto start_new_extent;
1214 				if ((start + nr_sects) != blk) {
1215 					if (nr_sects >= minlen) {
1216 						rv = blkdev_issue_discard(bdev,
1217 							start, nr_sects,
1218 							GFP_NOFS, 0);
1219 						if (rv)
1220 							goto fail;
1221 						trimmed += nr_sects;
1222 					}
1223 					nr_sects = 0;
1224 start_new_extent:
1225 					start = blk;
1226 				}
1227 				nr_sects += sects_per_blk;
1228 			}
1229 			diff >>= 2;
1230 			blk += sects_per_blk;
1231 		}
1232 	}
1233 	if (nr_sects >= minlen) {
1234 		rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
1235 		if (rv)
1236 			goto fail;
1237 		trimmed += nr_sects;
1238 	}
1239 	if (ptrimmed)
1240 		*ptrimmed = trimmed;
1241 	return 0;
1242 
1243 fail:
1244 	if (sdp->sd_args.ar_discard)
1245 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1246 	sdp->sd_args.ar_discard = 0;
1247 	return -EIO;
1248 }
1249 
1250 /**
1251  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1252  * @filp: Any file on the filesystem
1253  * @argp: Pointer to the arguments (also used to pass result)
1254  *
1255  * Returns: 0 on success, otherwise error code
1256  */
1257 
1258 int gfs2_fitrim(struct file *filp, void __user *argp)
1259 {
1260 	struct inode *inode = file_inode(filp);
1261 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1262 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1263 	struct buffer_head *bh;
1264 	struct gfs2_rgrpd *rgd;
1265 	struct gfs2_rgrpd *rgd_end;
1266 	struct gfs2_holder gh;
1267 	struct fstrim_range r;
1268 	int ret = 0;
1269 	u64 amt;
1270 	u64 trimmed = 0;
1271 	u64 start, end, minlen;
1272 	unsigned int x;
1273 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1274 
1275 	if (!capable(CAP_SYS_ADMIN))
1276 		return -EPERM;
1277 
1278 	if (!blk_queue_discard(q))
1279 		return -EOPNOTSUPP;
1280 
1281 	if (copy_from_user(&r, argp, sizeof(r)))
1282 		return -EFAULT;
1283 
1284 	ret = gfs2_rindex_update(sdp);
1285 	if (ret)
1286 		return ret;
1287 
1288 	start = r.start >> bs_shift;
1289 	end = start + (r.len >> bs_shift);
1290 	minlen = max_t(u64, r.minlen,
1291 		       q->limits.discard_granularity) >> bs_shift;
1292 
1293 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1294 	rgd_end = gfs2_blk2rgrpd(sdp, end - 1, 0);
1295 
1296 	if (end <= start ||
1297 	    minlen > sdp->sd_max_rg_data ||
1298 	    start > rgd_end->rd_data0 + rgd_end->rd_data)
1299 		return -EINVAL;
1300 
1301 	while (1) {
1302 
1303 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1304 		if (ret)
1305 			goto out;
1306 
1307 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1308 			/* Trim each bitmap in the rgrp */
1309 			for (x = 0; x < rgd->rd_length; x++) {
1310 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1311 				ret = gfs2_rgrp_send_discards(sdp,
1312 						rgd->rd_data0, NULL, bi, minlen,
1313 						&amt);
1314 				if (ret) {
1315 					gfs2_glock_dq_uninit(&gh);
1316 					goto out;
1317 				}
1318 				trimmed += amt;
1319 			}
1320 
1321 			/* Mark rgrp as having been trimmed */
1322 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1323 			if (ret == 0) {
1324 				bh = rgd->rd_bits[0].bi_bh;
1325 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1326 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1327 				gfs2_rgrp_out(rgd, bh->b_data);
1328 				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1329 				gfs2_trans_end(sdp);
1330 			}
1331 		}
1332 		gfs2_glock_dq_uninit(&gh);
1333 
1334 		if (rgd == rgd_end)
1335 			break;
1336 
1337 		rgd = gfs2_rgrpd_get_next(rgd);
1338 	}
1339 
1340 out:
1341 	r.len = trimmed << 9;
1342 	if (copy_to_user(argp, &r, sizeof(r)))
1343 		return -EFAULT;
1344 
1345 	return ret;
1346 }
1347 
1348 /**
1349  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1350  * @ip: the inode structure
1351  *
1352  */
1353 static void rs_insert(struct gfs2_inode *ip)
1354 {
1355 	struct rb_node **newn, *parent = NULL;
1356 	int rc;
1357 	struct gfs2_blkreserv *rs = ip->i_res;
1358 	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1359 	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1360 
1361 	BUG_ON(gfs2_rs_active(rs));
1362 
1363 	spin_lock(&rgd->rd_rsspin);
1364 	newn = &rgd->rd_rstree.rb_node;
1365 	while (*newn) {
1366 		struct gfs2_blkreserv *cur =
1367 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1368 
1369 		parent = *newn;
1370 		rc = rs_cmp(fsblock, rs->rs_free, cur);
1371 		if (rc > 0)
1372 			newn = &((*newn)->rb_right);
1373 		else if (rc < 0)
1374 			newn = &((*newn)->rb_left);
1375 		else {
1376 			spin_unlock(&rgd->rd_rsspin);
1377 			WARN_ON(1);
1378 			return;
1379 		}
1380 	}
1381 
1382 	rb_link_node(&rs->rs_node, parent, newn);
1383 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1384 
1385 	/* Do our rgrp accounting for the reservation */
1386 	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1387 	spin_unlock(&rgd->rd_rsspin);
