xref: /linux/fs/ecryptfs/messaging.c (revision cdb138080b78146d1cdadba9f5dadbeb97445b91)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 2004-2008 International Business Machines Corp.
5  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
6  *		Tyler Hicks <tyhicks@ou.edu>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20  * 02111-1307, USA.
21  */
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/user_namespace.h>
25 #include <linux/nsproxy.h>
26 #include "ecryptfs_kernel.h"
27 
28 static LIST_HEAD(ecryptfs_msg_ctx_free_list);
29 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
30 static struct mutex ecryptfs_msg_ctx_lists_mux;
31 
32 static struct hlist_head *ecryptfs_daemon_hash;
33 struct mutex ecryptfs_daemon_hash_mux;
34 static int ecryptfs_hash_bits;
35 #define ecryptfs_uid_hash(uid) \
36         hash_long((unsigned long)uid, ecryptfs_hash_bits)
37 
38 static u32 ecryptfs_msg_counter;
39 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
40 
41 /**
42  * ecryptfs_acquire_free_msg_ctx
43  * @msg_ctx: The context that was acquired from the free list
44  *
45  * Acquires a context element from the free list and locks the mutex
46  * on the context.  Sets the msg_ctx task to current.  Returns zero on
47  * success; non-zero on error or upon failure to acquire a free
48  * context element.  Must be called with ecryptfs_msg_ctx_lists_mux
49  * held.
50  */
51 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
52 {
53 	struct list_head *p;
54 	int rc;
55 
56 	if (list_empty(&ecryptfs_msg_ctx_free_list)) {
57 		printk(KERN_WARNING "%s: The eCryptfs free "
58 		       "context list is empty.  It may be helpful to "
59 		       "specify the ecryptfs_message_buf_len "
60 		       "parameter to be greater than the current "
61 		       "value of [%d]\n", __func__, ecryptfs_message_buf_len);
62 		rc = -ENOMEM;
63 		goto out;
64 	}
65 	list_for_each(p, &ecryptfs_msg_ctx_free_list) {
66 		*msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
67 		if (mutex_trylock(&(*msg_ctx)->mux)) {
68 			(*msg_ctx)->task = current;
69 			rc = 0;
70 			goto out;
71 		}
72 	}
73 	rc = -ENOMEM;
74 out:
75 	return rc;
76 }
77 
78 /**
79  * ecryptfs_msg_ctx_free_to_alloc
80  * @msg_ctx: The context to move from the free list to the alloc list
81  *
82  * Must be called with ecryptfs_msg_ctx_lists_mux held.
83  */
84 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
85 {
86 	list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
87 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
88 	msg_ctx->counter = ++ecryptfs_msg_counter;
89 }
90 
91 /**
92  * ecryptfs_msg_ctx_alloc_to_free
93  * @msg_ctx: The context to move from the alloc list to the free list
94  *
95  * Must be called with ecryptfs_msg_ctx_lists_mux held.
96  */
97 void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
98 {
99 	list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
100 	if (msg_ctx->msg)
101 		kfree(msg_ctx->msg);
102 	msg_ctx->msg = NULL;
103 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
104 }
105 
106 /**
107  * ecryptfs_find_daemon_by_euid
108  * @euid: The effective user id which maps to the desired daemon id
109  * @user_ns: The namespace in which @euid applies
110  * @daemon: If return value is zero, points to the desired daemon pointer
111  *
112  * Must be called with ecryptfs_daemon_hash_mux held.
113  *
114  * Search the hash list for the given user id.
115  *
116  * Returns zero if the user id exists in the list; non-zero otherwise.
