xref: /linux/fs/eventpoll.c (revision 975ef7ff81bb000af6e6c8e63e81f89f3468dcf7)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 #include <net/busy_poll.h>
46 
47 /*
48  * LOCKING:
49  * There are three level of locking required by epoll :
50  *
51  * 1) epmutex (mutex)
52  * 2) ep->mtx (mutex)
53  * 3) ep->lock (spinlock)
54  *
55  * The acquire order is the one listed above, from 1 to 3.
56  * We need a spinlock (ep->lock) because we manipulate objects
57  * from inside the poll callback, that might be triggered from
58  * a wake_up() that in turn might be called from IRQ context.
59  * So we can't sleep inside the poll callback and hence we need
60  * a spinlock. During the event transfer loop (from kernel to
61  * user space) we could end up sleeping due a copy_to_user(), so
62  * we need a lock that will allow us to sleep. This lock is a
63  * mutex (ep->mtx). It is acquired during the event transfer loop,
64  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65  * Then we also need a global mutex to serialize eventpoll_release_file()
66  * and ep_free().
67  * This mutex is acquired by ep_free() during the epoll file
68  * cleanup path and it is also acquired by eventpoll_release_file()
69  * if a file has been pushed inside an epoll set and it is then
70  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71  * It is also acquired when inserting an epoll fd onto another epoll
72  * fd. We do this so that we walk the epoll tree and ensure that this
73  * insertion does not create a cycle of epoll file descriptors, which
74  * could lead to deadlock. We need a global mutex to prevent two
75  * simultaneous inserts (A into B and B into A) from racing and
76  * constructing a cycle without either insert observing that it is
77  * going to.
78  * It is necessary to acquire multiple "ep->mtx"es at once in the
79  * case when one epoll fd is added to another. In this case, we
80  * always acquire the locks in the order of nesting (i.e. after
81  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82  * before e2->mtx). Since we disallow cycles of epoll file
83  * descriptors, this ensures that the mutexes are well-ordered. In
84  * order to communicate this nesting to lockdep, when walking a tree
85  * of epoll file descriptors, we use the current recursion depth as
86  * the lockdep subkey.
87  * It is possible to drop the "ep->mtx" and to use the global
88  * mutex "epmutex" (together with "ep->lock") to have it working,
89  * but having "ep->mtx" will make the interface more scalable.
90  * Events that require holding "epmutex" are very rare, while for
91  * normal operations the epoll private "ep->mtx" will guarantee
92  * a better scalability.
93  */
94 
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
97 
98 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
99 
100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
101 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
102 
103 /* Maximum number of nesting allowed inside epoll sets */
104 #define EP_MAX_NESTS 4
105 
106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
107 
108 #define EP_UNACTIVE_PTR ((void *) -1L)
109 
110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
111 
112 struct epoll_filefd {
113 	struct file *file;
114 	int fd;
115 } __packed;
116 
117 /*
118  * Structure used to track possible nested calls, for too deep recursions
119  * and loop cycles.
120  */
121 struct nested_call_node {
122 	struct list_head llink;
123 	void *cookie;
124 	void *ctx;
125 };
126 
127 /*
128  * This structure is used as collector for nested calls, to check for
129  * maximum recursion dept and loop cycles.
130  */
131 struct nested_calls {
132 	struct list_head tasks_call_list;
133 	spinlock_t lock;
134 };
135 
136 /*
137  * Each file descriptor added to the eventpoll interface will
138  * have an entry of this type linked to the "rbr" RB tree.
139  * Avoid increasing the size of this struct, there can be many thousands
140  * of these on a server and we do not want this to take another cache line.
141  */
142 struct epitem {
143 	union {
144 		/* RB tree node links this structure to the eventpoll RB tree */
145 		struct rb_node rbn;
146 		/* Used to free the struct epitem */
147 		struct rcu_head rcu;
148 	};
149 
150 	/* List header used to link this structure to the eventpoll ready list */
151 	struct list_head rdllink;
152 
153 	/*
154 	 * Works together "struct eventpoll"->ovflist in keeping the
155 	 * single linked chain of items.
156 	 */
157 	struct epitem *next;
158 
159 	/* The file descriptor information this item refers to */
160 	struct epoll_filefd ffd;
161 
162 	/* Number of active wait queue attached to poll operations */
163 	int nwait;
164 
165 	/* List containing poll wait queues */
166 	struct list_head pwqlist;
167 
168 	/* The "container" of this item */
169 	struct eventpoll *ep;
170 
171 	/* List header used to link this item to the "struct file" items list */
172 	struct list_head fllink;
173 
174 	/* wakeup_source used when EPOLLWAKEUP is set */
175 	struct wakeup_source __rcu *ws;
176 
177 	/* The structure that describe the interested events and the source fd */
178 	struct epoll_event event;
179 };
180 
181 /*
182  * This structure is stored inside the "private_data" member of the file
183  * structure and represents the main data structure for the eventpoll
184  * interface.
185  */
186 struct eventpoll {
187 	/* Protect the access to this structure */
188 	spinlock_t lock;
189 
190 	/*
191 	 * This mutex is used to ensure that files are not removed
192 	 * while epoll is using them. This is held during the event
193 	 * collection loop, the file cleanup path, the epoll file exit
194 	 * code and the ctl operations.
195 	 */
196 	struct mutex mtx;
197 
198 	/* Wait queue used by sys_epoll_wait() */
199 	wait_queue_head_t wq;
200 
201 	/* Wait queue used by file->poll() */
202 	wait_queue_head_t poll_wait;
203 
204 	/* List of ready file descriptors */
205 	struct list_head rdllist;
206 
207 	/* RB tree root used to store monitored fd structs */
208 	struct rb_root_cached rbr;
209 
210 	/*
211 	 * This is a single linked list that chains all the "struct epitem" that
212 	 * happened while transferring ready events to userspace w/out
213 	 * holding ->lock.
214 	 */
215 	struct epitem *ovflist;
216 
217 	/* wakeup_source used when ep_scan_ready_list is running */
218 	struct wakeup_source *ws;
219 
220 	/* The user that created the eventpoll descriptor */
221 	struct user_struct *user;
222 
223 	struct file *file;
224 
225 	/* used to optimize loop detection check */
226 	int visited;
227 	struct list_head visited_list_link;
228 
229 #ifdef CONFIG_NET_RX_BUSY_POLL
230 	/* used to track busy poll napi_id */
231 	unsigned int napi_id;
232 #endif
233 };
234 
235 /* Wait structure used by the poll hooks */
236 struct eppoll_entry {
237 	/* List header used to link this structure to the "struct epitem" */
238 	struct list_head llink;
239 
240 	/* The "base" pointer is set to the container "struct epitem" */
241 	struct epitem *base;
242 
243 	/*
244 	 * Wait queue item that will be linked to the target file wait
245 	 * queue head.
246 	 */
247 	wait_queue_entry_t wait;
248 
249 	/* The wait queue head that linked the "wait" wait queue item */
250 	wait_queue_head_t *whead;
251 };
252 
253 /* Wrapper struct used by poll queueing */
254 struct ep_pqueue {
255 	poll_table pt;
256 	struct epitem *epi;
257 };
258 
259 /* Used by the ep_send_events() function as callback private data */
260 struct ep_send_events_data {
261 	int maxevents;
262 	struct epoll_event __user *events;
263 	int res;
264 };
265 
266 /*
267  * Configuration options available inside /proc/sys/fs/epoll/
268  */
269 /* Maximum number of epoll watched descriptors, per user */
270 static long max_user_watches __read_mostly;
271 
272 /*
273  * This mutex is used to serialize ep_free() and eventpoll_release_file().
274  */
275 static DEFINE_MUTEX(epmutex);
276 
277 /* Used to check for epoll file descriptor inclusion loops */
278 static struct nested_calls poll_loop_ncalls;
279 
280 /* Slab cache used to allocate "struct epitem" */
281 static struct kmem_cache *epi_cache __read_mostly;
282 
283 /* Slab cache used to allocate "struct eppoll_entry" */
284 static struct kmem_cache *pwq_cache __read_mostly;
285 
286 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
287 static LIST_HEAD(visited_list);
288 
289 /*
290  * List of files with newly added links, where we may need to limit the number
291  * of emanating paths. Protected by the epmutex.