1388 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1389 }
1390 
1391 /**
1392  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1393  * @rgd: the resource group descriptor
1394  * @ip: pointer to the inode for which we're reserving blocks
1395  * @requested: number of blocks required for this allocation
1396  *
1397  */
1398 
1399 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1400 			   unsigned requested)
1401 {
1402 	struct gfs2_rbm rbm = { .rgd = rgd, };
1403 	u64 goal;
1404 	struct gfs2_blkreserv *rs = ip->i_res;
1405 	u32 extlen;
1406 	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1407 	int ret;
1408 
1409 	extlen = max_t(u32, atomic_read(&rs->rs_sizehint), requested);
1410 	extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1411 	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1412 		return;
1413 
1414 	/* Find bitmap block that contains bits for goal block */
1415 	if (rgrp_contains_block(rgd, ip->i_goal))
1416 		goal = ip->i_goal;
1417 	else
1418 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1419 
1420 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1421 		return;
1422 
1423 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true);
1424 	if (ret == 0) {
1425 		rs->rs_rbm = rbm;
1426 		rs->rs_free = extlen;
1427 		rs->rs_inum = ip->i_no_addr;
1428 		rs_insert(ip);
1429 	} else {
1430 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1431 			rgd->rd_last_alloc = 0;
1432 	}
1433 }
1434 
1435 /**
1436  * gfs2_next_unreserved_block - Return next block that is not reserved
1437  * @rgd: The resource group
1438  * @block: The starting block
1439  * @length: The required length
1440  * @ip: Ignore any reservations for this inode
1441  *
1442  * If the block does not appear in any reservation, then return the
1443  * block number unchanged. If it does appear in the reservation, then
1444  * keep looking through the tree of reservations in order to find the
1445  * first block number which is not reserved.
1446  */
1447 
1448 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1449 				      u32 length,
1450 				      const struct gfs2_inode *ip)
1451 {
1452 	struct gfs2_blkreserv *rs;
1453 	struct rb_node *n;
1454 	int rc;
1455 
1456 	spin_lock(&rgd->rd_rsspin);
1457 	n = rgd->rd_rstree.rb_node;
1458 	while (n) {
1459 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1460 		rc = rs_cmp(block, length, rs);
1461 		if (rc < 0)
1462 			n = n->rb_left;
1463 		else if (rc > 0)
1464 			n = n->rb_right;
1465 		else
1466 			break;
1467 	}
1468 
1469 	if (n) {
1470 		while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1471 			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1472 			n = n->rb_right;
1473 			if (n == NULL)
1474 				break;
1475 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1476 		}
1477 	}
1478 
1479 	spin_unlock(&rgd->rd_rsspin);
1480 	return block;
1481 }
1482 
1483 /**
1484  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1485  * @rbm: The current position in the resource group
1486  * @ip: The inode for which we are searching for blocks
1487  * @minext: The minimum extent length
1488  *
1489  * This checks the current position in the rgrp to see whether there is
1490  * a reservation covering this block. If not then this function is a
1491  * no-op. If there is, then the position is moved to the end of the
1492  * contiguous reservation(s) so that we are pointing at the first
1493  * non-reserved block.
1494  *
1495  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1496  */
1497 
1498 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1499 					     const struct gfs2_inode *ip,
1500 					     u32 minext)
1501 {
1502 	u64 block = gfs2_rbm_to_block(rbm);
1503 	u32 extlen = 1;
1504 	u64 nblock;
1505 	int ret;
1506 
1507 	/*
1508 	 * If we have a minimum extent length, then skip over any extent
1509 	 * which is less than the min extent length in size.
1510 	 */
1511 	if (minext) {
1512 		extlen = gfs2_free_extlen(rbm, minext);
1513 		nblock = block + extlen;
1514 		if (extlen < minext)
1515 			goto fail;
1516 	}
1517 
1518 	/*
1519 	 * Check the extent which has been found against the reservations
1520 	 * and skip if parts of it are already reserved
1521 	 */
1522 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1523 	if (nblock == block)
1524 		return 0;
1525 fail:
1526 	ret = gfs2_rbm_from_block(rbm, nblock);
1527 	if (ret < 0)
1528 		return ret;
1529 	return 1;
1530 }
1531 
1532 /**
1533  * gfs2_rbm_find - Look for blocks of a particular state
1534  * @rbm: Value/result starting position and final position
1535  * @state: The state which we want to find
1536  * @minext: The requested extent length (0 for a single block)
1537  * @ip: If set, check for reservations
1538  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1539  *          around until we've reached the starting point.
