xref: /linux/fs/ext4/ialloc.c (revision fcc8487d477a3452a1d0ccbdd4c5e0e1e3cb8bed)
1 /*
2  *  linux/fs/ext4/ialloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  BSD ufs-inspired inode and directory allocation by
10  *  Stephen Tweedie (sct@redhat.com), 1993
11  *  Big-endian to little-endian byte-swapping/bitmaps by
12  *        David S. Miller (davem@caip.rutgers.edu), 1995
13  */
14 
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/stat.h>
18 #include <linux/string.h>
19 #include <linux/quotaops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/random.h>
22 #include <linux/bitops.h>
23 #include <linux/blkdev.h>
24 #include <linux/cred.h>
25 
26 #include <asm/byteorder.h>
27 
28 #include "ext4.h"
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32 
33 #include <trace/events/ext4.h>
34 
35 /*
36  * ialloc.c contains the inodes allocation and deallocation routines
37  */
38 
39 /*
40  * The free inodes are managed by bitmaps.  A file system contains several
41  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
42  * block for inodes, N blocks for the inode table and data blocks.
43  *
44  * The file system contains group descriptors which are located after the
45  * super block.  Each descriptor contains the number of the bitmap block and
46  * the free blocks count in the block.
47  */
48 
49 /*
50  * To avoid calling the atomic setbit hundreds or thousands of times, we only
51  * need to use it within a single byte (to ensure we get endianness right).
52  * We can use memset for the rest of the bitmap as there are no other users.
53  */
54 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
55 {
56 	int i;
57 
58 	if (start_bit >= end_bit)
59 		return;
60 
61 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
62 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
63 		ext4_set_bit(i, bitmap);
64 	if (i < end_bit)
65 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
66 }
67 
68 /* Initializes an uninitialized inode bitmap */
69 static int ext4_init_inode_bitmap(struct super_block *sb,
70 				       struct buffer_head *bh,
71 				       ext4_group_t block_group,
72 				       struct ext4_group_desc *gdp)
73 {
74 	struct ext4_group_info *grp;
75 	struct ext4_sb_info *sbi = EXT4_SB(sb);
76 	J_ASSERT_BH(bh, buffer_locked(bh));
77 
78 	/* If checksum is bad mark all blocks and inodes use to prevent
79 	 * allocation, essentially implementing a per-group read-only flag. */
80 	if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
81 		grp = ext4_get_group_info(sb, block_group);
82 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
83 			percpu_counter_sub(&sbi->s_freeclusters_counter,
84 					   grp->bb_free);
85 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
86 		if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
87 			int count;
88 			count = ext4_free_inodes_count(sb, gdp);
89 			percpu_counter_sub(&sbi->s_freeinodes_counter,
90 					   count);
91 		}
92 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
93 		return -EFSBADCRC;
94 	}
95 
96 	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
97 	ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
98 			bh->b_data);
99 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
100 				   EXT4_INODES_PER_GROUP(sb) / 8);
101 	ext4_group_desc_csum_set(sb, block_group, gdp);
102 
103 	return 0;
104 }
105 
106 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
107 {
108 	if (uptodate) {
109 		set_buffer_uptodate(bh);
110 		set_bitmap_uptodate(bh);
111 	}
112 	unlock_buffer(bh);
113 	put_bh(bh);
114 }
115 
116 static int ext4_validate_inode_bitmap(struct super_block *sb,
117 				      struct ext4_group_desc *desc,
118 				      ext4_group_t block_group,
119 				      struct buffer_head *bh)
120 {
121 	ext4_fsblk_t	blk;
122 	struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
123 	struct ext4_sb_info *sbi = EXT4_SB(sb);
124 
125 	if (buffer_verified(bh))
126 		return 0;
127 	if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
128 		return -EFSCORRUPTED;
129 
130 	ext4_lock_group(sb, block_group);
131 	blk = ext4_inode_bitmap(sb, desc);
132 	if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
133 					   EXT4_INODES_PER_GROUP(sb) / 8)) {
134 		ext4_unlock_group(sb, block_group);
135 		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
136 			   "inode_bitmap = %llu", block_group, blk);
137 		grp = ext4_get_group_info(sb, block_group);
138 		if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
139 			int count;
140 			count = ext4_free_inodes_count(sb, desc);
141 			percpu_counter_sub(&sbi->s_freeinodes_counter,
142 					   count);
143 		}
144 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
145 		return -EFSBADCRC;
146 	}
147 	set_buffer_verified(bh);
148 	ext4_unlock_group(sb, block_group);
149 	return 0;
150 }
151 
152 /*
153  * Read the inode allocation bitmap for a given block_group, reading
154  * into the specified slot in the superblock's bitmap cache.
155  *
156  * Return buffer_head of bitmap on success or NULL.