292  */
293 static LIST_HEAD(tfile_check_list);
294 
295 #ifdef CONFIG_SYSCTL
296 
297 #include <linux/sysctl.h>
298 
299 static long zero;
300 static long long_max = LONG_MAX;
301 
302 struct ctl_table epoll_table[] = {
303 	{
304 		.procname	= "max_user_watches",
305 		.data		= &max_user_watches,
306 		.maxlen		= sizeof(max_user_watches),
307 		.mode		= 0644,
308 		.proc_handler	= proc_doulongvec_minmax,
309 		.extra1		= &zero,
310 		.extra2		= &long_max,
311 	},
312 	{ }
313 };
314 #endif /* CONFIG_SYSCTL */
315 
316 static const struct file_operations eventpoll_fops;
317 
318 static inline int is_file_epoll(struct file *f)
319 {
320 	return f->f_op == &eventpoll_fops;
321 }
322 
323 /* Setup the structure that is used as key for the RB tree */
324 static inline void ep_set_ffd(struct epoll_filefd *ffd,
325 			      struct file *file, int fd)
326 {
327 	ffd->file = file;
328 	ffd->fd = fd;
329 }
330 
331 /* Compare RB tree keys */
332 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
333 			     struct epoll_filefd *p2)
334 {
335 	return (p1->file > p2->file ? +1:
336 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
337 }
338 
339 /* Tells us if the item is currently linked */
340 static inline int ep_is_linked(struct list_head *p)
341 {
342 	return !list_empty(p);
343 }
344 
345 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
346 {
347 	return container_of(p, struct eppoll_entry, wait);
348 }
349 
350 /* Get the "struct epitem" from a wait queue pointer */
351 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
352 {
353 	return container_of(p, struct eppoll_entry, wait)->base;
354 }
355 
356 /* Get the "struct epitem" from an epoll queue wrapper */
357 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
358 {
359 	return container_of(p, struct ep_pqueue, pt)->epi;
360 }
361 
362 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
363 static inline int ep_op_has_event(int op)
364 {
365 	return op != EPOLL_CTL_DEL;
366 }
367 
368 /* Initialize the poll safe wake up structure */
369 static void ep_nested_calls_init(struct nested_calls *ncalls)
370 {
371 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
372 	spin_lock_init(&ncalls->lock);
373 }
374 
375 /**
376  * ep_events_available - Checks if ready events might be available.
377  *
378  * @ep: Pointer to the eventpoll context.
379  *
380  * Returns: Returns a value different than zero if ready events are available,
381  *          or zero otherwise.
382  */
383 static inline int ep_events_available(struct eventpoll *ep)
384 {
385 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
386 }
387 
388 #ifdef CONFIG_NET_RX_BUSY_POLL
389 static bool ep_busy_loop_end(void *p, unsigned long start_time)
390 {
391 	struct eventpoll *ep = p;
392 
393 	return ep_events_available(ep) || busy_loop_timeout(start_time);
394 }
395 #endif /* CONFIG_NET_RX_BUSY_POLL */
396 
397 /*
398  * Busy poll if globally on and supporting sockets found && no events,
399  * busy loop will return if need_resched or ep_events_available.
400  *
401  * we must do our busy polling with irqs enabled
402  */
403 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
404 {
405 #ifdef CONFIG_NET_RX_BUSY_POLL
406 	unsigned int napi_id = READ_ONCE(ep->napi_id);
407 
408 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
409 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
410 #endif
411 }
412 
413 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
414 {
415 #ifdef CONFIG_NET_RX_BUSY_POLL
416 	if (ep->napi_id)
417 		ep->napi_id = 0;
418 #endif
419 }
420 
421 /*
422  * Set epoll busy poll NAPI ID from sk.
423  */
424 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
425 {
426 #ifdef CONFIG_NET_RX_BUSY_POLL
427 	struct eventpoll *ep;
428 	unsigned int napi_id;
429 	struct socket *sock;
430 	struct sock *sk;
431 	int err;
432 
433 	if (!net_busy_loop_on())
434 		return;
435 
436 	sock = sock_from_file(epi->ffd.file, &err);
437 	if (!sock)
438 		return;
439 
440 	sk = sock->sk;
441 	if (!sk)
442 		return;
443 
444 	napi_id = READ_ONCE(sk->sk_napi_id);
445 	ep = epi->ep;
446 
447 	/* Non-NAPI IDs can be rejected
448 	 *	or
449 	 * Nothing to do if we already have this ID
450 	 */
451 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
452 		return;
453 
454 	/* record NAPI ID for use in next busy poll */
455 	ep->napi_id = napi_id;
456 #endif
457 }
458 
459 /**
460  * ep_call_nested - Perform a bound (possibly) nested call, by checking
461  *                  that the recursion limit is not exceeded, and that
462  *                  the same nested call (by the meaning of same cookie) is
463  *                  no re-entered.
464  *
465  * @ncalls: Pointer to the nested_calls structure to be used for this call.
466  * @max_nests: Maximum number of allowed nesting calls.
467  * @nproc: Nested call core function pointer.
468  * @priv: Opaque data to be passed to the @nproc callback.
469  * @cookie: Cookie to be used to identify this nested call.
470  * @ctx: This instance context.
471  *
472  * Returns: Returns the code returned by the @nproc callback, or -1 if
473  *          the maximum recursion limit has been exceeded.
474  */
475 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
476 			  int (*nproc)(void *, void *, int), void *priv,
477 			  void *cookie, void *ctx)
478 {
479 	int error, call_nests = 0;
480 	unsigned long flags;
481 	struct list_head *lsthead = &ncalls->tasks_call_list;
482 	struct nested_call_node *tncur;
483 	struct nested_call_node tnode;
484 
485 	spin_lock_irqsave(&ncalls->lock, flags);
486 
487 	/*
488 	 * Try to see if the current task is already inside this wakeup call.
489 	 * We use a list here, since the population inside this set is always
490 	 * very much limited.
491 	 */
492 	list_for_each_entry(tncur, lsthead, llink) {
493 		if (tncur->ctx == ctx &&
494 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
495 			/*
496 			 * Ops ... loop detected or maximum nest level reached.
497 			 * We abort this wake by breaking the cycle itself.
498 			 */
499 			error = -1;
500 			goto out_unlock;
501 		}
502 	}
503 
504 	/* Add the current task and cookie to the list */
505 	tnode.ctx = ctx;
506 	tnode.cookie = cookie;
507 	list_add(&tnode.llink, lsthead);
508 
509 	spin_unlock_irqrestore(&ncalls->lock, flags);
510 
511 	/* Call the nested function */
512 	error = (*nproc)(priv, cookie, call_nests);
513 
514 	/* Remove the current task from the list */
515 	spin_lock_irqsave(&ncalls->lock, flags);
516 	list_del(&tnode.llink);
517 out_unlock:
518 	spin_unlock_irqrestore(&ncalls->lock, flags);
519 
520 	return error;
521 }
522 
523 /*
524  * As described in commit 0ccf831cb lockdep: annotate epoll
525  * the use of wait queues used by epoll is done in a very controlled
526  * manner. Wake ups can nest inside each other, but are never done
527  * with the same locking. For example:
528  *
529  *   dfd = socket(...);
530  *   efd1 = epoll_create();
531  *   efd2 = epoll_create();
532  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
533  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
534  *
535  * When a packet arrives to the device underneath "dfd", the net code will
536  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
537  * callback wakeup entry on that queue, and the wake_up() performed by the
538  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
539  * (efd1) notices that it may have some event ready, so it needs to wake up
540  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
541  * that ends up in another wake_up(), after having checked about the
542  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
543  * avoid stack blasting.
544  *
545  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
546  * this special case of epoll.
547  */
548 #ifdef CONFIG_DEBUG_LOCK_ALLOC
549 
550 static struct nested_calls poll_safewake_ncalls;
551 
552 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
553 {
554 	unsigned long flags;
555 	wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
556 
557 	spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
558 	wake_up_locked_poll(wqueue, EPOLLIN);
559 	spin_unlock_irqrestore(&wqueue->lock, flags);
560 
561 	return 0;
562 }
563 
564 static void ep_poll_safewake(wait_queue_head_t *wq)
565 {
566 	int this_cpu = get_cpu();
567 
568 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
569 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
570 
571 	put_cpu();
572 }
573 
574 #else
575 
576 static void ep_poll_safewake(wait_queue_head_t *wq)
577 {
578 	wake_up_poll(wq, EPOLLIN);
579 }
580 
581 #endif
582 
583 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
584 {
585 	wait_queue_head_t *whead;
586 
587 	rcu_read_lock();
588 	/*
589 	 * If it is cleared by POLLFREE, it should be rcu-safe.
590 	 * If we read NULL we need a barrier paired with
591 	 * smp_store_release() in ep_poll_callback(), otherwise
592 	 * we rely on whead->lock.
593 	 */
594 	whead = smp_load_acquire(&pwq->whead);
595 	if (whead)
596 		remove_wait_queue(whead, &pwq->wait);
597 	rcu_read_unlock();
598 }
599 
600 /*
601  * This function unregisters poll callbacks from the associated file
602  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
603  * ep_free).
604  */
605 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
606 {
607 	struct list_head *lsthead = &epi->pwqlist;
608 	struct eppoll_entry *pwq;
609 
610 	while (!list_empty(lsthead)) {
611 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
612 
613 		list_del(&pwq->llink);
614 		ep_remove_wait_queue(pwq);
615 		kmem_cache_free(pwq_cache, pwq);
616 	}
617 }
618 
619 /* call only when ep->mtx is held */
620 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
621 {
622 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
623 }
624 
625 /* call only when ep->mtx is held */
626 static inline void ep_pm_stay_awake(struct epitem *epi)
627 {
628 	struct wakeup_source *ws = ep_wakeup_source(epi);
629 
630 	if (ws)
631 		__pm_stay_awake(ws);
632 }
633 
634 static inline bool ep_has_wakeup_source(struct epitem *epi)
635 {
636 	return rcu_access_pointer(epi->ws) ? true : false;
637 }
638 
639 /* call when ep->mtx cannot be held (ep_poll_callback) */
640 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
641 {
642 	struct wakeup_source *ws;
643 
644 	rcu_read_lock();
645 	ws = rcu_dereference(epi->ws);
646 	if (ws)
647 		__pm_stay_awake(ws);
648 	rcu_read_unlock();
649 }
650 
651 /**
652  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
653  *                      the scan code, to call f_op->poll(). Also allows for
654  *                      O(NumReady) performance.
