xref: /linux/fs/ext4/inode.c (revision 60063497a95e716c9a689af3be2687d261f115b4)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *	(sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *	(jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24 
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/ratelimit.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "ext4_extents.h"
50 
51 #include <trace/events/ext4.h>
52 
53 #define MPAGE_DA_EXTENT_TAIL 0x01
54 
55 static inline int ext4_begin_ordered_truncate(struct inode *inode,
56 					      loff_t new_size)
57 {
58 	trace_ext4_begin_ordered_truncate(inode, new_size);
59 	/*
60 	 * If jinode is zero, then we never opened the file for
61 	 * writing, so there's no need to call
62 	 * jbd2_journal_begin_ordered_truncate() since there's no
63 	 * outstanding writes we need to flush.
64 	 */
65 	if (!EXT4_I(inode)->jinode)
66 		return 0;
67 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68 						   EXT4_I(inode)->jinode,
69 						   new_size);
70 }
71 
72 static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74 				   struct buffer_head *bh_result, int create);
75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79 
80 /*
81  * Test whether an inode is a fast symlink.
82  */
83 static int ext4_inode_is_fast_symlink(struct inode *inode)
84 {
85 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
86 		(inode->i_sb->s_blocksize >> 9) : 0;
87 
88 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89 }
90 
91 /*
92  * Work out how many blocks we need to proceed with the next chunk of a
93  * truncate transaction.
94  */
95 static unsigned long blocks_for_truncate(struct inode *inode)
96 {
97 	ext4_lblk_t needed;
98 
99 	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
100 
101 	/* Give ourselves just enough room to cope with inodes in which
102 	 * i_blocks is corrupt: we've seen disk corruptions in the past
103 	 * which resulted in random data in an inode which looked enough
104 	 * like a regular file for ext4 to try to delete it.  Things
105 	 * will go a bit crazy if that happens, but at least we should
106 	 * try not to panic the whole kernel. */
107 	if (needed < 2)
108 		needed = 2;
109 
110 	/* But we need to bound the transaction so we don't overflow the
111 	 * journal. */
112 	if (needed > EXT4_MAX_TRANS_DATA)
113 		needed = EXT4_MAX_TRANS_DATA;
114 
115 	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 }
117 
118 /*
119  * Truncate transactions can be complex and absolutely huge.  So we need to
120  * be able to restart the transaction at a conventient checkpoint to make
121  * sure we don't overflow the journal.
122  *
123  * start_transaction gets us a new handle for a truncate transaction,
124  * and extend_transaction tries to extend the existing one a bit.  If
125  * extend fails, we need to propagate the failure up and restart the
126  * transaction in the top-level truncate loop. --sct
127  */
128 static handle_t *start_transaction(struct inode *inode)
129 {
130 	handle_t *result;
131 
132 	result = ext4_journal_start(inode, blocks_for_truncate(inode));
133 	if (!IS_ERR(result))
134 		return result;
135 
136 	ext4_std_error(inode->i_sb, PTR_ERR(result));
137 	return result;
138 }
139 
140 /*
141  * Try to extend this transaction for the purposes of truncation.
142  *
143  * Returns 0 if we managed to create more room.  If we can't create more
144  * room, and the transaction must be restarted we return 1.
145  */
146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
147 {
148 	if (!ext4_handle_valid(handle))
149 		return 0;
150 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151 		return 0;
152 	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153 		return 0;
154 	return 1;
155 }
156 
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163 				 int nblocks)
164 {
165 	int ret;
166 
167 	/*
168 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169 	 * moment, get_block can be called only for blocks inside i_size since
170 	 * page cache has been already dropped and writes are blocked by
171 	 * i_mutex. So we can safely drop the i_data_sem here.
172 	 */
173 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
174 	jbd_debug(2, "restarting handle %p\n", handle);
175 	up_write(&EXT4_I(inode)->i_data_sem);
176 	ret = ext4_journal_restart(handle, nblocks);
177 	down_write(&EXT4_I(inode)->i_data_sem);
178 	ext4_discard_preallocations(inode);
179 
180 	return ret;
181 }
182 
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188 	handle_t *handle;
189 	int err;
190 
191 	trace_ext4_evict_inode(inode);
192 	if (inode->i_nlink) {
193 		truncate_inode_pages(&inode->i_data, 0);
194 		goto no_delete;
195 	}
196 
197 	if (!is_bad_inode(inode))
198 		dquot_initialize(inode);
199 
200 	if (ext4_should_order_data(inode))
201 		ext4_begin_ordered_truncate(inode, 0);
202 	truncate_inode_pages(&inode->i_data, 0);
203 
204 	if (is_bad_inode(inode))
205 		goto no_delete;
206 
207 	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208 	if (IS_ERR(handle)) {
209 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
210 		/*
211 		 * If we're going to skip the normal cleanup, we still need to
212 		 * make sure that the in-core orphan linked list is properly
213 		 * cleaned up.
214 		 */
215 		ext4_orphan_del(NULL, inode);
216 		goto no_delete;
217 	}
218 
219 	if (IS_SYNC(inode))
220 		ext4_handle_sync(handle);
221 	inode->i_size = 0;
222 	err = ext4_mark_inode_dirty(handle, inode);
223 	if (err) {
224 		ext4_warning(inode->i_sb,
225 			     "couldn't mark inode dirty (err %d)", err);
226 		goto stop_handle;
227 	}
228 	if (inode->i_blocks)
229 		ext4_truncate(inode);
230 
231 	/*
232 	 * ext4_ext_truncate() doesn't reserve any slop when it
233 	 * restarts journal transactions; therefore there may not be
234 	 * enough credits left in the handle to remove the inode from
235 	 * the orphan list and set the dtime field.
236 	 */
237 	if (!ext4_handle_has_enough_credits(handle, 3)) {
238 		err = ext4_journal_extend(handle, 3);
239 		if (err > 0)
240 			err = ext4_journal_restart(handle, 3);
241 		if (err != 0) {
242 			ext4_warning(inode->i_sb,
243 				     "couldn't extend journal (err %d)", err);
244 		stop_handle:
245 			ext4_journal_stop(handle);
246 			ext4_orphan_del(NULL, inode);
247 			goto no_delete;
248 		}
249 	}
250 
251 	/*
252 	 * Kill off the orphan record which ext4_truncate created.
253 	 * AKPM: I think this can be inside the above `if'.
254 	 * Note that ext4_orphan_del() has to be able to cope with the
255 	 * deletion of a non-existent orphan - this is because we don't
256 	 * know if ext4_truncate() actually created an orphan record.
257 	 * (Well, we could do this if we need to, but heck - it works)
258 	 */
259 	ext4_orphan_del(handle, inode);
260 	EXT4_I(inode)->i_dtime	= get_seconds();
261 
262 	/*
263 	 * One subtle ordering requirement: if anything has gone wrong
264 	 * (transaction abort, IO errors, whatever), then we can still
265 	 * do these next steps (the fs will already have been marked as
266 	 * having errors), but we can't free the inode if the mark_dirty
267 	 * fails.
268 	 */
269 	if (ext4_mark_inode_dirty(handle, inode))
270 		/* If that failed, just do the required in-core inode clear. */
271 		ext4_clear_inode(inode);
272 	else
273 		ext4_free_inode(handle, inode);
274 	ext4_journal_stop(handle);
275 	return;
276 no_delete:
277 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
278 }
279 
280 typedef struct {
281 	__le32	*p;
282 	__le32	key;
283 	struct buffer_head *bh;
284 } Indirect;
285 
286 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
287 {
288 	p->key = *(p->p = v);
289 	p->bh = bh;
290 }
291 
292 /**
293  *	ext4_block_to_path - parse the block number into array of offsets
294  *	@inode: inode in question (we are only interested in its superblock)
295  *	@i_block: block number to be parsed
296  *	@offsets: array to store the offsets in
297  *	@boundary: set this non-zero if the referred-to block is likely to be
298  *	       followed (on disk) by an indirect block.
299  *
300  *	To store the locations of file's data ext4 uses a data structure common
301  *	for UNIX filesystems - tree of pointers anchored in the inode, with
302  *	data blocks at leaves and indirect blocks in intermediate nodes.
303  *	This function translates the block number into path in that tree -
304  *	return value is the path length and @offsets[n] is the offset of
305  *	pointer to (n+1)th node in the nth one. If @block is out of range
306  *	(negative or too large) warning is printed and zero returned.
307  *
308  *	Note: function doesn't find node addresses, so no IO is needed. All
309  *	we need to know is the capacity of indirect blocks (taken from the
310  *	inode->i_sb).
311  */
312 
313 /*
314  * Portability note: the last comparison (check that we fit into triple
315  * indirect block) is spelled differently, because otherwise on an
316  * architecture with 32-bit longs and 8Kb pages we might get into trouble
317  * if our filesystem had 8Kb blocks. We might use long long, but that would
318  * kill us on x86. Oh, well, at least the sign propagation does not matter -
319  * i_block would have to be negative in the very beginning, so we would not
320  * get there at all.
321  */
322 
323 static int ext4_block_to_path(struct inode *inode,
324 			      ext4_lblk_t i_block,
325 			      ext4_lblk_t offsets[4], int *boundary)
326 {
327 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
328 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
329 	const long direct_blocks = EXT4_NDIR_BLOCKS,
330 		indirect_blocks = ptrs,
331 		double_blocks = (1 << (ptrs_bits * 2));
332 	int n = 0;
333 	int final = 0;
334 
335 	if (i_block < direct_blocks) {
336 		offsets[n++] = i_block;
337 		final = direct_blocks;
338 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
339 		offsets[n++] = EXT4_IND_BLOCK;
340 		offsets[n++] = i_block;
341 		final = ptrs;
342 	} else if ((i_block -= indirect_blocks) < double_blocks) {
343 		offsets[n++] = EXT4_DIND_BLOCK;
344 		offsets[n++] = i_block >> ptrs_bits;
345 		offsets[n++] = i_block & (ptrs - 1);
346 		final = ptrs;
347 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348 		offsets[n++] = EXT4_TIND_BLOCK;
349 		offsets[n++] = i_block >> (ptrs_bits * 2);
350 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351 		offsets[n++] = i_block & (ptrs - 1);
352 		final = ptrs;
353 	} else {
354 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
355 			     i_block + direct_blocks +
356 			     indirect_blocks + double_blocks, inode->i_ino);
357 	}
358 	if (boundary)
359 		*boundary = final - 1 - (i_block & (ptrs - 1));
360 	return n;
361 }
362 
363 static int __ext4_check_blockref(const char *function, unsigned int line,
364 				 struct inode *inode,
365 				 __le32 *p, unsigned int max)
366 {
367 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
368 	__le32 *bref = p;
369 	unsigned int blk;
370 
371 	while (bref < p+max) {
372 		blk = le32_to_cpu(*bref++);
373 		if (blk &&
374 		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
375 						    blk, 1))) {
376 			es->s_last_error_block = cpu_to_le64(blk);
377 			ext4_error_inode(inode, function, line, blk,
378 					 "invalid block");
379 			return -EIO;
380 		}
381 	}
382 	return 0;
383 }
384 
385 
386 #define ext4_check_indirect_blockref(inode, bh)                         \
387 	__ext4_check_blockref(__func__, __LINE__, inode,		\
388 			      (__le32 *)(bh)->b_data,			\
389 			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))
390 
391 #define ext4_check_inode_blockref(inode)                                \
392 	__ext4_check_blockref(__func__, __LINE__, inode,		\
393 			      EXT4_I(inode)->i_data,			\
394 			      EXT4_NDIR_BLOCKS)
395 
396 /**
397  *	ext4_get_branch - read the chain of indirect blocks leading to data
398  *	@inode: inode in question
399  *	@depth: depth of the chain (1 - direct pointer, etc.)
400  *	@offsets: offsets of pointers in inode/indirect blocks
401  *	@chain: place to store the result
402  *	@err: here we store the error value
403  *
404  *	Function fills the array of triples <key, p, bh> and returns %NULL
405  *	if everything went OK or the pointer to the last filled triple
406  *	(incomplete one) otherwise. Upon the return chain[i].key contains
407  *	the number of (i+1)-th block in the chain (as it is stored in memory,
408  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
409  *	number (it points into struct inode for i==0 and into the bh->b_data
410  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
411  *	block for i>0 and NULL for i==0. In other words, it holds the block
412  *	numbers of the chain, addresses they were taken from (and where we can
413  *	verify that chain did not change) and buffer_heads hosting these
414  *	numbers.
415  *
416  *	Function stops when it stumbles upon zero pointer (absent block)
417  *		(pointer to last triple returned, *@err == 0)
418  *	or when it gets an IO error reading an indirect block
419  *		(ditto, *@err == -EIO)
420  *	or when it reads all @depth-1 indirect blocks successfully and finds
421  *	the whole chain, all way to the data (returns %NULL, *err == 0).
422  *
423  *      Need to be called with
424  *      down_read(&EXT4_I(inode)->i_data_sem)
425  */
426 static Indirect *ext4_get_branch(struct inode *inode, int depth,
427 				 ext4_lblk_t  *offsets,
428 				 Indirect chain[4], int *err)
429 {
430 	struct super_block *sb = inode->i_sb;
431 	Indirect *p = chain;
432 	struct buffer_head *bh;
433 
434 	*err = 0;
435 	/* i_data is not going away, no lock needed */
436 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
437 	if (!p->key)
438 		goto no_block;
439 	while (--depth) {
440 		bh = sb_getblk(sb, le32_to_cpu(p->key));
441 		if (unlikely(!bh))
442 			goto failure;
443 
444 		if (!bh_uptodate_or_lock(bh)) {
445 			if (bh_submit_read(bh) < 0) {
446 				put_bh(bh);
447 				goto failure;
448 			}
449 			/* validate block references */
450 			if (ext4_check_indirect_blockref(inode, bh)) {
451 				put_bh(bh);
452 				goto failure;
453 			}
454 		}
455 
456 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
457 		/* Reader: end */
458 		if (!p->key)
459 			goto no_block;
460 	}
461 	return NULL;
462 
463 failure:
464 	*err = -EIO;
465 no_block:
466 	return p;
467 }
468 
469 /**
470  *	ext4_find_near - find a place for allocation with sufficient locality
471  *	@inode: owner
472  *	@ind: descriptor of indirect block.
473  *
474  *	This function returns the preferred place for block allocation.
475  *	It is used when heuristic for sequential allocation fails.
476  *	Rules are:
477  *	  + if there is a block to the left of our position - allocate near it.
478  *	  + if pointer will live in indirect block - allocate near that block.
479  *	  + if pointer will live in inode - allocate in the same
480  *	    cylinder group.
481  *
482  * In the latter case we colour the starting block by the callers PID to
483  * prevent it from clashing with concurrent allocations for a different inode
484  * in the same block group.   The PID is used here so that functionally related
485  * files will be close-by on-disk.
486  *
487  *	Caller must make sure that @ind is valid and will stay that way.
488  */
489 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
490 {
491 	struct ext4_inode_info *ei = EXT4_I(inode);
492 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
493 	__le32 *p;
494 	ext4_fsblk_t bg_start;
495 	ext4_fsblk_t last_block;
496 	ext4_grpblk_t colour;
497 	ext4_group_t block_group;
498 	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
499 
500 	/* Try to find previous block */
501 	for (p = ind->p - 1; p >= start; p--) {
502 		if (*p)
503 			return le32_to_cpu(*p);
504 	}
505 
506 	/* No such thing, so let's try location of indirect block */
507 	if (ind->bh)
508 		return ind->bh->b_blocknr;
509 
510 	/*
511 	 * It is going to be referred to from the inode itself? OK, just put it
512 	 * into the same cylinder group then.
513 	 */
514 	block_group = ei->i_block_group;
515 	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
516 		block_group &= ~(flex_size-1);
517 		if (S_ISREG(inode->i_mode))
518 			block_group++;
519 	}
520 	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
521 	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
522 
523 	/*
524 	 * If we are doing delayed allocation, we don't need take
525 	 * colour into account.
526 	 */
527 	if (test_opt(inode->i_sb, DELALLOC))
528 		return bg_start;
529 
530 	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
531 		colour = (current->pid % 16) *
532 			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
533 	else
534 		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
535 	return bg_start + colour;
536 }
537 
538 /**
539  *	ext4_find_goal - find a preferred place for allocation.
540  *	@inode: owner
541  *	@block:  block we want
542  *	@partial: pointer to the last triple within a chain
543  *
544  *	Normally this function find the preferred place for block allocation,
545  *	returns it.
546  *	Because this is only used for non-extent files, we limit the block nr
547  *	to 32 bits.
548  */
549 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
550 				   Indirect *partial)
551 {
552 	ext4_fsblk_t goal;
553 
554 	/*
555 	 * XXX need to get goal block from mballoc's data structures
556 	 */
557 
558 	goal = ext4_find_near(inode, partial);
559 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
560 	return goal;
561 }
562 
563 /**
564  *	ext4_blks_to_allocate - Look up the block map and count the number
565  *	of direct blocks need to be allocated for the given branch.
566  *
567  *	@branch: chain of indirect blocks
568  *	@k: number of blocks need for indirect blocks
569  *	@blks: number of data blocks to be mapped.
570  *	@blocks_to_boundary:  the offset in the indirect block
571  *
572  *	return the total number of blocks to be allocate, including the
573  *	direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 				 int blocks_to_boundary)
577 {
578 	unsigned int count = 0;
579 
580 	/*
581 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 	 * then it's clear blocks on that path have not allocated
583 	 */
584 	if (k > 0) {
585 		/* right now we don't handle cross boundary allocation */
586 		if (blks < blocks_to_boundary + 1)
587 			count += blks;
588 		else
589 			count += blocks_to_boundary + 1;
590 		return count;
591 	}
592 
593 	count++;
594 	while (count < blks && count <= blocks_to_boundary &&
595 		le32_to_cpu(*(branch[0].p + count)) == 0) {
596 		count++;
597 	}
598 	return count;
599 }
600 
601 /**
602  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *	@handle: handle for this transaction
604  *	@inode: inode which needs allocated blocks
605  *	@iblock: the logical block to start allocated at
606  *	@goal: preferred physical block of allocation
607  *	@indirect_blks: the number of blocks need to allocate for indirect
608  *			blocks
609  *	@blks: number of desired blocks
610  *	@new_blocks: on return it will store the new block numbers for
611  *	the indirect blocks(if needed) and the first direct block,
612  *	@err: on return it will store the error code
613  *
614  *	This function will return the number of blocks allocated as
615  *	requested by the passed-in parameters.
616  */
617 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
618 			     ext4_lblk_t iblock, ext4_fsblk_t goal,
619 			     int indirect_blks, int blks,
620 			     ext4_fsblk_t new_blocks[4], int *err)
621 {
622 	struct ext4_allocation_request ar;
623 	int target, i;
624 	unsigned long count = 0, blk_allocated = 0;
625 	int index = 0;
626 	ext4_fsblk_t current_block = 0;
627 	int ret = 0;
628 
629 	/*
630 	 * Here we try to allocate the requested multiple blocks at once,
631 	 * on a best-effort basis.
632 	 * To build a branch, we should allocate blocks for
633 	 * the indirect blocks(if not allocated yet), and at least
634 	 * the first direct block of this branch.  That's the
635 	 * minimum number of blocks need to allocate(required)
636 	 */
637 	/* first we try to allocate the indirect blocks */
638 	target = indirect_blks;
639 	while (target > 0) {
640 		count = target;
641 		/* allocating blocks for indirect blocks and direct blocks */
642 		current_block = ext4_new_meta_blocks(handle, inode, goal,
643 						     0, &count, err);
644 		if (*err)
645 			goto failed_out;
646 
647 		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
648 			EXT4_ERROR_INODE(inode,
649 					 "current_block %llu + count %lu > %d!",
650 					 current_block, count,
651 					 EXT4_MAX_BLOCK_FILE_PHYS);
652 			*err = -EIO;
653 			goto failed_out;
654 		}
655 
656 		target -= count;
657 		/* allocate blocks for indirect blocks */
658 		while (index < indirect_blks && count) {
659 			new_blocks[index++] = current_block++;
660 			count--;
661 		}
662 		if (count > 0) {
663 			/*
664 			 * save the new block number
665 			 * for the first direct block
666 			 */
667 			new_blocks[index] = current_block;
668 			printk(KERN_INFO "%s returned more blocks than "
669 						"requested\n", __func__);
670 			WARN_ON(1);
671 			break;
672 		}
673 	}
674 
675 	target = blks - count ;
676 	blk_allocated = count;
677 	if (!target)
678 		goto allocated;
679 	/* Now allocate data blocks */
680 	memset(&ar, 0, sizeof(ar));
681 	ar.inode = inode;
682 	ar.goal = goal;
683 	ar.len = target;
684 	ar.logical = iblock;
685 	if (S_ISREG(inode->i_mode))
686 		/* enable in-core preallocation only for regular files */
687 		ar.flags = EXT4_MB_HINT_DATA;
688 
689 	current_block = ext4_mb_new_blocks(handle, &ar, err);
690 	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
691 		EXT4_ERROR_INODE(inode,
692 				 "current_block %llu + ar.len %d > %d!",
693 				 current_block, ar.len,
694 				 EXT4_MAX_BLOCK_FILE_PHYS);
695 		*err = -EIO;
696 		goto failed_out;
697 	}
698 
699 	if (*err && (target == blks)) {
700 		/*
701 		 * if the allocation failed and we didn't allocate
702 		 * any blocks before
703 		 */
704 		goto failed_out;
705 	}
706 	if (!*err) {
707 		if (target == blks) {
708 			/*
709 			 * save the new block number
710 			 * for the first direct block
711 			 */
712 			new_blocks[index] = current_block;
713 		}
714 		blk_allocated += ar.len;
715 	}
716 allocated:
717 	/* total number of blocks allocated for direct blocks */
718 	ret = blk_allocated;
719 	*err = 0;
720 	return ret;
721 failed_out:
722 	for (i = 0; i < index; i++)
723 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
724 	return ret;
725 }
726 
727 /**
728  *	ext4_alloc_branch - allocate and set up a chain of blocks.
729  *	@handle: handle for this transaction
730  *	@inode: owner
731  *	@indirect_blks: number of allocated indirect blocks
732  *	@blks: number of allocated direct blocks
733  *	@goal: preferred place for allocation
734  *	@offsets: offsets (in the blocks) to store the pointers to next.
735  *	@branch: place to store the chain in.
736  *
737  *	This function allocates blocks, zeroes out all but the last one,
738  *	links them into chain and (if we are synchronous) writes them to disk.
739  *	In other words, it prepares a branch that can be spliced onto the
740  *	inode. It stores the information about that chain in the branch[], in
741  *	the same format as ext4_get_branch() would do. We are calling it after
742  *	we had read the existing part of chain and partial points to the last
743  *	triple of that (one with zero ->key). Upon the exit we have the same
744  *	picture as after the successful ext4_get_block(), except that in one
745  *	place chain is disconnected - *branch->p is still zero (we did not
746  *	set the last link), but branch->key contains the number that should
747  *	be placed into *branch->p to fill that gap.
748  *
749  *	If allocation fails we free all blocks we've allocated (and forget
750  *	their buffer_heads) and return the error value the from failed
751  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
752  *	as described above and return 0.
753  */
754 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
755 			     ext4_lblk_t iblock, int indirect_blks,
756 			     int *blks, ext4_fsblk_t goal,
757 			     ext4_lblk_t *offsets, Indirect *branch)
758 {
759 	int blocksize = inode->i_sb->s_blocksize;
760 	int i, n = 0;
761 	int err = 0;
762 	struct buffer_head *bh;
763 	int num;
764 	ext4_fsblk_t new_blocks[4];
765 	ext4_fsblk_t current_block;
766 
767 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
768 				*blks, new_blocks, &err);
769 	if (err)
770 		return err;
771 
772 	branch[0].key = cpu_to_le32(new_blocks[0]);
773 	/*
774 	 * metadata blocks and data blocks are allocated.
775 	 */
776 	for (n = 1; n <= indirect_blks;  n++) {
777 		/*
778 		 * Get buffer_head for parent block, zero it out
779 		 * and set the pointer to new one, then send
780 		 * parent to disk.