157  */
158 static struct buffer_head *
159 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
160 {
161 	struct ext4_group_desc *desc;
162 	struct buffer_head *bh = NULL;
163 	ext4_fsblk_t bitmap_blk;
164 	int err;
165 
166 	desc = ext4_get_group_desc(sb, block_group, NULL);
167 	if (!desc)
168 		return ERR_PTR(-EFSCORRUPTED);
169 
170 	bitmap_blk = ext4_inode_bitmap(sb, desc);
171 	bh = sb_getblk(sb, bitmap_blk);
172 	if (unlikely(!bh)) {
173 		ext4_error(sb, "Cannot read inode bitmap - "
174 			    "block_group = %u, inode_bitmap = %llu",
175 			    block_group, bitmap_blk);
176 		return ERR_PTR(-EIO);
177 	}
178 	if (bitmap_uptodate(bh))
179 		goto verify;
180 
181 	lock_buffer(bh);
182 	if (bitmap_uptodate(bh)) {
183 		unlock_buffer(bh);
184 		goto verify;
185 	}
186 
187 	ext4_lock_group(sb, block_group);
188 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
189 		err = ext4_init_inode_bitmap(sb, bh, block_group, desc);
190 		set_bitmap_uptodate(bh);
191 		set_buffer_uptodate(bh);
192 		set_buffer_verified(bh);
193 		ext4_unlock_group(sb, block_group);
194 		unlock_buffer(bh);
195 		if (err) {
196 			ext4_error(sb, "Failed to init inode bitmap for group "
197 				   "%u: %d", block_group, err);
198 			goto out;
199 		}
200 		return bh;
201 	}
202 	ext4_unlock_group(sb, block_group);
203 
204 	if (buffer_uptodate(bh)) {
205 		/*
206 		 * if not uninit if bh is uptodate,
207 		 * bitmap is also uptodate
208 		 */
209 		set_bitmap_uptodate(bh);
210 		unlock_buffer(bh);
211 		goto verify;
212 	}
213 	/*
214 	 * submit the buffer_head for reading
215 	 */
216 	trace_ext4_load_inode_bitmap(sb, block_group);
217 	bh->b_end_io = ext4_end_bitmap_read;
218 	get_bh(bh);
219 	submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
220 	wait_on_buffer(bh);
221 	if (!buffer_uptodate(bh)) {
222 		put_bh(bh);
223 		ext4_error(sb, "Cannot read inode bitmap - "
224 			   "block_group = %u, inode_bitmap = %llu",
225 			   block_group, bitmap_blk);
226 		return ERR_PTR(-EIO);
227 	}
228 
229 verify:
230 	err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
231 	if (err)
232 		goto out;
233 	return bh;
234 out:
235 	put_bh(bh);
236 	return ERR_PTR(err);
237 }
238 
239 /*
240  * NOTE! When we get the inode, we're the only people
241  * that have access to it, and as such there are no
242  * race conditions we have to worry about. The inode
243  * is not on the hash-lists, and it cannot be reached
244  * through the filesystem because the directory entry
245  * has been deleted earlier.
246  *
247  * HOWEVER: we must make sure that we get no aliases,
248  * which means that we have to call "clear_inode()"
249  * _before_ we mark the inode not in use in the inode
250  * bitmaps. Otherwise a newly created file might use
251  * the same inode number (not actually the same pointer
252  * though), and then we'd have two inodes sharing the
253  * same inode number and space on the harddisk.
254  */
255 void ext4_free_inode(handle_t *handle, struct inode *inode)
256 {
257 	struct super_block *sb = inode->i_sb;
258 	int is_directory;
259 	unsigned long ino;
260 	struct buffer_head *bitmap_bh = NULL;
261 	struct buffer_head *bh2;
262 	ext4_group_t block_group;
263 	unsigned long bit;
264 	struct ext4_group_desc *gdp;
265 	struct ext4_super_block *es;
266 	struct ext4_sb_info *sbi;
267 	int fatal = 0, err, count, cleared;
268 	struct ext4_group_info *grp;
269 
270 	if (!sb) {
271 		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
272 		       "nonexistent device\n", __func__, __LINE__);
273 		return;
274 	}
275 	if (atomic_read(&inode->i_count) > 1) {
276 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
277 			 __func__, __LINE__, inode->i_ino,
278 			 atomic_read(&inode->i_count));
279 		return;
280 	}
281 	if (inode->i_nlink) {
282 		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
283 			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
284 		return;
285 	}
286 	sbi = EXT4_SB(sb);
287 
288 	ino = inode->i_ino;
289 	ext4_debug("freeing inode %lu\n", ino);
290 	trace_ext4_free_inode(inode);
291 
292 	/*
293 	 * Note: we must free any quota before locking the superblock,
294 	 * as writing the quota to disk may need the lock as well.
295 	 */
296 	dquot_initialize(inode);
297 	ext4_xattr_delete_inode(handle, inode);
298 	dquot_free_inode(inode);
299 	dquot_drop(inode);
300 
301 	is_directory = S_ISDIR(inode->i_mode);
302 
303 	/* Do this BEFORE marking the inode not in use or returning an error */
304 	ext4_clear_inode(inode);
305 
306 	es = EXT4_SB(sb)->s_es;
307 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
308 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
309 		goto error_return;
310 	}
311 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
312 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
313 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
314 	/* Don't bother if the inode bitmap is corrupt. */
315 	grp = ext4_get_group_info(sb, block_group);
316 	if (IS_ERR(bitmap_bh)) {
317 		fatal = PTR_ERR(bitmap_bh);
318 		bitmap_bh = NULL;
319 		goto error_return;
320 	}
321 	if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
322 		fatal = -EFSCORRUPTED;
323 		goto error_return;
324 	}
325 
326 	BUFFER_TRACE(bitmap_bh, "get_write_access");
327 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
328 	if (fatal)
329 		goto error_return;
330 
331 	fatal = -ESRCH;
332 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
333 	if (gdp) {
334 		BUFFER_TRACE(bh2, "get_write_access");
335 		fatal = ext4_journal_get_write_access(handle, bh2);
336 	}
337 	ext4_lock_group(sb, block_group);
338 	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
339 	if (fatal || !cleared) {
340 		ext4_unlock_group(sb, block_group);
341 		goto out;
342 	}
343 
344 	count = ext4_free_inodes_count(sb, gdp) + 1;
345 	ext4_free_inodes_set(sb, gdp, count);
346 	if (is_directory) {
347 		count = ext4_used_dirs_count(sb, gdp) - 1;
348 		ext4_used_dirs_set(sb, gdp, count);
349 		percpu_counter_dec(&sbi->s_dirs_counter);
350 	}
351 	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
352 				   EXT4_INODES_PER_GROUP(sb) / 8);
353 	ext4_group_desc_csum_set(sb, block_group, gdp);
354 	ext4_unlock_group(sb, block_group);
355 
356 	percpu_counter_inc(&sbi->s_freeinodes_counter);
357 	if (sbi->s_log_groups_per_flex) {
358 		ext4_group_t f = ext4_flex_group(sbi, block_group);
359 
360 		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
361 		if (is_directory)
362 			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
363 	}
364 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
365 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
366 out:
367 	if (cleared) {
368 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
369 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
370 		if (!fatal)
371 			fatal = err;
372 	} else {
373 		ext4_error(sb, "bit already cleared for inode %lu", ino);
374 		if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
375 			int count;
376 			count = ext4_free_inodes_count(sb, gdp);
377 			percpu_counter_sub(&sbi->s_freeinodes_counter,
378 					   count);
379 		}
380 		set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
381 	}
382 
383 error_return:
384 	brelse(bitmap_bh);
385 	ext4_std_error(sb, fatal);
386 }
387 
388 struct orlov_stats {
389 	__u64 free_clusters;
390 	__u32 free_inodes;
391 	__u32 used_dirs;
392 };
393 
394 /*
395  * Helper function for Orlov's allocator; returns critical information
396  * for a particular block group or flex_bg.  If flex_size is 1, then g
397  * is a block group number; otherwise it is flex_bg number.