655  *
656  * @ep: Pointer to the epoll private data structure.
657  * @sproc: Pointer to the scan callback.
658  * @priv: Private opaque data passed to the @sproc callback.
659  * @depth: The current depth of recursive f_op->poll calls.
660  * @ep_locked: caller already holds ep->mtx
661  *
662  * Returns: The same integer error code returned by the @sproc callback.
663  */
664 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
665 			      __poll_t (*sproc)(struct eventpoll *,
666 					   struct list_head *, void *),
667 			      void *priv, int depth, bool ep_locked)
668 {
669 	__poll_t res;
670 	int pwake = 0;
671 	unsigned long flags;
672 	struct epitem *epi, *nepi;
673 	LIST_HEAD(txlist);
674 
675 	/*
676 	 * We need to lock this because we could be hit by
677 	 * eventpoll_release_file() and epoll_ctl().
678 	 */
679 
680 	if (!ep_locked)
681 		mutex_lock_nested(&ep->mtx, depth);
682 
683 	/*
684 	 * Steal the ready list, and re-init the original one to the
685 	 * empty list. Also, set ep->ovflist to NULL so that events
686 	 * happening while looping w/out locks, are not lost. We cannot
687 	 * have the poll callback to queue directly on ep->rdllist,
688 	 * because we want the "sproc" callback to be able to do it
689 	 * in a lockless way.
690 	 */
691 	spin_lock_irqsave(&ep->lock, flags);
692 	list_splice_init(&ep->rdllist, &txlist);
693 	ep->ovflist = NULL;
694 	spin_unlock_irqrestore(&ep->lock, flags);
695 
696 	/*
697 	 * Now call the callback function.
698 	 */
699 	res = (*sproc)(ep, &txlist, priv);
700 
701 	spin_lock_irqsave(&ep->lock, flags);
702 	/*
703 	 * During the time we spent inside the "sproc" callback, some
704 	 * other events might have been queued by the poll callback.
705 	 * We re-insert them inside the main ready-list here.
706 	 */
707 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
708 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
709 		/*
710 		 * We need to check if the item is already in the list.
711 		 * During the "sproc" callback execution time, items are
712 		 * queued into ->ovflist but the "txlist" might already
713 		 * contain them, and the list_splice() below takes care of them.
714 		 */
715 		if (!ep_is_linked(&epi->rdllink)) {
716 			list_add_tail(&epi->rdllink, &ep->rdllist);
717 			ep_pm_stay_awake(epi);
718 		}
719 	}
720 	/*
721 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
722 	 * releasing the lock, events will be queued in the normal way inside
723 	 * ep->rdllist.
724 	 */
725 	ep->ovflist = EP_UNACTIVE_PTR;
726 
727 	/*
728 	 * Quickly re-inject items left on "txlist".
729 	 */
730 	list_splice(&txlist, &ep->rdllist);
731 	__pm_relax(ep->ws);
732 
733 	if (!list_empty(&ep->rdllist)) {
734 		/*
735 		 * Wake up (if active) both the eventpoll wait list and
736 		 * the ->poll() wait list (delayed after we release the lock).
737 		 */
738 		if (waitqueue_active(&ep->wq))
739 			wake_up_locked(&ep->wq);
740 		if (waitqueue_active(&ep->poll_wait))
741 			pwake++;
742 	}
743 	spin_unlock_irqrestore(&ep->lock, flags);
744 
745 	if (!ep_locked)
746 		mutex_unlock(&ep->mtx);
747 
748 	/* We have to call this outside the lock */
749 	if (pwake)
750 		ep_poll_safewake(&ep->poll_wait);
751 
752 	return res;
753 }
754 
755 static void epi_rcu_free(struct rcu_head *head)
756 {
757 	struct epitem *epi = container_of(head, struct epitem, rcu);
758 	kmem_cache_free(epi_cache, epi);
759 }
760 
761 /*
762  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
763  * all the associated resources. Must be called with "mtx" held.
764  */
765 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
766 {
767 	unsigned long flags;
768 	struct file *file = epi->ffd.file;
769 
770 	/*
771 	 * Removes poll wait queue hooks. We _have_ to do this without holding
772 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
773 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
774 	 * queue head lock when unregistering the wait queue. The wakeup callback
775 	 * will run by holding the wait queue head lock and will call our callback
776 	 * that will try to get "ep->lock".
777 	 */
778 	ep_unregister_pollwait(ep, epi);
779 
780 	/* Remove the current item from the list of epoll hooks */
781 	spin_lock(&file->f_lock);
782 	list_del_rcu(&epi->fllink);
783 	spin_unlock(&file->f_lock);
784 
785 	rb_erase_cached(&epi->rbn, &ep->rbr);
786 
787 	spin_lock_irqsave(&ep->lock, flags);
788 	if (ep_is_linked(&epi->rdllink))
789 		list_del_init(&epi->rdllink);
790 	spin_unlock_irqrestore(&ep->lock, flags);
791 
792 	wakeup_source_unregister(ep_wakeup_source(epi));
793 	/*
794 	 * At this point it is safe to free the eventpoll item. Use the union
795 	 * field epi->rcu, since we are trying to minimize the size of
796 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
797 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
798 	 * use of the rbn field.
799 	 */
800 	call_rcu(&epi->rcu, epi_rcu_free);
801 
802 	atomic_long_dec(&ep->user->epoll_watches);
803 
804 	return 0;
805 }
806 
807 static void ep_free(struct eventpoll *ep)
808 {
809 	struct rb_node *rbp;
810 	struct epitem *epi;
811 
812 	/* We need to release all tasks waiting for these file */
813 	if (waitqueue_active(&ep->poll_wait))
814 		ep_poll_safewake(&ep->poll_wait);
815 
816 	/*
817 	 * We need to lock this because we could be hit by
818 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
819 	 * We do not need to hold "ep->mtx" here because the epoll file
820 	 * is on the way to be removed and no one has references to it
821 	 * anymore. The only hit might come from eventpoll_release_file() but
822 	 * holding "epmutex" is sufficient here.
823 	 */
824 	mutex_lock(&epmutex);
825 
826 	/*
827 	 * Walks through the whole tree by unregistering poll callbacks.
828 	 */
829 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
830 		epi = rb_entry(rbp, struct epitem, rbn);
831 
832 		ep_unregister_pollwait(ep, epi);
833 		cond_resched();
834 	}
835 
836 	/*
837 	 * Walks through the whole tree by freeing each "struct epitem". At this
838 	 * point we are sure no poll callbacks will be lingering around, and also by
839 	 * holding "epmutex" we can be sure that no file cleanup code will hit
840 	 * us during this operation. So we can avoid the lock on "ep->lock".
841 	 * We do not need to lock ep->mtx, either, we only do it to prevent
842 	 * a lockdep warning.
843 	 */
844 	mutex_lock(&ep->mtx);
845 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
846 		epi = rb_entry(rbp, struct epitem, rbn);
847 		ep_remove(ep, epi);
848 		cond_resched();
849 	}
850 	mutex_unlock(&ep->mtx);
851 
852 	mutex_unlock(&epmutex);
853 	mutex_destroy(&ep->mtx);
854 	free_uid(ep->user);
855 	wakeup_source_unregister(ep->ws);
856 	kfree(ep);
857 }
858 
859 static int ep_eventpoll_release(struct inode *inode, struct file *file)
860 {
861 	struct eventpoll *ep = file->private_data;
862 
863 	if (ep)
864 		ep_free(ep);
865 
866 	return 0;
867 }
868 
869 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
870 			       void *priv);
871 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
872 				 poll_table *pt);
873 
874 /*
875  * Differs from ep_eventpoll_poll() in that internal callers already have
876  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
877  * is correctly annotated.
878  */
879 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
880 				 int depth)
881 {
882 	struct eventpoll *ep;
883 	bool locked;
884 
885 	pt->_key = epi->event.events;
886 	if (!is_file_epoll(epi->ffd.file))
887 		return vfs_poll(epi->ffd.file, pt) & epi->event.events;
888 
889 	ep = epi->ffd.file->private_data;
890 	poll_wait(epi->ffd.file, &ep->poll_wait, pt);
891 	locked = pt && (pt->_qproc == ep_ptable_queue_proc);
892 
893 	return ep_scan_ready_list(epi->ffd.file->private_data,
894 				  ep_read_events_proc, &depth, depth,
895 				  locked) & epi->event.events;
896 }
897 
898 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
899 			       void *priv)
900 {
901 	struct epitem *epi, *tmp;
902 	poll_table pt;
903 	int depth = *(int *)priv;
904 
905 	init_poll_funcptr(&pt, NULL);
906 	depth++;
907 
908 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
909 		if (ep_item_poll(epi, &pt, depth)) {
910 			return EPOLLIN | EPOLLRDNORM;
911 		} else {
912 			/*
913 			 * Item has been dropped into the ready list by the poll
914 			 * callback, but it's not actually ready, as far as
915 			 * caller requested events goes. We can remove it here.
916 			 */
917 			__pm_relax(ep_wakeup_source(epi));
918 			list_del_init(&epi->rdllink);
919 		}
920 	}
921 
922 	return 0;
923 }
924 
925 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
926 {
927 	struct eventpoll *ep = file->private_data;
928 	int depth = 0;
929 
930 	/* Insert inside our poll wait queue */
931 	poll_wait(file, &ep->poll_wait, wait);
932 
933 	/*
934 	 * Proceed to find out if wanted events are really available inside
935 	 * the ready list.