781 		 */
782 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
783 		if (unlikely(!bh)) {
784 			err = -EIO;
785 			goto failed;
786 		}
787 
788 		branch[n].bh = bh;
789 		lock_buffer(bh);
790 		BUFFER_TRACE(bh, "call get_create_access");
791 		err = ext4_journal_get_create_access(handle, bh);
792 		if (err) {
793 			/* Don't brelse(bh) here; it's done in
794 			 * ext4_journal_forget() below */
795 			unlock_buffer(bh);
796 			goto failed;
797 		}
798 
799 		memset(bh->b_data, 0, blocksize);
800 		branch[n].p = (__le32 *) bh->b_data + offsets[n];
801 		branch[n].key = cpu_to_le32(new_blocks[n]);
802 		*branch[n].p = branch[n].key;
803 		if (n == indirect_blks) {
804 			current_block = new_blocks[n];
805 			/*
806 			 * End of chain, update the last new metablock of
807 			 * the chain to point to the new allocated
808 			 * data blocks numbers
809 			 */
810 			for (i = 1; i < num; i++)
811 				*(branch[n].p + i) = cpu_to_le32(++current_block);
812 		}
813 		BUFFER_TRACE(bh, "marking uptodate");
814 		set_buffer_uptodate(bh);
815 		unlock_buffer(bh);
816 
817 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
818 		err = ext4_handle_dirty_metadata(handle, inode, bh);
819 		if (err)
820 			goto failed;
821 	}
822 	*blks = num;
823 	return err;
824 failed:
825 	/* Allocation failed, free what we already allocated */
826 	ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
827 	for (i = 1; i <= n ; i++) {
828 		/*
829 		 * branch[i].bh is newly allocated, so there is no
830 		 * need to revoke the block, which is why we don't
831 		 * need to set EXT4_FREE_BLOCKS_METADATA.
832 		 */
833 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
834 				 EXT4_FREE_BLOCKS_FORGET);
835 	}
836 	for (i = n+1; i < indirect_blks; i++)
837 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
838 
839 	ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
840 
841 	return err;
842 }
843 
844 /**
845  * ext4_splice_branch - splice the allocated branch onto inode.
846  * @handle: handle for this transaction
847  * @inode: owner
848  * @block: (logical) number of block we are adding
849  * @chain: chain of indirect blocks (with a missing link - see
850  *	ext4_alloc_branch)
851  * @where: location of missing link
852  * @num:   number of indirect blocks we are adding
853  * @blks:  number of direct blocks we are adding
854  *
855  * This function fills the missing link and does all housekeeping needed in
856  * inode (->i_blocks, etc.). In case of success we end up with the full
857  * chain to new block and return 0.
858  */
859 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
860 			      ext4_lblk_t block, Indirect *where, int num,
861 			      int blks)
862 {
863 	int i;
864 	int err = 0;
865 	ext4_fsblk_t current_block;
866 
867 	/*
868 	 * If we're splicing into a [td]indirect block (as opposed to the
869 	 * inode) then we need to get write access to the [td]indirect block
870 	 * before the splice.
871 	 */
872 	if (where->bh) {
873 		BUFFER_TRACE(where->bh, "get_write_access");
874 		err = ext4_journal_get_write_access(handle, where->bh);
875 		if (err)
876 			goto err_out;
877 	}
878 	/* That's it */
879 
880 	*where->p = where->key;
881 
882 	/*
883 	 * Update the host buffer_head or inode to point to more just allocated
884 	 * direct blocks blocks
885 	 */
886 	if (num == 0 && blks > 1) {
887 		current_block = le32_to_cpu(where->key) + 1;
888 		for (i = 1; i < blks; i++)
889 			*(where->p + i) = cpu_to_le32(current_block++);
890 	}
891 
892 	/* We are done with atomic stuff, now do the rest of housekeeping */
893 	/* had we spliced it onto indirect block? */
894 	if (where->bh) {
895 		/*
896 		 * If we spliced it onto an indirect block, we haven't
897 		 * altered the inode.  Note however that if it is being spliced
898 		 * onto an indirect block at the very end of the file (the
899 		 * file is growing) then we *will* alter the inode to reflect
900 		 * the new i_size.  But that is not done here - it is done in
901 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
902 		 */
903 		jbd_debug(5, "splicing indirect only\n");
904 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
905 		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
906 		if (err)
907 			goto err_out;
908 	} else {
909 		/*
910 		 * OK, we spliced it into the inode itself on a direct block.
911 		 */
912 		ext4_mark_inode_dirty(handle, inode);
913 		jbd_debug(5, "splicing direct\n");
914 	}
915 	return err;
916 
917 err_out:
918 	for (i = 1; i <= num; i++) {
919 		/*
920 		 * branch[i].bh is newly allocated, so there is no
921 		 * need to revoke the block, which is why we don't
922 		 * need to set EXT4_FREE_BLOCKS_METADATA.
923 		 */
924 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
925 				 EXT4_FREE_BLOCKS_FORGET);
926 	}
927 	ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
928 			 blks, 0);
929 
930 	return err;
931 }
932 
933 /*
934  * The ext4_ind_map_blocks() function handles non-extents inodes
935  * (i.e., using the traditional indirect/double-indirect i_blocks
936  * scheme) for ext4_map_blocks().
937  *
938  * Allocation strategy is simple: if we have to allocate something, we will
939  * have to go the whole way to leaf. So let's do it before attaching anything
940  * to tree, set linkage between the newborn blocks, write them if sync is
941  * required, recheck the path, free and repeat if check fails, otherwise
942  * set the last missing link (that will protect us from any truncate-generated
943  * removals - all blocks on the path are immune now) and possibly force the
944  * write on the parent block.
945  * That has a nice additional property: no special recovery from the failed
946  * allocations is needed - we simply release blocks and do not touch anything
947  * reachable from inode.
948  *
949  * `handle' can be NULL if create == 0.
950  *
951  * return > 0, # of blocks mapped or allocated.
952  * return = 0, if plain lookup failed.
953  * return < 0, error case.
954  *
955  * The ext4_ind_get_blocks() function should be called with
956  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
957  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
958  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
959  * blocks.
960  */
961 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
962 			       struct ext4_map_blocks *map,
963 			       int flags)
964 {
965 	int err = -EIO;
966 	ext4_lblk_t offsets[4];
967 	Indirect chain[4];
968 	Indirect *partial;
969 	ext4_fsblk_t goal;
970 	int indirect_blks;
971 	int blocks_to_boundary = 0;
972 	int depth;
973 	int count = 0;
974 	ext4_fsblk_t first_block = 0;
975 
976 	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
977 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
978 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
979 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
980 				   &blocks_to_boundary);
981 
982 	if (depth == 0)
983 		goto out;
984 
985 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
986 
987 	/* Simplest case - block found, no allocation needed */
988 	if (!partial) {
989 		first_block = le32_to_cpu(chain[depth - 1].key);
990 		count++;
991 		/*map more blocks*/
992 		while (count < map->m_len && count <= blocks_to_boundary) {
993 			ext4_fsblk_t blk;
994 
995 			blk = le32_to_cpu(*(chain[depth-1].p + count));
996 
997 			if (blk == first_block + count)
998 				count++;
999 			else
1000 				break;
1001 		}
1002 		goto got_it;
1003 	}
1004 
1005 	/* Next simple case - plain lookup or failed read of indirect block */
1006 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1007 		goto cleanup;
1008 
1009 	/*
1010 	 * Okay, we need to do block allocation.
1011 	*/
1012 	goal = ext4_find_goal(inode, map->m_lblk, partial);
1013 
1014 	/* the number of blocks need to allocate for [d,t]indirect blocks */
1015 	indirect_blks = (chain + depth) - partial - 1;
1016 
1017 	/*
1018 	 * Next look up the indirect map to count the totoal number of
1019 	 * direct blocks to allocate for this branch.
1020 	 */
1021 	count = ext4_blks_to_allocate(partial, indirect_blks,
1022 				      map->m_len, blocks_to_boundary);
1023 	/*
1024 	 * Block out ext4_truncate while we alter the tree
1025 	 */
1026 	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1027 				&count, goal,
1028 				offsets + (partial - chain), partial);
1029 
1030 	/*
1031 	 * The ext4_splice_branch call will free and forget any buffers
1032 	 * on the new chain if there is a failure, but that risks using
1033 	 * up transaction credits, especially for bitmaps where the
1034 	 * credits cannot be returned.  Can we handle this somehow?  We
1035 	 * may need to return -EAGAIN upwards in the worst case.  --sct
1036 	 */
1037 	if (!err)
1038 		err = ext4_splice_branch(handle, inode, map->m_lblk,
1039 					 partial, indirect_blks, count);
1040 	if (err)
1041 		goto cleanup;
1042 
1043 	map->m_flags |= EXT4_MAP_NEW;
1044 
1045 	ext4_update_inode_fsync_trans(handle, inode, 1);
1046 got_it:
1047 	map->m_flags |= EXT4_MAP_MAPPED;
1048 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
1049 	map->m_len = count;
1050 	if (count > blocks_to_boundary)
1051 		map->m_flags |= EXT4_MAP_BOUNDARY;
1052 	err = count;
1053 	/* Clean up and exit */
1054 	partial = chain + depth - 1;	/* the whole chain */
1055 cleanup:
1056 	while (partial > chain) {
1057 		BUFFER_TRACE(partial->bh, "call brelse");
1058 		brelse(partial->bh);
1059 		partial--;
1060 	}
1061 out:
1062 	trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
1063 				map->m_pblk, map->m_len, err);
1064 	return err;
1065 }
1066 
1067 #ifdef CONFIG_QUOTA
1068 qsize_t *ext4_get_reserved_space(struct inode *inode)
1069 {
1070 	return &EXT4_I(inode)->i_reserved_quota;
1071 }
1072 #endif
1073 
1074 /*
1075  * Calculate the number of metadata blocks need to reserve
1076  * to allocate a new block at @lblocks for non extent file based file
1077  */
1078 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1079 					      sector_t lblock)
1080 {
1081 	struct ext4_inode_info *ei = EXT4_I(inode);
1082 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1083 	int blk_bits;
1084 
1085 	if (lblock < EXT4_NDIR_BLOCKS)
1086 		return 0;
1087 
1088 	lblock -= EXT4_NDIR_BLOCKS;
1089 
1090 	if (ei->i_da_metadata_calc_len &&
1091 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1092 		ei->i_da_metadata_calc_len++;
1093 		return 0;
1094 	}
1095 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1096 	ei->i_da_metadata_calc_len = 1;
1097 	blk_bits = order_base_2(lblock);
1098 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1099 }
1100 
1101 /*
1102  * Calculate the number of metadata blocks need to reserve
1103  * to allocate a block located at @lblock
1104  */
1105 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1106 {
1107 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1108 		return ext4_ext_calc_metadata_amount(inode, lblock);
1109 
1110 	return ext4_indirect_calc_metadata_amount(inode, lblock);
1111 }
1112 
1113 /*
1114  * Called with i_data_sem down, which is important since we can call
1115  * ext4_discard_preallocations() from here.
1116  */
1117 void ext4_da_update_reserve_space(struct inode *inode,
1118 					int used, int quota_claim)
1119 {
1120 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1121 	struct ext4_inode_info *ei = EXT4_I(inode);
1122 
1123 	spin_lock(&ei->i_block_reservation_lock);
1124 	trace_ext4_da_update_reserve_space(inode, used);
1125 	if (unlikely(used > ei->i_reserved_data_blocks)) {
1126 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1127 			 "with only %d reserved data blocks\n",
1128 			 __func__, inode->i_ino, used,
1129 			 ei->i_reserved_data_blocks);
1130 		WARN_ON(1);
1131 		used = ei->i_reserved_data_blocks;
1132 	}
1133 
1134 	/* Update per-inode reservations */
1135 	ei->i_reserved_data_blocks -= used;
1136 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1137 	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1138 			   used + ei->i_allocated_meta_blocks);
1139 	ei->i_allocated_meta_blocks = 0;
1140 
1141 	if (ei->i_reserved_data_blocks == 0) {
1142 		/*
1143 		 * We can release all of the reserved metadata blocks
1144 		 * only when we have written all of the delayed
1145 		 * allocation blocks.
1146 		 */
1147 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1148 				   ei->i_reserved_meta_blocks);
1149 		ei->i_reserved_meta_blocks = 0;
1150 		ei->i_da_metadata_calc_len = 0;
1151 	}
1152 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1153 
1154 	/* Update quota subsystem for data blocks */
1155 	if (quota_claim)
1156 		dquot_claim_block(inode, used);
1157 	else {
1158 		/*
1159 		 * We did fallocate with an offset that is already delayed
1160 		 * allocated. So on delayed allocated writeback we should
1161 		 * not re-claim the quota for fallocated blocks.
1162 		 */
1163 		dquot_release_reservation_block(inode, used);
1164 	}
1165 
1166 	/*
1167 	 * If we have done all the pending block allocations and if
1168 	 * there aren't any writers on the inode, we can discard the
1169 	 * inode's preallocations.
1170 	 */
1171 	if ((ei->i_reserved_data_blocks == 0) &&
1172 	    (atomic_read(&inode->i_writecount) == 0))
1173 		ext4_discard_preallocations(inode);
1174 }
1175 
1176 static int __check_block_validity(struct inode *inode, const char *func,
1177 				unsigned int line,
1178 				struct ext4_map_blocks *map)
1179 {
1180 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1181 				   map->m_len)) {
1182 		ext4_error_inode(inode, func, line, map->m_pblk,
1183 				 "lblock %lu mapped to illegal pblock "
1184 				 "(length %d)", (unsigned long) map->m_lblk,
1185 				 map->m_len);
1186 		return -EIO;
1187 	}
1188 	return 0;
1189 }
1190 
1191 #define check_block_validity(inode, map)	\
1192 	__check_block_validity((inode), __func__, __LINE__, (map))
1193 
1194 /*
1195  * Return the number of contiguous dirty pages in a given inode
1196  * starting at page frame idx.
1197  */
1198 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1199 				    unsigned int max_pages)
1200 {
1201 	struct address_space *mapping = inode->i_mapping;
1202 	pgoff_t	index;
1203 	struct pagevec pvec;
1204 	pgoff_t num = 0;
1205 	int i, nr_pages, done = 0;
1206 
1207 	if (max_pages == 0)
1208 		return 0;
1209 	pagevec_init(&pvec, 0);
1210 	while (!done) {
1211 		index = idx;
1212 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1213 					      PAGECACHE_TAG_DIRTY,
1214 					      (pgoff_t)PAGEVEC_SIZE);
1215 		if (nr_pages == 0)
1216 			break;
1217 		for (i = 0; i < nr_pages; i++) {
1218 			struct page *page = pvec.pages[i];
1219 			struct buffer_head *bh, *head;
1220 
1221 			lock_page(page);
1222 			if (unlikely(page->mapping != mapping) ||
1223 			    !PageDirty(page) ||
1224 			    PageWriteback(page) ||
1225 			    page->index != idx) {
1226 				done = 1;
1227 				unlock_page(page);
1228 				break;
1229 			}
1230 			if (page_has_buffers(page)) {
1231 				bh = head = page_buffers(page);
1232 				do {
1233 					if (!buffer_delay(bh) &&
1234 					    !buffer_unwritten(bh))
1235 						done = 1;
1236 					bh = bh->b_this_page;
1237 				} while (!done && (bh != head));
1238 			}
1239 			unlock_page(page);
1240 			if (done)
1241 				break;
1242 			idx++;
1243 			num++;
1244 			if (num >= max_pages) {
1245 				done = 1;
1246 				break;
1247 			}
1248 		}
1249 		pagevec_release(&pvec);
1250 	}
1251 	return num;
1252 }
1253 
1254 /*
1255  * The ext4_map_blocks() function tries to look up the requested blocks,
1256  * and returns if the blocks are already mapped.
1257  *
1258  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1259  * and store the allocated blocks in the result buffer head and mark it
1260  * mapped.
1261  *
1262  * If file type is extents based, it will call ext4_ext_map_blocks(),
1263  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1264  * based files
1265  *
1266  * On success, it returns the number of blocks being mapped or allocate.
1267  * if create==0 and the blocks are pre-allocated and uninitialized block,
1268  * the result buffer head is unmapped. If the create ==1, it will make sure
1269  * the buffer head is mapped.
1270  *
1271  * It returns 0 if plain look up failed (blocks have not been allocated), in
1272  * that casem, buffer head is unmapped
1273  *
1274  * It returns the error in case of allocation failure.
1275  */
1276 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1277 		    struct ext4_map_blocks *map, int flags)
1278 {
1279 	int retval;
1280 
1281 	map->m_flags = 0;
1282 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1283 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
1284 		  (unsigned long) map->m_lblk);
1285 	/*
1286 	 * Try to see if we can get the block without requesting a new
1287 	 * file system block.
1288 	 */
1289 	down_read((&EXT4_I(inode)->i_data_sem));
1290 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1291 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1292 	} else {
1293 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1294 	}
1295 	up_read((&EXT4_I(inode)->i_data_sem));
1296 
1297 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1298 		int ret = check_block_validity(inode, map);
1299 		if (ret != 0)
1300 			return ret;
1301 	}
1302 
1303 	/* If it is only a block(s) look up */
1304 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1305 		return retval;
1306 
1307 	/*
1308 	 * Returns if the blocks have already allocated
1309 	 *
1310 	 * Note that if blocks have been preallocated
1311 	 * ext4_ext_get_block() returns th create = 0
1312 	 * with buffer head unmapped.
1313 	 */
1314 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1315 		return retval;
1316 
1317 	/*
1318 	 * When we call get_blocks without the create flag, the
1319 	 * BH_Unwritten flag could have gotten set if the blocks
1320 	 * requested were part of a uninitialized extent.  We need to
1321 	 * clear this flag now that we are committed to convert all or
1322 	 * part of the uninitialized extent to be an initialized
1323 	 * extent.  This is because we need to avoid the combination
1324 	 * of BH_Unwritten and BH_Mapped flags being simultaneously
1325 	 * set on the buffer_head.
1326 	 */
1327 	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1328 
1329 	/*
1330 	 * New blocks allocate and/or writing to uninitialized extent
1331 	 * will possibly result in updating i_data, so we take
1332 	 * the write lock of i_data_sem, and call get_blocks()
1333 	 * with create == 1 flag.
1334 	 */
1335 	down_write((&EXT4_I(inode)->i_data_sem));
1336 
1337 	/*
1338 	 * if the caller is from delayed allocation writeout path
1339 	 * we have already reserved fs blocks for allocation
1340 	 * let the underlying get_block() function know to
1341 	 * avoid double accounting
1342 	 */
1343 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1344 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1345 	/*
1346 	 * We need to check for EXT4 here because migrate
1347 	 * could have changed the inode type in between
1348 	 */
1349 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1350 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1351 	} else {
1352 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1353 
1354 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1355 			/*
1356 			 * We allocated new blocks which will result in
1357 			 * i_data's format changing.  Force the migrate
1358 			 * to fail by clearing migrate flags
1359 			 */
1360 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1361 		}
1362 
1363 		/*
1364 		 * Update reserved blocks/metadata blocks after successful
1365 		 * block allocation which had been deferred till now. We don't
1366 		 * support fallocate for non extent files. So we can update
1367 		 * reserve space here.
1368 		 */
1369 		if ((retval > 0) &&
1370 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1371 			ext4_da_update_reserve_space(inode, retval, 1);
1372 	}
1373 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1374 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1375 
1376 	up_write((&EXT4_I(inode)->i_data_sem));
1377 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1378 		int ret = check_block_validity(inode, map);
1379 		if (ret != 0)
1380 			return ret;
1381 	}
1382 	return retval;
1383 }
1384 
1385 /* Maximum number of blocks we map for direct IO at once. */
1386 #define DIO_MAX_BLOCKS 4096
1387 
1388 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1389 			   struct buffer_head *bh, int flags)
1390 {
1391 	handle_t *handle = ext4_journal_current_handle();
1392 	struct ext4_map_blocks map;
1393 	int ret = 0, started = 0;
1394 	int dio_credits;
1395 
1396 	map.m_lblk = iblock;
1397 	map.m_len = bh->b_size >> inode->i_blkbits;
1398 
1399 	if (flags && !handle) {
1400 		/* Direct IO write... */
1401 		if (map.m_len > DIO_MAX_BLOCKS)
1402 			map.m_len = DIO_MAX_BLOCKS;
1403 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1404 		handle = ext4_journal_start(inode, dio_credits);
1405 		if (IS_ERR(handle)) {
1406 			ret = PTR_ERR(handle);
1407 			return ret;
1408 		}
1409 		started = 1;
1410 	}
1411 
1412 	ret = ext4_map_blocks(handle, inode, &map, flags);
1413 	if (ret > 0) {
1414 		map_bh(bh, inode->i_sb, map.m_pblk);
1415 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1416 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1417 		ret = 0;
1418 	}
1419 	if (started)
1420 		ext4_journal_stop(handle);
1421 	return ret;
1422 }
1423 
1424 int ext4_get_block(struct inode *inode, sector_t iblock,
1425 		   struct buffer_head *bh, int create)
1426 {
1427 	return _ext4_get_block(inode, iblock, bh,
1428 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
1429 }
1430 
1431 /*
1432  * `handle' can be NULL if create is zero
1433  */
1434 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1435 				ext4_lblk_t block, int create, int *errp)
1436 {
1437 	struct ext4_map_blocks map;
1438 	struct buffer_head *bh;
1439 	int fatal = 0, err;
1440 
1441 	J_ASSERT(handle != NULL || create == 0);
1442 
1443 	map.m_lblk = block;
1444 	map.m_len = 1;
1445 	err = ext4_map_blocks(handle, inode, &map,
1446 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1447 
1448 	if (err < 0)
1449 		*errp = err;
1450 	if (err <= 0)
1451 		return NULL;
1452 	*errp = 0;
1453 
1454 	bh = sb_getblk(inode->i_sb, map.m_pblk);
1455 	if (!bh) {
1456 		*errp = -EIO;
1457 		return NULL;
1458 	}
1459 	if (map.m_flags & EXT4_MAP_NEW) {
1460 		J_ASSERT(create != 0);
1461 		J_ASSERT(handle != NULL);
1462 
1463 		/*
1464 		 * Now that we do not always journal data, we should
1465 		 * keep in mind whether this should always journal the
1466 		 * new buffer as metadata.  For now, regular file
1467 		 * writes use ext4_get_block instead, so it's not a
1468 		 * problem.
1469 		 */
1470 		lock_buffer(bh);
1471 		BUFFER_TRACE(bh, "call get_create_access");
1472 		fatal = ext4_journal_get_create_access(handle, bh);
1473 		if (!fatal && !buffer_uptodate(bh)) {
1474 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1475 			set_buffer_uptodate(bh);
1476 		}
1477 		unlock_buffer(bh);
1478 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1479 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1480 		if (!fatal)
1481 			fatal = err;
1482 	} else {
1483 		BUFFER_TRACE(bh, "not a new buffer");
1484 	}
1485 	if (fatal) {
1486 		*errp = fatal;
1487 		brelse(bh);
1488 		bh = NULL;
1489 	}
1490 	return bh;
1491 }
1492 
1493 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1494 			       ext4_lblk_t block, int create, int *err)
1495 {
1496 	struct buffer_head *bh;
1497 
1498 	bh = ext4_getblk(handle, inode, block, create, err);
1499 	if (!bh)
1500 		return bh;
1501 	if (buffer_uptodate(bh))
1502 		return bh;
1503 	ll_rw_block(READ_META, 1, &bh);
1504 	wait_on_buffer(bh);
1505 	if (buffer_uptodate(bh))
1506 		return bh;
1507 	put_bh(bh);
1508 	*err = -EIO;
1509 	return NULL;
1510 }
1511 
1512 static int walk_page_buffers(handle_t *handle,
1513 			     struct buffer_head *head,
1514 			     unsigned from,
1515 			     unsigned to,
1516 			     int *partial,
1517 			     int (*fn)(handle_t *handle,
1518 				       struct buffer_head *bh))
1519 {
1520 	struct buffer_head *bh;
1521 	unsigned block_start, block_end;
1522 	unsigned blocksize = head->b_size;
1523 	int err, ret = 0;
1524 	struct buffer_head *next;
1525 
1526 	for (bh = head, block_start = 0;
1527 	     ret == 0 && (bh != head || !block_start);
1528 	     block_start = block_end, bh = next) {
1529 		next = bh->b_this_page;
1530 		block_end = block_start + blocksize;
1531 		if (block_end <= from || block_start >= to) {
1532 			if (partial && !buffer_uptodate(bh))
1533 				*partial = 1;
1534 			continue;
1535 		}
1536 		err = (*fn)(handle, bh);
1537 		if (!ret)
1538 			ret = err;
1539 	}
1540 	return ret;
1541 }
1542 
1543 /*
1544  * To preserve ordering, it is essential that the hole instantiation and
1545  * the data write be encapsulated in a single transaction.  We cannot
1546  * close off a transaction and start a new one between the ext4_get_block()
1547  * and the commit_write().  So doing the jbd2_journal_start at the start of
1548  * prepare_write() is the right place.
1549  *
1550  * Also, this function can nest inside ext4_writepage() ->
1551  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1552  * has generated enough buffer credits to do the whole page.  So we won't
1553  * block on the journal in that case, which is good, because the caller may
1554  * be PF_MEMALLOC.
1555  *
1556  * By accident, ext4 can be reentered when a transaction is open via
1557  * quota file writes.  If we were to commit the transaction while thus
1558  * reentered, there can be a deadlock - we would be holding a quota
1559  * lock, and the commit would never complete if another thread had a
1560  * transaction open and was blocking on the quota lock - a ranking
1561  * violation.