398  */
399 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
400 			    int flex_size, struct orlov_stats *stats)
401 {
402 	struct ext4_group_desc *desc;
403 	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
404 
405 	if (flex_size > 1) {
406 		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
407 		stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
408 		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
409 		return;
410 	}
411 
412 	desc = ext4_get_group_desc(sb, g, NULL);
413 	if (desc) {
414 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
415 		stats->free_clusters = ext4_free_group_clusters(sb, desc);
416 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
417 	} else {
418 		stats->free_inodes = 0;
419 		stats->free_clusters = 0;
420 		stats->used_dirs = 0;
421 	}
422 }
423 
424 /*
425  * Orlov's allocator for directories.
426  *
427  * We always try to spread first-level directories.
428  *
429  * If there are blockgroups with both free inodes and free blocks counts
430  * not worse than average we return one with smallest directory count.
431  * Otherwise we simply return a random group.
432  *
433  * For the rest rules look so:
434  *
435  * It's OK to put directory into a group unless
436  * it has too many directories already (max_dirs) or
437  * it has too few free inodes left (min_inodes) or
438  * it has too few free blocks left (min_blocks) or
439  * Parent's group is preferred, if it doesn't satisfy these
440  * conditions we search cyclically through the rest. If none
441  * of the groups look good we just look for a group with more
442  * free inodes than average (starting at parent's group).
443  */
444 
445 static int find_group_orlov(struct super_block *sb, struct inode *parent,
446 			    ext4_group_t *group, umode_t mode,
447 			    const struct qstr *qstr)
448 {
449 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
450 	struct ext4_sb_info *sbi = EXT4_SB(sb);
451 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
452 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
453 	unsigned int freei, avefreei, grp_free;
454 	ext4_fsblk_t freeb, avefreec;
455 	unsigned int ndirs;
456 	int max_dirs, min_inodes;
457 	ext4_grpblk_t min_clusters;
458 	ext4_group_t i, grp, g, ngroups;
459 	struct ext4_group_desc *desc;
460 	struct orlov_stats stats;
461 	int flex_size = ext4_flex_bg_size(sbi);
462 	struct dx_hash_info hinfo;
463 
464 	ngroups = real_ngroups;
465 	if (flex_size > 1) {
466 		ngroups = (real_ngroups + flex_size - 1) >>
467 			sbi->s_log_groups_per_flex;
468 		parent_group >>= sbi->s_log_groups_per_flex;
469 	}
470 
471 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
472 	avefreei = freei / ngroups;
473 	freeb = EXT4_C2B(sbi,
474 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
475 	avefreec = freeb;
476 	do_div(avefreec, ngroups);
477 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
478 
479 	if (S_ISDIR(mode) &&
480 	    ((parent == d_inode(sb->s_root)) ||
481 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
482 		int best_ndir = inodes_per_group;
483 		int ret = -1;
484 
485 		if (qstr) {
486 			hinfo.hash_version = DX_HASH_HALF_MD4;
487 			hinfo.seed = sbi->s_hash_seed;
488 			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
489 			grp = hinfo.hash;
490 		} else
491 			grp = prandom_u32();
492 		parent_group = (unsigned)grp % ngroups;
493 		for (i = 0; i < ngroups; i++) {
494 			g = (parent_group + i) % ngroups;
495 			get_orlov_stats(sb, g, flex_size, &stats);
496 			if (!stats.free_inodes)
497 				continue;
498 			if (stats.used_dirs >= best_ndir)
499 				continue;
500 			if (stats.free_inodes < avefreei)
501 				continue;
502 			if (stats.free_clusters < avefreec)
503 				continue;
504 			grp = g;
505 			ret = 0;
506 			best_ndir = stats.used_dirs;
507 		}
508 		if (ret)
509 			goto fallback;
510 	found_flex_bg:
511 		if (flex_size == 1) {
512 			*group = grp;
513 			return 0;
514 		}
515 
516 		/*
517 		 * We pack inodes at the beginning of the flexgroup's
518 		 * inode tables.  Block allocation decisions will do
519 		 * something similar, although regular files will
520 		 * start at 2nd block group of the flexgroup.  See
521 		 * ext4_ext_find_goal() and ext4_find_near().