1540  *
1541  * Side effects:
1542  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1543  *   has no free blocks in it.
1544  *
1545  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1546  */
1547 
1548 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
1549 			 const struct gfs2_inode *ip, bool nowrap)
1550 {
1551 	struct buffer_head *bh;
1552 	struct gfs2_bitmap *initial_bi;
1553 	u32 initial_offset;
1554 	u32 offset;
1555 	u8 *buffer;
1556 	int index;
1557 	int n = 0;
1558 	int iters = rbm->rgd->rd_length;
1559 	int ret;
1560 
1561 	/* If we are not starting at the beginning of a bitmap, then we
1562 	 * need to add one to the bitmap count to ensure that we search
1563 	 * the starting bitmap twice.
1564 	 */
1565 	if (rbm->offset != 0)
1566 		iters++;
1567 
1568 	while(1) {
1569 		if (test_bit(GBF_FULL, &rbm->bi->bi_flags) &&
1570 		    (state == GFS2_BLKST_FREE))
1571 			goto next_bitmap;
1572 
1573 		bh = rbm->bi->bi_bh;
1574 		buffer = bh->b_data + rbm->bi->bi_offset;
1575 		WARN_ON(!buffer_uptodate(bh));
1576 		if (state != GFS2_BLKST_UNLINKED && rbm->bi->bi_clone)
1577 			buffer = rbm->bi->bi_clone + rbm->bi->bi_offset;
1578 		initial_offset = rbm->offset;
1579 		offset = gfs2_bitfit(buffer, rbm->bi->bi_len, rbm->offset, state);
1580 		if (offset == BFITNOENT)
1581 			goto bitmap_full;
1582 		rbm->offset = offset;
1583 		if (ip == NULL)
1584 			return 0;
1585 
1586 		initial_bi = rbm->bi;
1587 		ret = gfs2_reservation_check_and_update(rbm, ip, minext);
1588 		if (ret == 0)
1589 			return 0;
1590 		if (ret > 0) {
1591 			n += (rbm->bi - initial_bi);
1592 			goto next_iter;
1593 		}
1594 		if (ret == -E2BIG) {
1595 			index = 0;
1596 			rbm->offset = 0;
1597 			n += (rbm->bi - initial_bi);
1598 			goto res_covered_end_of_rgrp;
1599 		}
1600 		return ret;
1601 
1602 bitmap_full:	/* Mark bitmap as full and fall through */
1603 		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1604 			set_bit(GBF_FULL, &rbm->bi->bi_flags);
1605 
1606 next_bitmap:	/* Find next bitmap in the rgrp */
1607 		rbm->offset = 0;
1608 		index = rbm->bi - rbm->rgd->rd_bits;
1609 		index++;
1610 		if (index == rbm->rgd->rd_length)
1611 			index = 0;
1612 res_covered_end_of_rgrp:
1613 		rbm->bi = &rbm->rgd->rd_bits[index];
1614 		if ((index == 0) && nowrap)
1615 			break;
1616 		n++;
1617 next_iter:
1618 		if (n >= iters)
1619 			break;
1620 	}
1621 
1622 	return -ENOSPC;
1623 }
1624 
1625 /**
1626  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1627  * @rgd: The rgrp
1628  * @last_unlinked: block address of the last dinode we unlinked
1629  * @skip: block address we should explicitly not unlink
1630  *
1631  * Returns: 0 if no error
1632  *          The inode, if one has been found, in inode.
1633  */
1634 
1635 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1636 {
1637 	u64 block;
1638 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1639 	struct gfs2_glock *gl;
1640 	struct gfs2_inode *ip;
1641 	int error;
1642 	int found = 0;
1643 	struct gfs2_rbm rbm = { .rgd = rgd, .bi = rgd->rd_bits, .offset = 0 };
1644 
1645 	while (1) {
1646 		down_write(&sdp->sd_log_flush_lock);
1647 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true);
1648 		up_write(&sdp->sd_log_flush_lock);
1649 		if (error == -ENOSPC)
1650 			break;
1651 		if (WARN_ON_ONCE(error))
1652 			break;
1653 
1654 		block = gfs2_rbm_to_block(&rbm);
1655 		if (gfs2_rbm_from_block(&rbm, block + 1))
1656 			break;
1657 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1658 			continue;
1659 		if (block == skip)
1660 			continue;
1661 		*last_unlinked = block;
1662 
1663 		error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1664 		if (error)
1665 			continue;
1666 
1667 		/* If the inode is already in cache, we can ignore it here
1668 		 * because the existing inode disposal code will deal with
1669 		 * it when all refs have gone away. Accessing gl_object like
1670 		 * this is not safe in general. Here it is ok because we do
1671 		 * not dereference the pointer, and we only need an approx
1672 		 * answer to whether it is NULL or not.