1562  *
1563  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1564  * will _not_ run commit under these circumstances because handle->h_ref
1565  * is elevated.  We'll still have enough credits for the tiny quotafile
1566  * write.
1567  */
1568 static int do_journal_get_write_access(handle_t *handle,
1569 				       struct buffer_head *bh)
1570 {
1571 	int dirty = buffer_dirty(bh);
1572 	int ret;
1573 
1574 	if (!buffer_mapped(bh) || buffer_freed(bh))
1575 		return 0;
1576 	/*
1577 	 * __block_write_begin() could have dirtied some buffers. Clean
1578 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1579 	 * otherwise about fs integrity issues. Setting of the dirty bit
1580 	 * by __block_write_begin() isn't a real problem here as we clear
1581 	 * the bit before releasing a page lock and thus writeback cannot
1582 	 * ever write the buffer.
1583 	 */
1584 	if (dirty)
1585 		clear_buffer_dirty(bh);
1586 	ret = ext4_journal_get_write_access(handle, bh);
1587 	if (!ret && dirty)
1588 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1589 	return ret;
1590 }
1591 
1592 /*
1593  * Truncate blocks that were not used by write. We have to truncate the
1594  * pagecache as well so that corresponding buffers get properly unmapped.
1595  */
1596 static void ext4_truncate_failed_write(struct inode *inode)
1597 {
1598 	truncate_inode_pages(inode->i_mapping, inode->i_size);
1599 	ext4_truncate(inode);
1600 }
1601 
1602 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1603 		   struct buffer_head *bh_result, int create);
1604 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1605 			    loff_t pos, unsigned len, unsigned flags,
1606 			    struct page **pagep, void **fsdata)
1607 {
1608 	struct inode *inode = mapping->host;
1609 	int ret, needed_blocks;
1610 	handle_t *handle;
1611 	int retries = 0;
1612 	struct page *page;
1613 	pgoff_t index;
1614 	unsigned from, to;
1615 
1616 	trace_ext4_write_begin(inode, pos, len, flags);
1617 	/*
1618 	 * Reserve one block more for addition to orphan list in case
1619 	 * we allocate blocks but write fails for some reason
1620 	 */
1621 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1622 	index = pos >> PAGE_CACHE_SHIFT;
1623 	from = pos & (PAGE_CACHE_SIZE - 1);
1624 	to = from + len;
1625 
1626 retry:
1627 	handle = ext4_journal_start(inode, needed_blocks);
1628 	if (IS_ERR(handle)) {
1629 		ret = PTR_ERR(handle);
1630 		goto out;
1631 	}
1632 
1633 	/* We cannot recurse into the filesystem as the transaction is already
1634 	 * started */
1635 	flags |= AOP_FLAG_NOFS;
1636 
1637 	page = grab_cache_page_write_begin(mapping, index, flags);
1638 	if (!page) {
1639 		ext4_journal_stop(handle);
1640 		ret = -ENOMEM;
1641 		goto out;
1642 	}
1643 	*pagep = page;
1644 
1645 	if (ext4_should_dioread_nolock(inode))
1646 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1647 	else
1648 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1649 
1650 	if (!ret && ext4_should_journal_data(inode)) {
1651 		ret = walk_page_buffers(handle, page_buffers(page),
1652 				from, to, NULL, do_journal_get_write_access);
1653 	}
1654 
1655 	if (ret) {
1656 		unlock_page(page);
1657 		page_cache_release(page);
1658 		/*
1659 		 * __block_write_begin may have instantiated a few blocks
1660 		 * outside i_size.  Trim these off again. Don't need
1661 		 * i_size_read because we hold i_mutex.
1662 		 *
1663 		 * Add inode to orphan list in case we crash before
1664 		 * truncate finishes
1665 		 */
1666 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1667 			ext4_orphan_add(handle, inode);
1668 
1669 		ext4_journal_stop(handle);
1670 		if (pos + len > inode->i_size) {
1671 			ext4_truncate_failed_write(inode);
1672 			/*
1673 			 * If truncate failed early the inode might
1674 			 * still be on the orphan list; we need to
1675 			 * make sure the inode is removed from the
1676 			 * orphan list in that case.
1677 			 */
1678 			if (inode->i_nlink)
1679 				ext4_orphan_del(NULL, inode);
1680 		}
1681 	}
1682 
1683 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1684 		goto retry;
1685 out:
1686 	return ret;
1687 }
1688 
1689 /* For write_end() in data=journal mode */
1690 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1691 {
1692 	if (!buffer_mapped(bh) || buffer_freed(bh))
1693 		return 0;
1694 	set_buffer_uptodate(bh);
1695 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1696 }
1697 
1698 static int ext4_generic_write_end(struct file *file,
1699 				  struct address_space *mapping,
1700 				  loff_t pos, unsigned len, unsigned copied,
1701 				  struct page *page, void *fsdata)
1702 {
1703 	int i_size_changed = 0;
1704 	struct inode *inode = mapping->host;
1705 	handle_t *handle = ext4_journal_current_handle();
1706 
1707 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1708 
1709 	/*
1710 	 * No need to use i_size_read() here, the i_size
1711 	 * cannot change under us because we hold i_mutex.
1712 	 *
1713 	 * But it's important to update i_size while still holding page lock:
1714 	 * page writeout could otherwise come in and zero beyond i_size.
1715 	 */
1716 	if (pos + copied > inode->i_size) {
1717 		i_size_write(inode, pos + copied);
1718 		i_size_changed = 1;
1719 	}
1720 
1721 	if (pos + copied >  EXT4_I(inode)->i_disksize) {
1722 		/* We need to mark inode dirty even if
1723 		 * new_i_size is less that inode->i_size
1724 		 * bu greater than i_disksize.(hint delalloc)
1725 		 */
1726 		ext4_update_i_disksize(inode, (pos + copied));
1727 		i_size_changed = 1;
1728 	}
1729 	unlock_page(page);
1730 	page_cache_release(page);
1731 
1732 	/*
1733 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1734 	 * makes the holding time of page lock longer. Second, it forces lock
1735 	 * ordering of page lock and transaction start for journaling
1736 	 * filesystems.
1737 	 */
1738 	if (i_size_changed)
1739 		ext4_mark_inode_dirty(handle, inode);
1740 
1741 	return copied;
1742 }
1743 
1744 /*
1745  * We need to pick up the new inode size which generic_commit_write gave us
1746  * `file' can be NULL - eg, when called from page_symlink().
1747  *
1748  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1749  * buffers are managed internally.
1750  */
1751 static int ext4_ordered_write_end(struct file *file,
1752 				  struct address_space *mapping,
1753 				  loff_t pos, unsigned len, unsigned copied,
1754 				  struct page *page, void *fsdata)
1755 {
1756 	handle_t *handle = ext4_journal_current_handle();
1757 	struct inode *inode = mapping->host;
1758 	int ret = 0, ret2;
1759 
1760 	trace_ext4_ordered_write_end(inode, pos, len, copied);
1761 	ret = ext4_jbd2_file_inode(handle, inode);
1762 
1763 	if (ret == 0) {
1764 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1765 							page, fsdata);
1766 		copied = ret2;
1767 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1768 			/* if we have allocated more blocks and copied
1769 			 * less. We will have blocks allocated outside
1770 			 * inode->i_size. So truncate them
1771 			 */
1772 			ext4_orphan_add(handle, inode);
1773 		if (ret2 < 0)
1774 			ret = ret2;
1775 	}
1776 	ret2 = ext4_journal_stop(handle);
1777 	if (!ret)
1778 		ret = ret2;
1779 
1780 	if (pos + len > inode->i_size) {
1781 		ext4_truncate_failed_write(inode);
1782 		/*
1783 		 * If truncate failed early the inode might still be
1784 		 * on the orphan list; we need to make sure the inode
1785 		 * is removed from the orphan list in that case.
1786 		 */
1787 		if (inode->i_nlink)
1788 			ext4_orphan_del(NULL, inode);
1789 	}
1790 
1791 
1792 	return ret ? ret : copied;
1793 }
1794 
1795 static int ext4_writeback_write_end(struct file *file,
1796 				    struct address_space *mapping,
1797 				    loff_t pos, unsigned len, unsigned copied,
1798 				    struct page *page, void *fsdata)
1799 {
1800 	handle_t *handle = ext4_journal_current_handle();
1801 	struct inode *inode = mapping->host;
1802 	int ret = 0, ret2;
1803 
1804 	trace_ext4_writeback_write_end(inode, pos, len, copied);
1805 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1806 							page, fsdata);
1807 	copied = ret2;
1808 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1809 		/* if we have allocated more blocks and copied
1810 		 * less. We will have blocks allocated outside
1811 		 * inode->i_size. So truncate them
1812 		 */
1813 		ext4_orphan_add(handle, inode);
1814 
1815 	if (ret2 < 0)
1816 		ret = ret2;
1817 
1818 	ret2 = ext4_journal_stop(handle);
1819 	if (!ret)
1820 		ret = ret2;
1821 
1822 	if (pos + len > inode->i_size) {
1823 		ext4_truncate_failed_write(inode);
1824 		/*
1825 		 * If truncate failed early the inode might still be
1826 		 * on the orphan list; we need to make sure the inode
1827 		 * is removed from the orphan list in that case.
1828 		 */
1829 		if (inode->i_nlink)
1830 			ext4_orphan_del(NULL, inode);
1831 	}
1832 
1833 	return ret ? ret : copied;
1834 }
1835 
1836 static int ext4_journalled_write_end(struct file *file,
1837 				     struct address_space *mapping,
1838 				     loff_t pos, unsigned len, unsigned copied,
1839 				     struct page *page, void *fsdata)
1840 {
1841 	handle_t *handle = ext4_journal_current_handle();
1842 	struct inode *inode = mapping->host;
1843 	int ret = 0, ret2;
1844 	int partial = 0;
1845 	unsigned from, to;
1846 	loff_t new_i_size;
1847 
1848 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1849 	from = pos & (PAGE_CACHE_SIZE - 1);
1850 	to = from + len;
1851 
1852 	if (copied < len) {
1853 		if (!PageUptodate(page))
1854 			copied = 0;
1855 		page_zero_new_buffers(page, from+copied, to);
1856 	}
1857 
1858 	ret = walk_page_buffers(handle, page_buffers(page), from,
1859 				to, &partial, write_end_fn);
1860 	if (!partial)
1861 		SetPageUptodate(page);
1862 	new_i_size = pos + copied;
1863 	if (new_i_size > inode->i_size)
1864 		i_size_write(inode, pos+copied);
1865 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1866 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1867 		ext4_update_i_disksize(inode, new_i_size);
1868 		ret2 = ext4_mark_inode_dirty(handle, inode);
1869 		if (!ret)
1870 			ret = ret2;
1871 	}
1872 
1873 	unlock_page(page);
1874 	page_cache_release(page);
1875 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1876 		/* if we have allocated more blocks and copied
1877 		 * less. We will have blocks allocated outside
1878 		 * inode->i_size. So truncate them
1879 		 */
1880 		ext4_orphan_add(handle, inode);
1881 
1882 	ret2 = ext4_journal_stop(handle);
1883 	if (!ret)
1884 		ret = ret2;
1885 	if (pos + len > inode->i_size) {
1886 		ext4_truncate_failed_write(inode);
1887 		/*
1888 		 * If truncate failed early the inode might still be
1889 		 * on the orphan list; we need to make sure the inode
1890 		 * is removed from the orphan list in that case.
1891 		 */
1892 		if (inode->i_nlink)
1893 			ext4_orphan_del(NULL, inode);
1894 	}
1895 
1896 	return ret ? ret : copied;
1897 }
1898 
1899 /*
1900  * Reserve a single block located at lblock
1901  */
1902 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1903 {
1904 	int retries = 0;
1905 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1906 	struct ext4_inode_info *ei = EXT4_I(inode);
1907 	unsigned long md_needed;
1908 	int ret;
1909 
1910 	/*
1911 	 * recalculate the amount of metadata blocks to reserve
1912 	 * in order to allocate nrblocks
1913 	 * worse case is one extent per block
1914 	 */
1915 repeat:
1916 	spin_lock(&ei->i_block_reservation_lock);
1917 	md_needed = ext4_calc_metadata_amount(inode, lblock);
1918 	trace_ext4_da_reserve_space(inode, md_needed);
1919 	spin_unlock(&ei->i_block_reservation_lock);
1920 
1921 	/*
1922 	 * We will charge metadata quota at writeout time; this saves
1923 	 * us from metadata over-estimation, though we may go over by
1924 	 * a small amount in the end.  Here we just reserve for data.
1925 	 */
1926 	ret = dquot_reserve_block(inode, 1);
1927 	if (ret)
1928 		return ret;
1929 	/*
1930 	 * We do still charge estimated metadata to the sb though;
1931 	 * we cannot afford to run out of free blocks.
1932 	 */
1933 	if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1934 		dquot_release_reservation_block(inode, 1);
1935 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1936 			yield();
1937 			goto repeat;
1938 		}
1939 		return -ENOSPC;
1940 	}
1941 	spin_lock(&ei->i_block_reservation_lock);
1942 	ei->i_reserved_data_blocks++;
1943 	ei->i_reserved_meta_blocks += md_needed;
1944 	spin_unlock(&ei->i_block_reservation_lock);
1945 
1946 	return 0;       /* success */
1947 }
1948 
1949 static void ext4_da_release_space(struct inode *inode, int to_free)
1950 {
1951 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1952 	struct ext4_inode_info *ei = EXT4_I(inode);
1953 
1954 	if (!to_free)
1955 		return;		/* Nothing to release, exit */
1956 
1957 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1958 
1959 	trace_ext4_da_release_space(inode, to_free);
1960 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1961 		/*
1962 		 * if there aren't enough reserved blocks, then the
1963 		 * counter is messed up somewhere.  Since this
1964 		 * function is called from invalidate page, it's
1965 		 * harmless to return without any action.
1966 		 */
1967 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1968 			 "ino %lu, to_free %d with only %d reserved "
1969 			 "data blocks\n", inode->i_ino, to_free,
1970 			 ei->i_reserved_data_blocks);
1971 		WARN_ON(1);
1972 		to_free = ei->i_reserved_data_blocks;
1973 	}
1974 	ei->i_reserved_data_blocks -= to_free;
1975 
1976 	if (ei->i_reserved_data_blocks == 0) {
1977 		/*
1978 		 * We can release all of the reserved metadata blocks
1979 		 * only when we have written all of the delayed
1980 		 * allocation blocks.
1981 		 */
1982 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1983 				   ei->i_reserved_meta_blocks);
1984 		ei->i_reserved_meta_blocks = 0;
1985 		ei->i_da_metadata_calc_len = 0;
1986 	}
1987 
1988 	/* update fs dirty data blocks counter */
1989 	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1990 
1991 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1992 
1993 	dquot_release_reservation_block(inode, to_free);
1994 }
1995 
1996 static void ext4_da_page_release_reservation(struct page *page,
1997 					     unsigned long offset)
1998 {
1999 	int to_release = 0;
2000 	struct buffer_head *head, *bh;
2001 	unsigned int curr_off = 0;
2002 
2003 	head = page_buffers(page);
2004 	bh = head;
2005 	do {
2006 		unsigned int next_off = curr_off + bh->b_size;
2007 
2008 		if ((offset <= curr_off) && (buffer_delay(bh))) {
2009 			to_release++;
2010 			clear_buffer_delay(bh);
2011 		}
2012 		curr_off = next_off;
2013 	} while ((bh = bh->b_this_page) != head);
2014 	ext4_da_release_space(page->mapping->host, to_release);
2015 }
2016 
2017 /*
2018  * Delayed allocation stuff
2019  */
2020 
2021 /*
2022  * mpage_da_submit_io - walks through extent of pages and try to write
2023  * them with writepage() call back
2024  *
2025  * @mpd->inode: inode
2026  * @mpd->first_page: first page of the extent
2027  * @mpd->next_page: page after the last page of the extent
2028  *
2029  * By the time mpage_da_submit_io() is called we expect all blocks
2030  * to be allocated. this may be wrong if allocation failed.
2031  *
2032  * As pages are already locked by write_cache_pages(), we can't use it
2033  */
2034 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2035 			      struct ext4_map_blocks *map)
2036 {
2037 	struct pagevec pvec;
2038 	unsigned long index, end;
2039 	int ret = 0, err, nr_pages, i;
2040 	struct inode *inode = mpd->inode;
2041 	struct address_space *mapping = inode->i_mapping;
2042 	loff_t size = i_size_read(inode);
2043 	unsigned int len, block_start;
2044 	struct buffer_head *bh, *page_bufs = NULL;
2045 	int journal_data = ext4_should_journal_data(inode);
2046 	sector_t pblock = 0, cur_logical = 0;
2047 	struct ext4_io_submit io_submit;
2048 
2049 	BUG_ON(mpd->next_page <= mpd->first_page);
2050 	memset(&io_submit, 0, sizeof(io_submit));
2051 	/*
2052 	 * We need to start from the first_page to the next_page - 1
2053 	 * to make sure we also write the mapped dirty buffer_heads.
2054 	 * If we look at mpd->b_blocknr we would only be looking
2055 	 * at the currently mapped buffer_heads.
2056 	 */
2057 	index = mpd->first_page;
2058 	end = mpd->next_page - 1;
2059 
2060 	pagevec_init(&pvec, 0);
2061 	while (index <= end) {
2062 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2063 		if (nr_pages == 0)
2064 			break;
2065 		for (i = 0; i < nr_pages; i++) {
2066 			int commit_write = 0, skip_page = 0;
2067 			struct page *page = pvec.pages[i];
2068 
2069 			index = page->index;
2070 			if (index > end)
2071 				break;
2072 
2073 			if (index == size >> PAGE_CACHE_SHIFT)
2074 				len = size & ~PAGE_CACHE_MASK;
2075 			else
2076 				len = PAGE_CACHE_SIZE;
2077 			if (map) {
2078 				cur_logical = index << (PAGE_CACHE_SHIFT -
2079 							inode->i_blkbits);
2080 				pblock = map->m_pblk + (cur_logical -
2081 							map->m_lblk);
2082 			}
2083 			index++;
2084 
2085 			BUG_ON(!PageLocked(page));
2086 			BUG_ON(PageWriteback(page));
2087 
2088 			/*
2089 			 * If the page does not have buffers (for
2090 			 * whatever reason), try to create them using
2091 			 * __block_write_begin.  If this fails,
2092 			 * skip the page and move on.
2093 			 */
2094 			if (!page_has_buffers(page)) {
2095 				if (__block_write_begin(page, 0, len,
2096 						noalloc_get_block_write)) {
2097 				skip_page:
2098 					unlock_page(page);
2099 					continue;
2100 				}
2101 				commit_write = 1;
2102 			}
2103 
2104 			bh = page_bufs = page_buffers(page);
2105 			block_start = 0;
2106 			do {
2107 				if (!bh)
2108 					goto skip_page;
2109 				if (map && (cur_logical >= map->m_lblk) &&
2110 				    (cur_logical <= (map->m_lblk +
2111 						     (map->m_len - 1)))) {
2112 					if (buffer_delay(bh)) {
2113 						clear_buffer_delay(bh);
2114 						bh->b_blocknr = pblock;
2115 					}
2116 					if (buffer_unwritten(bh) ||
2117 					    buffer_mapped(bh))
2118 						BUG_ON(bh->b_blocknr != pblock);
2119 					if (map->m_flags & EXT4_MAP_UNINIT)
2120 						set_buffer_uninit(bh);
2121 					clear_buffer_unwritten(bh);
2122 				}
2123 
2124 				/* skip page if block allocation undone */
2125 				if (buffer_delay(bh) || buffer_unwritten(bh))
2126 					skip_page = 1;
2127 				bh = bh->b_this_page;
2128 				block_start += bh->b_size;
2129 				cur_logical++;
2130 				pblock++;
2131 			} while (bh != page_bufs);
2132 
2133 			if (skip_page)
2134 				goto skip_page;
2135 
2136 			if (commit_write)
2137 				/* mark the buffer_heads as dirty & uptodate */
2138 				block_commit_write(page, 0, len);
2139 
2140 			clear_page_dirty_for_io(page);
2141 			/*
2142 			 * Delalloc doesn't support data journalling,
2143 			 * but eventually maybe we'll lift this
2144 			 * restriction.
2145 			 */
2146 			if (unlikely(journal_data && PageChecked(page)))
2147 				err = __ext4_journalled_writepage(page, len);
2148 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2149 				err = ext4_bio_write_page(&io_submit, page,
2150 							  len, mpd->wbc);
2151 			else
2152 				err = block_write_full_page(page,
2153 					noalloc_get_block_write, mpd->wbc);
2154 
2155 			if (!err)
2156 				mpd->pages_written++;
2157 			/*
2158 			 * In error case, we have to continue because
2159 			 * remaining pages are still locked
2160 			 */
2161 			if (ret == 0)
2162 				ret = err;
2163 		}
2164 		pagevec_release(&pvec);
2165 	}
2166 	ext4_io_submit(&io_submit);
2167 	return ret;
2168 }
2169 
2170 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
2171 {
2172 	int nr_pages, i;
2173 	pgoff_t index, end;
2174 	struct pagevec pvec;
2175 	struct inode *inode = mpd->inode;
2176 	struct address_space *mapping = inode->i_mapping;
2177 
2178 	index = mpd->first_page;
2179 	end   = mpd->next_page - 1;
2180 	while (index <= end) {
2181 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2182 		if (nr_pages == 0)
2183 			break;
2184 		for (i = 0; i < nr_pages; i++) {
2185 			struct page *page = pvec.pages[i];
2186 			if (page->index > end)
2187 				break;
2188 			BUG_ON(!PageLocked(page));
2189 			BUG_ON(PageWriteback(page));
2190 			block_invalidatepage(page, 0);
2191 			ClearPageUptodate(page);
2192 			unlock_page(page);
2193 		}
2194 		index = pvec.pages[nr_pages - 1]->index + 1;
2195 		pagevec_release(&pvec);
2196 	}
2197 	return;
2198 }
2199 
2200 static void ext4_print_free_blocks(struct inode *inode)
2201 {
2202 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2203 	printk(KERN_CRIT "Total free blocks count %lld\n",
2204 	       ext4_count_free_blocks(inode->i_sb));
2205 	printk(KERN_CRIT "Free/Dirty block details\n");
2206 	printk(KERN_CRIT "free_blocks=%lld\n",
2207 	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2208 	printk(KERN_CRIT "dirty_blocks=%lld\n",
2209 	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2210 	printk(KERN_CRIT "Block reservation details\n");
2211 	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2212 	       EXT4_I(inode)->i_reserved_data_blocks);
2213 	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2214 	       EXT4_I(inode)->i_reserved_meta_blocks);
2215 	return;
2216 }
2217 
2218 /*
2219  * mpage_da_map_and_submit - go through given space, map them
2220  *       if necessary, and then submit them for I/O
2221  *
2222  * @mpd - bh describing space
2223  *
2224  * The function skips space we know is already mapped to disk blocks.
2225  *
2226  */
2227 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2228 {
2229 	int err, blks, get_blocks_flags;
2230 	struct ext4_map_blocks map, *mapp = NULL;
2231 	sector_t next = mpd->b_blocknr;
2232 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2233 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2234 	handle_t *handle = NULL;
2235 
2236 	/*
2237 	 * If the blocks are mapped already, or we couldn't accumulate
2238 	 * any blocks, then proceed immediately to the submission stage.
2239 	 */
2240 	if ((mpd->b_size == 0) ||
2241 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
2242 	     !(mpd->b_state & (1 << BH_Delay)) &&
2243 	     !(mpd->b_state & (1 << BH_Unwritten))))
2244 		goto submit_io;
2245 
2246 	handle = ext4_journal_current_handle();
2247 	BUG_ON(!handle);
2248 
2249 	/*
2250 	 * Call ext4_map_blocks() to allocate any delayed allocation
2251 	 * blocks, or to convert an uninitialized extent to be
2252 	 * initialized (in the case where we have written into
2253 	 * one or more preallocated blocks).
2254 	 *
2255 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2256 	 * indicate that we are on the delayed allocation path.  This
2257 	 * affects functions in many different parts of the allocation
2258 	 * call path.  This flag exists primarily because we don't
2259 	 * want to change *many* call functions, so ext4_map_blocks()
2260 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2261 	 * inode's allocation semaphore is taken.
2262 	 *
2263 	 * If the blocks in questions were delalloc blocks, set
2264 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2265 	 * variables are updated after the blocks have been allocated.
2266 	 */
2267 	map.m_lblk = next;
2268 	map.m_len = max_blocks;
2269 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2270 	if (ext4_should_dioread_nolock(mpd->inode))
2271 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2272 	if (mpd->b_state & (1 << BH_Delay))
2273 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2274 
2275 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2276 	if (blks < 0) {
2277 		struct super_block *sb = mpd->inode->i_sb;
2278 
2279 		err = blks;
2280 		/*
2281 		 * If get block returns EAGAIN or ENOSPC and there
2282 		 * appears to be free blocks we will just let
2283 		 * mpage_da_submit_io() unlock all of the pages.