936 	 */
937 	return ep_scan_ready_list(ep, ep_read_events_proc,
938 				  &depth, depth, false);
939 }
940 
941 #ifdef CONFIG_PROC_FS
942 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
943 {
944 	struct eventpoll *ep = f->private_data;
945 	struct rb_node *rbp;
946 
947 	mutex_lock(&ep->mtx);
948 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
949 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
950 		struct inode *inode = file_inode(epi->ffd.file);
951 
952 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
953 			   " pos:%lli ino:%lx sdev:%x\n",
954 			   epi->ffd.fd, epi->event.events,
955 			   (long long)epi->event.data,
956 			   (long long)epi->ffd.file->f_pos,
957 			   inode->i_ino, inode->i_sb->s_dev);
958 		if (seq_has_overflowed(m))
959 			break;
960 	}
961 	mutex_unlock(&ep->mtx);
962 }
963 #endif
964 
965 /* File callbacks that implement the eventpoll file behaviour */
966 static const struct file_operations eventpoll_fops = {
967 #ifdef CONFIG_PROC_FS
968 	.show_fdinfo	= ep_show_fdinfo,
969 #endif
970 	.release	= ep_eventpoll_release,
971 	.poll		= ep_eventpoll_poll,
972 	.llseek		= noop_llseek,
973 };
974 
975 /*
976  * This is called from eventpoll_release() to unlink files from the eventpoll
977  * interface. We need to have this facility to cleanup correctly files that are
978  * closed without being removed from the eventpoll interface.
979  */
980 void eventpoll_release_file(struct file *file)
981 {
982 	struct eventpoll *ep;
983 	struct epitem *epi, *next;
984 
985 	/*
986 	 * We don't want to get "file->f_lock" because it is not
987 	 * necessary. It is not necessary because we're in the "struct file"
988 	 * cleanup path, and this means that no one is using this file anymore.
989 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
990 	 * point, the file counter already went to zero and fget() would fail.
991 	 * The only hit might come from ep_free() but by holding the mutex
992 	 * will correctly serialize the operation. We do need to acquire
993 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
994 	 * from anywhere but ep_free().
995 	 *
996 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
997 	 */
998 	mutex_lock(&epmutex);
999 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1000 		ep = epi->ep;
1001 		mutex_lock_nested(&ep->mtx, 0);
1002 		ep_remove(ep, epi);
1003 		mutex_unlock(&ep->mtx);
1004 	}
1005 	mutex_unlock(&epmutex);
1006 }
1007 
1008 static int ep_alloc(struct eventpoll **pep)
1009 {
1010 	int error;
1011 	struct user_struct *user;
1012 	struct eventpoll *ep;
1013 
1014 	user = get_current_user();
1015 	error = -ENOMEM;
1016 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1017 	if (unlikely(!ep))
1018 		goto free_uid;
1019 
1020 	spin_lock_init(&ep->lock);
1021 	mutex_init(&ep->mtx);
1022 	init_waitqueue_head(&ep->wq);
1023 	init_waitqueue_head(&ep->poll_wait);
1024 	INIT_LIST_HEAD(&ep->rdllist);
1025 	ep->rbr = RB_ROOT_CACHED;
1026 	ep->ovflist = EP_UNACTIVE_PTR;
1027 	ep->user = user;
1028 
1029 	*pep = ep;
1030 
1031 	return 0;
1032 
1033 free_uid:
1034 	free_uid(user);
1035 	return error;
1036 }
1037 
1038 /*
1039  * Search the file inside the eventpoll tree. The RB tree operations
1040  * are protected by the "mtx" mutex, and ep_find() must be called with
1041  * "mtx" held.
1042  */
1043 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1044 {
1045 	int kcmp;
1046 	struct rb_node *rbp;
1047 	struct epitem *epi, *epir = NULL;
1048 	struct epoll_filefd ffd;
1049 
1050 	ep_set_ffd(&ffd, file, fd);
1051 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1052 		epi = rb_entry(rbp, struct epitem, rbn);
1053 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1054 		if (kcmp > 0)
1055 			rbp = rbp->rb_right;
1056 		else if (kcmp < 0)
1057 			rbp = rbp->rb_left;
1058 		else {
1059 			epir = epi;
1060 			break;
1061 		}
1062 	}
1063 
1064 	return epir;
1065 }
1066 
1067 #ifdef CONFIG_CHECKPOINT_RESTORE
1068 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1069 {
1070 	struct rb_node *rbp;
1071 	struct epitem *epi;
1072 
1073 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1074 		epi = rb_entry(rbp, struct epitem, rbn);
1075 		if (epi->ffd.fd == tfd) {
1076 			if (toff == 0)
1077 				return epi;
1078 			else
1079 				toff--;
1080 		}
1081 		cond_resched();
1082 	}
1083 
1084 	return NULL;
1085 }
1086 
1087 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1088 				     unsigned long toff)
1089 {
1090 	struct file *file_raw;
1091 	struct eventpoll *ep;
1092 	struct epitem *epi;
1093 
1094 	if (!is_file_epoll(file))
1095 		return ERR_PTR(-EINVAL);
1096 
1097 	ep = file->private_data;
1098 
1099 	mutex_lock(&ep->mtx);
1100 	epi = ep_find_tfd(ep, tfd, toff);
1101 	if (epi)
1102 		file_raw = epi->ffd.file;
1103 	else
1104 		file_raw = ERR_PTR(-ENOENT);
1105 	mutex_unlock(&ep->mtx);
1106 
1107 	return file_raw;
1108 }
1109 #endif /* CONFIG_CHECKPOINT_RESTORE */
1110 
1111 /*
1112  * This is the callback that is passed to the wait queue wakeup
1113  * mechanism. It is called by the stored file descriptors when they
1114  * have events to report.
1115  */
1116 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1117 {
1118 	int pwake = 0;
1119 	unsigned long flags;
1120 	struct epitem *epi = ep_item_from_wait(wait);
1121 	struct eventpoll *ep = epi->ep;
1122 	__poll_t pollflags = key_to_poll(key);
1123 	int ewake = 0;
1124 
1125 	spin_lock_irqsave(&ep->lock, flags);
1126 
1127 	ep_set_busy_poll_napi_id(epi);
1128 
1129 	/*
1130 	 * If the event mask does not contain any poll(2) event, we consider the
1131 	 * descriptor to be disabled. This condition is likely the effect of the
1132 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1133 	 * until the next EPOLL_CTL_MOD will be issued.
1134 	 */
1135 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1136 		goto out_unlock;
1137 
1138 	/*
1139 	 * Check the events coming with the callback. At this stage, not
1140 	 * every device reports the events in the "key" parameter of the
1141 	 * callback. We need to be able to handle both cases here, hence the
1142 	 * test for "key" != NULL before the event match test.
1143 	 */
1144 	if (pollflags && !(pollflags & epi->event.events))
1145 		goto out_unlock;
1146 
1147 	/*
1148 	 * If we are transferring events to userspace, we can hold no locks
1149 	 * (because we're accessing user memory, and because of linux f_op->poll()
1150 	 * semantics). All the events that happen during that period of time are
1151 	 * chained in ep->ovflist and requeued later on.
1152 	 */
1153 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1154 		if (epi->next == EP_UNACTIVE_PTR) {
1155 			epi->next = ep->ovflist;
1156 			ep->ovflist = epi;
1157 			if (epi->ws) {
1158 				/*
1159 				 * Activate ep->ws since epi->ws may get
1160 				 * deactivated at any time.
1161 				 */
1162 				__pm_stay_awake(ep->ws);
1163 			}
1164 
1165 		}
1166 		goto out_unlock;
1167 	}
1168 
1169 	/* If this file is already in the ready list we exit soon */
1170 	if (!ep_is_linked(&epi->rdllink)) {
1171 		list_add_tail(&epi->rdllink, &ep->rdllist);
1172 		ep_pm_stay_awake_rcu(epi);
1173 	}
1174 
1175 	/*
1176 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1177 	 * wait list.
1178 	 */
1179 	if (waitqueue_active(&ep->wq)) {
1180 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1181 					!(pollflags & POLLFREE)) {
1182 			switch (pollflags & EPOLLINOUT_BITS) {
1183 			case EPOLLIN:
1184 				if (epi->event.events & EPOLLIN)
1185 					ewake = 1;
1186 				break;
1187 			case EPOLLOUT:
1188 				if (epi->event.events & EPOLLOUT)
1189 					ewake = 1;
1190 				break;
1191 			case 0:
1192 				ewake = 1;
1193 				break;
1194 			}
1195 		}
1196 		wake_up_locked(&ep->wq);
1197 	}
1198 	if (waitqueue_active(&ep->poll_wait))
1199 		pwake++;
1200 
1201 out_unlock:
1202 	spin_unlock_irqrestore(&ep->lock, flags);
1203 
1204 	/* We have to call this outside the lock */
1205 	if (pwake)
1206 		ep_poll_safewake(&ep->poll_wait);
1207 
1208 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1209 		ewake = 1;
1210 
1211 	if (pollflags & POLLFREE) {
1212 		/*
1213 		 * If we race with ep_remove_wait_queue() it can miss
1214 		 * ->whead = NULL and do another remove_wait_queue() after
1215 		 * us, so we can't use __remove_wait_queue().