1673 		 */
1674 		ip = gl->gl_object;
1675 
1676 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1677 			gfs2_glock_put(gl);
1678 		else
1679 			found++;
1680 
1681 		/* Limit reclaim to sensible number of tasks */
1682 		if (found > NR_CPUS)
1683 			return;
1684 	}
1685 
1686 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1687 	return;
1688 }
1689 
1690 /**
1691  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1692  * @rgd: The rgrp in question
1693  * @loops: An indication of how picky we can be (0=very, 1=less so)
1694  *
1695  * This function uses the recently added glock statistics in order to
1696  * figure out whether a parciular resource group is suffering from
1697  * contention from multiple nodes. This is done purely on the basis
1698  * of timings, since this is the only data we have to work with and
1699  * our aim here is to reject a resource group which is highly contended
1700  * but (very important) not to do this too often in order to ensure that
1701  * we do not land up introducing fragmentation by changing resource
1702  * groups when not actually required.
1703  *
1704  * The calculation is fairly simple, we want to know whether the SRTTB
1705  * (i.e. smoothed round trip time for blocking operations) to acquire
1706  * the lock for this rgrp's glock is significantly greater than the
1707  * time taken for resource groups on average. We introduce a margin in
1708  * the form of the variable @var which is computed as the sum of the two
1709  * respective variences, and multiplied by a factor depending on @loops
1710  * and whether we have a lot of data to base the decision on. This is
1711  * then tested against the square difference of the means in order to
1712  * decide whether the result is statistically significant or not.
1713  *
1714  * Returns: A boolean verdict on the congestion status
1715  */
1716 
1717 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1718 {
1719 	const struct gfs2_glock *gl = rgd->rd_gl;
1720 	const struct gfs2_sbd *sdp = gl->gl_sbd;
1721 	struct gfs2_lkstats *st;
1722 	s64 r_dcount, l_dcount;
1723 	s64 r_srttb, l_srttb;
1724 	s64 srttb_diff;
1725 	s64 sqr_diff;
1726 	s64 var;
1727 
1728 	preempt_disable();
1729 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1730 	r_srttb = st->stats[GFS2_LKS_SRTTB];
1731 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1732 	var = st->stats[GFS2_LKS_SRTTVARB] +
1733 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1734 	preempt_enable();
1735 
1736 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1737 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1738 
1739 	if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0))
1740 		return false;
1741 
1742 	srttb_diff = r_srttb - l_srttb;
1743 	sqr_diff = srttb_diff * srttb_diff;
1744 
1745 	var *= 2;
1746 	if (l_dcount < 8 || r_dcount < 8)
1747 		var *= 2;
1748 	if (loops == 1)
1749 		var *= 2;
1750 
1751 	return ((srttb_diff < 0) && (sqr_diff > var));
1752 }
1753 
1754 /**
1755  * gfs2_rgrp_used_recently
1756  * @rs: The block reservation with the rgrp to test
1757  * @msecs: The time limit in milliseconds
1758  *
1759  * Returns: True if the rgrp glock has been used within the time limit
1760  */
1761 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1762 				    u64 msecs)
1763 {
1764 	u64 tdiff;
1765 
1766 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1767                             rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1768 
1769 	return tdiff > (msecs * 1000 * 1000);
1770 }
1771 
1772 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1773 {
1774 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1775 	u32 skip;
1776 
1777 	get_random_bytes(&skip, sizeof(skip));
1778 	return skip % sdp->sd_rgrps;
1779 }
1780 
1781 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1782 {
1783 	struct gfs2_rgrpd *rgd = *pos;
1784 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1785 
1786 	rgd = gfs2_rgrpd_get_next(rgd);
1787 	if (rgd == NULL)
1788 		rgd = gfs2_rgrpd_get_first(sdp);
1789 	*pos = rgd;
1790 	if (rgd != begin) /* If we didn't wrap */
1791 		return true;
1792 	return false;
1793 }
1794 
1795 /**
1796  * gfs2_inplace_reserve - Reserve space in the filesystem
1797  * @ip: the inode to reserve space for
1798  * @requested: the number of blocks to be reserved
1799  *
1800  * Returns: errno
1801  */
1802 
1803 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested, u32 aflags)
1804 {
1805 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1806 	struct gfs2_rgrpd *begin = NULL;
1807 	struct gfs2_blkreserv *rs = ip->i_res;
1808 	int error = 0, rg_locked, flags = 0;
1809 	u64 last_unlinked = NO_BLOCK;
1810 	int loops = 0;
1811 	u32 skip = 0;