2284 		 */
2285 		if (err == -EAGAIN)
2286 			goto submit_io;
2287 
2288 		if (err == -ENOSPC &&
2289 		    ext4_count_free_blocks(sb)) {
2290 			mpd->retval = err;
2291 			goto submit_io;
2292 		}
2293 
2294 		/*
2295 		 * get block failure will cause us to loop in
2296 		 * writepages, because a_ops->writepage won't be able
2297 		 * to make progress. The page will be redirtied by
2298 		 * writepage and writepages will again try to write
2299 		 * the same.
2300 		 */
2301 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2302 			ext4_msg(sb, KERN_CRIT,
2303 				 "delayed block allocation failed for inode %lu "
2304 				 "at logical offset %llu with max blocks %zd "
2305 				 "with error %d", mpd->inode->i_ino,
2306 				 (unsigned long long) next,
2307 				 mpd->b_size >> mpd->inode->i_blkbits, err);
2308 			ext4_msg(sb, KERN_CRIT,
2309 				"This should not happen!! Data will be lost\n");
2310 			if (err == -ENOSPC)
2311 				ext4_print_free_blocks(mpd->inode);
2312 		}
2313 		/* invalidate all the pages */
2314 		ext4_da_block_invalidatepages(mpd);
2315 
2316 		/* Mark this page range as having been completed */
2317 		mpd->io_done = 1;
2318 		return;
2319 	}
2320 	BUG_ON(blks == 0);
2321 
2322 	mapp = &map;
2323 	if (map.m_flags & EXT4_MAP_NEW) {
2324 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2325 		int i;
2326 
2327 		for (i = 0; i < map.m_len; i++)
2328 			unmap_underlying_metadata(bdev, map.m_pblk + i);
2329 	}
2330 
2331 	if (ext4_should_order_data(mpd->inode)) {
2332 		err = ext4_jbd2_file_inode(handle, mpd->inode);
2333 		if (err)
2334 			/* This only happens if the journal is aborted */
2335 			return;
2336 	}
2337 
2338 	/*
2339 	 * Update on-disk size along with block allocation.
2340 	 */
2341 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2342 	if (disksize > i_size_read(mpd->inode))
2343 		disksize = i_size_read(mpd->inode);
2344 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2345 		ext4_update_i_disksize(mpd->inode, disksize);
2346 		err = ext4_mark_inode_dirty(handle, mpd->inode);
2347 		if (err)
2348 			ext4_error(mpd->inode->i_sb,
2349 				   "Failed to mark inode %lu dirty",
2350 				   mpd->inode->i_ino);
2351 	}
2352 
2353 submit_io:
2354 	mpage_da_submit_io(mpd, mapp);
2355 	mpd->io_done = 1;
2356 }
2357 
2358 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2359 		(1 << BH_Delay) | (1 << BH_Unwritten))
2360 
2361 /*
2362  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2363  *
2364  * @mpd->lbh - extent of blocks
2365  * @logical - logical number of the block in the file
2366  * @bh - bh of the block (used to access block's state)
2367  *
2368  * the function is used to collect contig. blocks in same state
2369  */
2370 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2371 				   sector_t logical, size_t b_size,
2372 				   unsigned long b_state)
2373 {
2374 	sector_t next;
2375 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2376 
2377 	/*
2378 	 * XXX Don't go larger than mballoc is willing to allocate
2379 	 * This is a stopgap solution.  We eventually need to fold
2380 	 * mpage_da_submit_io() into this function and then call
2381 	 * ext4_map_blocks() multiple times in a loop
2382 	 */
2383 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2384 		goto flush_it;
2385 
2386 	/* check if thereserved journal credits might overflow */
2387 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2388 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2389 			/*
2390 			 * With non-extent format we are limited by the journal
2391 			 * credit available.  Total credit needed to insert
2392 			 * nrblocks contiguous blocks is dependent on the
2393 			 * nrblocks.  So limit nrblocks.
2394 			 */
2395 			goto flush_it;
2396 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2397 				EXT4_MAX_TRANS_DATA) {
2398 			/*
2399 			 * Adding the new buffer_head would make it cross the
2400 			 * allowed limit for which we have journal credit
2401 			 * reserved. So limit the new bh->b_size
2402 			 */
2403 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2404 						mpd->inode->i_blkbits;
2405 			/* we will do mpage_da_submit_io in the next loop */
2406 		}
2407 	}
2408 	/*
2409 	 * First block in the extent
2410 	 */
2411 	if (mpd->b_size == 0) {
2412 		mpd->b_blocknr = logical;
2413 		mpd->b_size = b_size;
2414 		mpd->b_state = b_state & BH_FLAGS;
2415 		return;
2416 	}
2417 
2418 	next = mpd->b_blocknr + nrblocks;
2419 	/*
2420 	 * Can we merge the block to our big extent?
2421 	 */
2422 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2423 		mpd->b_size += b_size;
2424 		return;
2425 	}
2426 
2427 flush_it:
2428 	/*
2429 	 * We couldn't merge the block to our extent, so we
2430 	 * need to flush current  extent and start new one
2431 	 */
2432 	mpage_da_map_and_submit(mpd);
2433 	return;
2434 }
2435 
2436 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2437 {
2438 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2439 }
2440 
2441 /*
2442  * This is a special get_blocks_t callback which is used by
2443  * ext4_da_write_begin().  It will either return mapped block or
2444  * reserve space for a single block.
2445  *
2446  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2447  * We also have b_blocknr = -1 and b_bdev initialized properly
2448  *
2449  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2450  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2451  * initialized properly.
2452  */
2453 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2454 				  struct buffer_head *bh, int create)
2455 {
2456 	struct ext4_map_blocks map;
2457 	int ret = 0;
2458 	sector_t invalid_block = ~((sector_t) 0xffff);
2459 
2460 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2461 		invalid_block = ~0;
2462 
2463 	BUG_ON(create == 0);
2464 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2465 
2466 	map.m_lblk = iblock;
2467 	map.m_len = 1;
2468 
2469 	/*
2470 	 * first, we need to know whether the block is allocated already
2471 	 * preallocated blocks are unmapped but should treated
2472 	 * the same as allocated blocks.
2473 	 */
2474 	ret = ext4_map_blocks(NULL, inode, &map, 0);
2475 	if (ret < 0)
2476 		return ret;
2477 	if (ret == 0) {
2478 		if (buffer_delay(bh))
2479 			return 0; /* Not sure this could or should happen */
2480 		/*
2481 		 * XXX: __block_write_begin() unmaps passed block, is it OK?
2482 		 */
2483 		ret = ext4_da_reserve_space(inode, iblock);
2484 		if (ret)
2485 			/* not enough space to reserve */
2486 			return ret;
2487 
2488 		map_bh(bh, inode->i_sb, invalid_block);
2489 		set_buffer_new(bh);
2490 		set_buffer_delay(bh);
2491 		return 0;
2492 	}
2493 
2494 	map_bh(bh, inode->i_sb, map.m_pblk);
2495 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2496 
2497 	if (buffer_unwritten(bh)) {
2498 		/* A delayed write to unwritten bh should be marked
2499 		 * new and mapped.  Mapped ensures that we don't do
2500 		 * get_block multiple times when we write to the same
2501 		 * offset and new ensures that we do proper zero out
2502 		 * for partial write.
2503 		 */
2504 		set_buffer_new(bh);
2505 		set_buffer_mapped(bh);
2506 	}
2507 	return 0;
2508 }
2509 
2510 /*
2511  * This function is used as a standard get_block_t calback function
2512  * when there is no desire to allocate any blocks.  It is used as a
2513  * callback function for block_write_begin() and block_write_full_page().
2514  * These functions should only try to map a single block at a time.
2515  *
2516  * Since this function doesn't do block allocations even if the caller
2517  * requests it by passing in create=1, it is critically important that
2518  * any caller checks to make sure that any buffer heads are returned
2519  * by this function are either all already mapped or marked for
2520  * delayed allocation before calling  block_write_full_page().  Otherwise,
2521  * b_blocknr could be left unitialized, and the page write functions will
2522  * be taken by surprise.
2523  */
2524 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2525 				   struct buffer_head *bh_result, int create)
2526 {
2527 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2528 	return _ext4_get_block(inode, iblock, bh_result, 0);
2529 }
2530 
2531 static int bget_one(handle_t *handle, struct buffer_head *bh)
2532 {
2533 	get_bh(bh);
2534 	return 0;
2535 }
2536 
2537 static int bput_one(handle_t *handle, struct buffer_head *bh)
2538 {
2539 	put_bh(bh);
2540 	return 0;
2541 }
2542 
2543 static int __ext4_journalled_writepage(struct page *page,
2544 				       unsigned int len)
2545 {
2546 	struct address_space *mapping = page->mapping;
2547 	struct inode *inode = mapping->host;
2548 	struct buffer_head *page_bufs;
2549 	handle_t *handle = NULL;
2550 	int ret = 0;
2551 	int err;
2552 
2553 	ClearPageChecked(page);
2554 	page_bufs = page_buffers(page);
2555 	BUG_ON(!page_bufs);
2556 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2557 	/* As soon as we unlock the page, it can go away, but we have
2558 	 * references to buffers so we are safe */
2559 	unlock_page(page);
2560 
2561 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2562 	if (IS_ERR(handle)) {
2563 		ret = PTR_ERR(handle);
2564 		goto out;
2565 	}
2566 
2567 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2568 				do_journal_get_write_access);
2569 
2570 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2571 				write_end_fn);
2572 	if (ret == 0)
2573 		ret = err;
2574 	err = ext4_journal_stop(handle);
2575 	if (!ret)
2576 		ret = err;
2577 
2578 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2579 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2580 out:
2581 	return ret;
2582 }
2583 
2584 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2585 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2586 
2587 /*
2588  * Note that we don't need to start a transaction unless we're journaling data
2589  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2590  * need to file the inode to the transaction's list in ordered mode because if
2591  * we are writing back data added by write(), the inode is already there and if
2592  * we are writing back data modified via mmap(), no one guarantees in which
2593  * transaction the data will hit the disk. In case we are journaling data, we
2594  * cannot start transaction directly because transaction start ranks above page
2595  * lock so we have to do some magic.
2596  *
2597  * This function can get called via...
2598  *   - ext4_da_writepages after taking page lock (have journal handle)
2599  *   - journal_submit_inode_data_buffers (no journal handle)
2600  *   - shrink_page_list via pdflush (no journal handle)
2601  *   - grab_page_cache when doing write_begin (have journal handle)
2602  *
2603  * We don't do any block allocation in this function. If we have page with
2604  * multiple blocks we need to write those buffer_heads that are mapped. This
2605  * is important for mmaped based write. So if we do with blocksize 1K
2606  * truncate(f, 1024);
2607  * a = mmap(f, 0, 4096);
2608  * a[0] = 'a';
2609  * truncate(f, 4096);
2610  * we have in the page first buffer_head mapped via page_mkwrite call back
2611  * but other bufer_heads would be unmapped but dirty(dirty done via the
2612  * do_wp_page). So writepage should write the first block. If we modify
2613  * the mmap area beyond 1024 we will again get a page_fault and the
2614  * page_mkwrite callback will do the block allocation and mark the
2615  * buffer_heads mapped.
2616  *
2617  * We redirty the page if we have any buffer_heads that is either delay or
2618  * unwritten in the page.
2619  *
2620  * We can get recursively called as show below.
2621  *
2622  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2623  *		ext4_writepage()
2624  *
2625  * But since we don't do any block allocation we should not deadlock.
2626  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2627  */
2628 static int ext4_writepage(struct page *page,
2629 			  struct writeback_control *wbc)
2630 {
2631 	int ret = 0, commit_write = 0;
2632 	loff_t size;
2633 	unsigned int len;
2634 	struct buffer_head *page_bufs = NULL;
2635 	struct inode *inode = page->mapping->host;
2636 
2637 	trace_ext4_writepage(page);
2638 	size = i_size_read(inode);
2639 	if (page->index == size >> PAGE_CACHE_SHIFT)
2640 		len = size & ~PAGE_CACHE_MASK;
2641 	else
2642 		len = PAGE_CACHE_SIZE;
2643 
2644 	/*
2645 	 * If the page does not have buffers (for whatever reason),
2646 	 * try to create them using __block_write_begin.  If this
2647 	 * fails, redirty the page and move on.
2648 	 */
2649 	if (!page_has_buffers(page)) {
2650 		if (__block_write_begin(page, 0, len,
2651 					noalloc_get_block_write)) {
2652 		redirty_page:
2653 			redirty_page_for_writepage(wbc, page);
2654 			unlock_page(page);
2655 			return 0;
2656 		}
2657 		commit_write = 1;
2658 	}
2659 	page_bufs = page_buffers(page);
2660 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2661 			      ext4_bh_delay_or_unwritten)) {
2662 		/*
2663 		 * We don't want to do block allocation, so redirty
2664 		 * the page and return.  We may reach here when we do
2665 		 * a journal commit via journal_submit_inode_data_buffers.
2666 		 * We can also reach here via shrink_page_list
2667 		 */
2668 		goto redirty_page;
2669 	}
2670 	if (commit_write)
2671 		/* now mark the buffer_heads as dirty and uptodate */
2672 		block_commit_write(page, 0, len);
2673 
2674 	if (PageChecked(page) && ext4_should_journal_data(inode))
2675 		/*
2676 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2677 		 * doesn't seem much point in redirtying the page here.
2678 		 */
2679 		return __ext4_journalled_writepage(page, len);
2680 
2681 	if (buffer_uninit(page_bufs)) {
2682 		ext4_set_bh_endio(page_bufs, inode);
2683 		ret = block_write_full_page_endio(page, noalloc_get_block_write,
2684 					    wbc, ext4_end_io_buffer_write);
2685 	} else
2686 		ret = block_write_full_page(page, noalloc_get_block_write,
2687 					    wbc);
2688 
2689 	return ret;
2690 }
2691 
2692 /*
2693  * This is called via ext4_da_writepages() to
2694  * calculate the total number of credits to reserve to fit
2695  * a single extent allocation into a single transaction,
2696  * ext4_da_writpeages() will loop calling this before
2697  * the block allocation.
2698  */
2699 
2700 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2701 {
2702 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2703 
2704 	/*
2705 	 * With non-extent format the journal credit needed to
2706 	 * insert nrblocks contiguous block is dependent on
2707 	 * number of contiguous block. So we will limit
2708 	 * number of contiguous block to a sane value
2709 	 */
2710 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2711 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2712 		max_blocks = EXT4_MAX_TRANS_DATA;
2713 
2714 	return ext4_chunk_trans_blocks(inode, max_blocks);
2715 }
2716 
2717 /*
2718  * write_cache_pages_da - walk the list of dirty pages of the given
2719  * address space and accumulate pages that need writing, and call
2720  * mpage_da_map_and_submit to map a single contiguous memory region
2721  * and then write them.
2722  */
2723 static int write_cache_pages_da(struct address_space *mapping,
2724 				struct writeback_control *wbc,
2725 				struct mpage_da_data *mpd,
2726 				pgoff_t *done_index)
2727 {
2728 	struct buffer_head	*bh, *head;
2729 	struct inode		*inode = mapping->host;
2730 	struct pagevec		pvec;
2731 	unsigned int		nr_pages;
2732 	sector_t		logical;
2733 	pgoff_t			index, end;
2734 	long			nr_to_write = wbc->nr_to_write;
2735 	int			i, tag, ret = 0;
2736 
2737 	memset(mpd, 0, sizeof(struct mpage_da_data));
2738 	mpd->wbc = wbc;
2739 	mpd->inode = inode;
2740 	pagevec_init(&pvec, 0);
2741 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2742 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2743 
2744 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2745 		tag = PAGECACHE_TAG_TOWRITE;
2746 	else
2747 		tag = PAGECACHE_TAG_DIRTY;
2748 
2749 	*done_index = index;
2750 	while (index <= end) {
2751 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2752 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2753 		if (nr_pages == 0)
2754 			return 0;
2755 
2756 		for (i = 0; i < nr_pages; i++) {
2757 			struct page *page = pvec.pages[i];
2758 
2759 			/*
2760 			 * At this point, the page may be truncated or
2761 			 * invalidated (changing page->mapping to NULL), or
2762 			 * even swizzled back from swapper_space to tmpfs file
2763 			 * mapping. However, page->index will not change
2764 			 * because we have a reference on the page.
2765 			 */
2766 			if (page->index > end)
2767 				goto out;
2768 
2769 			*done_index = page->index + 1;
2770 
2771 			/*
2772 			 * If we can't merge this page, and we have
2773 			 * accumulated an contiguous region, write it
2774 			 */
2775 			if ((mpd->next_page != page->index) &&
2776 			    (mpd->next_page != mpd->first_page)) {
2777 				mpage_da_map_and_submit(mpd);
2778 				goto ret_extent_tail;
2779 			}
2780 
2781 			lock_page(page);
2782 
2783 			/*
2784 			 * If the page is no longer dirty, or its
2785 			 * mapping no longer corresponds to inode we
2786 			 * are writing (which means it has been
2787 			 * truncated or invalidated), or the page is
2788 			 * already under writeback and we are not
2789 			 * doing a data integrity writeback, skip the page
2790 			 */
2791 			if (!PageDirty(page) ||
2792 			    (PageWriteback(page) &&
2793 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2794 			    unlikely(page->mapping != mapping)) {
2795 				unlock_page(page);
2796 				continue;
2797 			}
2798 
2799 			wait_on_page_writeback(page);
2800 			BUG_ON(PageWriteback(page));
2801 
2802 			if (mpd->next_page != page->index)
2803 				mpd->first_page = page->index;
2804 			mpd->next_page = page->index + 1;
2805 			logical = (sector_t) page->index <<
2806 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2807 
2808 			if (!page_has_buffers(page)) {
2809 				mpage_add_bh_to_extent(mpd, logical,
2810 						       PAGE_CACHE_SIZE,
2811 						       (1 << BH_Dirty) | (1 << BH_Uptodate));
2812 				if (mpd->io_done)
2813 					goto ret_extent_tail;
2814 			} else {
2815 				/*
2816 				 * Page with regular buffer heads,
2817 				 * just add all dirty ones
2818 				 */
2819 				head = page_buffers(page);
2820 				bh = head;
2821 				do {
2822 					BUG_ON(buffer_locked(bh));
2823 					/*
2824 					 * We need to try to allocate
2825 					 * unmapped blocks in the same page.
2826 					 * Otherwise we won't make progress
2827 					 * with the page in ext4_writepage
2828 					 */
2829 					if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2830 						mpage_add_bh_to_extent(mpd, logical,
2831 								       bh->b_size,
2832 								       bh->b_state);
2833 						if (mpd->io_done)
2834 							goto ret_extent_tail;
2835 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2836 						/*
2837 						 * mapped dirty buffer. We need
2838 						 * to update the b_state
2839 						 * because we look at b_state
2840 						 * in mpage_da_map_blocks.  We
2841 						 * don't update b_size because
2842 						 * if we find an unmapped
2843 						 * buffer_head later we need to
2844 						 * use the b_state flag of that
2845 						 * buffer_head.
2846 						 */
2847 						if (mpd->b_size == 0)
2848 							mpd->b_state = bh->b_state & BH_FLAGS;
2849 					}
2850 					logical++;
2851 				} while ((bh = bh->b_this_page) != head);
2852 			}
2853 
2854 			if (nr_to_write > 0) {
2855 				nr_to_write--;
2856 				if (nr_to_write == 0 &&
2857 				    wbc->sync_mode == WB_SYNC_NONE)
2858 					/*
2859 					 * We stop writing back only if we are
2860 					 * not doing integrity sync. In case of
2861 					 * integrity sync we have to keep going
2862 					 * because someone may be concurrently
2863 					 * dirtying pages, and we might have
2864 					 * synced a lot of newly appeared dirty
2865 					 * pages, but have not synced all of the
2866 					 * old dirty pages.
2867 					 */
2868 					goto out;
2869 			}
2870 		}
2871 		pagevec_release(&pvec);
2872 		cond_resched();
2873 	}
2874 	return 0;
2875 ret_extent_tail:
2876 	ret = MPAGE_DA_EXTENT_TAIL;
2877 out:
2878 	pagevec_release(&pvec);
2879 	cond_resched();
2880 	return ret;
2881 }
2882 
2883 
2884 static int ext4_da_writepages(struct address_space *mapping,
2885 			      struct writeback_control *wbc)
2886 {
2887 	pgoff_t	index;
2888 	int range_whole = 0;
2889 	handle_t *handle = NULL;
2890 	struct mpage_da_data mpd;
2891 	struct inode *inode = mapping->host;
2892 	int pages_written = 0;
2893 	unsigned int max_pages;
2894 	int range_cyclic, cycled = 1, io_done = 0;
2895 	int needed_blocks, ret = 0;
2896 	long desired_nr_to_write, nr_to_writebump = 0;
2897 	loff_t range_start = wbc->range_start;
2898 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2899 	pgoff_t done_index = 0;
2900 	pgoff_t end;
2901 
2902 	trace_ext4_da_writepages(inode, wbc);
2903 
2904 	/*
2905 	 * No pages to write? This is mainly a kludge to avoid starting
2906 	 * a transaction for special inodes like journal inode on last iput()
2907 	 * because that could violate lock ordering on umount
2908 	 */
2909 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2910 		return 0;
2911 
2912 	/*
2913 	 * If the filesystem has aborted, it is read-only, so return
2914 	 * right away instead of dumping stack traces later on that
2915 	 * will obscure the real source of the problem.  We test
2916 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2917 	 * the latter could be true if the filesystem is mounted
2918 	 * read-only, and in that case, ext4_da_writepages should
2919 	 * *never* be called, so if that ever happens, we would want
2920 	 * the stack trace.
2921 	 */
2922 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2923 		return -EROFS;
2924 
2925 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2926 		range_whole = 1;
2927 
2928 	range_cyclic = wbc->range_cyclic;
2929 	if (wbc->range_cyclic) {
2930 		index = mapping->writeback_index;
2931 		if (index)
2932 			cycled = 0;
2933 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2934 		wbc->range_end  = LLONG_MAX;
2935 		wbc->range_cyclic = 0;
2936 		end = -1;
2937 	} else {
2938 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2939 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2940 	}
2941 
2942 	/*
2943 	 * This works around two forms of stupidity.  The first is in
2944 	 * the writeback code, which caps the maximum number of pages
2945 	 * written to be 1024 pages.  This is wrong on multiple
2946 	 * levels; different architectues have a different page size,
2947 	 * which changes the maximum amount of data which gets
2948 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2949 	 * forces this value to be 16 megabytes by multiplying
2950 	 * nr_to_write parameter by four, and then relies on its
2951 	 * allocator to allocate larger extents to make them
2952 	 * contiguous.  Unfortunately this brings us to the second
2953 	 * stupidity, which is that ext4's mballoc code only allocates
2954 	 * at most 2048 blocks.  So we force contiguous writes up to
2955 	 * the number of dirty blocks in the inode, or
2956 	 * sbi->max_writeback_mb_bump whichever is smaller.
2957 	 */
2958 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2959 	if (!range_cyclic && range_whole) {
2960 		if (wbc->nr_to_write == LONG_MAX)
2961 			desired_nr_to_write = wbc->nr_to_write;
2962 		else
2963 			desired_nr_to_write = wbc->nr_to_write * 8;
2964 	} else
2965 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2966 							   max_pages);
2967 	if (desired_nr_to_write > max_pages)
2968 		desired_nr_to_write = max_pages;
2969 
2970 	if (wbc->nr_to_write < desired_nr_to_write) {
2971 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2972 		wbc->nr_to_write = desired_nr_to_write;
2973 	}
2974 
2975 retry:
2976 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2977 		tag_pages_for_writeback(mapping, index, end);
2978 
2979 	while (!ret && wbc->nr_to_write > 0) {
2980 
2981 		/*
2982 		 * we  insert one extent at a time. So we need
2983 		 * credit needed for single extent allocation.
2984 		 * journalled mode is currently not supported
2985 		 * by delalloc
2986 		 */
2987 		BUG_ON(ext4_should_journal_data(inode));
2988 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2989 
2990 		/* start a new transaction*/
2991 		handle = ext4_journal_start(inode, needed_blocks);
2992 		if (IS_ERR(handle)) {
2993 			ret = PTR_ERR(handle);
2994 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2995 			       "%ld pages, ino %lu; err %d", __func__,
2996 				wbc->nr_to_write, inode->i_ino, ret);
2997 			goto out_writepages;
2998 		}
2999 
3000 		/*
3001 		 * Now call write_cache_pages_da() to find the next
3002 		 * contiguous region of logical blocks that need
3003 		 * blocks to be allocated by ext4 and submit them.
3004 		 */
3005 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3006 		/*
3007 		 * If we have a contiguous extent of pages and we
3008 		 * haven't done the I/O yet, map the blocks and submit
3009 		 * them for I/O.