1216 		 */
1217 		list_del_init(&wait->entry);
1218 		/*
1219 		 * ->whead != NULL protects us from the race with ep_free()
1220 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1221 		 * held by the caller. Once we nullify it, nothing protects
1222 		 * ep/epi or even wait.
1223 		 */
1224 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1225 	}
1226 
1227 	return ewake;
1228 }
1229 
1230 /*
1231  * This is the callback that is used to add our wait queue to the
1232  * target file wakeup lists.
1233  */
1234 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1235 				 poll_table *pt)
1236 {
1237 	struct epitem *epi = ep_item_from_epqueue(pt);
1238 	struct eppoll_entry *pwq;
1239 
1240 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1241 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1242 		pwq->whead = whead;
1243 		pwq->base = epi;
1244 		if (epi->event.events & EPOLLEXCLUSIVE)
1245 			add_wait_queue_exclusive(whead, &pwq->wait);
1246 		else
1247 			add_wait_queue(whead, &pwq->wait);
1248 		list_add_tail(&pwq->llink, &epi->pwqlist);
1249 		epi->nwait++;
1250 	} else {
1251 		/* We have to signal that an error occurred */
1252 		epi->nwait = -1;
1253 	}
1254 }
1255 
1256 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1257 {
1258 	int kcmp;
1259 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1260 	struct epitem *epic;
1261 	bool leftmost = true;
1262 
1263 	while (*p) {
1264 		parent = *p;
1265 		epic = rb_entry(parent, struct epitem, rbn);
1266 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1267 		if (kcmp > 0) {
1268 			p = &parent->rb_right;
1269 			leftmost = false;
1270 		} else
1271 			p = &parent->rb_left;
1272 	}
1273 	rb_link_node(&epi->rbn, parent, p);
1274 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1275 }
1276 
1277 
1278 
1279 #define PATH_ARR_SIZE 5
1280 /*
1281  * These are the number paths of length 1 to 5, that we are allowing to emanate
1282  * from a single file of interest. For example, we allow 1000 paths of length
1283  * 1, to emanate from each file of interest. This essentially represents the
1284  * potential wakeup paths, which need to be limited in order to avoid massive
1285  * uncontrolled wakeup storms. The common use case should be a single ep which
1286  * is connected to n file sources. In this case each file source has 1 path
1287  * of length 1. Thus, the numbers below should be more than sufficient. These
1288  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1289  * and delete can't add additional paths. Protected by the epmutex.
1290  */
1291 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1292 static int path_count[PATH_ARR_SIZE];
1293 
1294 static int path_count_inc(int nests)
1295 {
1296 	/* Allow an arbitrary number of depth 1 paths */
1297 	if (nests == 0)
1298 		return 0;
1299 
1300 	if (++path_count[nests] > path_limits[nests])
1301 		return -1;
1302 	return 0;
1303 }
1304 
1305 static void path_count_init(void)
1306 {
1307 	int i;
1308 
1309 	for (i = 0; i < PATH_ARR_SIZE; i++)
1310 		path_count[i] = 0;
1311 }
1312 
1313 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1314 {
1315 	int error = 0;
1316 	struct file *file = priv;
1317 	struct file *child_file;
1318 	struct epitem *epi;
1319 
1320 	/* CTL_DEL can remove links here, but that can't increase our count */
1321 	rcu_read_lock();
1322 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1323 		child_file = epi->ep->file;
1324 		if (is_file_epoll(child_file)) {
1325 			if (list_empty(&child_file->f_ep_links)) {
1326 				if (path_count_inc(call_nests)) {
1327 					error = -1;
1328 					break;
1329 				}
1330 			} else {
1331 				error = ep_call_nested(&poll_loop_ncalls,
1332 							EP_MAX_NESTS,
1333 							reverse_path_check_proc,
1334 							child_file, child_file,
1335 							current);
1336 			}
1337 			if (error != 0)
1338 				break;
1339 		} else {
1340 			printk(KERN_ERR "reverse_path_check_proc: "
1341 				"file is not an ep!\n");
1342 		}
1343 	}
1344 	rcu_read_unlock();
1345 	return error;
1346 }
1347 
1348 /**
1349  * reverse_path_check - The tfile_check_list is list of file *, which have
1350  *                      links that are proposed to be newly added. We need to
1351  *                      make sure that those added links don't add too many
1352  *                      paths such that we will spend all our time waking up
1353  *                      eventpoll objects.
1354  *
1355  * Returns: Returns zero if the proposed links don't create too many paths,
1356  *	    -1 otherwise.
1357  */
1358 static int reverse_path_check(void)
1359 {
1360 	int error = 0;
1361 	struct file *current_file;
1362 
1363 	/* let's call this for all tfiles */
1364 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1365 		path_count_init();
1366 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1367 					reverse_path_check_proc, current_file,
1368 					current_file, current);
1369 		if (error)
1370 			break;
1371 	}
1372 	return error;
1373 }
1374 
1375 static int ep_create_wakeup_source(struct epitem *epi)
1376 {
1377 	const char *name;
1378 	struct wakeup_source *ws;
1379 
1380 	if (!epi->ep->ws) {
1381 		epi->ep->ws = wakeup_source_register("eventpoll");
1382 		if (!epi->ep->ws)
1383 			return -ENOMEM;
1384 	}
1385 
1386 	name = epi->ffd.file->f_path.dentry->d_name.name;
1387 	ws = wakeup_source_register(name);
1388 
1389 	if (!ws)
1390 		return -ENOMEM;
1391 	rcu_assign_pointer(epi->ws, ws);
1392 
1393 	return 0;
1394 }
1395 
1396 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1397 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1398 {
1399 	struct wakeup_source *ws = ep_wakeup_source(epi);
1400 
1401 	RCU_INIT_POINTER(epi->ws, NULL);
1402 
1403 	/*
1404 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1405 	 * used internally by wakeup_source_remove, too (called by
1406 	 * wakeup_source_unregister), so we cannot use call_rcu
1407 	 */
1408 	synchronize_rcu();
1409 	wakeup_source_unregister(ws);
1410 }
1411 
1412 /*
1413  * Must be called with "mtx" held.
1414  */
1415 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1416 		     struct file *tfile, int fd, int full_check)
1417 {
1418 	int error, pwake = 0;
1419 	__poll_t revents;
1420 	unsigned long flags;
1421 	long user_watches;
1422 	struct epitem *epi;
1423 	struct ep_pqueue epq;
1424 
1425 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1426 	if (unlikely(user_watches >= max_user_watches))
1427 		return -ENOSPC;
1428 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1429 		return -ENOMEM;
1430 
1431 	/* Item initialization follow here ... */
1432 	INIT_LIST_HEAD(&epi->rdllink);
1433 	INIT_LIST_HEAD(&epi->fllink);
1434 	INIT_LIST_HEAD(&epi->pwqlist);
1435 	epi->ep = ep;
1436 	ep_set_ffd(&epi->ffd, tfile, fd);
1437 	epi->event = *event;
1438 	epi->nwait = 0;
1439 	epi->next = EP_UNACTIVE_PTR;
1440 	if (epi->event.events & EPOLLWAKEUP) {
1441 		error = ep_create_wakeup_source(epi);
1442 		if (error)
1443 			goto error_create_wakeup_source;
1444 	} else {
1445 		RCU_INIT_POINTER(epi->ws, NULL);
1446 	}
1447 
1448 	/* Initialize the poll table using the queue callback */
1449 	epq.epi = epi;
1450 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1451 
1452 	/*
1453 	 * Attach the item to the poll hooks and get current event bits.
1454 	 * We can safely use the file* here because its usage count has
1455 	 * been increased by the caller of this function. Note that after
1456 	 * this operation completes, the poll callback can start hitting
1457 	 * the new item.
1458 	 */
1459 	revents = ep_item_poll(epi, &epq.pt, 1);
1460 
1461 	/*
1462 	 * We have to check if something went wrong during the poll wait queue
1463 	 * install process. Namely an allocation for a wait queue failed due
1464 	 * high memory pressure.
1465 	 */
1466 	error = -ENOMEM;
1467 	if (epi->nwait < 0)
1468 		goto error_unregister;
1469 
1470 	/* Add the current item to the list of active epoll hook for this file */
1471 	spin_lock(&tfile->f_lock);
1472 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1473 	spin_unlock(&tfile->f_lock);
1474 
1475 	/*
1476 	 * Add the current item to the RB tree. All RB tree operations are
1477 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1478 	 */
1479 	ep_rbtree_insert(ep, epi);
1480 
1481 	/* now check if we've created too many backpaths */
1482 	error = -EINVAL;
1483 	if (full_check && reverse_path_check())
1484 		goto error_remove_epi;
1485 
1486 	/* We have to drop the new item inside our item list to keep track of it */
1487 	spin_lock_irqsave(&ep->lock, flags);
1488 
1489 	/* record NAPI ID of new item if present */
1490 	ep_set_busy_poll_napi_id(epi);
1491 
1492 	/* If the file is already "ready" we drop it inside the ready list */
1493 	if (revents && !ep_is_linked(&epi->rdllink)) {
1494 		list_add_tail(&epi->rdllink, &ep->rdllist);
1495 		ep_pm_stay_awake(epi);
1496 
1497 		/* Notify waiting tasks that events are available */
1498 		if (waitqueue_active(&ep->wq))
1499 			wake_up_locked(&ep->wq);
1500 		if (waitqueue_active(&ep->poll_wait))
1501 			pwake++;
1502 	}
1503 
1504 	spin_unlock_irqrestore(&ep->lock, flags);
1505 
1506 	atomic_long_inc(&ep->user->epoll_watches);
1507 
1508 	/* We have to call this outside the lock */
1509 	if (pwake)
1510 		ep_poll_safewake(&ep->poll_wait);
1511 
1512 	return 0;
1513 
1514 error_remove_epi:
1515 	spin_lock(&tfile->f_lock);
1516 	list_del_rcu(&epi->fllink);
1517 	spin_unlock(&tfile->f_lock);
1518 
1519 	rb_erase_cached(&epi->rbn, &ep->rbr);
1520 
1521 error_unregister:
1522 	ep_unregister_pollwait(ep, epi);
1523 
1524 	/*
1525 	 * We need to do this because an event could have been arrived on some
1526 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1527 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1528 	 * And ep_insert() is called with "mtx" held.