522 		 */
523 		grp *= flex_size;
524 		for (i = 0; i < flex_size; i++) {
525 			if (grp+i >= real_ngroups)
526 				break;
527 			desc = ext4_get_group_desc(sb, grp+i, NULL);
528 			if (desc && ext4_free_inodes_count(sb, desc)) {
529 				*group = grp+i;
530 				return 0;
531 			}
532 		}
533 		goto fallback;
534 	}
535 
536 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
537 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
538 	if (min_inodes < 1)
539 		min_inodes = 1;
540 	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
541 
542 	/*
543 	 * Start looking in the flex group where we last allocated an
544 	 * inode for this parent directory
545 	 */
546 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
547 		parent_group = EXT4_I(parent)->i_last_alloc_group;
548 		if (flex_size > 1)
549 			parent_group >>= sbi->s_log_groups_per_flex;
550 	}
551 
552 	for (i = 0; i < ngroups; i++) {
553 		grp = (parent_group + i) % ngroups;
554 		get_orlov_stats(sb, grp, flex_size, &stats);
555 		if (stats.used_dirs >= max_dirs)
556 			continue;
557 		if (stats.free_inodes < min_inodes)
558 			continue;
559 		if (stats.free_clusters < min_clusters)
560 			continue;
561 		goto found_flex_bg;
562 	}
563 
564 fallback:
565 	ngroups = real_ngroups;
566 	avefreei = freei / ngroups;
567 fallback_retry:
568 	parent_group = EXT4_I(parent)->i_block_group;
569 	for (i = 0; i < ngroups; i++) {
570 		grp = (parent_group + i) % ngroups;
571 		desc = ext4_get_group_desc(sb, grp, NULL);
572 		if (desc) {
573 			grp_free = ext4_free_inodes_count(sb, desc);
574 			if (grp_free && grp_free >= avefreei) {
575 				*group = grp;
576 				return 0;
577 			}
578 		}
579 	}
580 
581 	if (avefreei) {
582 		/*
583 		 * The free-inodes counter is approximate, and for really small
584 		 * filesystems the above test can fail to find any blockgroups
585 		 */
586 		avefreei = 0;
587 		goto fallback_retry;
588 	}
589 
590 	return -1;
591 }
592 
593 static int find_group_other(struct super_block *sb, struct inode *parent,
594 			    ext4_group_t *group, umode_t mode)
595 {
596 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
597 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
598 	struct ext4_group_desc *desc;
599 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
600 
601 	/*
602 	 * Try to place the inode is the same flex group as its
603 	 * parent.  If we can't find space, use the Orlov algorithm to
604 	 * find another flex group, and store that information in the
605 	 * parent directory's inode information so that use that flex
606 	 * group for future allocations.
607 	 */
608 	if (flex_size > 1) {
609 		int retry = 0;
610 
611 	try_again:
612 		parent_group &= ~(flex_size-1);
613 		last = parent_group + flex_size;
614 		if (last > ngroups)
615 			last = ngroups;
616 		for  (i = parent_group; i < last; i++) {
617 			desc = ext4_get_group_desc(sb, i, NULL);
618 			if (desc && ext4_free_inodes_count(sb, desc)) {
619 				*group = i;
620 				return 0;
621 			}
622 		}
623 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
624 			retry = 1;
625 			parent_group = EXT4_I(parent)->i_last_alloc_group;
626 			goto try_again;
627 		}
628 		/*
629 		 * If this didn't work, use the Orlov search algorithm
630 		 * to find a new flex group; we pass in the mode to
631 		 * avoid the topdir algorithms.
632 		 */
633 		*group = parent_group + flex_size;
634 		if (*group > ngroups)
635 			*group = 0;
636 		return find_group_orlov(sb, parent, group, mode, NULL);
637 	}
638 
639 	/*
640 	 * Try to place the inode in its parent directory
641 	 */
642 	*group = parent_group;
643 	desc = ext4_get_group_desc(sb, *group, NULL);
644 	if (desc && ext4_free_inodes_count(sb, desc) &&
645 	    ext4_free_group_clusters(sb, desc))
646 		return 0;
647 
648 	/*
649 	 * We're going to place this inode in a different blockgroup from its
650 	 * parent.  We want to cause files in a common directory to all land in
651 	 * the same blockgroup.  But we want files which are in a different
652 	 * directory which shares a blockgroup with our parent to land in a
653 	 * different blockgroup.
654 	 *
655 	 * So add our directory's i_ino into the starting point for the hash.
656 	 */
657 	*group = (*group + parent->i_ino) % ngroups;
658 
659 	/*
660 	 * Use a quadratic hash to find a group with a free inode and some free
661 	 * blocks.
662 	 */
663 	for (i = 1; i < ngroups; i <<= 1) {
664 		*group += i;
665 		if (*group >= ngroups)
666 			*group -= ngroups;
667 		desc = ext4_get_group_desc(sb, *group, NULL);
668 		if (desc && ext4_free_inodes_count(sb, desc) &&
669 		    ext4_free_group_clusters(sb, desc))
670 			return 0;
671 	}
672 
673 	/*
674 	 * That failed: try linear search for a free inode, even if that group
675 	 * has no free blocks.
676 	 */
677 	*group = parent_group;
678 	for (i = 0; i < ngroups; i++) {
679 		if (++*group >= ngroups)
680 			*group = 0;
681 		desc = ext4_get_group_desc(sb, *group, NULL);
682 		if (desc && ext4_free_inodes_count(sb, desc))
683 			return 0;
684 	}
685 
686 	return -1;
687 }
688 
689 /*
690  * In no journal mode, if an inode has recently been deleted, we want
691  * to avoid reusing it until we're reasonably sure the inode table
692  * block has been written back to disk.  (Yes, these values are
693  * somewhat arbitrary...)
694  */
695 #define RECENTCY_MIN	5
696 #define RECENTCY_DIRTY	30
697 
698 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
699 {
700 	struct ext4_group_desc	*gdp;
701 	struct ext4_inode	*raw_inode;
702 	struct buffer_head	*bh;
703 	unsigned long		dtime, now;
704 	int	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
705 	int	offset, ret = 0, recentcy = RECENTCY_MIN;
706 
707 	gdp = ext4_get_group_desc(sb, group, NULL);
708 	if (unlikely(!gdp))
709 		return 0;
710 
711 	bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
712 		       (ino / inodes_per_block));
713 	if (unlikely(!bh) || !buffer_uptodate(bh))
714 		/*
715 		 * If the block is not in the buffer cache, then it
716 		 * must have been written out.