3010 		 */
3011 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3012 			mpage_da_map_and_submit(&mpd);
3013 			ret = MPAGE_DA_EXTENT_TAIL;
3014 		}
3015 		trace_ext4_da_write_pages(inode, &mpd);
3016 		wbc->nr_to_write -= mpd.pages_written;
3017 
3018 		ext4_journal_stop(handle);
3019 
3020 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3021 			/* commit the transaction which would
3022 			 * free blocks released in the transaction
3023 			 * and try again
3024 			 */
3025 			jbd2_journal_force_commit_nested(sbi->s_journal);
3026 			ret = 0;
3027 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3028 			/*
3029 			 * got one extent now try with
3030 			 * rest of the pages
3031 			 */
3032 			pages_written += mpd.pages_written;
3033 			ret = 0;
3034 			io_done = 1;
3035 		} else if (wbc->nr_to_write)
3036 			/*
3037 			 * There is no more writeout needed
3038 			 * or we requested for a noblocking writeout
3039 			 * and we found the device congested
3040 			 */
3041 			break;
3042 	}
3043 	if (!io_done && !cycled) {
3044 		cycled = 1;
3045 		index = 0;
3046 		wbc->range_start = index << PAGE_CACHE_SHIFT;
3047 		wbc->range_end  = mapping->writeback_index - 1;
3048 		goto retry;
3049 	}
3050 
3051 	/* Update index */
3052 	wbc->range_cyclic = range_cyclic;
3053 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3054 		/*
3055 		 * set the writeback_index so that range_cyclic
3056 		 * mode will write it back later
3057 		 */
3058 		mapping->writeback_index = done_index;
3059 
3060 out_writepages:
3061 	wbc->nr_to_write -= nr_to_writebump;
3062 	wbc->range_start = range_start;
3063 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3064 	return ret;
3065 }
3066 
3067 #define FALL_BACK_TO_NONDELALLOC 1
3068 static int ext4_nonda_switch(struct super_block *sb)
3069 {
3070 	s64 free_blocks, dirty_blocks;
3071 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3072 
3073 	/*
3074 	 * switch to non delalloc mode if we are running low
3075 	 * on free block. The free block accounting via percpu
3076 	 * counters can get slightly wrong with percpu_counter_batch getting
3077 	 * accumulated on each CPU without updating global counters
3078 	 * Delalloc need an accurate free block accounting. So switch
3079 	 * to non delalloc when we are near to error range.
3080 	 */
3081 	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3082 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3083 	if (2 * free_blocks < 3 * dirty_blocks ||
3084 		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3085 		/*
3086 		 * free block count is less than 150% of dirty blocks
3087 		 * or free blocks is less than watermark
3088 		 */
3089 		return 1;
3090 	}
3091 	/*
3092 	 * Even if we don't switch but are nearing capacity,
3093 	 * start pushing delalloc when 1/2 of free blocks are dirty.
3094 	 */
3095 	if (free_blocks < 2 * dirty_blocks)
3096 		writeback_inodes_sb_if_idle(sb);
3097 
3098 	return 0;
3099 }
3100 
3101 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3102 			       loff_t pos, unsigned len, unsigned flags,
3103 			       struct page **pagep, void **fsdata)
3104 {
3105 	int ret, retries = 0;
3106 	struct page *page;
3107 	pgoff_t index;
3108 	struct inode *inode = mapping->host;
3109 	handle_t *handle;
3110 
3111 	index = pos >> PAGE_CACHE_SHIFT;
3112 
3113 	if (ext4_nonda_switch(inode->i_sb)) {
3114 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3115 		return ext4_write_begin(file, mapping, pos,
3116 					len, flags, pagep, fsdata);
3117 	}
3118 	*fsdata = (void *)0;
3119 	trace_ext4_da_write_begin(inode, pos, len, flags);
3120 retry:
3121 	/*
3122 	 * With delayed allocation, we don't log the i_disksize update
3123 	 * if there is delayed block allocation. But we still need
3124 	 * to journalling the i_disksize update if writes to the end
3125 	 * of file which has an already mapped buffer.
3126 	 */
3127 	handle = ext4_journal_start(inode, 1);
3128 	if (IS_ERR(handle)) {
3129 		ret = PTR_ERR(handle);
3130 		goto out;
3131 	}
3132 	/* We cannot recurse into the filesystem as the transaction is already
3133 	 * started */
3134 	flags |= AOP_FLAG_NOFS;
3135 
3136 	page = grab_cache_page_write_begin(mapping, index, flags);
3137 	if (!page) {
3138 		ext4_journal_stop(handle);
3139 		ret = -ENOMEM;
3140 		goto out;
3141 	}
3142 	*pagep = page;
3143 
3144 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3145 	if (ret < 0) {
3146 		unlock_page(page);
3147 		ext4_journal_stop(handle);
3148 		page_cache_release(page);
3149 		/*
3150 		 * block_write_begin may have instantiated a few blocks
3151 		 * outside i_size.  Trim these off again. Don't need
3152 		 * i_size_read because we hold i_mutex.
3153 		 */
3154 		if (pos + len > inode->i_size)
3155 			ext4_truncate_failed_write(inode);
3156 	}
3157 
3158 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3159 		goto retry;
3160 out:
3161 	return ret;
3162 }
3163 
3164 /*
3165  * Check if we should update i_disksize
3166  * when write to the end of file but not require block allocation
3167  */
3168 static int ext4_da_should_update_i_disksize(struct page *page,
3169 					    unsigned long offset)
3170 {
3171 	struct buffer_head *bh;
3172 	struct inode *inode = page->mapping->host;
3173 	unsigned int idx;
3174 	int i;
3175 
3176 	bh = page_buffers(page);
3177 	idx = offset >> inode->i_blkbits;
3178 
3179 	for (i = 0; i < idx; i++)
3180 		bh = bh->b_this_page;
3181 
3182 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3183 		return 0;
3184 	return 1;
3185 }
3186 
3187 static int ext4_da_write_end(struct file *file,
3188 			     struct address_space *mapping,
3189 			     loff_t pos, unsigned len, unsigned copied,
3190 			     struct page *page, void *fsdata)
3191 {
3192 	struct inode *inode = mapping->host;
3193 	int ret = 0, ret2;
3194 	handle_t *handle = ext4_journal_current_handle();
3195 	loff_t new_i_size;
3196 	unsigned long start, end;
3197 	int write_mode = (int)(unsigned long)fsdata;
3198 
3199 	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3200 		if (ext4_should_order_data(inode)) {
3201 			return ext4_ordered_write_end(file, mapping, pos,
3202 					len, copied, page, fsdata);
3203 		} else if (ext4_should_writeback_data(inode)) {
3204 			return ext4_writeback_write_end(file, mapping, pos,
3205 					len, copied, page, fsdata);
3206 		} else {
3207 			BUG();
3208 		}
3209 	}
3210 
3211 	trace_ext4_da_write_end(inode, pos, len, copied);
3212 	start = pos & (PAGE_CACHE_SIZE - 1);
3213 	end = start + copied - 1;
3214 
3215 	/*
3216 	 * generic_write_end() will run mark_inode_dirty() if i_size
3217 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3218 	 * into that.
3219 	 */
3220 
3221 	new_i_size = pos + copied;
3222 	if (new_i_size > EXT4_I(inode)->i_disksize) {
3223 		if (ext4_da_should_update_i_disksize(page, end)) {
3224 			down_write(&EXT4_I(inode)->i_data_sem);
3225 			if (new_i_size > EXT4_I(inode)->i_disksize) {
3226 				/*
3227 				 * Updating i_disksize when extending file
3228 				 * without needing block allocation
3229 				 */
3230 				if (ext4_should_order_data(inode))
3231 					ret = ext4_jbd2_file_inode(handle,
3232 								   inode);
3233 
3234 				EXT4_I(inode)->i_disksize = new_i_size;
3235 			}
3236 			up_write(&EXT4_I(inode)->i_data_sem);
3237 			/* We need to mark inode dirty even if
3238 			 * new_i_size is less that inode->i_size
3239 			 * bu greater than i_disksize.(hint delalloc)
3240 			 */
3241 			ext4_mark_inode_dirty(handle, inode);
3242 		}
3243 	}
3244 	ret2 = generic_write_end(file, mapping, pos, len, copied,
3245 							page, fsdata);
3246 	copied = ret2;
3247 	if (ret2 < 0)
3248 		ret = ret2;
3249 	ret2 = ext4_journal_stop(handle);
3250 	if (!ret)
3251 		ret = ret2;
3252 
3253 	return ret ? ret : copied;
3254 }
3255 
3256 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3257 {
3258 	/*
3259 	 * Drop reserved blocks
3260 	 */
3261 	BUG_ON(!PageLocked(page));
3262 	if (!page_has_buffers(page))
3263 		goto out;
3264 
3265 	ext4_da_page_release_reservation(page, offset);
3266 
3267 out:
3268 	ext4_invalidatepage(page, offset);
3269 
3270 	return;
3271 }
3272 
3273 /*
3274  * Force all delayed allocation blocks to be allocated for a given inode.
3275  */
3276 int ext4_alloc_da_blocks(struct inode *inode)
3277 {
3278 	trace_ext4_alloc_da_blocks(inode);
3279 
3280 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
3281 	    !EXT4_I(inode)->i_reserved_meta_blocks)
3282 		return 0;
3283 
3284 	/*
3285 	 * We do something simple for now.  The filemap_flush() will
3286 	 * also start triggering a write of the data blocks, which is
3287 	 * not strictly speaking necessary (and for users of
3288 	 * laptop_mode, not even desirable).  However, to do otherwise
3289 	 * would require replicating code paths in:
3290 	 *
3291 	 * ext4_da_writepages() ->
3292 	 *    write_cache_pages() ---> (via passed in callback function)
3293 	 *        __mpage_da_writepage() -->
3294 	 *           mpage_add_bh_to_extent()
3295 	 *           mpage_da_map_blocks()
3296 	 *
3297 	 * The problem is that write_cache_pages(), located in
3298 	 * mm/page-writeback.c, marks pages clean in preparation for
3299 	 * doing I/O, which is not desirable if we're not planning on
3300 	 * doing I/O at all.
3301 	 *
3302 	 * We could call write_cache_pages(), and then redirty all of
3303 	 * the pages by calling redirty_page_for_writepage() but that
3304 	 * would be ugly in the extreme.  So instead we would need to
3305 	 * replicate parts of the code in the above functions,
3306 	 * simplifying them because we wouldn't actually intend to
3307 	 * write out the pages, but rather only collect contiguous
3308 	 * logical block extents, call the multi-block allocator, and
3309 	 * then update the buffer heads with the block allocations.
3310 	 *
3311 	 * For now, though, we'll cheat by calling filemap_flush(),
3312 	 * which will map the blocks, and start the I/O, but not
3313 	 * actually wait for the I/O to complete.
3314 	 */
3315 	return filemap_flush(inode->i_mapping);
3316 }
3317 
3318 /*
3319  * bmap() is special.  It gets used by applications such as lilo and by
3320  * the swapper to find the on-disk block of a specific piece of data.
3321  *
3322  * Naturally, this is dangerous if the block concerned is still in the
3323  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3324  * filesystem and enables swap, then they may get a nasty shock when the
3325  * data getting swapped to that swapfile suddenly gets overwritten by
3326  * the original zero's written out previously to the journal and
3327  * awaiting writeback in the kernel's buffer cache.
3328  *
3329  * So, if we see any bmap calls here on a modified, data-journaled file,
3330  * take extra steps to flush any blocks which might be in the cache.
3331  */
3332 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3333 {
3334 	struct inode *inode = mapping->host;
3335 	journal_t *journal;
3336 	int err;
3337 
3338 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3339 			test_opt(inode->i_sb, DELALLOC)) {
3340 		/*
3341 		 * With delalloc we want to sync the file
3342 		 * so that we can make sure we allocate
3343 		 * blocks for file
3344 		 */
3345 		filemap_write_and_wait(mapping);
3346 	}
3347 
3348 	if (EXT4_JOURNAL(inode) &&
3349 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3350 		/*
3351 		 * This is a REALLY heavyweight approach, but the use of
3352 		 * bmap on dirty files is expected to be extremely rare:
3353 		 * only if we run lilo or swapon on a freshly made file
3354 		 * do we expect this to happen.
3355 		 *
3356 		 * (bmap requires CAP_SYS_RAWIO so this does not
3357 		 * represent an unprivileged user DOS attack --- we'd be
3358 		 * in trouble if mortal users could trigger this path at
3359 		 * will.)
3360 		 *
3361 		 * NB. EXT4_STATE_JDATA is not set on files other than
3362 		 * regular files.  If somebody wants to bmap a directory
3363 		 * or symlink and gets confused because the buffer
3364 		 * hasn't yet been flushed to disk, they deserve
3365 		 * everything they get.
3366 		 */
3367 
3368 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3369 		journal = EXT4_JOURNAL(inode);
3370 		jbd2_journal_lock_updates(journal);
3371 		err = jbd2_journal_flush(journal);
3372 		jbd2_journal_unlock_updates(journal);
3373 
3374 		if (err)
3375 			return 0;
3376 	}
3377 
3378 	return generic_block_bmap(mapping, block, ext4_get_block);
3379 }
3380 
3381 static int ext4_readpage(struct file *file, struct page *page)
3382 {
3383 	trace_ext4_readpage(page);
3384 	return mpage_readpage(page, ext4_get_block);
3385 }
3386 
3387 static int
3388 ext4_readpages(struct file *file, struct address_space *mapping,
3389 		struct list_head *pages, unsigned nr_pages)
3390 {
3391 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3392 }
3393 
3394 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3395 {
3396 	struct buffer_head *head, *bh;
3397 	unsigned int curr_off = 0;
3398 
3399 	if (!page_has_buffers(page))
3400 		return;
3401 	head = bh = page_buffers(page);
3402 	do {
3403 		if (offset <= curr_off && test_clear_buffer_uninit(bh)
3404 					&& bh->b_private) {
3405 			ext4_free_io_end(bh->b_private);
3406 			bh->b_private = NULL;
3407 			bh->b_end_io = NULL;
3408 		}
3409 		curr_off = curr_off + bh->b_size;
3410 		bh = bh->b_this_page;
3411 	} while (bh != head);
3412 }
3413 
3414 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3415 {
3416 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3417 
3418 	trace_ext4_invalidatepage(page, offset);
3419 
3420 	/*
3421 	 * free any io_end structure allocated for buffers to be discarded
3422 	 */
3423 	if (ext4_should_dioread_nolock(page->mapping->host))
3424 		ext4_invalidatepage_free_endio(page, offset);
3425 	/*
3426 	 * If it's a full truncate we just forget about the pending dirtying
3427 	 */
3428 	if (offset == 0)
3429 		ClearPageChecked(page);
3430 
3431 	if (journal)
3432 		jbd2_journal_invalidatepage(journal, page, offset);
3433 	else
3434 		block_invalidatepage(page, offset);
3435 }
3436 
3437 static int ext4_releasepage(struct page *page, gfp_t wait)
3438 {
3439 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3440 
3441 	trace_ext4_releasepage(page);
3442 
3443 	WARN_ON(PageChecked(page));
3444 	if (!page_has_buffers(page))
3445 		return 0;
3446 	if (journal)
3447 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3448 	else
3449 		return try_to_free_buffers(page);
3450 }
3451 
3452 /*
3453  * O_DIRECT for ext3 (or indirect map) based files
3454  *
3455  * If the O_DIRECT write will extend the file then add this inode to the
3456  * orphan list.  So recovery will truncate it back to the original size
3457  * if the machine crashes during the write.
3458  *
3459  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3460  * crashes then stale disk data _may_ be exposed inside the file. But current
3461  * VFS code falls back into buffered path in that case so we are safe.
3462  */
3463 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3464 			      const struct iovec *iov, loff_t offset,
3465 			      unsigned long nr_segs)
3466 {
3467 	struct file *file = iocb->ki_filp;
3468 	struct inode *inode = file->f_mapping->host;
3469 	struct ext4_inode_info *ei = EXT4_I(inode);
3470 	handle_t *handle;
3471 	ssize_t ret;
3472 	int orphan = 0;
3473 	size_t count = iov_length(iov, nr_segs);
3474 	int retries = 0;
3475 
3476 	if (rw == WRITE) {
3477 		loff_t final_size = offset + count;
3478 
3479 		if (final_size > inode->i_size) {
3480 			/* Credits for sb + inode write */
3481 			handle = ext4_journal_start(inode, 2);
3482 			if (IS_ERR(handle)) {
3483 				ret = PTR_ERR(handle);
3484 				goto out;
3485 			}
3486 			ret = ext4_orphan_add(handle, inode);
3487 			if (ret) {
3488 				ext4_journal_stop(handle);
3489 				goto out;
3490 			}
3491 			orphan = 1;
3492 			ei->i_disksize = inode->i_size;
3493 			ext4_journal_stop(handle);
3494 		}
3495 	}
3496 
3497 retry:
3498 	if (rw == READ && ext4_should_dioread_nolock(inode))
3499 		ret = __blockdev_direct_IO(rw, iocb, inode,
3500 				 inode->i_sb->s_bdev, iov,
3501 				 offset, nr_segs,
3502 				 ext4_get_block, NULL, NULL, 0);
3503 	else {
3504 		ret = blockdev_direct_IO(rw, iocb, inode, iov,
3505 				 offset, nr_segs, ext4_get_block);
3506 
3507 		if (unlikely((rw & WRITE) && ret < 0)) {
3508 			loff_t isize = i_size_read(inode);
3509 			loff_t end = offset + iov_length(iov, nr_segs);
3510 
3511 			if (end > isize)
3512 				ext4_truncate_failed_write(inode);
3513 		}
3514 	}
3515 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3516 		goto retry;
3517 
3518 	if (orphan) {
3519 		int err;
3520 
3521 		/* Credits for sb + inode write */
3522 		handle = ext4_journal_start(inode, 2);
3523 		if (IS_ERR(handle)) {
3524 			/* This is really bad luck. We've written the data
3525 			 * but cannot extend i_size. Bail out and pretend
3526 			 * the write failed... */
3527 			ret = PTR_ERR(handle);
3528 			if (inode->i_nlink)
3529 				ext4_orphan_del(NULL, inode);
3530 
3531 			goto out;
3532 		}
3533 		if (inode->i_nlink)
3534 			ext4_orphan_del(handle, inode);
3535 		if (ret > 0) {
3536 			loff_t end = offset + ret;
3537 			if (end > inode->i_size) {
3538 				ei->i_disksize = end;
3539 				i_size_write(inode, end);
3540 				/*
3541 				 * We're going to return a positive `ret'
3542 				 * here due to non-zero-length I/O, so there's
3543 				 * no way of reporting error returns from
3544 				 * ext4_mark_inode_dirty() to userspace.  So
3545 				 * ignore it.
3546 				 */
3547 				ext4_mark_inode_dirty(handle, inode);
3548 			}
3549 		}
3550 		err = ext4_journal_stop(handle);
3551 		if (ret == 0)
3552 			ret = err;
3553 	}
3554 out:
3555 	return ret;
3556 }
3557 
3558 /*
3559  * ext4_get_block used when preparing for a DIO write or buffer write.
3560  * We allocate an uinitialized extent if blocks haven't been allocated.
3561  * The extent will be converted to initialized after the IO is complete.
3562  */
3563 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3564 		   struct buffer_head *bh_result, int create)
3565 {
3566 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3567 		   inode->i_ino, create);
3568 	return _ext4_get_block(inode, iblock, bh_result,
3569 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3570 }
3571 
3572 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3573 			    ssize_t size, void *private, int ret,
3574 			    bool is_async)
3575 {
3576 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
3577         ext4_io_end_t *io_end = iocb->private;
3578 	struct workqueue_struct *wq;
3579 	unsigned long flags;
3580 	struct ext4_inode_info *ei;
3581 
3582 	/* if not async direct IO or dio with 0 bytes write, just return */
3583 	if (!io_end || !size)
3584 		goto out;
3585 
3586 	ext_debug("ext4_end_io_dio(): io_end 0x%p"
3587 		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3588  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3589 		  size);
3590 
3591 	/* if not aio dio with unwritten extents, just free io and return */
3592 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3593 		ext4_free_io_end(io_end);
3594 		iocb->private = NULL;
3595 out:
3596 		if (is_async)
3597 			aio_complete(iocb, ret, 0);
3598 		inode_dio_done(inode);
3599 		return;
3600 	}
3601 
3602 	io_end->offset = offset;
3603 	io_end->size = size;
3604 	if (is_async) {
3605 		io_end->iocb = iocb;
3606 		io_end->result = ret;
3607 	}
3608 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3609 
3610 	/* Add the io_end to per-inode completed aio dio list*/
3611 	ei = EXT4_I(io_end->inode);
3612 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3613 	list_add_tail(&io_end->list, &ei->i_completed_io_list);
3614 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3615 
3616 	/* queue the work to convert unwritten extents to written */
3617 	queue_work(wq, &io_end->work);
3618 	iocb->private = NULL;
3619 
3620 	/* XXX: probably should move into the real I/O completion handler */
3621 	inode_dio_done(inode);
3622 }
3623 
3624 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3625 {
3626 	ext4_io_end_t *io_end = bh->b_private;
3627 	struct workqueue_struct *wq;
3628 	struct inode *inode;
3629 	unsigned long flags;
3630 
3631 	if (!test_clear_buffer_uninit(bh) || !io_end)
3632 		goto out;
3633 
3634 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3635 		printk("sb umounted, discard end_io request for inode %lu\n",
3636 			io_end->inode->i_ino);
3637 		ext4_free_io_end(io_end);
3638 		goto out;
3639 	}
3640 
3641 	io_end->flag = EXT4_IO_END_UNWRITTEN;
3642 	inode = io_end->inode;
3643 
3644 	/* Add the io_end to per-inode completed io list*/
3645 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3646 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3647 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3648 
3649 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3650 	/* queue the work to convert unwritten extents to written */
3651 	queue_work(wq, &io_end->work);
3652 out:
3653 	bh->b_private = NULL;
3654 	bh->b_end_io = NULL;
3655 	clear_buffer_uninit(bh);
3656 	end_buffer_async_write(bh, uptodate);
3657 }
3658 
3659 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3660 {
3661 	ext4_io_end_t *io_end;
3662 	struct page *page = bh->b_page;
3663 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3664 	size_t size = bh->b_size;
3665 
3666 retry:
3667 	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3668 	if (!io_end) {
3669 		pr_warn_ratelimited("%s: allocation fail\n", __func__);
3670 		schedule();
3671 		goto retry;
3672 	}
3673 	io_end->offset = offset;
3674 	io_end->size = size;
3675 	/*
3676 	 * We need to hold a reference to the page to make sure it
3677 	 * doesn't get evicted before ext4_end_io_work() has a chance
3678 	 * to convert the extent from written to unwritten.
3679 	 */
3680 	io_end->page = page;
3681 	get_page(io_end->page);
3682 
3683 	bh->b_private = io_end;
3684 	bh->b_end_io = ext4_end_io_buffer_write;
3685 	return 0;
3686 }
3687 
3688 /*
3689  * For ext4 extent files, ext4 will do direct-io write to holes,
3690  * preallocated extents, and those write extend the file, no need to
3691  * fall back to buffered IO.
3692  *
3693  * For holes, we fallocate those blocks, mark them as uninitialized
3694  * If those blocks were preallocated, we mark sure they are splited, but
3695  * still keep the range to write as uninitialized.
3696  *
3697  * The unwrritten extents will be converted to written when DIO is completed.
3698  * For async direct IO, since the IO may still pending when return, we
3699  * set up an end_io call back function, which will do the conversion
3700  * when async direct IO completed.
3701  *
3702  * If the O_DIRECT write will extend the file then add this inode to the
3703  * orphan list.  So recovery will truncate it back to the original size
3704  * if the machine crashes during the write.
3705  *
3706  */
3707 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3708 			      const struct iovec *iov, loff_t offset,
3709 			      unsigned long nr_segs)
3710 {
3711 	struct file *file = iocb->ki_filp;
3712 	struct inode *inode = file->f_mapping->host;
3713 	ssize_t ret;
3714 	size_t count = iov_length(iov, nr_segs);
3715 
3716 	loff_t final_size = offset + count;
3717 	if (rw == WRITE && final_size <= inode->i_size) {
3718 		/*
3719  		 * We could direct write to holes and fallocate.
3720 		 *
3721  		 * Allocated blocks to fill the hole are marked as uninitialized
3722  		 * to prevent parallel buffered read to expose the stale data
3723  		 * before DIO complete the data IO.
3724 		 *
3725  		 * As to previously fallocated extents, ext4 get_block
3726  		 * will just simply mark the buffer mapped but still
3727  		 * keep the extents uninitialized.
3728  		 *
3729 		 * for non AIO case, we will convert those unwritten extents
3730 		 * to written after return back from blockdev_direct_IO.
3731 		 *
3732 		 * for async DIO, the conversion needs to be defered when
3733 		 * the IO is completed. The ext4 end_io callback function
3734 		 * will be called to take care of the conversion work.