1529 	 */
1530 	spin_lock_irqsave(&ep->lock, flags);
1531 	if (ep_is_linked(&epi->rdllink))
1532 		list_del_init(&epi->rdllink);
1533 	spin_unlock_irqrestore(&ep->lock, flags);
1534 
1535 	wakeup_source_unregister(ep_wakeup_source(epi));
1536 
1537 error_create_wakeup_source:
1538 	kmem_cache_free(epi_cache, epi);
1539 
1540 	return error;
1541 }
1542 
1543 /*
1544  * Modify the interest event mask by dropping an event if the new mask
1545  * has a match in the current file status. Must be called with "mtx" held.
1546  */
1547 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1548 		     const struct epoll_event *event)
1549 {
1550 	int pwake = 0;
1551 	poll_table pt;
1552 
1553 	init_poll_funcptr(&pt, NULL);
1554 
1555 	/*
1556 	 * Set the new event interest mask before calling f_op->poll();
1557 	 * otherwise we might miss an event that happens between the
1558 	 * f_op->poll() call and the new event set registering.
1559 	 */
1560 	epi->event.events = event->events; /* need barrier below */
1561 	epi->event.data = event->data; /* protected by mtx */
1562 	if (epi->event.events & EPOLLWAKEUP) {
1563 		if (!ep_has_wakeup_source(epi))
1564 			ep_create_wakeup_source(epi);
1565 	} else if (ep_has_wakeup_source(epi)) {
1566 		ep_destroy_wakeup_source(epi);
1567 	}
1568 
1569 	/*
1570 	 * The following barrier has two effects:
1571 	 *
1572 	 * 1) Flush epi changes above to other CPUs.  This ensures
1573 	 *    we do not miss events from ep_poll_callback if an
1574 	 *    event occurs immediately after we call f_op->poll().
1575 	 *    We need this because we did not take ep->lock while
1576 	 *    changing epi above (but ep_poll_callback does take
1577 	 *    ep->lock).
1578 	 *
1579 	 * 2) We also need to ensure we do not miss _past_ events
1580 	 *    when calling f_op->poll().  This barrier also
1581 	 *    pairs with the barrier in wq_has_sleeper (see
1582 	 *    comments for wq_has_sleeper).
1583 	 *
1584 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1585 	 * (or both) will notice the readiness of an item.
1586 	 */
1587 	smp_mb();
1588 
1589 	/*
1590 	 * Get current event bits. We can safely use the file* here because
1591 	 * its usage count has been increased by the caller of this function.
1592 	 * If the item is "hot" and it is not registered inside the ready
1593 	 * list, push it inside.
1594 	 */
1595 	if (ep_item_poll(epi, &pt, 1)) {
1596 		spin_lock_irq(&ep->lock);
1597 		if (!ep_is_linked(&epi->rdllink)) {
1598 			list_add_tail(&epi->rdllink, &ep->rdllist);
1599 			ep_pm_stay_awake(epi);
1600 
1601 			/* Notify waiting tasks that events are available */
1602 			if (waitqueue_active(&ep->wq))
1603 				wake_up_locked(&ep->wq);
1604 			if (waitqueue_active(&ep->poll_wait))
1605 				pwake++;
1606 		}
1607 		spin_unlock_irq(&ep->lock);
1608 	}
1609 
1610 	/* We have to call this outside the lock */
1611 	if (pwake)
1612 		ep_poll_safewake(&ep->poll_wait);
1613 
1614 	return 0;
1615 }
1616 
1617 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1618 			       void *priv)
1619 {
1620 	struct ep_send_events_data *esed = priv;
1621 	__poll_t revents;
1622 	struct epitem *epi;
1623 	struct epoll_event __user *uevent;
1624 	struct wakeup_source *ws;
1625 	poll_table pt;
1626 
1627 	init_poll_funcptr(&pt, NULL);
1628 
1629 	/*
1630 	 * We can loop without lock because we are passed a task private list.
1631 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1632 	 * holding "mtx" during this call.
1633 	 */
1634 	for (esed->res = 0, uevent = esed->events;
1635 	     !list_empty(head) && esed->res < esed->maxevents;) {
1636 		epi = list_first_entry(head, struct epitem, rdllink);
1637 
1638 		/*
1639 		 * Activate ep->ws before deactivating epi->ws to prevent
1640 		 * triggering auto-suspend here (in case we reactive epi->ws
1641 		 * below).
1642 		 *
1643 		 * This could be rearranged to delay the deactivation of epi->ws
1644 		 * instead, but then epi->ws would temporarily be out of sync
1645 		 * with ep_is_linked().
1646 		 */
1647 		ws = ep_wakeup_source(epi);
1648 		if (ws) {
1649 			if (ws->active)
1650 				__pm_stay_awake(ep->ws);
1651 			__pm_relax(ws);
1652 		}
1653 
1654 		list_del_init(&epi->rdllink);
1655 
1656 		revents = ep_item_poll(epi, &pt, 1);
1657 
1658 		/*
1659 		 * If the event mask intersect the caller-requested one,
1660 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1661 		 * is holding "mtx", so no operations coming from userspace
1662 		 * can change the item.
1663 		 */
1664 		if (revents) {
1665 			if (__put_user(revents, &uevent->events) ||
1666 			    __put_user(epi->event.data, &uevent->data)) {
1667 				list_add(&epi->rdllink, head);
1668 				ep_pm_stay_awake(epi);
1669 				if (!esed->res)
1670 					esed->res = -EFAULT;
1671 				return 0;
1672 			}
1673 			esed->res++;
1674 			uevent++;
1675 			if (epi->event.events & EPOLLONESHOT)
1676 				epi->event.events &= EP_PRIVATE_BITS;
1677 			else if (!(epi->event.events & EPOLLET)) {
1678 				/*
1679 				 * If this file has been added with Level
1680 				 * Trigger mode, we need to insert back inside
1681 				 * the ready list, so that the next call to
1682 				 * epoll_wait() will check again the events
1683 				 * availability. At this point, no one can insert
1684 				 * into ep->rdllist besides us. The epoll_ctl()
1685 				 * callers are locked out by
1686 				 * ep_scan_ready_list() holding "mtx" and the
1687 				 * poll callback will queue them in ep->ovflist.
1688 				 */
1689 				list_add_tail(&epi->rdllink, &ep->rdllist);
1690 				ep_pm_stay_awake(epi);
1691 			}
1692 		}
1693 	}
1694 
1695 	return 0;
1696 }
1697 
1698 static int ep_send_events(struct eventpoll *ep,
1699 			  struct epoll_event __user *events, int maxevents)
1700 {
1701 	struct ep_send_events_data esed;
1702 
1703 	esed.maxevents = maxevents;
1704 	esed.events = events;
1705 
1706 	ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1707 	return esed.res;
1708 }
1709 
1710 static inline struct timespec64 ep_set_mstimeout(long ms)
1711 {
1712 	struct timespec64 now, ts = {
1713 		.tv_sec = ms / MSEC_PER_SEC,
1714 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1715 	};
1716 
1717 	ktime_get_ts64(&now);
1718 	return timespec64_add_safe(now, ts);
1719 }
1720 
1721 /**
1722  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1723  *           event buffer.
1724  *
1725  * @ep: Pointer to the eventpoll context.
1726  * @events: Pointer to the userspace buffer where the ready events should be
1727  *          stored.
1728  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1729  * @timeout: Maximum timeout for the ready events fetch operation, in
1730  *           milliseconds. If the @timeout is zero, the function will not block,
1731  *           while if the @timeout is less than zero, the function will block
1732  *           until at least one event has been retrieved (or an error
1733  *           occurred).
1734  *
1735  * Returns: Returns the number of ready events which have been fetched, or an
1736  *          error code, in case of error.
1737  */
1738 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1739 		   int maxevents, long timeout)
1740 {
1741 	int res = 0, eavail, timed_out = 0;
1742 	unsigned long flags;
1743 	u64 slack = 0;
1744 	wait_queue_entry_t wait;
1745 	ktime_t expires, *to = NULL;
1746 
1747 	if (timeout > 0) {
1748 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1749 
1750 		slack = select_estimate_accuracy(&end_time);
1751 		to = &expires;
1752 		*to = timespec64_to_ktime(end_time);
1753 	} else if (timeout == 0) {
1754 		/*
1755 		 * Avoid the unnecessary trip to the wait queue loop, if the
1756 		 * caller specified a non blocking operation.