717 		 */
718 		goto out;
719 
720 	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
721 	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
722 	dtime = le32_to_cpu(raw_inode->i_dtime);
723 	now = get_seconds();
724 	if (buffer_dirty(bh))
725 		recentcy += RECENTCY_DIRTY;
726 
727 	if (dtime && (dtime < now) && (now < dtime + recentcy))
728 		ret = 1;
729 out:
730 	brelse(bh);
731 	return ret;
732 }
733 
734 /*
735  * There are two policies for allocating an inode.  If the new inode is
736  * a directory, then a forward search is made for a block group with both
737  * free space and a low directory-to-inode ratio; if that fails, then of
738  * the groups with above-average free space, that group with the fewest
739  * directories already is chosen.
740  *
741  * For other inodes, search forward from the parent directory's block
742  * group to find a free inode.
743  */
744 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
745 			       umode_t mode, const struct qstr *qstr,
746 			       __u32 goal, uid_t *owner, int handle_type,
747 			       unsigned int line_no, int nblocks)
748 {
749 	struct super_block *sb;
750 	struct buffer_head *inode_bitmap_bh = NULL;
751 	struct buffer_head *group_desc_bh;
752 	ext4_group_t ngroups, group = 0;
753 	unsigned long ino = 0;
754 	struct inode *inode;
755 	struct ext4_group_desc *gdp = NULL;
756 	struct ext4_inode_info *ei;
757 	struct ext4_sb_info *sbi;
758 	int ret2, err;
759 	struct inode *ret;
760 	ext4_group_t i;
761 	ext4_group_t flex_group;
762 	struct ext4_group_info *grp;
763 	int encrypt = 0;
764 
765 	/* Cannot create files in a deleted directory */
766 	if (!dir || !dir->i_nlink)
767 		return ERR_PTR(-EPERM);
768 
769 	if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb))))
770 		return ERR_PTR(-EIO);
771 
772 	if ((ext4_encrypted_inode(dir) ||
773 	     DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))) &&
774 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
775 		err = fscrypt_get_encryption_info(dir);
776 		if (err)
777 			return ERR_PTR(err);
778 		if (!fscrypt_has_encryption_key(dir))
779 			return ERR_PTR(-ENOKEY);
780 		if (!handle)
781 			nblocks += EXT4_DATA_TRANS_BLOCKS(dir->i_sb);
782 		encrypt = 1;
783 	}
784 
785 	sb = dir->i_sb;
786 	ngroups = ext4_get_groups_count(sb);
787 	trace_ext4_request_inode(dir, mode);
788 	inode = new_inode(sb);
789 	if (!inode)
790 		return ERR_PTR(-ENOMEM);
791 	ei = EXT4_I(inode);
792 	sbi = EXT4_SB(sb);
793 
794 	/*
795 	 * Initialize owners and quota early so that we don't have to account
796 	 * for quota initialization worst case in standard inode creating
797 	 * transaction
798 	 */
799 	if (owner) {
800 		inode->i_mode = mode;
801 		i_uid_write(inode, owner[0]);
802 		i_gid_write(inode, owner[1]);
803 	} else if (test_opt(sb, GRPID)) {
804 		inode->i_mode = mode;
805 		inode->i_uid = current_fsuid();
806 		inode->i_gid = dir->i_gid;
807 	} else
808 		inode_init_owner(inode, dir, mode);
809 
810 	if (ext4_has_feature_project(sb) &&
811 	    ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
812 		ei->i_projid = EXT4_I(dir)->i_projid;
813 	else
814 		ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
815 
816 	err = dquot_initialize(inode);
817 	if (err)
818 		goto out;
819 
820 	if (!goal)
821 		goal = sbi->s_inode_goal;
822 
823 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
824 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
825 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
826 		ret2 = 0;
827 		goto got_group;
828 	}
829 
830 	if (S_ISDIR(mode))
831 		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
832 	else
833 		ret2 = find_group_other(sb, dir, &group, mode);
834 
835 got_group:
836 	EXT4_I(dir)->i_last_alloc_group = group;
837 	err = -ENOSPC;
838 	if (ret2 == -1)
839 		goto out;
840 
841 	/*
842 	 * Normally we will only go through one pass of this loop,
843 	 * unless we get unlucky and it turns out the group we selected
844 	 * had its last inode grabbed by someone else.
845 	 */
846 	for (i = 0; i < ngroups; i++, ino = 0) {
847 		err = -EIO;
848 
849 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
850 		if (!gdp)
851 			goto out;
852 
853 		/*
854 		 * Check free inodes count before loading bitmap.