3735 		 * Here for async case, we allocate an io_end structure to
3736 		 * hook to the iocb.
3737  		 */
3738 		iocb->private = NULL;
3739 		EXT4_I(inode)->cur_aio_dio = NULL;
3740 		if (!is_sync_kiocb(iocb)) {
3741 			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3742 			if (!iocb->private)
3743 				return -ENOMEM;
3744 			/*
3745 			 * we save the io structure for current async
3746 			 * direct IO, so that later ext4_map_blocks()
3747 			 * could flag the io structure whether there
3748 			 * is a unwritten extents needs to be converted
3749 			 * when IO is completed.
3750 			 */
3751 			EXT4_I(inode)->cur_aio_dio = iocb->private;
3752 		}
3753 
3754 		ret = __blockdev_direct_IO(rw, iocb, inode,
3755 					 inode->i_sb->s_bdev, iov,
3756 					 offset, nr_segs,
3757 					 ext4_get_block_write,
3758 					 ext4_end_io_dio,
3759 					 NULL,
3760 					 DIO_LOCKING | DIO_SKIP_HOLES);
3761 		if (iocb->private)
3762 			EXT4_I(inode)->cur_aio_dio = NULL;
3763 		/*
3764 		 * The io_end structure takes a reference to the inode,
3765 		 * that structure needs to be destroyed and the
3766 		 * reference to the inode need to be dropped, when IO is
3767 		 * complete, even with 0 byte write, or failed.
3768 		 *
3769 		 * In the successful AIO DIO case, the io_end structure will be
3770 		 * desctroyed and the reference to the inode will be dropped
3771 		 * after the end_io call back function is called.
3772 		 *
3773 		 * In the case there is 0 byte write, or error case, since
3774 		 * VFS direct IO won't invoke the end_io call back function,
3775 		 * we need to free the end_io structure here.
3776 		 */
3777 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3778 			ext4_free_io_end(iocb->private);
3779 			iocb->private = NULL;
3780 		} else if (ret > 0 && ext4_test_inode_state(inode,
3781 						EXT4_STATE_DIO_UNWRITTEN)) {
3782 			int err;
3783 			/*
3784 			 * for non AIO case, since the IO is already
3785 			 * completed, we could do the conversion right here
3786 			 */
3787 			err = ext4_convert_unwritten_extents(inode,
3788 							     offset, ret);
3789 			if (err < 0)
3790 				ret = err;
3791 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3792 		}
3793 		return ret;
3794 	}
3795 
3796 	/* for write the the end of file case, we fall back to old way */
3797 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3798 }
3799 
3800 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3801 			      const struct iovec *iov, loff_t offset,
3802 			      unsigned long nr_segs)
3803 {
3804 	struct file *file = iocb->ki_filp;
3805 	struct inode *inode = file->f_mapping->host;
3806 	ssize_t ret;
3807 
3808 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3809 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3810 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3811 	else
3812 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3813 	trace_ext4_direct_IO_exit(inode, offset,
3814 				iov_length(iov, nr_segs), rw, ret);
3815 	return ret;
3816 }
3817 
3818 /*
3819  * Pages can be marked dirty completely asynchronously from ext4's journalling
3820  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3821  * much here because ->set_page_dirty is called under VFS locks.  The page is
3822  * not necessarily locked.
3823  *
3824  * We cannot just dirty the page and leave attached buffers clean, because the
3825  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3826  * or jbddirty because all the journalling code will explode.
3827  *
3828  * So what we do is to mark the page "pending dirty" and next time writepage
3829  * is called, propagate that into the buffers appropriately.
3830  */
3831 static int ext4_journalled_set_page_dirty(struct page *page)
3832 {
3833 	SetPageChecked(page);
3834 	return __set_page_dirty_nobuffers(page);
3835 }
3836 
3837 static const struct address_space_operations ext4_ordered_aops = {
3838 	.readpage		= ext4_readpage,
3839 	.readpages		= ext4_readpages,
3840 	.writepage		= ext4_writepage,
3841 	.write_begin		= ext4_write_begin,
3842 	.write_end		= ext4_ordered_write_end,
3843 	.bmap			= ext4_bmap,
3844 	.invalidatepage		= ext4_invalidatepage,
3845 	.releasepage		= ext4_releasepage,
3846 	.direct_IO		= ext4_direct_IO,
3847 	.migratepage		= buffer_migrate_page,
3848 	.is_partially_uptodate  = block_is_partially_uptodate,
3849 	.error_remove_page	= generic_error_remove_page,
3850 };
3851 
3852 static const struct address_space_operations ext4_writeback_aops = {
3853 	.readpage		= ext4_readpage,
3854 	.readpages		= ext4_readpages,
3855 	.writepage		= ext4_writepage,
3856 	.write_begin		= ext4_write_begin,
3857 	.write_end		= ext4_writeback_write_end,
3858 	.bmap			= ext4_bmap,
3859 	.invalidatepage		= ext4_invalidatepage,
3860 	.releasepage		= ext4_releasepage,
3861 	.direct_IO		= ext4_direct_IO,
3862 	.migratepage		= buffer_migrate_page,
3863 	.is_partially_uptodate  = block_is_partially_uptodate,
3864 	.error_remove_page	= generic_error_remove_page,
3865 };
3866 
3867 static const struct address_space_operations ext4_journalled_aops = {
3868 	.readpage		= ext4_readpage,
3869 	.readpages		= ext4_readpages,
3870 	.writepage		= ext4_writepage,
3871 	.write_begin		= ext4_write_begin,
3872 	.write_end		= ext4_journalled_write_end,
3873 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3874 	.bmap			= ext4_bmap,
3875 	.invalidatepage		= ext4_invalidatepage,
3876 	.releasepage		= ext4_releasepage,
3877 	.is_partially_uptodate  = block_is_partially_uptodate,
3878 	.error_remove_page	= generic_error_remove_page,
3879 };
3880 
3881 static const struct address_space_operations ext4_da_aops = {
3882 	.readpage		= ext4_readpage,
3883 	.readpages		= ext4_readpages,
3884 	.writepage		= ext4_writepage,
3885 	.writepages		= ext4_da_writepages,
3886 	.write_begin		= ext4_da_write_begin,
3887 	.write_end		= ext4_da_write_end,
3888 	.bmap			= ext4_bmap,
3889 	.invalidatepage		= ext4_da_invalidatepage,
3890 	.releasepage		= ext4_releasepage,
3891 	.direct_IO		= ext4_direct_IO,
3892 	.migratepage		= buffer_migrate_page,
3893 	.is_partially_uptodate  = block_is_partially_uptodate,
3894 	.error_remove_page	= generic_error_remove_page,
3895 };
3896 
3897 void ext4_set_aops(struct inode *inode)
3898 {
3899 	if (ext4_should_order_data(inode) &&
3900 		test_opt(inode->i_sb, DELALLOC))
3901 		inode->i_mapping->a_ops = &ext4_da_aops;
3902 	else if (ext4_should_order_data(inode))
3903 		inode->i_mapping->a_ops = &ext4_ordered_aops;
3904 	else if (ext4_should_writeback_data(inode) &&
3905 		 test_opt(inode->i_sb, DELALLOC))
3906 		inode->i_mapping->a_ops = &ext4_da_aops;
3907 	else if (ext4_should_writeback_data(inode))
3908 		inode->i_mapping->a_ops = &ext4_writeback_aops;
3909 	else
3910 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3911 }
3912 
3913 /*
3914  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3915  * up to the end of the block which corresponds to `from'.
3916  * This required during truncate. We need to physically zero the tail end
3917  * of that block so it doesn't yield old data if the file is later grown.
3918  */
3919 int ext4_block_truncate_page(handle_t *handle,
3920 		struct address_space *mapping, loff_t from)
3921 {
3922 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3923 	unsigned length;
3924 	unsigned blocksize;
3925 	struct inode *inode = mapping->host;
3926 
3927 	blocksize = inode->i_sb->s_blocksize;
3928 	length = blocksize - (offset & (blocksize - 1));
3929 
3930 	return ext4_block_zero_page_range(handle, mapping, from, length);
3931 }
3932 
3933 /*
3934  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3935  * starting from file offset 'from'.  The range to be zero'd must
3936  * be contained with in one block.  If the specified range exceeds
3937  * the end of the block it will be shortened to end of the block
3938  * that cooresponds to 'from'
3939  */
3940 int ext4_block_zero_page_range(handle_t *handle,
3941 		struct address_space *mapping, loff_t from, loff_t length)
3942 {
3943 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3944 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3945 	unsigned blocksize, max, pos;
3946 	ext4_lblk_t iblock;
3947 	struct inode *inode = mapping->host;
3948 	struct buffer_head *bh;
3949 	struct page *page;
3950 	int err = 0;
3951 
3952 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3953 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3954 	if (!page)
3955 		return -EINVAL;
3956 
3957 	blocksize = inode->i_sb->s_blocksize;
3958 	max = blocksize - (offset & (blocksize - 1));
3959 
3960 	/*
3961 	 * correct length if it does not fall between
3962 	 * 'from' and the end of the block
3963 	 */
3964 	if (length > max || length < 0)
3965 		length = max;
3966 
3967 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3968 
3969 	if (!page_has_buffers(page))
3970 		create_empty_buffers(page, blocksize, 0);
3971 
3972 	/* Find the buffer that contains "offset" */
3973 	bh = page_buffers(page);
3974 	pos = blocksize;
3975 	while (offset >= pos) {
3976 		bh = bh->b_this_page;
3977 		iblock++;
3978 		pos += blocksize;
3979 	}
3980 
3981 	err = 0;
3982 	if (buffer_freed(bh)) {
3983 		BUFFER_TRACE(bh, "freed: skip");
3984 		goto unlock;
3985 	}
3986 
3987 	if (!buffer_mapped(bh)) {
3988 		BUFFER_TRACE(bh, "unmapped");
3989 		ext4_get_block(inode, iblock, bh, 0);
3990 		/* unmapped? It's a hole - nothing to do */
3991 		if (!buffer_mapped(bh)) {
3992 			BUFFER_TRACE(bh, "still unmapped");
3993 			goto unlock;
3994 		}
3995 	}
3996 
3997 	/* Ok, it's mapped. Make sure it's up-to-date */
3998 	if (PageUptodate(page))
3999 		set_buffer_uptodate(bh);
4000 
4001 	if (!buffer_uptodate(bh)) {
4002 		err = -EIO;
4003 		ll_rw_block(READ, 1, &bh);
4004 		wait_on_buffer(bh);
4005 		/* Uhhuh. Read error. Complain and punt. */
4006 		if (!buffer_uptodate(bh))
4007 			goto unlock;
4008 	}
4009 
4010 	if (ext4_should_journal_data(inode)) {
4011 		BUFFER_TRACE(bh, "get write access");
4012 		err = ext4_journal_get_write_access(handle, bh);
4013 		if (err)
4014 			goto unlock;
4015 	}
4016 
4017 	zero_user(page, offset, length);
4018 
4019 	BUFFER_TRACE(bh, "zeroed end of block");
4020 
4021 	err = 0;
4022 	if (ext4_should_journal_data(inode)) {
4023 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4024 	} else {
4025 		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
4026 			err = ext4_jbd2_file_inode(handle, inode);
4027 		mark_buffer_dirty(bh);
4028 	}
4029 
4030 unlock:
4031 	unlock_page(page);
4032 	page_cache_release(page);
4033 	return err;
4034 }
4035 
4036 /*
4037  * Probably it should be a library function... search for first non-zero word
4038  * or memcmp with zero_page, whatever is better for particular architecture.
4039  * Linus?
4040  */
4041 static inline int all_zeroes(__le32 *p, __le32 *q)
4042 {
4043 	while (p < q)
4044 		if (*p++)
4045 			return 0;
4046 	return 1;
4047 }
4048 
4049 /**
4050  *	ext4_find_shared - find the indirect blocks for partial truncation.
4051  *	@inode:	  inode in question
4052  *	@depth:	  depth of the affected branch
4053  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4054  *	@chain:	  place to store the pointers to partial indirect blocks
4055  *	@top:	  place to the (detached) top of branch
4056  *
4057  *	This is a helper function used by ext4_truncate().
4058  *
4059  *	When we do truncate() we may have to clean the ends of several
4060  *	indirect blocks but leave the blocks themselves alive. Block is
4061  *	partially truncated if some data below the new i_size is referred
4062  *	from it (and it is on the path to the first completely truncated
4063  *	data block, indeed).  We have to free the top of that path along
4064  *	with everything to the right of the path. Since no allocation
4065  *	past the truncation point is possible until ext4_truncate()
4066  *	finishes, we may safely do the latter, but top of branch may
4067  *	require special attention - pageout below the truncation point
4068  *	might try to populate it.
4069  *
4070  *	We atomically detach the top of branch from the tree, store the
4071  *	block number of its root in *@top, pointers to buffer_heads of
4072  *	partially truncated blocks - in @chain[].bh and pointers to
4073  *	their last elements that should not be removed - in
4074  *	@chain[].p. Return value is the pointer to last filled element
4075  *	of @chain.
4076  *
4077  *	The work left to caller to do the actual freeing of subtrees:
4078  *		a) free the subtree starting from *@top
4079  *		b) free the subtrees whose roots are stored in
4080  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
4081  *		c) free the subtrees growing from the inode past the @chain[0].
4082  *			(no partially truncated stuff there).  */
4083 
4084 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4085 				  ext4_lblk_t offsets[4], Indirect chain[4],
4086 				  __le32 *top)
4087 {
4088 	Indirect *partial, *p;
4089 	int k, err;
4090 
4091 	*top = 0;
4092 	/* Make k index the deepest non-null offset + 1 */
4093 	for (k = depth; k > 1 && !offsets[k-1]; k--)
4094 		;
4095 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4096 	/* Writer: pointers */
4097 	if (!partial)
4098 		partial = chain + k-1;
4099 	/*
4100 	 * If the branch acquired continuation since we've looked at it -
4101 	 * fine, it should all survive and (new) top doesn't belong to us.
4102 	 */
4103 	if (!partial->key && *partial->p)
4104 		/* Writer: end */
4105 		goto no_top;
4106 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4107 		;
4108 	/*
4109 	 * OK, we've found the last block that must survive. The rest of our
4110 	 * branch should be detached before unlocking. However, if that rest
4111 	 * of branch is all ours and does not grow immediately from the inode
4112 	 * it's easier to cheat and just decrement partial->p.
4113 	 */
4114 	if (p == chain + k - 1 && p > chain) {
4115 		p->p--;
4116 	} else {
4117 		*top = *p->p;
4118 		/* Nope, don't do this in ext4.  Must leave the tree intact */
4119 #if 0
4120 		*p->p = 0;
4121 #endif
4122 	}
4123 	/* Writer: end */
4124 
4125 	while (partial > p) {
4126 		brelse(partial->bh);
4127 		partial--;
4128 	}
4129 no_top:
4130 	return partial;
4131 }
4132 
4133 /*
4134  * Zero a number of block pointers in either an inode or an indirect block.
4135  * If we restart the transaction we must again get write access to the
4136  * indirect block for further modification.
4137  *
4138  * We release `count' blocks on disk, but (last - first) may be greater
4139  * than `count' because there can be holes in there.
4140  *
4141  * Return 0 on success, 1 on invalid block range
4142  * and < 0 on fatal error.
4143  */
4144 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4145 			     struct buffer_head *bh,
4146 			     ext4_fsblk_t block_to_free,
4147 			     unsigned long count, __le32 *first,
4148 			     __le32 *last)
4149 {
4150 	__le32 *p;
4151 	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4152 	int	err;
4153 
4154 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4155 		flags |= EXT4_FREE_BLOCKS_METADATA;
4156 
4157 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4158 				   count)) {
4159 		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4160 				 "blocks %llu len %lu",
4161 				 (unsigned long long) block_to_free, count);
4162 		return 1;
4163 	}
4164 
4165 	if (try_to_extend_transaction(handle, inode)) {
4166 		if (bh) {
4167 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4168 			err = ext4_handle_dirty_metadata(handle, inode, bh);
4169 			if (unlikely(err))
4170 				goto out_err;
4171 		}
4172 		err = ext4_mark_inode_dirty(handle, inode);
4173 		if (unlikely(err))
4174 			goto out_err;
4175 		err = ext4_truncate_restart_trans(handle, inode,
4176 						  blocks_for_truncate(inode));
4177 		if (unlikely(err))
4178 			goto out_err;
4179 		if (bh) {
4180 			BUFFER_TRACE(bh, "retaking write access");
4181 			err = ext4_journal_get_write_access(handle, bh);
4182 			if (unlikely(err))
4183 				goto out_err;
4184 		}
4185 	}
4186 
4187 	for (p = first; p < last; p++)
4188 		*p = 0;
4189 
4190 	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4191 	return 0;
4192 out_err:
4193 	ext4_std_error(inode->i_sb, err);
4194 	return err;
4195 }
4196 
4197 /**
4198  * ext4_free_data - free a list of data blocks
4199  * @handle:	handle for this transaction
4200  * @inode:	inode we are dealing with
4201  * @this_bh:	indirect buffer_head which contains *@first and *@last
4202  * @first:	array of block numbers
4203  * @last:	points immediately past the end of array
4204  *
4205  * We are freeing all blocks referred from that array (numbers are stored as
4206  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4207  *
4208  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4209  * blocks are contiguous then releasing them at one time will only affect one
4210  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4211  * actually use a lot of journal space.
4212  *
4213  * @this_bh will be %NULL if @first and @last point into the inode's direct
4214  * block pointers.
4215  */
4216 static void ext4_free_data(handle_t *handle, struct inode *inode,
4217 			   struct buffer_head *this_bh,
4218 			   __le32 *first, __le32 *last)
4219 {
4220 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4221 	unsigned long count = 0;	    /* Number of blocks in the run */
4222 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
4223 					       corresponding to
4224 					       block_to_free */
4225 	ext4_fsblk_t nr;		    /* Current block # */
4226 	__le32 *p;			    /* Pointer into inode/ind
4227 					       for current block */
4228 	int err = 0;
4229 
4230 	if (this_bh) {				/* For indirect block */
4231 		BUFFER_TRACE(this_bh, "get_write_access");
4232 		err = ext4_journal_get_write_access(handle, this_bh);
4233 		/* Important: if we can't update the indirect pointers
4234 		 * to the blocks, we can't free them. */
4235 		if (err)
4236 			return;
4237 	}
4238 
4239 	for (p = first; p < last; p++) {
4240 		nr = le32_to_cpu(*p);
4241 		if (nr) {
4242 			/* accumulate blocks to free if they're contiguous */
4243 			if (count == 0) {
4244 				block_to_free = nr;
4245 				block_to_free_p = p;
4246 				count = 1;
4247 			} else if (nr == block_to_free + count) {
4248 				count++;
4249 			} else {
4250 				err = ext4_clear_blocks(handle, inode, this_bh,
4251 						        block_to_free, count,
4252 						        block_to_free_p, p);
4253 				if (err)
4254 					break;
4255 				block_to_free = nr;
4256 				block_to_free_p = p;
4257 				count = 1;
4258 			}
4259 		}
4260 	}
4261 
4262 	if (!err && count > 0)
4263 		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4264 					count, block_to_free_p, p);
4265 	if (err < 0)
4266 		/* fatal error */
4267 		return;
4268 
4269 	if (this_bh) {
4270 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4271 
4272 		/*
4273 		 * The buffer head should have an attached journal head at this
4274 		 * point. However, if the data is corrupted and an indirect
4275 		 * block pointed to itself, it would have been detached when
4276 		 * the block was cleared. Check for this instead of OOPSing.
4277 		 */
4278 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4279 			ext4_handle_dirty_metadata(handle, inode, this_bh);
4280 		else
4281 			EXT4_ERROR_INODE(inode,
4282 					 "circular indirect block detected at "
4283 					 "block %llu",
4284 				(unsigned long long) this_bh->b_blocknr);
4285 	}
4286 }
4287 
4288 /**
4289  *	ext4_free_branches - free an array of branches
4290  *	@handle: JBD handle for this transaction
4291  *	@inode:	inode we are dealing with
4292  *	@parent_bh: the buffer_head which contains *@first and *@last
4293  *	@first:	array of block numbers
4294  *	@last:	pointer immediately past the end of array
4295  *	@depth:	depth of the branches to free
4296  *
4297  *	We are freeing all blocks referred from these branches (numbers are
4298  *	stored as little-endian 32-bit) and updating @inode->i_blocks
4299  *	appropriately.
4300  */
4301 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4302 			       struct buffer_head *parent_bh,
4303 			       __le32 *first, __le32 *last, int depth)
4304 {
4305 	ext4_fsblk_t nr;
4306 	__le32 *p;
4307 
4308 	if (ext4_handle_is_aborted(handle))
4309 		return;
4310 
4311 	if (depth--) {
4312 		struct buffer_head *bh;
4313 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4314 		p = last;
4315 		while (--p >= first) {
4316 			nr = le32_to_cpu(*p);
4317 			if (!nr)
4318 				continue;		/* A hole */
4319 
4320 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4321 						   nr, 1)) {
4322 				EXT4_ERROR_INODE(inode,
4323 						 "invalid indirect mapped "
4324 						 "block %lu (level %d)",
4325 						 (unsigned long) nr, depth);
4326 				break;
4327 			}
4328 
4329 			/* Go read the buffer for the next level down */
4330 			bh = sb_bread(inode->i_sb, nr);
4331 
4332 			/*
4333 			 * A read failure? Report error and clear slot
4334 			 * (should be rare).
4335 			 */
4336 			if (!bh) {
4337 				EXT4_ERROR_INODE_BLOCK(inode, nr,
4338 						       "Read failure");
4339 				continue;
4340 			}
4341 
4342 			/* This zaps the entire block.  Bottom up. */
4343 			BUFFER_TRACE(bh, "free child branches");
4344 			ext4_free_branches(handle, inode, bh,
4345 					(__le32 *) bh->b_data,
4346 					(__le32 *) bh->b_data + addr_per_block,
4347 					depth);
4348 			brelse(bh);
4349 
4350 			/*
4351 			 * Everything below this this pointer has been
4352 			 * released.  Now let this top-of-subtree go.
4353 			 *
4354 			 * We want the freeing of this indirect block to be
4355 			 * atomic in the journal with the updating of the
4356 			 * bitmap block which owns it.  So make some room in
4357 			 * the journal.
4358 			 *
4359 			 * We zero the parent pointer *after* freeing its
4360 			 * pointee in the bitmaps, so if extend_transaction()
4361 			 * for some reason fails to put the bitmap changes and
4362 			 * the release into the same transaction, recovery
4363 			 * will merely complain about releasing a free block,
4364 			 * rather than leaking blocks.
4365 			 */
4366 			if (ext4_handle_is_aborted(handle))
4367 				return;
4368 			if (try_to_extend_transaction(handle, inode)) {
4369 				ext4_mark_inode_dirty(handle, inode);
4370 				ext4_truncate_restart_trans(handle, inode,
4371 					    blocks_for_truncate(inode));
4372 			}
4373 
4374 			/*
4375 			 * The forget flag here is critical because if
4376 			 * we are journaling (and not doing data
4377 			 * journaling), we have to make sure a revoke
4378 			 * record is written to prevent the journal
4379 			 * replay from overwriting the (former)
4380 			 * indirect block if it gets reallocated as a
4381 			 * data block.  This must happen in the same
4382 			 * transaction where the data blocks are
4383 			 * actually freed.
4384 			 */
4385 			ext4_free_blocks(handle, inode, NULL, nr, 1,
4386 					 EXT4_FREE_BLOCKS_METADATA|
4387 					 EXT4_FREE_BLOCKS_FORGET);
4388 
4389 			if (parent_bh) {
4390 				/*
4391 				 * The block which we have just freed is
4392 				 * pointed to by an indirect block: journal it
4393 				 */
4394 				BUFFER_TRACE(parent_bh, "get_write_access");
4395 				if (!ext4_journal_get_write_access(handle,
4396 								   parent_bh)){
4397 					*p = 0;
4398 					BUFFER_TRACE(parent_bh,
4399 					"call ext4_handle_dirty_metadata");
4400 					ext4_handle_dirty_metadata(handle,
4401 								   inode,
4402 								   parent_bh);
4403 				}
4404 			}
4405 		}
4406 	} else {
4407 		/* We have reached the bottom of the tree. */
4408 		BUFFER_TRACE(parent_bh, "free data blocks");
4409 		ext4_free_data(handle, inode, parent_bh, first, last);
4410 	}
4411 }
4412 
4413 int ext4_can_truncate(struct inode *inode)
4414 {
4415 	if (S_ISREG(inode->i_mode))
4416 		return 1;
4417 	if (S_ISDIR(inode->i_mode))
4418 		return 1;
4419 	if (S_ISLNK(inode->i_mode))
4420 		return !ext4_inode_is_fast_symlink(inode);
4421 	return 0;
4422 }
4423 
4424 /*
4425  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
4426  * associated with the given offset and length
4427  *
4428  * @inode:  File inode
4429  * @offset: The offset where the hole will begin
4430  * @len:    The length of the hole
4431  *
4432  * Returns: 0 on sucess or negative on failure
4433  */
4434 
4435 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4436 {
4437 	struct inode *inode = file->f_path.dentry->d_inode;
4438 	if (!S_ISREG(inode->i_mode))
4439 		return -ENOTSUPP;
4440 
4441 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4442 		/* TODO: Add support for non extent hole punching */
4443 		return -ENOTSUPP;
4444 	}
4445 
4446 	return ext4_ext_punch_hole(file, offset, length);
4447 }
4448 
4449 /*
4450  * ext4_truncate()
4451  *
4452  * We block out ext4_get_block() block instantiations across the entire
4453  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4454  * simultaneously on behalf of the same inode.