1812 
1813 	if (sdp->sd_args.ar_rgrplvb)
1814 		flags |= GL_SKIP;
1815 	if (gfs2_assert_warn(sdp, requested))
1816 		return -EINVAL;
1817 	if (gfs2_rs_active(rs)) {
1818 		begin = rs->rs_rbm.rgd;
1819 		flags = 0; /* Yoda: Do or do not. There is no try */
1820 	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1821 		rs->rs_rbm.rgd = begin = ip->i_rgd;
1822 	} else {
1823 		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1824 	}
1825 	if (S_ISDIR(ip->i_inode.i_mode) && (aflags & GFS2_AF_ORLOV))
1826 		skip = gfs2_orlov_skip(ip);
1827 	if (rs->rs_rbm.rgd == NULL)
1828 		return -EBADSLT;
1829 
1830 	while (loops < 3) {
1831 		rg_locked = 1;
1832 
1833 		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1834 			rg_locked = 0;
1835 			if (skip && skip--)
1836 				goto next_rgrp;
1837 			if (!gfs2_rs_active(rs) && (loops < 2) &&
1838 			     gfs2_rgrp_used_recently(rs, 1000) &&
1839 			     gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1840 				goto next_rgrp;
1841 			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
1842 						   LM_ST_EXCLUSIVE, flags,
1843 						   &rs->rs_rgd_gh);
1844 			if (unlikely(error))
1845 				return error;
1846 			if (!gfs2_rs_active(rs) && (loops < 2) &&
1847 			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1848 				goto skip_rgrp;
1849 			if (sdp->sd_args.ar_rgrplvb) {
1850 				error = update_rgrp_lvb(rs->rs_rbm.rgd);
1851 				if (unlikely(error)) {
1852 					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1853 					return error;
1854 				}
1855 			}
1856 		}
1857 
1858 		/* Skip unuseable resource groups */
1859 		if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1860 			goto skip_rgrp;
1861 
1862 		if (sdp->sd_args.ar_rgrplvb)
1863 			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
1864 
1865 		/* Get a reservation if we don't already have one */
1866 		if (!gfs2_rs_active(rs))
1867 			rg_mblk_search(rs->rs_rbm.rgd, ip, requested);
1868 
1869 		/* Skip rgrps when we can't get a reservation on first pass */
1870 		if (!gfs2_rs_active(rs) && (loops < 1))
1871 			goto check_rgrp;
1872 
1873 		/* If rgrp has enough free space, use it */
1874 		if (rs->rs_rbm.rgd->rd_free_clone >= requested) {
1875 			ip->i_rgd = rs->rs_rbm.rgd;
1876 			return 0;
1877 		}
1878 
1879 		/* Drop reservation, if we couldn't use reserved rgrp */
1880 		if (gfs2_rs_active(rs))
1881 			gfs2_rs_deltree(ip, rs);
1882 check_rgrp:
1883 		/* Check for unlinked inodes which can be reclaimed */
1884 		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
1885 			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
1886 					ip->i_no_addr);
1887 skip_rgrp:
1888 		/* Unlock rgrp if required */
1889 		if (!rg_locked)
1890 			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1891 next_rgrp:
1892 		/* Find the next rgrp, and continue looking */
1893 		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
1894 			continue;
1895 		if (skip)
1896 			continue;
1897 
1898 		/* If we've scanned all the rgrps, but found no free blocks
1899 		 * then this checks for some less likely conditions before
1900 		 * trying again.
1901 		 */
1902 		loops++;
1903 		/* Check that fs hasn't grown if writing to rindex */
1904 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1905 			error = gfs2_ri_update(ip);
1906 			if (error)
1907 				return error;
1908 		}
1909 		/* Flushing the log may release space */
1910 		if (loops == 2)
1911 			gfs2_log_flush(sdp, NULL);
1912 	}
1913 
1914 	return -ENOSPC;
1915 }
1916 
1917 /**
1918  * gfs2_inplace_release - release an inplace reservation
1919  * @ip: the inode the reservation was taken out on
1920  *
1921  * Release a reservation made by gfs2_inplace_reserve().
1922  */
1923 
1924 void gfs2_inplace_release(struct gfs2_inode *ip)
1925 {
1926 	struct gfs2_blkreserv *rs = ip->i_res;
1927 
1928 	if (rs->rs_rgd_gh.gh_gl)
1929 		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1930 }
1931 
1932 /**
1933  * gfs2_get_block_type - Check a block in a RG is of given type
1934  * @rgd: the resource group holding the block
1935  * @block: the block number
1936  *
1937  * Returns: The block type (GFS2_BLKST_*)
1938  */
1939 
1940 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1941 {
1942 	struct gfs2_rbm rbm = { .rgd = rgd, };
1943 	int ret;
1944 
1945 	ret = gfs2_rbm_from_block(&rbm, block);
1946 	WARN_ON_ONCE(ret != 0);
1947 
1948 	return gfs2_testbit(&rbm);
1949 }
1950 
1951 
1952 /**
1953  * gfs2_alloc_extent - allocate an extent from a given bitmap
1954  * @rbm: the resource group information
1955  * @dinode: TRUE if the first block we allocate is for a dinode
1956  * @n: The extent length (value/result)
1957  *
1958  * Add the bitmap buffer to the transaction.