855 		 */
856 		if (ext4_free_inodes_count(sb, gdp) == 0) {
857 			if (++group == ngroups)
858 				group = 0;
859 			continue;
860 		}
861 
862 		grp = ext4_get_group_info(sb, group);
863 		/* Skip groups with already-known suspicious inode tables */
864 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
865 			if (++group == ngroups)
866 				group = 0;
867 			continue;
868 		}
869 
870 		brelse(inode_bitmap_bh);
871 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
872 		/* Skip groups with suspicious inode tables */
873 		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
874 		    IS_ERR(inode_bitmap_bh)) {
875 			inode_bitmap_bh = NULL;
876 			if (++group == ngroups)
877 				group = 0;
878 			continue;
879 		}
880 
881 repeat_in_this_group:
882 		ino = ext4_find_next_zero_bit((unsigned long *)
883 					      inode_bitmap_bh->b_data,
884 					      EXT4_INODES_PER_GROUP(sb), ino);
885 		if (ino >= EXT4_INODES_PER_GROUP(sb))
886 			goto next_group;
887 		if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
888 			ext4_error(sb, "reserved inode found cleared - "
889 				   "inode=%lu", ino + 1);
890 			continue;
891 		}
892 		if ((EXT4_SB(sb)->s_journal == NULL) &&
893 		    recently_deleted(sb, group, ino)) {
894 			ino++;
895 			goto next_inode;
896 		}
897 		if (!handle) {
898 			BUG_ON(nblocks <= 0);
899 			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
900 							 handle_type, nblocks,
901 							 0);
902 			if (IS_ERR(handle)) {
903 				err = PTR_ERR(handle);
904 				ext4_std_error(sb, err);
905 				goto out;
906 			}
907 		}
908 		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
909 		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
910 		if (err) {
911 			ext4_std_error(sb, err);
912 			goto out;
913 		}
914 		ext4_lock_group(sb, group);
915 		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
916 		ext4_unlock_group(sb, group);
917 		ino++;		/* the inode bitmap is zero-based */
918 		if (!ret2)
919 			goto got; /* we grabbed the inode! */
920 next_inode:
921 		if (ino < EXT4_INODES_PER_GROUP(sb))
922 			goto repeat_in_this_group;
923 next_group:
924 		if (++group == ngroups)
925 			group = 0;
926 	}
927 	err = -ENOSPC;
928 	goto out;
929 
930 got:
931 	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
932 	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
933 	if (err) {
934 		ext4_std_error(sb, err);
935 		goto out;
936 	}
937 
938 	BUFFER_TRACE(group_desc_bh, "get_write_access");
939 	err = ext4_journal_get_write_access(handle, group_desc_bh);
940 	if (err) {
941 		ext4_std_error(sb, err);
942 		goto out;
943 	}
944 
945 	/* We may have to initialize the block bitmap if it isn't already */
946 	if (ext4_has_group_desc_csum(sb) &&
947 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
948 		struct buffer_head *block_bitmap_bh;
949 
950 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
951 		if (IS_ERR(block_bitmap_bh)) {
952 			err = PTR_ERR(block_bitmap_bh);
953 			goto out;
954 		}
955 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
956 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
957 		if (err) {
958 			brelse(block_bitmap_bh);
959 			ext4_std_error(sb, err);
960 			goto out;
961 		}
962 
963 		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
964 		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
965 
966 		/* recheck and clear flag under lock if we still need to */
967 		ext4_lock_group(sb, group);
968 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
969 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
970 			ext4_free_group_clusters_set(sb, gdp,
971 				ext4_free_clusters_after_init(sb, group, gdp));
972 			ext4_block_bitmap_csum_set(sb, group, gdp,
973 						   block_bitmap_bh);
974 			ext4_group_desc_csum_set(sb, group, gdp);
975 		}
976 		ext4_unlock_group(sb, group);
977 		brelse(block_bitmap_bh);
978 
979 		if (err) {
980 			ext4_std_error(sb, err);
981 			goto out;
982 		}
983 	}
984 
985 	/* Update the relevant bg descriptor fields */
986 	if (ext4_has_group_desc_csum(sb)) {
987 		int free;
988 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
989 
990 		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
991 		ext4_lock_group(sb, group); /* while we modify the bg desc */
992 		free = EXT4_INODES_PER_GROUP(sb) -
993 			ext4_itable_unused_count(sb, gdp);
994 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
995 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
996 			free = 0;
997 		}
998 		/*
999 		 * Check the relative inode number against the last used
1000 		 * relative inode number in this group. if it is greater
1001 		 * we need to update the bg_itable_unused count
1002 		 */
1003 		if (ino > free)
1004 			ext4_itable_unused_set(sb, gdp,
1005 					(EXT4_INODES_PER_GROUP(sb) - ino));
1006 		up_read(&grp->alloc_sem);
1007 	} else {
1008 		ext4_lock_group(sb, group);
1009 	}
1010 
1011 	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1012 	if (S_ISDIR(mode)) {
1013 		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1014 		if (sbi->s_log_groups_per_flex) {
1015 			ext4_group_t f = ext4_flex_group(sbi, group);
1016 
1017 			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1018 		}
1019 	}
1020 	if (ext4_has_group_desc_csum(sb)) {
1021 		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1022 					   EXT4_INODES_PER_GROUP(sb) / 8);
1023 		ext4_group_desc_csum_set(sb, group, gdp);
1024 	}
1025 	ext4_unlock_group(sb, group);
1026 
1027 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1028 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1029 	if (err) {
1030 		ext4_std_error(sb, err);
1031 		goto out;
1032 	}
1033 
1034 	percpu_counter_dec(&sbi->s_freeinodes_counter);
1035 	if (S_ISDIR(mode))
1036 		percpu_counter_inc(&sbi->s_dirs_counter);
1037 
1038 	if (sbi->s_log_groups_per_flex) {
1039 		flex_group = ext4_flex_group(sbi, group);
1040 		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1041 	}
1042 
1043 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1044 	/* This is the optimal IO size (for stat), not the fs block size */
1045 	inode->i_blocks = 0;
1046 	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1047 						       current_time(inode);
1048 
1049 	memset(ei->i_data, 0, sizeof(ei->i_data));
1050 	ei->i_dir_start_lookup = 0;
1051 	ei->i_disksize = 0;
1052 
1053 	/* Don't inherit extent flag from directory, amongst others. */
1054 	ei->i_flags =
1055 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1056 	ei->i_file_acl = 0;
1057 	ei->i_dtime = 0;
1058 	ei->i_block_group = group;
1059 	ei->i_last_alloc_group = ~0;
1060 
1061 	ext4_set_inode_flags(inode);
1062 	if (IS_DIRSYNC(inode))
1063 		ext4_handle_sync(handle);
1064 	if (insert_inode_locked(inode) < 0) {
1065 		/*
1066 		 * Likely a bitmap corruption causing inode to be allocated
1067 		 * twice.