4455  *
4456  * As we work through the truncate and commmit bits of it to the journal there
4457  * is one core, guiding principle: the file's tree must always be consistent on
4458  * disk.  We must be able to restart the truncate after a crash.
4459  *
4460  * The file's tree may be transiently inconsistent in memory (although it
4461  * probably isn't), but whenever we close off and commit a journal transaction,
4462  * the contents of (the filesystem + the journal) must be consistent and
4463  * restartable.  It's pretty simple, really: bottom up, right to left (although
4464  * left-to-right works OK too).
4465  *
4466  * Note that at recovery time, journal replay occurs *before* the restart of
4467  * truncate against the orphan inode list.
4468  *
4469  * The committed inode has the new, desired i_size (which is the same as
4470  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4471  * that this inode's truncate did not complete and it will again call
4472  * ext4_truncate() to have another go.  So there will be instantiated blocks
4473  * to the right of the truncation point in a crashed ext4 filesystem.  But
4474  * that's fine - as long as they are linked from the inode, the post-crash
4475  * ext4_truncate() run will find them and release them.
4476  */
4477 void ext4_truncate(struct inode *inode)
4478 {
4479 	handle_t *handle;
4480 	struct ext4_inode_info *ei = EXT4_I(inode);
4481 	__le32 *i_data = ei->i_data;
4482 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4483 	struct address_space *mapping = inode->i_mapping;
4484 	ext4_lblk_t offsets[4];
4485 	Indirect chain[4];
4486 	Indirect *partial;
4487 	__le32 nr = 0;
4488 	int n = 0;
4489 	ext4_lblk_t last_block, max_block;
4490 	unsigned blocksize = inode->i_sb->s_blocksize;
4491 
4492 	trace_ext4_truncate_enter(inode);
4493 
4494 	if (!ext4_can_truncate(inode))
4495 		return;
4496 
4497 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4498 
4499 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4500 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4501 
4502 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4503 		ext4_ext_truncate(inode);
4504 		trace_ext4_truncate_exit(inode);
4505 		return;
4506 	}
4507 
4508 	handle = start_transaction(inode);
4509 	if (IS_ERR(handle))
4510 		return;		/* AKPM: return what? */
4511 
4512 	last_block = (inode->i_size + blocksize-1)
4513 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4514 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
4515 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4516 
4517 	if (inode->i_size & (blocksize - 1))
4518 		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4519 			goto out_stop;
4520 
4521 	if (last_block != max_block) {
4522 		n = ext4_block_to_path(inode, last_block, offsets, NULL);
4523 		if (n == 0)
4524 			goto out_stop;	/* error */
4525 	}
4526 
4527 	/*
4528 	 * OK.  This truncate is going to happen.  We add the inode to the
4529 	 * orphan list, so that if this truncate spans multiple transactions,
4530 	 * and we crash, we will resume the truncate when the filesystem
4531 	 * recovers.  It also marks the inode dirty, to catch the new size.
4532 	 *
4533 	 * Implication: the file must always be in a sane, consistent
4534 	 * truncatable state while each transaction commits.
4535 	 */
4536 	if (ext4_orphan_add(handle, inode))
4537 		goto out_stop;
4538 
4539 	/*
4540 	 * From here we block out all ext4_get_block() callers who want to
4541 	 * modify the block allocation tree.
4542 	 */
4543 	down_write(&ei->i_data_sem);
4544 
4545 	ext4_discard_preallocations(inode);
4546 
4547 	/*
4548 	 * The orphan list entry will now protect us from any crash which
4549 	 * occurs before the truncate completes, so it is now safe to propagate
4550 	 * the new, shorter inode size (held for now in i_size) into the
4551 	 * on-disk inode. We do this via i_disksize, which is the value which
4552 	 * ext4 *really* writes onto the disk inode.
4553 	 */
4554 	ei->i_disksize = inode->i_size;
4555 
4556 	if (last_block == max_block) {
4557 		/*
4558 		 * It is unnecessary to free any data blocks if last_block is
4559 		 * equal to the indirect block limit.
4560 		 */
4561 		goto out_unlock;
4562 	} else if (n == 1) {		/* direct blocks */
4563 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4564 			       i_data + EXT4_NDIR_BLOCKS);
4565 		goto do_indirects;
4566 	}
4567 
4568 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4569 	/* Kill the top of shared branch (not detached) */
4570 	if (nr) {
4571 		if (partial == chain) {
4572 			/* Shared branch grows from the inode */
4573 			ext4_free_branches(handle, inode, NULL,
4574 					   &nr, &nr+1, (chain+n-1) - partial);
4575 			*partial->p = 0;
4576 			/*
4577 			 * We mark the inode dirty prior to restart,
4578 			 * and prior to stop.  No need for it here.
4579 			 */
4580 		} else {
4581 			/* Shared branch grows from an indirect block */
4582 			BUFFER_TRACE(partial->bh, "get_write_access");
4583 			ext4_free_branches(handle, inode, partial->bh,
4584 					partial->p,
4585 					partial->p+1, (chain+n-1) - partial);
4586 		}
4587 	}
4588 	/* Clear the ends of indirect blocks on the shared branch */
4589 	while (partial > chain) {
4590 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4591 				   (__le32*)partial->bh->b_data+addr_per_block,
4592 				   (chain+n-1) - partial);
4593 		BUFFER_TRACE(partial->bh, "call brelse");
4594 		brelse(partial->bh);
4595 		partial--;
4596 	}
4597 do_indirects:
4598 	/* Kill the remaining (whole) subtrees */
4599 	switch (offsets[0]) {
4600 	default:
4601 		nr = i_data[EXT4_IND_BLOCK];
4602 		if (nr) {
4603 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4604 			i_data[EXT4_IND_BLOCK] = 0;
4605 		}
4606 	case EXT4_IND_BLOCK:
4607 		nr = i_data[EXT4_DIND_BLOCK];
4608 		if (nr) {
4609 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4610 			i_data[EXT4_DIND_BLOCK] = 0;
4611 		}
4612 	case EXT4_DIND_BLOCK:
4613 		nr = i_data[EXT4_TIND_BLOCK];
4614 		if (nr) {
4615 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4616 			i_data[EXT4_TIND_BLOCK] = 0;
4617 		}
4618 	case EXT4_TIND_BLOCK:
4619 		;
4620 	}
4621 
4622 out_unlock:
4623 	up_write(&ei->i_data_sem);
4624 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4625 	ext4_mark_inode_dirty(handle, inode);
4626 
4627 	/*
4628 	 * In a multi-transaction truncate, we only make the final transaction
4629 	 * synchronous
4630 	 */
4631 	if (IS_SYNC(inode))
4632 		ext4_handle_sync(handle);
4633 out_stop:
4634 	/*
4635 	 * If this was a simple ftruncate(), and the file will remain alive
4636 	 * then we need to clear up the orphan record which we created above.
4637 	 * However, if this was a real unlink then we were called by
4638 	 * ext4_delete_inode(), and we allow that function to clean up the
4639 	 * orphan info for us.
4640 	 */
4641 	if (inode->i_nlink)
4642 		ext4_orphan_del(handle, inode);
4643 
4644 	ext4_journal_stop(handle);
4645 	trace_ext4_truncate_exit(inode);
4646 }
4647 
4648 /*
4649  * ext4_get_inode_loc returns with an extra refcount against the inode's
4650  * underlying buffer_head on success. If 'in_mem' is true, we have all
4651  * data in memory that is needed to recreate the on-disk version of this
4652  * inode.
4653  */
4654 static int __ext4_get_inode_loc(struct inode *inode,
4655 				struct ext4_iloc *iloc, int in_mem)
4656 {
4657 	struct ext4_group_desc	*gdp;
4658 	struct buffer_head	*bh;
4659 	struct super_block	*sb = inode->i_sb;
4660 	ext4_fsblk_t		block;
4661 	int			inodes_per_block, inode_offset;
4662 
4663 	iloc->bh = NULL;
4664 	if (!ext4_valid_inum(sb, inode->i_ino))
4665 		return -EIO;
4666 
4667 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4668 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4669 	if (!gdp)
4670 		return -EIO;
4671 
4672 	/*
4673 	 * Figure out the offset within the block group inode table
4674 	 */
4675 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4676 	inode_offset = ((inode->i_ino - 1) %
4677 			EXT4_INODES_PER_GROUP(sb));
4678 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4679 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4680 
4681 	bh = sb_getblk(sb, block);
4682 	if (!bh) {
4683 		EXT4_ERROR_INODE_BLOCK(inode, block,
4684 				       "unable to read itable block");
4685 		return -EIO;
4686 	}
4687 	if (!buffer_uptodate(bh)) {
4688 		lock_buffer(bh);
4689 
4690 		/*
4691 		 * If the buffer has the write error flag, we have failed
4692 		 * to write out another inode in the same block.  In this
4693 		 * case, we don't have to read the block because we may
4694 		 * read the old inode data successfully.
4695 		 */
4696 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4697 			set_buffer_uptodate(bh);
4698 
4699 		if (buffer_uptodate(bh)) {
4700 			/* someone brought it uptodate while we waited */
4701 			unlock_buffer(bh);
4702 			goto has_buffer;
4703 		}
4704 
4705 		/*
4706 		 * If we have all information of the inode in memory and this
4707 		 * is the only valid inode in the block, we need not read the
4708 		 * block.
4709 		 */
4710 		if (in_mem) {
4711 			struct buffer_head *bitmap_bh;
4712 			int i, start;
4713 
4714 			start = inode_offset & ~(inodes_per_block - 1);
4715 
4716 			/* Is the inode bitmap in cache? */
4717 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4718 			if (!bitmap_bh)
4719 				goto make_io;
4720 
4721 			/*
4722 			 * If the inode bitmap isn't in cache then the
4723 			 * optimisation may end up performing two reads instead
4724 			 * of one, so skip it.
4725 			 */
4726 			if (!buffer_uptodate(bitmap_bh)) {
4727 				brelse(bitmap_bh);
4728 				goto make_io;
4729 			}
4730 			for (i = start; i < start + inodes_per_block; i++) {
4731 				if (i == inode_offset)
4732 					continue;
4733 				if (ext4_test_bit(i, bitmap_bh->b_data))
4734 					break;
4735 			}
4736 			brelse(bitmap_bh);
4737 			if (i == start + inodes_per_block) {
4738 				/* all other inodes are free, so skip I/O */
4739 				memset(bh->b_data, 0, bh->b_size);
4740 				set_buffer_uptodate(bh);
4741 				unlock_buffer(bh);
4742 				goto has_buffer;
4743 			}
4744 		}
4745 
4746 make_io:
4747 		/*
4748 		 * If we need to do any I/O, try to pre-readahead extra
4749 		 * blocks from the inode table.
4750 		 */
4751 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4752 			ext4_fsblk_t b, end, table;
4753 			unsigned num;
4754 
4755 			table = ext4_inode_table(sb, gdp);
4756 			/* s_inode_readahead_blks is always a power of 2 */
4757 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4758 			if (table > b)
4759 				b = table;
4760 			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4761 			num = EXT4_INODES_PER_GROUP(sb);
4762 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4763 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4764 				num -= ext4_itable_unused_count(sb, gdp);
4765 			table += num / inodes_per_block;
4766 			if (end > table)
4767 				end = table;
4768 			while (b <= end)
4769 				sb_breadahead(sb, b++);
4770 		}
4771 
4772 		/*
4773 		 * There are other valid inodes in the buffer, this inode
4774 		 * has in-inode xattrs, or we don't have this inode in memory.
4775 		 * Read the block from disk.
4776 		 */
4777 		trace_ext4_load_inode(inode);
4778 		get_bh(bh);
4779 		bh->b_end_io = end_buffer_read_sync;
4780 		submit_bh(READ_META, bh);
4781 		wait_on_buffer(bh);
4782 		if (!buffer_uptodate(bh)) {
4783 			EXT4_ERROR_INODE_BLOCK(inode, block,
4784 					       "unable to read itable block");
4785 			brelse(bh);
4786 			return -EIO;
4787 		}
4788 	}
4789 has_buffer:
4790 	iloc->bh = bh;
4791 	return 0;
4792 }
4793 
4794 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4795 {
4796 	/* We have all inode data except xattrs in memory here. */
4797 	return __ext4_get_inode_loc(inode, iloc,
4798 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4799 }
4800 
4801 void ext4_set_inode_flags(struct inode *inode)
4802 {
4803 	unsigned int flags = EXT4_I(inode)->i_flags;
4804 
4805 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4806 	if (flags & EXT4_SYNC_FL)
4807 		inode->i_flags |= S_SYNC;
4808 	if (flags & EXT4_APPEND_FL)
4809 		inode->i_flags |= S_APPEND;
4810 	if (flags & EXT4_IMMUTABLE_FL)
4811 		inode->i_flags |= S_IMMUTABLE;
4812 	if (flags & EXT4_NOATIME_FL)
4813 		inode->i_flags |= S_NOATIME;
4814 	if (flags & EXT4_DIRSYNC_FL)
4815 		inode->i_flags |= S_DIRSYNC;
4816 }
4817 
4818 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4819 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4820 {
4821 	unsigned int vfs_fl;
4822 	unsigned long old_fl, new_fl;
4823 
4824 	do {
4825 		vfs_fl = ei->vfs_inode.i_flags;
4826 		old_fl = ei->i_flags;
4827 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4828 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4829 				EXT4_DIRSYNC_FL);
4830 		if (vfs_fl & S_SYNC)
4831 			new_fl |= EXT4_SYNC_FL;
4832 		if (vfs_fl & S_APPEND)
4833 			new_fl |= EXT4_APPEND_FL;
4834 		if (vfs_fl & S_IMMUTABLE)
4835 			new_fl |= EXT4_IMMUTABLE_FL;
4836 		if (vfs_fl & S_NOATIME)
4837 			new_fl |= EXT4_NOATIME_FL;
4838 		if (vfs_fl & S_DIRSYNC)
4839 			new_fl |= EXT4_DIRSYNC_FL;
4840 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4841 }
4842 
4843 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4844 				  struct ext4_inode_info *ei)
4845 {
4846 	blkcnt_t i_blocks ;
4847 	struct inode *inode = &(ei->vfs_inode);
4848 	struct super_block *sb = inode->i_sb;
4849 
4850 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4851 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4852 		/* we are using combined 48 bit field */
4853 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4854 					le32_to_cpu(raw_inode->i_blocks_lo);
4855 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4856 			/* i_blocks represent file system block size */
4857 			return i_blocks  << (inode->i_blkbits - 9);
4858 		} else {
4859 			return i_blocks;
4860 		}
4861 	} else {
4862 		return le32_to_cpu(raw_inode->i_blocks_lo);
4863 	}
4864 }
4865 
4866 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4867 {
4868 	struct ext4_iloc iloc;
4869 	struct ext4_inode *raw_inode;
4870 	struct ext4_inode_info *ei;
4871 	struct inode *inode;
4872 	journal_t *journal = EXT4_SB(sb)->s_journal;
4873 	long ret;
4874 	int block;
4875 
4876 	inode = iget_locked(sb, ino);
4877 	if (!inode)
4878 		return ERR_PTR(-ENOMEM);
4879 	if (!(inode->i_state & I_NEW))
4880 		return inode;
4881 
4882 	ei = EXT4_I(inode);
4883 	iloc.bh = NULL;
4884 
4885 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4886 	if (ret < 0)
4887 		goto bad_inode;
4888 	raw_inode = ext4_raw_inode(&iloc);
4889 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4890 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4891 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4892 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4893 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4894 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4895 	}
4896 	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4897 
4898 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4899 	ei->i_dir_start_lookup = 0;
4900 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4901 	/* We now have enough fields to check if the inode was active or not.
4902 	 * This is needed because nfsd might try to access dead inodes
4903 	 * the test is that same one that e2fsck uses
4904 	 * NeilBrown 1999oct15
4905 	 */
4906 	if (inode->i_nlink == 0) {
4907 		if (inode->i_mode == 0 ||
4908 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4909 			/* this inode is deleted */
4910 			ret = -ESTALE;
4911 			goto bad_inode;
4912 		}
4913 		/* The only unlinked inodes we let through here have
4914 		 * valid i_mode and are being read by the orphan
4915 		 * recovery code: that's fine, we're about to complete
4916 		 * the process of deleting those. */
4917 	}
4918 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4919 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4920 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4921 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4922 		ei->i_file_acl |=
4923 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4924 	inode->i_size = ext4_isize(raw_inode);
4925 	ei->i_disksize = inode->i_size;
4926 #ifdef CONFIG_QUOTA
4927 	ei->i_reserved_quota = 0;
4928 #endif
4929 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4930 	ei->i_block_group = iloc.block_group;
4931 	ei->i_last_alloc_group = ~0;
4932 	/*
4933 	 * NOTE! The in-memory inode i_data array is in little-endian order
4934 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4935 	 */
4936 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4937 		ei->i_data[block] = raw_inode->i_block[block];
4938 	INIT_LIST_HEAD(&ei->i_orphan);
4939 
4940 	/*
4941 	 * Set transaction id's of transactions that have to be committed
4942 	 * to finish f[data]sync. We set them to currently running transaction
4943 	 * as we cannot be sure that the inode or some of its metadata isn't
4944 	 * part of the transaction - the inode could have been reclaimed and
4945 	 * now it is reread from disk.
4946 	 */
4947 	if (journal) {
4948 		transaction_t *transaction;
4949 		tid_t tid;
4950 
4951 		read_lock(&journal->j_state_lock);
4952 		if (journal->j_running_transaction)
4953 			transaction = journal->j_running_transaction;
4954 		else
4955 			transaction = journal->j_committing_transaction;
4956 		if (transaction)
4957 			tid = transaction->t_tid;
4958 		else
4959 			tid = journal->j_commit_sequence;
4960 		read_unlock(&journal->j_state_lock);
4961 		ei->i_sync_tid = tid;
4962 		ei->i_datasync_tid = tid;
4963 	}
4964 
4965 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4966 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4967 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4968 		    EXT4_INODE_SIZE(inode->i_sb)) {
4969 			ret = -EIO;
4970 			goto bad_inode;
4971 		}
4972 		if (ei->i_extra_isize == 0) {
4973 			/* The extra space is currently unused. Use it. */
4974 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4975 					    EXT4_GOOD_OLD_INODE_SIZE;
4976 		} else {
4977 			__le32 *magic = (void *)raw_inode +
4978 					EXT4_GOOD_OLD_INODE_SIZE +
4979 					ei->i_extra_isize;
4980 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4981 				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4982 		}
4983 	} else
4984 		ei->i_extra_isize = 0;
4985 
4986 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4987 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4988 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4989 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4990 
4991 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4992 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4993 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4994 			inode->i_version |=
4995 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4996 	}
4997 
4998 	ret = 0;
4999 	if (ei->i_file_acl &&
5000 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5001 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5002 				 ei->i_file_acl);
5003 		ret = -EIO;
5004 		goto bad_inode;
5005 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5006 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5007 		    (S_ISLNK(inode->i_mode) &&
5008 		     !ext4_inode_is_fast_symlink(inode)))
5009 			/* Validate extent which is part of inode */
5010 			ret = ext4_ext_check_inode(inode);
5011 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5012 		   (S_ISLNK(inode->i_mode) &&
5013 		    !ext4_inode_is_fast_symlink(inode))) {
5014 		/* Validate block references which are part of inode */
5015 		ret = ext4_check_inode_blockref(inode);
5016 	}
5017 	if (ret)
5018 		goto bad_inode;
5019 
5020 	if (S_ISREG(inode->i_mode)) {
5021 		inode->i_op = &ext4_file_inode_operations;
5022 		inode->i_fop = &ext4_file_operations;
5023 		ext4_set_aops(inode);
5024 	} else if (S_ISDIR(inode->i_mode)) {
5025 		inode->i_op = &ext4_dir_inode_operations;
5026 		inode->i_fop = &ext4_dir_operations;
5027 	} else if (S_ISLNK(inode->i_mode)) {
5028 		if (ext4_inode_is_fast_symlink(inode)) {
5029 			inode->i_op = &ext4_fast_symlink_inode_operations;
5030 			nd_terminate_link(ei->i_data, inode->i_size,
5031 				sizeof(ei->i_data) - 1);
5032 		} else {
5033 			inode->i_op = &ext4_symlink_inode_operations;
5034 			ext4_set_aops(inode);
5035 		}
5036 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5037 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5038 		inode->i_op = &ext4_special_inode_operations;
5039 		if (raw_inode->i_block[0])
5040 			init_special_inode(inode, inode->i_mode,
5041 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5042 		else
5043 			init_special_inode(inode, inode->i_mode,
5044 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5045 	} else {
5046 		ret = -EIO;
5047 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5048 		goto bad_inode;
5049 	}
5050 	brelse(iloc.bh);
5051 	ext4_set_inode_flags(inode);
5052 	unlock_new_inode(inode);
5053 	return inode;
5054 
5055 bad_inode:
5056 	brelse(iloc.bh);
5057 	iget_failed(inode);
5058 	return ERR_PTR(ret);
5059 }
5060 
5061 static int ext4_inode_blocks_set(handle_t *handle,
5062 				struct ext4_inode *raw_inode,
5063 				struct ext4_inode_info *ei)
5064 {
5065 	struct inode *inode = &(ei->vfs_inode);
5066 	u64 i_blocks = inode->i_blocks;
5067 	struct super_block *sb = inode->i_sb;
5068 
5069 	if (i_blocks <= ~0U) {
5070 		/*
5071 		 * i_blocks can be represnted in a 32 bit variable
5072 		 * as multiple of 512 bytes
5073 		 */
5074 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5075 		raw_inode->i_blocks_high = 0;
5076 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5077 		return 0;
5078 	}
5079 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5080 		return -EFBIG;
5081 
5082 	if (i_blocks <= 0xffffffffffffULL) {
5083 		/*
5084 		 * i_blocks can be represented in a 48 bit variable
5085 		 * as multiple of 512 bytes
5086 		 */
5087 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5088 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5089 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5090 	} else {
5091 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5092 		/* i_block is stored in file system block size */
5093 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5094 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5095 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5096 	}
5097 	return 0;
5098 }
5099 
5100 /*
5101  * Post the struct inode info into an on-disk inode location in the
5102  * buffer-cache.  This gobbles the caller's reference to the
5103  * buffer_head in the inode location struct.
5104  *
5105  * The caller must have write access to iloc->bh.
5106  */
5107 static int ext4_do_update_inode(handle_t *handle,
5108 				struct inode *inode,
5109 				struct ext4_iloc *iloc)
5110 {
5111 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5112 	struct ext4_inode_info *ei = EXT4_I(inode);
5113 	struct buffer_head *bh = iloc->bh;
5114 	int err = 0, rc, block;
5115 
5116 	/* For fields not not tracking in the in-memory inode,
5117 	 * initialise them to zero for new inodes. */
5118 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5119 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5120 
5121 	ext4_get_inode_flags(ei);
5122 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5123 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5124 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5125 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5126 /*
5127  * Fix up interoperability with old kernels. Otherwise, old inodes get
5128  * re-used with the upper 16 bits of the uid/gid intact
5129  */
5130 		if (!ei->i_dtime) {
5131 			raw_inode->i_uid_high =
5132 				cpu_to_le16(high_16_bits(inode->i_uid));
5133 			raw_inode->i_gid_high =
5134 				cpu_to_le16(high_16_bits(inode->i_gid));
5135 		} else {
5136 			raw_inode->i_uid_high = 0;
5137 			raw_inode->i_gid_high = 0;
5138 		}
5139 	} else {
5140 		raw_inode->i_uid_low =
5141 			cpu_to_le16(fs_high2lowuid(inode->i_uid));
5142 		raw_inode->i_gid_low =
5143 			cpu_to_le16(fs_high2lowgid(inode->i_gid));
5144 		raw_inode->i_uid_high = 0;
5145 		raw_inode->i_gid_high = 0;
5146 	}
5147 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5148 
5149 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5150 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5151 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5152 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5153 
5154 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
5155 		goto out_brelse;
5156 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5157 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5158 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5159 	    cpu_to_le32(EXT4_OS_HURD))
5160 		raw_inode->i_file_acl_high =
5161 			cpu_to_le16(ei->i_file_acl >> 32);
5162 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5163 	ext4_isize_set(raw_inode, ei->i_disksize);
5164 	if (ei->i_disksize > 0x7fffffffULL) {
5165 		struct super_block *sb = inode->i_sb;
5166 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5167 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5168 				EXT4_SB(sb)->s_es->s_rev_level ==
5169 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5170 			/* If this is the first large file
5171 			 * created, add a flag to the superblock.