1757 		 */
1758 		timed_out = 1;
1759 		spin_lock_irqsave(&ep->lock, flags);
1760 		goto check_events;
1761 	}
1762 
1763 fetch_events:
1764 
1765 	if (!ep_events_available(ep))
1766 		ep_busy_loop(ep, timed_out);
1767 
1768 	spin_lock_irqsave(&ep->lock, flags);
1769 
1770 	if (!ep_events_available(ep)) {
1771 		/*
1772 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
1773 		 * it back in when we have moved a socket with a valid NAPI
1774 		 * ID onto the ready list.
1775 		 */
1776 		ep_reset_busy_poll_napi_id(ep);
1777 
1778 		/*
1779 		 * We don't have any available event to return to the caller.
1780 		 * We need to sleep here, and we will be wake up by
1781 		 * ep_poll_callback() when events will become available.
1782 		 */
1783 		init_waitqueue_entry(&wait, current);
1784 		__add_wait_queue_exclusive(&ep->wq, &wait);
1785 
1786 		for (;;) {
1787 			/*
1788 			 * We don't want to sleep if the ep_poll_callback() sends us
1789 			 * a wakeup in between. That's why we set the task state
1790 			 * to TASK_INTERRUPTIBLE before doing the checks.
1791 			 */
1792 			set_current_state(TASK_INTERRUPTIBLE);
1793 			/*
1794 			 * Always short-circuit for fatal signals to allow
1795 			 * threads to make a timely exit without the chance of
1796 			 * finding more events available and fetching
1797 			 * repeatedly.
1798 			 */
1799 			if (fatal_signal_pending(current)) {
1800 				res = -EINTR;
1801 				break;
1802 			}
1803 			if (ep_events_available(ep) || timed_out)
1804 				break;
1805 			if (signal_pending(current)) {
1806 				res = -EINTR;
1807 				break;
1808 			}
1809 
1810 			spin_unlock_irqrestore(&ep->lock, flags);
1811 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1812 				timed_out = 1;
1813 
1814 			spin_lock_irqsave(&ep->lock, flags);
1815 		}
1816 
1817 		__remove_wait_queue(&ep->wq, &wait);
1818 		__set_current_state(TASK_RUNNING);
1819 	}
1820 check_events:
1821 	/* Is it worth to try to dig for events ? */
1822 	eavail = ep_events_available(ep);
1823 
1824 	spin_unlock_irqrestore(&ep->lock, flags);
1825 
1826 	/*
1827 	 * Try to transfer events to user space. In case we get 0 events and
1828 	 * there's still timeout left over, we go trying again in search of
1829 	 * more luck.
1830 	 */
1831 	if (!res && eavail &&
1832 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1833 		goto fetch_events;
1834 
1835 	return res;
1836 }
1837 
1838 /**
1839  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1840  *                      API, to verify that adding an epoll file inside another
1841  *                      epoll structure, does not violate the constraints, in
1842  *                      terms of closed loops, or too deep chains (which can
1843  *                      result in excessive stack usage).
1844  *
1845  * @priv: Pointer to the epoll file to be currently checked.
1846  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1847  *          data structure pointer.
1848  * @call_nests: Current dept of the @ep_call_nested() call stack.
1849  *
1850  * Returns: Returns zero if adding the epoll @file inside current epoll
1851  *          structure @ep does not violate the constraints, or -1 otherwise.
1852  */
1853 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1854 {
1855 	int error = 0;
1856 	struct file *file = priv;
1857 	struct eventpoll *ep = file->private_data;
1858 	struct eventpoll *ep_tovisit;
1859 	struct rb_node *rbp;
1860 	struct epitem *epi;
1861 
1862 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1863 	ep->visited = 1;
1864 	list_add(&ep->visited_list_link, &visited_list);
1865 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1866 		epi = rb_entry(rbp, struct epitem, rbn);
1867 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1868 			ep_tovisit = epi->ffd.file->private_data;
1869 			if (ep_tovisit->visited)
1870 				continue;
1871 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1872 					ep_loop_check_proc, epi->ffd.file,
1873 					ep_tovisit, current);
1874 			if (error != 0)
1875 				break;
1876 		} else {
1877 			/*
1878 			 * If we've reached a file that is not associated with
1879 			 * an ep, then we need to check if the newly added
1880 			 * links are going to add too many wakeup paths. We do
1881 			 * this by adding it to the tfile_check_list, if it's
1882 			 * not already there, and calling reverse_path_check()
1883 			 * during ep_insert().
1884 			 */
1885 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1886 				list_add(&epi->ffd.file->f_tfile_llink,
1887 					 &tfile_check_list);
1888 		}
1889 	}
1890 	mutex_unlock(&ep->mtx);
1891 
1892 	return error;
1893 }
1894 
1895 /**
1896  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1897  *                 another epoll file (represented by @ep) does not create
1898  *                 closed loops or too deep chains.
1899  *
1900  * @ep: Pointer to the epoll private data structure.
1901  * @file: Pointer to the epoll file to be checked.
1902  *
1903  * Returns: Returns zero if adding the epoll @file inside current epoll
1904  *          structure @ep does not violate the constraints, or -1 otherwise.
1905  */
1906 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1907 {
1908 	int ret;
1909 	struct eventpoll *ep_cur, *ep_next;
1910 
1911 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1912 			      ep_loop_check_proc, file, ep, current);
1913 	/* clear visited list */
1914 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1915 							visited_list_link) {
1916 		ep_cur->visited = 0;
1917 		list_del(&ep_cur->visited_list_link);
1918 	}
1919 	return ret;
1920 }
1921 
1922 static void clear_tfile_check_list(void)
1923 {
1924 	struct file *file;
1925 
1926 	/* first clear the tfile_check_list */
1927 	while (!list_empty(&tfile_check_list)) {
1928 		file = list_first_entry(&tfile_check_list, struct file,
1929 					f_tfile_llink);
1930 		list_del_init(&file->f_tfile_llink);
1931 	}
1932 	INIT_LIST_HEAD(&tfile_check_list);
1933 }
1934 
1935 /*
1936  * Open an eventpoll file descriptor.
1937  */
1938 static int do_epoll_create(int flags)
1939 {
1940 	int error, fd;
1941 	struct eventpoll *ep = NULL;
1942 	struct file *file;
1943 
1944 	/* Check the EPOLL_* constant for consistency.  */
1945 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1946 
1947 	if (flags & ~EPOLL_CLOEXEC)
1948 		return -EINVAL;
1949 	/*
1950 	 * Create the internal data structure ("struct eventpoll").
1951 	 */
1952 	error = ep_alloc(&ep);
1953 	if (error < 0)
1954 		return error;
1955 	/*
1956 	 * Creates all the items needed to setup an eventpoll file. That is,
1957 	 * a file structure and a free file descriptor.
1958 	 */
1959 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1960 	if (fd < 0) {
1961 		error = fd;
1962 		goto out_free_ep;
1963 	}
1964 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1965 				 O_RDWR | (flags & O_CLOEXEC));
1966 	if (IS_ERR(file)) {
1967 		error = PTR_ERR(file);
1968 		goto out_free_fd;
1969 	}
1970 	ep->file = file;
1971 	fd_install(fd, file);
1972 	return fd;
1973 
1974 out_free_fd:
1975 	put_unused_fd(fd);
1976 out_free_ep:
1977 	ep_free(ep);
1978 	return error;
1979 }
1980 
1981 SYSCALL_DEFINE1(epoll_create1, int, flags)
1982 {
1983 	return do_epoll_create(flags);
1984 }
1985 
1986 SYSCALL_DEFINE1(epoll_create, int, size)
1987 {
1988 	if (size <= 0)
1989 		return -EINVAL;
1990 
1991 	return do_epoll_create(0);
1992 }
1993 
1994 /*
1995  * The following function implements the controller interface for
1996  * the eventpoll file that enables the insertion/removal/change of
1997  * file descriptors inside the interest set.
1998  */
1999 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2000 		struct epoll_event __user *, event)
2001 {
2002 	int error;
2003 	int full_check = 0;
2004 	struct fd f, tf;
2005 	struct eventpoll *ep;
2006 	struct epitem *epi;
2007 	struct epoll_event epds;
2008 	struct eventpoll *tep = NULL;
2009 
2010 	error = -EFAULT;
2011 	if (ep_op_has_event(op) &&
2012 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2013 		goto error_return;
2014 
2015 	error = -EBADF;
2016 	f = fdget(epfd);
2017 	if (!f.file)
2018 		goto error_return;
2019 
2020 	/* Get the "struct file *" for the target file */
2021 	tf = fdget(fd);
2022 	if (!tf.file)
2023 		goto error_fput;
2024 
2025 	/* The target file descriptor must support poll */
2026 	error = -EPERM;
2027 	if (!file_can_poll(tf.file))
2028 		goto error_tgt_fput;
2029 
2030 	/* Check if EPOLLWAKEUP is allowed */
2031 	if (ep_op_has_event(op))
2032 		ep_take_care_of_epollwakeup(&epds);
2033 
2034 	/*
2035 	 * We have to check that the file structure underneath the file descriptor
2036 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2037 	 * adding an epoll file descriptor inside itself.