1959  * Set the found bits to @new_state to change block's allocation state.
1960  */
1961 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
1962 			     unsigned int *n)
1963 {
1964 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
1965 	const unsigned int elen = *n;
1966 	u64 block;
1967 	int ret;
1968 
1969 	*n = 1;
1970 	block = gfs2_rbm_to_block(rbm);
1971 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm->bi->bi_bh);
1972 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1973 	block++;
1974 	while (*n < elen) {
1975 		ret = gfs2_rbm_from_block(&pos, block);
1976 		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
1977 			break;
1978 		gfs2_trans_add_meta(pos.rgd->rd_gl, pos.bi->bi_bh);
1979 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
1980 		(*n)++;
1981 		block++;
1982 	}
1983 }
1984 
1985 /**
1986  * rgblk_free - Change alloc state of given block(s)
1987  * @sdp: the filesystem
1988  * @bstart: the start of a run of blocks to free
1989  * @blen: the length of the block run (all must lie within ONE RG!)
1990  * @new_state: GFS2_BLKST_XXX the after-allocation block state
1991  *
1992  * Returns:  Resource group containing the block(s)
1993  */
1994 
1995 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1996 				     u32 blen, unsigned char new_state)
1997 {
1998 	struct gfs2_rbm rbm;
1999 
2000 	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2001 	if (!rbm.rgd) {
2002 		if (gfs2_consist(sdp))
2003 			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2004 		return NULL;
2005 	}
2006 
2007 	while (blen--) {
2008 		gfs2_rbm_from_block(&rbm, bstart);
2009 		bstart++;
2010 		if (!rbm.bi->bi_clone) {
2011 			rbm.bi->bi_clone = kmalloc(rbm.bi->bi_bh->b_size,
2012 						   GFP_NOFS | __GFP_NOFAIL);
2013 			memcpy(rbm.bi->bi_clone + rbm.bi->bi_offset,
2014 			       rbm.bi->bi_bh->b_data + rbm.bi->bi_offset,
2015 			       rbm.bi->bi_len);
2016 		}
2017 		gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.bi->bi_bh);
2018 		gfs2_setbit(&rbm, false, new_state);
2019 	}
2020 
2021 	return rbm.rgd;
2022 }
2023 
2024 /**
2025  * gfs2_rgrp_dump - print out an rgrp
2026  * @seq: The iterator
2027  * @gl: The glock in question
2028  *
2029  */
2030 
2031 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2032 {
2033 	struct gfs2_rgrpd *rgd = gl->gl_object;
2034 	struct gfs2_blkreserv *trs;
2035 	const struct rb_node *n;
2036 
2037 	if (rgd == NULL)
2038 		return 0;
2039 	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n",
2040 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2041 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2042 		       rgd->rd_reserved);
2043 	spin_lock(&rgd->rd_rsspin);
2044 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2045 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2046 		dump_rs(seq, trs);
2047 	}
2048 	spin_unlock(&rgd->rd_rsspin);
2049 	return 0;
2050 }
2051 
2052 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2053 {
2054 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2055 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2056 		(unsigned long long)rgd->rd_addr);
2057 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2058 	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2059 	rgd->rd_flags |= GFS2_RDF_ERROR;
2060 }
2061 
2062 /**
2063  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2064  * @ip: The inode we have just allocated blocks for
2065  * @rbm: The start of the allocated blocks
2066  * @len: The extent length
2067  *
2068  * Adjusts a reservation after an allocation has taken place. If the
2069  * reservation does not match the allocation, or if it is now empty
2070  * then it is removed.