1068 		 */
1069 		err = -EIO;
1070 		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1071 			   inode->i_ino);
1072 		goto out;
1073 	}
1074 	spin_lock(&sbi->s_next_gen_lock);
1075 	inode->i_generation = sbi->s_next_generation++;
1076 	spin_unlock(&sbi->s_next_gen_lock);
1077 
1078 	/* Precompute checksum seed for inode metadata */
1079 	if (ext4_has_metadata_csum(sb)) {
1080 		__u32 csum;
1081 		__le32 inum = cpu_to_le32(inode->i_ino);
1082 		__le32 gen = cpu_to_le32(inode->i_generation);
1083 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1084 				   sizeof(inum));
1085 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1086 					      sizeof(gen));
1087 	}
1088 
1089 	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1090 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1091 
1092 	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1093 	ei->i_inline_off = 0;
1094 	if (ext4_has_feature_inline_data(sb))
1095 		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1096 	ret = inode;
1097 	err = dquot_alloc_inode(inode);
1098 	if (err)
1099 		goto fail_drop;
1100 
1101 	/*
1102 	 * Since the encryption xattr will always be unique, create it first so
1103 	 * that it's less likely to end up in an external xattr block and
1104 	 * prevent its deduplication.
1105 	 */
1106 	if (encrypt) {
1107 		err = fscrypt_inherit_context(dir, inode, handle, true);
1108 		if (err)
1109 			goto fail_free_drop;
1110 	}
1111 
1112 	err = ext4_init_acl(handle, inode, dir);
1113 	if (err)
1114 		goto fail_free_drop;
1115 
1116 	err = ext4_init_security(handle, inode, dir, qstr);
1117 	if (err)
1118 		goto fail_free_drop;
1119 
1120 	if (ext4_has_feature_extents(sb)) {
1121 		/* set extent flag only for directory, file and normal symlink*/
1122 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1123 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1124 			ext4_ext_tree_init(handle, inode);
1125 		}
1126 	}
1127 
1128 	if (ext4_handle_valid(handle)) {
1129 		ei->i_sync_tid = handle->h_transaction->t_tid;
1130 		ei->i_datasync_tid = handle->h_transaction->t_tid;
1131 	}
1132 
1133 	err = ext4_mark_inode_dirty(handle, inode);
1134 	if (err) {
1135 		ext4_std_error(sb, err);
1136 		goto fail_free_drop;
1137 	}
1138 
1139 	ext4_debug("allocating inode %lu\n", inode->i_ino);
1140 	trace_ext4_allocate_inode(inode, dir, mode);
1141 	brelse(inode_bitmap_bh);
1142 	return ret;
1143 
1144 fail_free_drop:
1145 	dquot_free_inode(inode);
1146 fail_drop:
1147 	clear_nlink(inode);
1148 	unlock_new_inode(inode);
1149 out:
1150 	dquot_drop(inode);
1151 	inode->i_flags |= S_NOQUOTA;
1152 	iput(inode);
1153 	brelse(inode_bitmap_bh);
1154 	return ERR_PTR(err);
1155 }
1156 
1157 /* Verify that we are loading a valid orphan from disk */
1158 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1159 {
1160 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1161 	ext4_group_t block_group;
1162 	int bit;
1163 	struct buffer_head *bitmap_bh = NULL;
1164 	struct inode *inode = NULL;
1165 	int err = -EFSCORRUPTED;
1166 
1167 	if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1168 		goto bad_orphan;
1169 
1170 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1171 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1172 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1173 	if (IS_ERR(bitmap_bh)) {
1174 		ext4_error(sb, "inode bitmap error %ld for orphan %lu",
1175 			   ino, PTR_ERR(bitmap_bh));
1176 		return (struct inode *) bitmap_bh;
1177 	}
1178 
1179 	/* Having the inode bit set should be a 100% indicator that this
1180 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1181 	 * inodes that were being truncated, so we can't check i_nlink==0.
1182 	 */
1183 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1184 		goto bad_orphan;
1185 
1186 	inode = ext4_iget(sb, ino);
1187 	if (IS_ERR(inode)) {
1188 		err = PTR_ERR(inode);
1189 		ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1190 			   ino, err);
1191 		return inode;
1192 	}
1193 
1194 	/*
1195 	 * If the orphans has i_nlinks > 0 then it should be able to
1196 	 * be truncated, otherwise it won't be removed from the orphan
1197 	 * list during processing and an infinite loop will result.
1198 	 * Similarly, it must not be a bad inode.