2038 	 */
2039 	error = -EINVAL;
2040 	if (f.file == tf.file || !is_file_epoll(f.file))
2041 		goto error_tgt_fput;
2042 
2043 	/*
2044 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2045 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2046 	 * Also, we do not currently supported nested exclusive wakeups.
2047 	 */
2048 	if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2049 		if (op == EPOLL_CTL_MOD)
2050 			goto error_tgt_fput;
2051 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2052 				(epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2053 			goto error_tgt_fput;
2054 	}
2055 
2056 	/*
2057 	 * At this point it is safe to assume that the "private_data" contains
2058 	 * our own data structure.
2059 	 */
2060 	ep = f.file->private_data;
2061 
2062 	/*
2063 	 * When we insert an epoll file descriptor, inside another epoll file
2064 	 * descriptor, there is the change of creating closed loops, which are
2065 	 * better be handled here, than in more critical paths. While we are
2066 	 * checking for loops we also determine the list of files reachable
2067 	 * and hang them on the tfile_check_list, so we can check that we
2068 	 * haven't created too many possible wakeup paths.
2069 	 *
2070 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2071 	 * the epoll file descriptor is attaching directly to a wakeup source,
2072 	 * unless the epoll file descriptor is nested. The purpose of taking the
2073 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2074 	 * deep wakeup paths from forming in parallel through multiple
2075 	 * EPOLL_CTL_ADD operations.
2076 	 */
2077 	mutex_lock_nested(&ep->mtx, 0);
2078 	if (op == EPOLL_CTL_ADD) {
2079 		if (!list_empty(&f.file->f_ep_links) ||
2080 						is_file_epoll(tf.file)) {
2081 			full_check = 1;
2082 			mutex_unlock(&ep->mtx);
2083 			mutex_lock(&epmutex);
2084 			if (is_file_epoll(tf.file)) {
2085 				error = -ELOOP;
2086 				if (ep_loop_check(ep, tf.file) != 0) {
2087 					clear_tfile_check_list();
2088 					goto error_tgt_fput;
2089 				}
2090 			} else
2091 				list_add(&tf.file->f_tfile_llink,
2092 							&tfile_check_list);
2093 			mutex_lock_nested(&ep->mtx, 0);
2094 			if (is_file_epoll(tf.file)) {
2095 				tep = tf.file->private_data;
2096 				mutex_lock_nested(&tep->mtx, 1);
2097 			}
2098 		}
2099 	}
2100 
2101 	/*
2102 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2103 	 * above, we can be sure to be able to use the item looked up by
2104 	 * ep_find() till we release the mutex.
2105 	 */
2106 	epi = ep_find(ep, tf.file, fd);
2107 
2108 	error = -EINVAL;
2109 	switch (op) {
2110 	case EPOLL_CTL_ADD:
2111 		if (!epi) {
2112 			epds.events |= EPOLLERR | EPOLLHUP;
2113 			error = ep_insert(ep, &epds, tf.file, fd, full_check);
2114 		} else
2115 			error = -EEXIST;
2116 		if (full_check)
2117 			clear_tfile_check_list();
2118 		break;
2119 	case EPOLL_CTL_DEL:
2120 		if (epi)
2121 			error = ep_remove(ep, epi);
2122 		else
2123 			error = -ENOENT;
2124 		break;
2125 	case EPOLL_CTL_MOD:
2126 		if (epi) {
2127 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2128 				epds.events |= EPOLLERR | EPOLLHUP;
2129 				error = ep_modify(ep, epi, &epds);
2130 			}
2131 		} else
2132 			error = -ENOENT;
2133 		break;
2134 	}
2135 	if (tep != NULL)
2136 		mutex_unlock(&tep->mtx);
2137 	mutex_unlock(&ep->mtx);
2138 
2139 error_tgt_fput:
2140 	if (full_check)
2141 		mutex_unlock(&epmutex);
2142 
2143 	fdput(tf);
2144 error_fput:
2145 	fdput(f);
2146 error_return:
2147 
2148 	return error;
2149 }
2150 
2151 /*
2152  * Implement the event wait interface for the eventpoll file. It is the kernel
2153  * part of the user space epoll_wait(2).
2154  */
2155 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2156 			 int maxevents, int timeout)
2157 {
2158 	int error;
2159 	struct fd f;
2160 	struct eventpoll *ep;
2161 
2162 	/* The maximum number of event must be greater than zero */
2163 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2164 		return -EINVAL;
2165 
2166 	/* Verify that the area passed by the user is writeable */
2167 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2168 		return -EFAULT;
2169 
2170 	/* Get the "struct file *" for the eventpoll file */
2171 	f = fdget(epfd);
2172 	if (!f.file)
2173 		return -EBADF;
2174 
2175 	/*
2176 	 * We have to check that the file structure underneath the fd
2177 	 * the user passed to us _is_ an eventpoll file.
2178 	 */
2179 	error = -EINVAL;
2180 	if (!is_file_epoll(f.file))
2181 		goto error_fput;
2182 
2183 	/*
2184 	 * At this point it is safe to assume that the "private_data" contains
2185 	 * our own data structure.
2186 	 */
2187 	ep = f.file->private_data;
2188 
2189 	/* Time to fish for events ... */
2190 	error = ep_poll(ep, events, maxevents, timeout);
2191 
2192 error_fput:
2193 	fdput(f);
2194 	return error;
2195 }
2196 
2197 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2198 		int, maxevents, int, timeout)
2199 {
2200 	return do_epoll_wait(epfd, events, maxevents, timeout);
2201 }
2202 
2203 /*
2204  * Implement the event wait interface for the eventpoll file. It is the kernel
2205  * part of the user space epoll_pwait(2).
2206  */
2207 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2208 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2209 		size_t, sigsetsize)
2210 {
2211 	int error;
2212 	sigset_t ksigmask, sigsaved;
2213 
2214 	/*
2215 	 * If the caller wants a certain signal mask to be set during the wait,
2216 	 * we apply it here.
2217 	 */
2218 	if (sigmask) {
2219 		if (sigsetsize != sizeof(sigset_t))
2220 			return -EINVAL;
2221 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2222 			return -EFAULT;
2223 		sigsaved = current->blocked;
2224 		set_current_blocked(&ksigmask);
2225 	}
2226 
2227 	error = do_epoll_wait(epfd, events, maxevents, timeout);
2228 
2229 	/*
2230 	 * If we changed the signal mask, we need to restore the original one.
2231 	 * In case we've got a signal while waiting, we do not restore the
2232 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2233 	 * the way back to userspace, before the signal mask is restored.
2234 	 */
2235 	if (sigmask) {
2236 		if (error == -EINTR) {
2237 			memcpy(&current->saved_sigmask, &sigsaved,
2238 			       sizeof(sigsaved));
2239 			set_restore_sigmask();
2240 		} else
2241 			set_current_blocked(&sigsaved);
2242 	}
2243 
2244 	return error;
2245 }
2246 
2247 #ifdef CONFIG_COMPAT
2248 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2249 			struct epoll_event __user *, events,
2250 			int, maxevents, int, timeout,
2251 			const compat_sigset_t __user *, sigmask,
2252 			compat_size_t, sigsetsize)
2253 {
2254 	long err;
2255 	sigset_t ksigmask, sigsaved;
2256 
2257 	/*
2258 	 * If the caller wants a certain signal mask to be set during the wait,
2259 	 * we apply it here.
2260 	 */
2261 	if (sigmask) {
2262 		if (sigsetsize != sizeof(compat_sigset_t))
2263 			return -EINVAL;
2264 		if (get_compat_sigset(&ksigmask, sigmask))
2265 			return -EFAULT;
2266 		sigsaved = current->blocked;
2267 		set_current_blocked(&ksigmask);
2268 	}
2269 
2270 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2271 
2272 	/*
2273 	 * If we changed the signal mask, we need to restore the original one.
2274 	 * In case we've got a signal while waiting, we do not restore the
2275 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2276 	 * the way back to userspace, before the signal mask is restored.
2277 	 */
2278 	if (sigmask) {
2279 		if (err == -EINTR) {
2280 			memcpy(&current->saved_sigmask, &sigsaved,
2281 			       sizeof(sigsaved));
2282 			set_restore_sigmask();
2283 		} else
2284 			set_current_blocked(&sigsaved);
2285 	}
2286 
2287 	return err;
2288 }
2289 #endif
2290 
2291 static int __init eventpoll_init(void)
2292 {
2293 	struct sysinfo si;
2294 
2295 	si_meminfo(&si);
2296 	/*
2297 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2298 	 */
2299 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2300 		EP_ITEM_COST;
2301 	BUG_ON(max_user_watches < 0);
2302 
2303 	/*
2304 	 * Initialize the structure used to perform epoll file descriptor
2305 	 * inclusion loops checks.
2306 	 */
2307 	ep_nested_calls_init(&poll_loop_ncalls);
2308 
2309 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2310 	/* Initialize the structure used to perform safe poll wait head wake ups */
2311 	ep_nested_calls_init(&poll_safewake_ncalls);
2312 #endif
2313 
2314 	/*
2315 	 * We can have many thousands of epitems, so prevent this from
2316 	 * using an extra cache line on 64-bit (and smaller) CPUs
2317 	 */
2318 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2319 
2320 	/* Allocates slab cache used to allocate "struct epitem" items */
2321 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2322 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2323 
2324 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2325 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2326 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2327 
2328 	return 0;
2329 }
2330 fs_initcall(eventpoll_init);
2331