2071  */
2072 
2073 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2074 				    const struct gfs2_rbm *rbm, unsigned len)
2075 {
2076 	struct gfs2_blkreserv *rs = ip->i_res;
2077 	struct gfs2_rgrpd *rgd = rbm->rgd;
2078 	unsigned rlen;
2079 	u64 block;
2080 	int ret;
2081 
2082 	spin_lock(&rgd->rd_rsspin);
2083 	if (gfs2_rs_active(rs)) {
2084 		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2085 			block = gfs2_rbm_to_block(rbm);
2086 			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2087 			rlen = min(rs->rs_free, len);
2088 			rs->rs_free -= rlen;
2089 			rgd->rd_reserved -= rlen;
2090 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2091 			if (rs->rs_free && !ret)
2092 				goto out;
2093 		}
2094 		__rs_deltree(ip, rs);
2095 	}
2096 out:
2097 	spin_unlock(&rgd->rd_rsspin);
2098 }
2099 
2100 /**
2101  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2102  * @ip: the inode to allocate the block for
2103  * @bn: Used to return the starting block number
2104  * @nblocks: requested number of blocks/extent length (value/result)
2105  * @dinode: 1 if we're allocating a dinode block, else 0
2106  * @generation: the generation number of the inode
2107  *
2108  * Returns: 0 or error
2109  */
2110 
2111 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2112 		      bool dinode, u64 *generation)
2113 {
2114 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2115 	struct buffer_head *dibh;
2116 	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2117 	unsigned int ndata;
2118 	u64 goal;
2119 	u64 block; /* block, within the file system scope */
2120 	int error;
2121 
2122 	if (gfs2_rs_active(ip->i_res))
2123 		goal = gfs2_rbm_to_block(&ip->i_res->rs_rbm);
2124 	else if (!dinode && rgrp_contains_block(rbm.rgd, ip->i_goal))
2125 		goal = ip->i_goal;
2126 	else
2127 		goal = rbm.rgd->rd_last_alloc + rbm.rgd->rd_data0;
2128 
2129 	gfs2_rbm_from_block(&rbm, goal);
2130 	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false);
2131 
2132 	if (error == -ENOSPC) {
2133 		gfs2_rbm_from_block(&rbm, goal);
2134 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false);
2135 	}
2136 
2137 	/* Since all blocks are reserved in advance, this shouldn't happen */
2138 	if (error) {
2139 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n",
2140 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2141 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags));
2142 		goto rgrp_error;
2143 	}
2144 
2145 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2146 	block = gfs2_rbm_to_block(&rbm);
2147 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2148 	if (gfs2_rs_active(ip->i_res))
2149 		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2150 	ndata = *nblocks;
2151 	if (dinode)
2152 		ndata--;
2153 
2154 	if (!dinode) {
2155 		ip->i_goal = block + ndata - 1;
2156 		error = gfs2_meta_inode_buffer(ip, &dibh);
2157 		if (error == 0) {
2158 			struct gfs2_dinode *di =
2159 				(struct gfs2_dinode *)dibh->b_data;
2160 			gfs2_trans_add_meta(ip->i_gl, dibh);
2161 			di->di_goal_meta = di->di_goal_data =
2162 				cpu_to_be64(ip->i_goal);
2163 			brelse(dibh);
2164 		}
2165 	}
2166 	if (rbm.rgd->rd_free < *nblocks) {
2167 		printk(KERN_WARNING "nblocks=%u\n", *nblocks);
2168 		goto rgrp_error;
2169 	}
2170 
2171 	rbm.rgd->rd_free -= *nblocks;
2172 	if (dinode) {
2173 		rbm.rgd->rd_dinodes++;
2174 		*generation = rbm.rgd->rd_igeneration++;
2175 		if (*generation == 0)
2176 			*generation = rbm.rgd->rd_igeneration++;
2177 	}
2178 
2179 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2180 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2181 	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2182 
2183 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2184 	if (dinode)
2185 		gfs2_trans_add_unrevoke(sdp, block, 1);
2186 
2187 	/*
2188 	 * This needs reviewing to see why we cannot do the quota change
2189 	 * at this point in the dinode case.
2190 	 */
2191 	if (ndata)
2192 		gfs2_quota_change(ip, ndata, ip->i_inode.i_uid,
2193 				  ip->i_inode.i_gid);
2194 
2195 	rbm.rgd->rd_free_clone -= *nblocks;
2196 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2197 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2198 	*bn = block;
2199 	return 0;
2200 
2201 rgrp_error:
2202 	gfs2_rgrp_error(rbm.rgd);
2203 	return -EIO;
2204 }
2205 
2206 /**
2207  * __gfs2_free_blocks - free a contiguous run of block(s)
2208  * @ip: the inode these blocks are being freed from
2209  * @bstart: first block of a run of contiguous blocks
2210  * @blen: the length of the block run
2211  * @meta: 1 if the blocks represent metadata
2212  *
2213  */
2214 
2215 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2216 {
2217 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2218 	struct gfs2_rgrpd *rgd;
2219 
2220 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2221 	if (!rgd)
2222 		return;
2223 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2224 	rgd->rd_free += blen;
2225 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2226 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2227 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2228 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2229 
2230 	/* Directories keep their data in the metadata address space */
2231 	if (meta || ip->i_depth)
2232 		gfs2_meta_wipe(ip, bstart, blen);
2233 }
2234 
2235 /**
2236  * gfs2_free_meta - free a contiguous run of data block(s)
2237  * @ip: the inode these blocks are being freed from
2238  * @bstart: first block of a run of contiguous blocks