1199 	 */
1200 	if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1201 	    is_bad_inode(inode))
1202 		goto bad_orphan;
1203 
1204 	if (NEXT_ORPHAN(inode) > max_ino)
1205 		goto bad_orphan;
1206 	brelse(bitmap_bh);
1207 	return inode;
1208 
1209 bad_orphan:
1210 	ext4_error(sb, "bad orphan inode %lu", ino);
1211 	if (bitmap_bh)
1212 		printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1213 		       bit, (unsigned long long)bitmap_bh->b_blocknr,
1214 		       ext4_test_bit(bit, bitmap_bh->b_data));
1215 	if (inode) {
1216 		printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1217 		       is_bad_inode(inode));
1218 		printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1219 		       NEXT_ORPHAN(inode));
1220 		printk(KERN_ERR "max_ino=%lu\n", max_ino);
1221 		printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1222 		/* Avoid freeing blocks if we got a bad deleted inode */
1223 		if (inode->i_nlink == 0)
1224 			inode->i_blocks = 0;
1225 		iput(inode);
1226 	}
1227 	brelse(bitmap_bh);
1228 	return ERR_PTR(err);
1229 }
1230 
1231 unsigned long ext4_count_free_inodes(struct super_block *sb)
1232 {
1233 	unsigned long desc_count;
1234 	struct ext4_group_desc *gdp;
1235 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1236 #ifdef EXT4FS_DEBUG
1237 	struct ext4_super_block *es;
1238 	unsigned long bitmap_count, x;
1239 	struct buffer_head *bitmap_bh = NULL;
1240 
1241 	es = EXT4_SB(sb)->s_es;
1242 	desc_count = 0;
1243 	bitmap_count = 0;
1244 	gdp = NULL;
1245 	for (i = 0; i < ngroups; i++) {
1246 		gdp = ext4_get_group_desc(sb, i, NULL);
1247 		if (!gdp)
1248 			continue;
1249 		desc_count += ext4_free_inodes_count(sb, gdp);
1250 		brelse(bitmap_bh);
1251 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1252 		if (IS_ERR(bitmap_bh)) {
1253 			bitmap_bh = NULL;
1254 			continue;
1255 		}
1256 
1257 		x = ext4_count_free(bitmap_bh->b_data,
1258 				    EXT4_INODES_PER_GROUP(sb) / 8);
1259 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1260 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1261 		bitmap_count += x;
1262 	}
1263 	brelse(bitmap_bh);
1264 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1265 	       "stored = %u, computed = %lu, %lu\n",
1266 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1267 	return desc_count;
1268 #else
1269 	desc_count = 0;
1270 	for (i = 0; i < ngroups; i++) {
1271 		gdp = ext4_get_group_desc(sb, i, NULL);
1272 		if (!gdp)
1273 			continue;
1274 		desc_count += ext4_free_inodes_count(sb, gdp);
1275 		cond_resched();
1276 	}
1277 	return desc_count;
1278 #endif
1279 }
1280 
1281 /* Called at mount-time, super-block is locked */
1282 unsigned long ext4_count_dirs(struct super_block * sb)
1283 {
1284 	unsigned long count = 0;
1285 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1286 
1287 	for (i = 0; i < ngroups; i++) {
1288 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1289 		if (!gdp)
1290 			continue;
1291 		count += ext4_used_dirs_count(sb, gdp);
1292 	}
1293 	return count;
1294 }
1295 
1296 /*
1297  * Zeroes not yet zeroed inode table - just write zeroes through the whole
1298  * inode table. Must be called without any spinlock held. The only place
1299  * where it is called from on active part of filesystem is ext4lazyinit
1300  * thread, so we do not need any special locks, however we have to prevent
1301  * inode allocation from the current group, so we take alloc_sem lock, to
1302  * block ext4_new_inode() until we are finished.
1303  */
1304 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1305 				 int barrier)
1306 {
1307 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1308 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1309 	struct ext4_group_desc *gdp = NULL;
1310 	struct buffer_head *group_desc_bh;
1311 	handle_t *handle;
1312 	ext4_fsblk_t blk;
1313 	int num, ret = 0, used_blks = 0;
1314 
1315 	/* This should not happen, but just to be sure check this */
1316 	if (sb->s_flags & MS_RDONLY) {
1317 		ret = 1;
1318 		goto out;
1319 	}
1320 
1321 	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1322 	if (!gdp)
1323 		goto out;
1324 
1325 	/*
1326 	 * We do not need to lock this, because we are the only one
1327 	 * handling this flag.
1328 	 */
1329 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1330 		goto out;
1331 
1332 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1333 	if (IS_ERR(handle)) {
1334 		ret = PTR_ERR(handle);
1335 		goto out;
1336 	}
1337 
1338 	down_write(&grp->alloc_sem);
1339 	/*
1340 	 * If inode bitmap was already initialized there may be some
1341 	 * used inodes so we need to skip blocks with used inodes in
1342 	 * inode table.
1343 	 */
1344 	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1345 		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1346 			    ext4_itable_unused_count(sb, gdp)),
1347 			    sbi->s_inodes_per_block);
1348 
1349 	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1350 		ext4_error(sb, "Something is wrong with group %u: "
1351 			   "used itable blocks: %d; "
1352 			   "itable unused count: %u",
1353 			   group, used_blks,
1354 			   ext4_itable_unused_count(sb, gdp));
1355 		ret = 1;
1356 		goto err_out;
1357 	}
1358 
1359 	blk = ext4_inode_table(sb, gdp) + used_blks;
1360 	num = sbi->s_itb_per_group - used_blks;
1361 
1362 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1363 	ret = ext4_journal_get_write_access(handle,
1364 					    group_desc_bh);
1365 	if (ret)
1366 		goto err_out;
1367 
1368 	/*
1369 	 * Skip zeroout if the inode table is full. But we set the ZEROED
1370 	 * flag anyway, because obviously, when it is full it does not need
1371 	 * further zeroing.
1372 	 */
1373 	if (unlikely(num == 0))
1374 		goto skip_zeroout;
1375 
1376 	ext4_debug("going to zero out inode table in group %d\n",
1377 		   group);
1378 	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1379 	if (ret < 0)
1380 		goto err_out;
1381 	if (barrier)
1382 		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1383 
1384 skip_zeroout:
1385 	ext4_lock_group(sb, group);
1386 	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1387 	ext4_group_desc_csum_set(sb, group, gdp);
1388 	ext4_unlock_group(sb, group);
1389 
1390 	BUFFER_TRACE(group_desc_bh,
1391 		     "call ext4_handle_dirty_metadata");
1392 	ret = ext4_handle_dirty_metadata(handle, NULL,
1393 					 group_desc_bh);
1394 
1395 err_out:
1396 	up_write(&grp->alloc_sem);
1397 	ext4_journal_stop(handle);
1398 out:
1399 	return ret;
1400 }
1401