5172 			 */
5173 			err = ext4_journal_get_write_access(handle,
5174 					EXT4_SB(sb)->s_sbh);
5175 			if (err)
5176 				goto out_brelse;
5177 			ext4_update_dynamic_rev(sb);
5178 			EXT4_SET_RO_COMPAT_FEATURE(sb,
5179 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5180 			sb->s_dirt = 1;
5181 			ext4_handle_sync(handle);
5182 			err = ext4_handle_dirty_metadata(handle, NULL,
5183 					EXT4_SB(sb)->s_sbh);
5184 		}
5185 	}
5186 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5187 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5188 		if (old_valid_dev(inode->i_rdev)) {
5189 			raw_inode->i_block[0] =
5190 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5191 			raw_inode->i_block[1] = 0;
5192 		} else {
5193 			raw_inode->i_block[0] = 0;
5194 			raw_inode->i_block[1] =
5195 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5196 			raw_inode->i_block[2] = 0;
5197 		}
5198 	} else
5199 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5200 			raw_inode->i_block[block] = ei->i_data[block];
5201 
5202 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5203 	if (ei->i_extra_isize) {
5204 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5205 			raw_inode->i_version_hi =
5206 			cpu_to_le32(inode->i_version >> 32);
5207 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5208 	}
5209 
5210 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5211 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5212 	if (!err)
5213 		err = rc;
5214 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5215 
5216 	ext4_update_inode_fsync_trans(handle, inode, 0);
5217 out_brelse:
5218 	brelse(bh);
5219 	ext4_std_error(inode->i_sb, err);
5220 	return err;
5221 }
5222 
5223 /*
5224  * ext4_write_inode()
5225  *
5226  * We are called from a few places:
5227  *
5228  * - Within generic_file_write() for O_SYNC files.
5229  *   Here, there will be no transaction running. We wait for any running
5230  *   trasnaction to commit.
5231  *
5232  * - Within sys_sync(), kupdate and such.
5233  *   We wait on commit, if tol to.
5234  *
5235  * - Within prune_icache() (PF_MEMALLOC == true)
5236  *   Here we simply return.  We can't afford to block kswapd on the
5237  *   journal commit.
5238  *
5239  * In all cases it is actually safe for us to return without doing anything,
5240  * because the inode has been copied into a raw inode buffer in
5241  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5242  * knfsd.
5243  *
5244  * Note that we are absolutely dependent upon all inode dirtiers doing the
5245  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5246  * which we are interested.
5247  *
5248  * It would be a bug for them to not do this.  The code:
5249  *
5250  *	mark_inode_dirty(inode)
5251  *	stuff();
5252  *	inode->i_size = expr;
5253  *
5254  * is in error because a kswapd-driven write_inode() could occur while
5255  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5256  * will no longer be on the superblock's dirty inode list.
5257  */
5258 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5259 {
5260 	int err;
5261 
5262 	if (current->flags & PF_MEMALLOC)
5263 		return 0;
5264 
5265 	if (EXT4_SB(inode->i_sb)->s_journal) {
5266 		if (ext4_journal_current_handle()) {
5267 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5268 			dump_stack();
5269 			return -EIO;
5270 		}
5271 
5272 		if (wbc->sync_mode != WB_SYNC_ALL)
5273 			return 0;
5274 
5275 		err = ext4_force_commit(inode->i_sb);
5276 	} else {
5277 		struct ext4_iloc iloc;
5278 
5279 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5280 		if (err)
5281 			return err;
5282 		if (wbc->sync_mode == WB_SYNC_ALL)
5283 			sync_dirty_buffer(iloc.bh);
5284 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5285 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5286 					 "IO error syncing inode");
5287 			err = -EIO;
5288 		}
5289 		brelse(iloc.bh);
5290 	}
5291 	return err;
5292 }
5293 
5294 /*
5295  * ext4_setattr()
5296  *
5297  * Called from notify_change.
5298  *
5299  * We want to trap VFS attempts to truncate the file as soon as
5300  * possible.  In particular, we want to make sure that when the VFS
5301  * shrinks i_size, we put the inode on the orphan list and modify
5302  * i_disksize immediately, so that during the subsequent flushing of
5303  * dirty pages and freeing of disk blocks, we can guarantee that any
5304  * commit will leave the blocks being flushed in an unused state on
5305  * disk.  (On recovery, the inode will get truncated and the blocks will
5306  * be freed, so we have a strong guarantee that no future commit will
5307  * leave these blocks visible to the user.)
5308  *
5309  * Another thing we have to assure is that if we are in ordered mode
5310  * and inode is still attached to the committing transaction, we must
5311  * we start writeout of all the dirty pages which are being truncated.
5312  * This way we are sure that all the data written in the previous
5313  * transaction are already on disk (truncate waits for pages under
5314  * writeback).
5315  *
5316  * Called with inode->i_mutex down.
5317  */
5318 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5319 {
5320 	struct inode *inode = dentry->d_inode;
5321 	int error, rc = 0;
5322 	int orphan = 0;
5323 	const unsigned int ia_valid = attr->ia_valid;
5324 
5325 	error = inode_change_ok(inode, attr);
5326 	if (error)
5327 		return error;
5328 
5329 	if (is_quota_modification(inode, attr))
5330 		dquot_initialize(inode);
5331 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5332 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5333 		handle_t *handle;
5334 
5335 		/* (user+group)*(old+new) structure, inode write (sb,
5336 		 * inode block, ? - but truncate inode update has it) */
5337 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5338 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5339 		if (IS_ERR(handle)) {
5340 			error = PTR_ERR(handle);
5341 			goto err_out;
5342 		}
5343 		error = dquot_transfer(inode, attr);
5344 		if (error) {
5345 			ext4_journal_stop(handle);
5346 			return error;
5347 		}
5348 		/* Update corresponding info in inode so that everything is in
5349 		 * one transaction */
5350 		if (attr->ia_valid & ATTR_UID)
5351 			inode->i_uid = attr->ia_uid;
5352 		if (attr->ia_valid & ATTR_GID)
5353 			inode->i_gid = attr->ia_gid;
5354 		error = ext4_mark_inode_dirty(handle, inode);
5355 		ext4_journal_stop(handle);
5356 	}
5357 
5358 	if (attr->ia_valid & ATTR_SIZE) {
5359 		inode_dio_wait(inode);
5360 
5361 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5362 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5363 
5364 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5365 				return -EFBIG;
5366 		}
5367 	}
5368 
5369 	if (S_ISREG(inode->i_mode) &&
5370 	    attr->ia_valid & ATTR_SIZE &&
5371 	    (attr->ia_size < inode->i_size)) {
5372 		handle_t *handle;
5373 
5374 		handle = ext4_journal_start(inode, 3);
5375 		if (IS_ERR(handle)) {
5376 			error = PTR_ERR(handle);
5377 			goto err_out;
5378 		}
5379 		if (ext4_handle_valid(handle)) {
5380 			error = ext4_orphan_add(handle, inode);
5381 			orphan = 1;
5382 		}
5383 		EXT4_I(inode)->i_disksize = attr->ia_size;
5384 		rc = ext4_mark_inode_dirty(handle, inode);
5385 		if (!error)
5386 			error = rc;
5387 		ext4_journal_stop(handle);
5388 
5389 		if (ext4_should_order_data(inode)) {
5390 			error = ext4_begin_ordered_truncate(inode,
5391 							    attr->ia_size);
5392 			if (error) {
5393 				/* Do as much error cleanup as possible */
5394 				handle = ext4_journal_start(inode, 3);
5395 				if (IS_ERR(handle)) {
5396 					ext4_orphan_del(NULL, inode);
5397 					goto err_out;
5398 				}
5399 				ext4_orphan_del(handle, inode);
5400 				orphan = 0;
5401 				ext4_journal_stop(handle);
5402 				goto err_out;
5403 			}
5404 		}
5405 	}
5406 
5407 	if (attr->ia_valid & ATTR_SIZE) {
5408 		if (attr->ia_size != i_size_read(inode)) {
5409 			truncate_setsize(inode, attr->ia_size);
5410 			ext4_truncate(inode);
5411 		} else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
5412 			ext4_truncate(inode);
5413 	}
5414 
5415 	if (!rc) {
5416 		setattr_copy(inode, attr);
5417 		mark_inode_dirty(inode);
5418 	}
5419 
5420 	/*
5421 	 * If the call to ext4_truncate failed to get a transaction handle at
5422 	 * all, we need to clean up the in-core orphan list manually.
5423 	 */
5424 	if (orphan && inode->i_nlink)
5425 		ext4_orphan_del(NULL, inode);
5426 
5427 	if (!rc && (ia_valid & ATTR_MODE))
5428 		rc = ext4_acl_chmod(inode);
5429 
5430 err_out:
5431 	ext4_std_error(inode->i_sb, error);
5432 	if (!error)
5433 		error = rc;
5434 	return error;
5435 }
5436 
5437 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5438 		 struct kstat *stat)
5439 {
5440 	struct inode *inode;
5441 	unsigned long delalloc_blocks;
5442 
5443 	inode = dentry->d_inode;
5444 	generic_fillattr(inode, stat);
5445 
5446 	/*
5447 	 * We can't update i_blocks if the block allocation is delayed
5448 	 * otherwise in the case of system crash before the real block
5449 	 * allocation is done, we will have i_blocks inconsistent with
5450 	 * on-disk file blocks.
5451 	 * We always keep i_blocks updated together with real
5452 	 * allocation. But to not confuse with user, stat
5453 	 * will return the blocks that include the delayed allocation
5454 	 * blocks for this file.
5455 	 */
5456 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5457 
5458 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5459 	return 0;
5460 }
5461 
5462 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5463 				      int chunk)
5464 {
5465 	int indirects;
5466 
5467 	/* if nrblocks are contiguous */
5468 	if (chunk) {
5469 		/*
5470 		 * With N contiguous data blocks, we need at most
5471 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
5472 		 * 2 dindirect blocks, and 1 tindirect block
5473 		 */
5474 		return DIV_ROUND_UP(nrblocks,
5475 				    EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
5476 	}
5477 	/*
5478 	 * if nrblocks are not contiguous, worse case, each block touch
5479 	 * a indirect block, and each indirect block touch a double indirect
5480 	 * block, plus a triple indirect block
5481 	 */
5482 	indirects = nrblocks * 2 + 1;
5483 	return indirects;
5484 }
5485 
5486 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5487 {
5488 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5489 		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5490 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5491 }
5492 
5493 /*
5494  * Account for index blocks, block groups bitmaps and block group
5495  * descriptor blocks if modify datablocks and index blocks
5496  * worse case, the indexs blocks spread over different block groups
5497  *
5498  * If datablocks are discontiguous, they are possible to spread over
5499  * different block groups too. If they are contiuguous, with flexbg,
5500  * they could still across block group boundary.
5501  *
5502  * Also account for superblock, inode, quota and xattr blocks
5503  */
5504 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5505 {
5506 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5507 	int gdpblocks;
5508 	int idxblocks;
5509 	int ret = 0;
5510 
5511 	/*
5512 	 * How many index blocks need to touch to modify nrblocks?
5513 	 * The "Chunk" flag indicating whether the nrblocks is
5514 	 * physically contiguous on disk
5515 	 *
5516 	 * For Direct IO and fallocate, they calls get_block to allocate
5517 	 * one single extent at a time, so they could set the "Chunk" flag
5518 	 */
5519 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5520 
5521 	ret = idxblocks;
5522 
5523 	/*
5524 	 * Now let's see how many group bitmaps and group descriptors need
5525 	 * to account
5526 	 */
5527 	groups = idxblocks;
5528 	if (chunk)
5529 		groups += 1;
5530 	else
5531 		groups += nrblocks;
5532 
5533 	gdpblocks = groups;
5534 	if (groups > ngroups)
5535 		groups = ngroups;
5536 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5537 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5538 
5539 	/* bitmaps and block group descriptor blocks */
5540 	ret += groups + gdpblocks;
5541 
5542 	/* Blocks for super block, inode, quota and xattr blocks */
5543 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5544 
5545 	return ret;
5546 }
5547 
5548 /*
5549  * Calculate the total number of credits to reserve to fit
5550  * the modification of a single pages into a single transaction,
5551  * which may include multiple chunks of block allocations.
5552  *
5553  * This could be called via ext4_write_begin()
5554  *
5555  * We need to consider the worse case, when
5556  * one new block per extent.
5557  */
5558 int ext4_writepage_trans_blocks(struct inode *inode)
5559 {
5560 	int bpp = ext4_journal_blocks_per_page(inode);
5561 	int ret;
5562 
5563 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
5564 
5565 	/* Account for data blocks for journalled mode */
5566 	if (ext4_should_journal_data(inode))
5567 		ret += bpp;
5568 	return ret;
5569 }
5570 
5571 /*
5572  * Calculate the journal credits for a chunk of data modification.
5573  *
5574  * This is called from DIO, fallocate or whoever calling
5575  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5576  *
5577  * journal buffers for data blocks are not included here, as DIO
5578  * and fallocate do no need to journal data buffers.
5579  */
5580 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5581 {
5582 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5583 }
5584 
5585 /*
5586  * The caller must have previously called ext4_reserve_inode_write().
5587  * Give this, we know that the caller already has write access to iloc->bh.
5588  */
5589 int ext4_mark_iloc_dirty(handle_t *handle,
5590 			 struct inode *inode, struct ext4_iloc *iloc)
5591 {
5592 	int err = 0;
5593 
5594 	if (test_opt(inode->i_sb, I_VERSION))
5595 		inode_inc_iversion(inode);
5596 
5597 	/* the do_update_inode consumes one bh->b_count */
5598 	get_bh(iloc->bh);
5599 
5600 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5601 	err = ext4_do_update_inode(handle, inode, iloc);
5602 	put_bh(iloc->bh);
5603 	return err;
5604 }
5605 
5606 /*
5607  * On success, We end up with an outstanding reference count against
5608  * iloc->bh.  This _must_ be cleaned up later.
5609  */
5610 
5611 int
5612 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5613 			 struct ext4_iloc *iloc)
5614 {
5615 	int err;
5616 
5617 	err = ext4_get_inode_loc(inode, iloc);
5618 	if (!err) {
5619 		BUFFER_TRACE(iloc->bh, "get_write_access");
5620 		err = ext4_journal_get_write_access(handle, iloc->bh);
5621 		if (err) {
5622 			brelse(iloc->bh);
5623 			iloc->bh = NULL;
5624 		}
5625 	}
5626 	ext4_std_error(inode->i_sb, err);
5627 	return err;
5628 }
5629 
5630 /*
5631  * Expand an inode by new_extra_isize bytes.
5632  * Returns 0 on success or negative error number on failure.
5633  */
5634 static int ext4_expand_extra_isize(struct inode *inode,
5635 				   unsigned int new_extra_isize,
5636 				   struct ext4_iloc iloc,
5637 				   handle_t *handle)
5638 {
5639 	struct ext4_inode *raw_inode;
5640 	struct ext4_xattr_ibody_header *header;
5641 
5642 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5643 		return 0;
5644 
5645 	raw_inode = ext4_raw_inode(&iloc);
5646 
5647 	header = IHDR(inode, raw_inode);
5648 
5649 	/* No extended attributes present */
5650 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5651 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5652 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5653 			new_extra_isize);
5654 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5655 		return 0;
5656 	}
5657 
5658 	/* try to expand with EAs present */
5659 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5660 					  raw_inode, handle);
5661 }
5662 
5663 /*
5664  * What we do here is to mark the in-core inode as clean with respect to inode
5665  * dirtiness (it may still be data-dirty).
5666  * This means that the in-core inode may be reaped by prune_icache
5667  * without having to perform any I/O.  This is a very good thing,
5668  * because *any* task may call prune_icache - even ones which
5669  * have a transaction open against a different journal.
5670  *
5671  * Is this cheating?  Not really.  Sure, we haven't written the
5672  * inode out, but prune_icache isn't a user-visible syncing function.
5673  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5674  * we start and wait on commits.
5675  *
5676  * Is this efficient/effective?  Well, we're being nice to the system
5677  * by cleaning up our inodes proactively so they can be reaped
5678  * without I/O.  But we are potentially leaving up to five seconds'
5679  * worth of inodes floating about which prune_icache wants us to
5680  * write out.  One way to fix that would be to get prune_icache()
5681  * to do a write_super() to free up some memory.  It has the desired
5682  * effect.
5683  */
5684 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5685 {
5686 	struct ext4_iloc iloc;
5687 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5688 	static unsigned int mnt_count;
5689 	int err, ret;
5690 
5691 	might_sleep();
5692 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5693 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5694 	if (ext4_handle_valid(handle) &&
5695 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5696 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5697 		/*
5698 		 * We need extra buffer credits since we may write into EA block
5699 		 * with this same handle. If journal_extend fails, then it will
5700 		 * only result in a minor loss of functionality for that inode.
5701 		 * If this is felt to be critical, then e2fsck should be run to
5702 		 * force a large enough s_min_extra_isize.
5703 		 */
5704 		if ((jbd2_journal_extend(handle,
5705 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5706 			ret = ext4_expand_extra_isize(inode,
5707 						      sbi->s_want_extra_isize,
5708 						      iloc, handle);
5709 			if (ret) {
5710 				ext4_set_inode_state(inode,
5711 						     EXT4_STATE_NO_EXPAND);
5712 				if (mnt_count !=
5713 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5714 					ext4_warning(inode->i_sb,
5715 					"Unable to expand inode %lu. Delete"
5716 					" some EAs or run e2fsck.",
5717 					inode->i_ino);
5718 					mnt_count =
5719 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5720 				}
5721 			}
5722 		}
5723 	}
5724 	if (!err)
5725 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5726 	return err;
5727 }
5728 
5729 /*
5730  * ext4_dirty_inode() is called from __mark_inode_dirty()
5731  *
5732  * We're really interested in the case where a file is being extended.
5733  * i_size has been changed by generic_commit_write() and we thus need
5734  * to include the updated inode in the current transaction.
5735  *
5736  * Also, dquot_alloc_block() will always dirty the inode when blocks
5737  * are allocated to the file.
5738  *
5739  * If the inode is marked synchronous, we don't honour that here - doing
5740  * so would cause a commit on atime updates, which we don't bother doing.
5741  * We handle synchronous inodes at the highest possible level.
5742  */
5743 void ext4_dirty_inode(struct inode *inode, int flags)
5744 {
5745 	handle_t *handle;
5746 
5747 	handle = ext4_journal_start(inode, 2);
5748 	if (IS_ERR(handle))
5749 		goto out;
5750 
5751 	ext4_mark_inode_dirty(handle, inode);
5752 
5753 	ext4_journal_stop(handle);
5754 out:
5755 	return;
5756 }
5757 
5758 #if 0
5759 /*
5760  * Bind an inode's backing buffer_head into this transaction, to prevent
5761  * it from being flushed to disk early.  Unlike
5762  * ext4_reserve_inode_write, this leaves behind no bh reference and
5763  * returns no iloc structure, so the caller needs to repeat the iloc
5764  * lookup to mark the inode dirty later.
5765  */
5766 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5767 {
5768 	struct ext4_iloc iloc;
5769 
5770 	int err = 0;
5771 	if (handle) {
5772 		err = ext4_get_inode_loc(inode, &iloc);
5773 		if (!err) {
5774 			BUFFER_TRACE(iloc.bh, "get_write_access");
5775 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5776 			if (!err)
5777 				err = ext4_handle_dirty_metadata(handle,
5778 								 NULL,
5779 								 iloc.bh);
5780 			brelse(iloc.bh);
5781 		}
5782 	}
5783 	ext4_std_error(inode->i_sb, err);
5784 	return err;
5785 }
5786 #endif
5787 
5788 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5789 {
5790 	journal_t *journal;
5791 	handle_t *handle;
5792 	int err;
5793 
5794 	/*
5795 	 * We have to be very careful here: changing a data block's
5796 	 * journaling status dynamically is dangerous.  If we write a
5797 	 * data block to the journal, change the status and then delete
5798 	 * that block, we risk forgetting to revoke the old log record
5799 	 * from the journal and so a subsequent replay can corrupt data.
5800 	 * So, first we make sure that the journal is empty and that
5801 	 * nobody is changing anything.
5802 	 */
5803 
5804 	journal = EXT4_JOURNAL(inode);
5805 	if (!journal)
5806 		return 0;
5807 	if (is_journal_aborted(journal))
5808 		return -EROFS;
5809 
5810 	jbd2_journal_lock_updates(journal);
5811 	jbd2_journal_flush(journal);
5812 
5813 	/*
5814 	 * OK, there are no updates running now, and all cached data is
5815 	 * synced to disk.  We are now in a completely consistent state
5816 	 * which doesn't have anything in the journal, and we know that
5817 	 * no filesystem updates are running, so it is safe to modify
5818 	 * the inode's in-core data-journaling state flag now.
5819 	 */
5820 
5821 	if (val)
5822 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5823 	else
5824 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5825 	ext4_set_aops(inode);
5826 
5827 	jbd2_journal_unlock_updates(journal);
5828 
5829 	/* Finally we can mark the inode as dirty. */
5830 
5831 	handle = ext4_journal_start(inode, 1);
5832 	if (IS_ERR(handle))
5833 		return PTR_ERR(handle);
5834 
5835 	err = ext4_mark_inode_dirty(handle, inode);
5836 	ext4_handle_sync(handle);
5837 	ext4_journal_stop(handle);
5838 	ext4_std_error(inode->i_sb, err);
5839 
5840 	return err;
5841 }
5842 
5843 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5844 {
5845 	return !buffer_mapped(bh);
5846 }
5847 
5848 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5849 {
5850 	struct page *page = vmf->page;
5851 	loff_t size;
5852 	unsigned long len;
5853 	int ret;
5854 	struct file *file = vma->vm_file;
5855 	struct inode *inode = file->f_path.dentry->d_inode;
5856 	struct address_space *mapping = inode->i_mapping;
5857 	handle_t *handle;
5858 	get_block_t *get_block;
5859 	int retries = 0;
5860 
5861 	/*
5862 	 * This check is racy but catches the common case. We rely on
5863 	 * __block_page_mkwrite() to do a reliable check.
5864 	 */
5865 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
5866 	/* Delalloc case is easy... */
5867 	if (test_opt(inode->i_sb, DELALLOC) &&
5868 	    !ext4_should_journal_data(inode) &&
5869 	    !ext4_nonda_switch(inode->i_sb)) {
5870 		do {
5871 			ret = __block_page_mkwrite(vma, vmf,
5872 						   ext4_da_get_block_prep);
5873 		} while (ret == -ENOSPC &&
5874 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5875 		goto out_ret;
5876 	}
5877 
5878 	lock_page(page);
5879 	size = i_size_read(inode);
5880 	/* Page got truncated from under us? */
5881 	if (page->mapping != mapping || page_offset(page) > size) {
5882 		unlock_page(page);
5883 		ret = VM_FAULT_NOPAGE;
5884 		goto out;
5885 	}
5886 
5887 	if (page->index == size >> PAGE_CACHE_SHIFT)
5888 		len = size & ~PAGE_CACHE_MASK;
5889 	else
5890 		len = PAGE_CACHE_SIZE;
5891 	/*
5892 	 * Return if we have all the buffers mapped. This avoids the need to do
5893 	 * journal_start/journal_stop which can block and take a long time
5894 	 */
5895 	if (page_has_buffers(page)) {
5896 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5897 					ext4_bh_unmapped)) {
5898 			/* Wait so that we don't change page under IO */
5899 			wait_on_page_writeback(page);
5900 			ret = VM_FAULT_LOCKED;
5901 			goto out;
5902 		}
5903 	}
5904 	unlock_page(page);
5905 	/* OK, we need to fill the hole... */
5906 	if (ext4_should_dioread_nolock(inode))
5907 		get_block = ext4_get_block_write;
5908 	else
5909 		get_block = ext4_get_block;
5910 retry_alloc:
5911 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
5912 	if (IS_ERR(handle)) {
5913 		ret = VM_FAULT_SIGBUS;
5914 		goto out;
5915 	}
5916 	ret = __block_page_mkwrite(vma, vmf, get_block);
5917 	if (!ret && ext4_should_journal_data(inode)) {
5918 		if (walk_page_buffers(handle, page_buffers(page), 0,
5919 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5920 			unlock_page(page);
5921 			ret = VM_FAULT_SIGBUS;
5922 			goto out;
5923 		}
5924 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5925 	}
5926 	ext4_journal_stop(handle);
5927 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5928 		goto retry_alloc;
5929 out_ret:
5930 	ret = block_page_mkwrite_return(ret);
5931 out:
5932 	return ret;
5933 }
5934