2239  * @blen: the length of the block run
2240  *
2241  */
2242 
2243 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2244 {
2245 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2246 
2247 	__gfs2_free_blocks(ip, bstart, blen, 1);
2248 	gfs2_statfs_change(sdp, 0, +blen, 0);
2249 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2250 }
2251 
2252 void gfs2_unlink_di(struct inode *inode)
2253 {
2254 	struct gfs2_inode *ip = GFS2_I(inode);
2255 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2256 	struct gfs2_rgrpd *rgd;
2257 	u64 blkno = ip->i_no_addr;
2258 
2259 	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2260 	if (!rgd)
2261 		return;
2262 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2263 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2264 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2265 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2266 	update_rgrp_lvb_unlinked(rgd, 1);
2267 }
2268 
2269 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2270 {
2271 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2272 	struct gfs2_rgrpd *tmp_rgd;
2273 
2274 	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2275 	if (!tmp_rgd)
2276 		return;
2277 	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2278 
2279 	if (!rgd->rd_dinodes)
2280 		gfs2_consist_rgrpd(rgd);
2281 	rgd->rd_dinodes--;
2282 	rgd->rd_free++;
2283 
2284 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2285 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2286 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2287 	update_rgrp_lvb_unlinked(rgd, -1);
2288 
2289 	gfs2_statfs_change(sdp, 0, +1, -1);
2290 }
2291 
2292 
2293 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2294 {
2295 	gfs2_free_uninit_di(rgd, ip->i_no_addr);
2296 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2297 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2298 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2299 }
2300 
2301 /**
2302  * gfs2_check_blk_type - Check the type of a block
2303  * @sdp: The superblock
2304  * @no_addr: The block number to check
2305  * @type: The block type we are looking for
2306  *
2307  * Returns: 0 if the block type matches the expected type
2308  *          -ESTALE if it doesn't match
2309  *          or -ve errno if something went wrong while checking
2310  */
2311 
2312 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2313 {
2314 	struct gfs2_rgrpd *rgd;
2315 	struct gfs2_holder rgd_gh;
2316 	int error = -EINVAL;
2317 
2318 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2319 	if (!rgd)
2320 		goto fail;
2321 
2322 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2323 	if (error)
2324 		goto fail;
2325 
2326 	if (gfs2_get_block_type(rgd, no_addr) != type)
2327 		error = -ESTALE;
2328 
2329 	gfs2_glock_dq_uninit(&rgd_gh);
2330 fail:
2331 	return error;
2332 }
2333 
2334 /**
2335  * gfs2_rlist_add - add a RG to a list of RGs
2336  * @ip: the inode
2337  * @rlist: the list of resource groups
2338  * @block: the block
2339  *
2340  * Figure out what RG a block belongs to and add that RG to the list
2341  *
2342  * FIXME: Don't use NOFAIL
2343  *
2344  */
2345 
2346 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2347 		    u64 block)
2348 {
2349 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2350 	struct gfs2_rgrpd *rgd;
2351 	struct gfs2_rgrpd **tmp;
2352 	unsigned int new_space;
2353 	unsigned int x;
2354 
2355 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2356 		return;
2357 
2358 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2359 		rgd = ip->i_rgd;
2360 	else
2361 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2362 	if (!rgd) {
2363 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2364 		return;
2365 	}
2366 	ip->i_rgd = rgd;
2367 
2368 	for (x = 0; x < rlist->rl_rgrps; x++)
2369 		if (rlist->rl_rgd[x] == rgd)
2370 			return;
2371 
2372 	if (rlist->rl_rgrps == rlist->rl_space) {
2373 		new_space = rlist->rl_space + 10;
2374 
2375 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2376 			      GFP_NOFS | __GFP_NOFAIL);
2377 
2378 		if (rlist->rl_rgd) {
2379 			memcpy(tmp, rlist->rl_rgd,
2380 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2381 			kfree(rlist->rl_rgd);
2382 		}
2383 
2384 		rlist->rl_space = new_space;
2385 		rlist->rl_rgd = tmp;
2386 	}
2387 
2388 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2389 }
2390 
2391 /**
2392  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2393  *      and initialize an array of glock holders for them
2394  * @rlist: the list of resource groups
2395  * @state: the lock state to acquire the RG lock in
2396  *
2397  * FIXME: Don't use NOFAIL
2398  *
2399  */
2400 
2401 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2402 {
2403 	unsigned int x;
2404 
2405 	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2406 				GFP_NOFS | __GFP_NOFAIL);
2407 	for (x = 0; x < rlist->rl_rgrps; x++)
2408 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2409 				state, 0,
2410 				&rlist->rl_ghs[x]);
2411 }
2412 
2413 /**
2414  * gfs2_rlist_free - free a resource group list
2415  * @list: the list of resource groups
2416  *
2417  */
2418 
2419 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2420 {
2421 	unsigned int x;
2422 
2423 	kfree(rlist->rl_rgd);
2424 
2425 	if (rlist->rl_ghs) {
2426 		for (x = 0; x < rlist->rl_rgrps; x++)
2427 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2428 		kfree(rlist->rl_ghs);
2429 		rlist->rl_ghs = NULL;
2430 	}
2431 }
2432 
2433