117  */
118 int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon, uid_t euid,
119 				 struct user_namespace *user_ns)
120 {
121 	struct hlist_node *elem;
122 	int rc;
123 
124 	hlist_for_each_entry(*daemon, elem,
125 			     &ecryptfs_daemon_hash[ecryptfs_uid_hash(euid)],
126 			     euid_chain) {
127 		if ((*daemon)->euid == euid && (*daemon)->user_ns == user_ns) {
128 			rc = 0;
129 			goto out;
130 		}
131 	}
132 	rc = -EINVAL;
133 out:
134 	return rc;
135 }
136 
137 /**
138  * ecryptfs_spawn_daemon - Create and initialize a new daemon struct
139  * @daemon: Pointer to set to newly allocated daemon struct
140  * @euid: Effective user id for the daemon
141  * @user_ns: The namespace in which @euid applies
142  * @pid: Process id for the daemon
143  *
144  * Must be called ceremoniously while in possession of
145  * ecryptfs_sacred_daemon_hash_mux
146  *
147  * Returns zero on success; non-zero otherwise
148  */
149 int
150 ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, uid_t euid,
151 		      struct user_namespace *user_ns, struct pid *pid)
152 {
153 	int rc = 0;
154 
155 	(*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
156 	if (!(*daemon)) {
157 		rc = -ENOMEM;
158 		printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
159 		       "GFP_KERNEL memory\n", __func__, sizeof(**daemon));
160 		goto out;
161 	}
162 	(*daemon)->euid = euid;
163 	(*daemon)->user_ns = get_user_ns(user_ns);
164 	(*daemon)->pid = get_pid(pid);
165 	(*daemon)->task = current;
166 	mutex_init(&(*daemon)->mux);
167 	INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
168 	init_waitqueue_head(&(*daemon)->wait);
169 	(*daemon)->num_queued_msg_ctx = 0;
170 	hlist_add_head(&(*daemon)->euid_chain,
171 		       &ecryptfs_daemon_hash[ecryptfs_uid_hash(euid)]);
172 out:
173 	return rc;
174 }
175 
176 /**
177  * ecryptfs_exorcise_daemon - Destroy the daemon struct
178  *
179  * Must be called ceremoniously while in possession of
180  * ecryptfs_daemon_hash_mux and the daemon's own mux.
181  */
182 int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
183 {
184 	struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
185 	int rc = 0;
186 
187 	mutex_lock(&daemon->mux);
188 	if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
189 	    || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
190 		rc = -EBUSY;
191 		printk(KERN_WARNING "%s: Attempt to destroy daemon with pid "
192 		       "[0x%p], but it is in the midst of a read or a poll\n",
193 		       __func__, daemon->pid);
194 		mutex_unlock(&daemon->mux);
195 		goto out;
196 	}
197 	list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
198 				 &daemon->msg_ctx_out_queue, daemon_out_list) {
199 		list_del(&msg_ctx->daemon_out_list);
200 		daemon->num_queued_msg_ctx--;
201 		printk(KERN_WARNING "%s: Warning: dropping message that is in "
202 		       "the out queue of a dying daemon\n", __func__);
203 		ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
204 	}
205 	hlist_del(&daemon->euid_chain);
206 	if (daemon->task)
207 		wake_up_process(daemon->task);
208 	if (daemon->pid)
209 		put_pid(daemon->pid);
210 	if (daemon->user_ns)
211 		put_user_ns(daemon->user_ns);
212 	mutex_unlock(&daemon->mux);
213 	kzfree(daemon);
214 out:
215 	return rc;
216 }
217 
218 /**
219  * ecryptfs_process_quit
220  * @euid: The user ID owner of the message
221  * @user_ns: The namespace in which @euid applies
222  * @pid: The process ID for the userspace program that sent the
223  *       message
224  *
225  * Deletes the corresponding daemon for the given euid and pid, if
226  * it is the registered that is requesting the deletion. Returns zero
227  * after deleting the desired daemon; non-zero otherwise.
228  */
229 int ecryptfs_process_quit(uid_t euid, struct user_namespace *user_ns,
230 			  struct pid *pid)
231 {
232 	struct ecryptfs_daemon *daemon;
233 	int rc;
234 
235 	mutex_lock(&ecryptfs_daemon_hash_mux);
236 	rc = ecryptfs_find_daemon_by_euid(&daemon, euid, user_ns);
237 	if (rc || !daemon) {
238 		rc = -EINVAL;
239 		printk(KERN_ERR "Received request from user [%d] to "
240 		       "unregister unrecognized daemon [0x%p]\n", euid, pid);
241 		goto out_unlock;
242 	}
243 	rc = ecryptfs_exorcise_daemon(daemon);
244 out_unlock:
245 	mutex_unlock(&ecryptfs_daemon_hash_mux);
246 	return rc;
247 }
248 
249 /**
250  * ecryptfs_process_reponse
251  * @msg: The ecryptfs message received; the caller should sanity check
252  *       msg->data_len and free the memory
253  * @pid: The process ID of the userspace application that sent the
254  *       message
255  * @seq: The sequence number of the message; must match the sequence
256  *       number for the existing message context waiting for this
257  *       response
258  *
259  * Processes a response message after sending an operation request to
260  * userspace. Some other process is awaiting this response. Before
261  * sending out its first communications, the other process allocated a
262  * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
263  * response message contains this index so that we can copy over the
264  * response message into the msg_ctx that the process holds a
265  * reference to. The other process is going to wake up, check to see
266  * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
267  * proceed to read off and process the response message. Returns zero
268  * upon delivery to desired context element; non-zero upon delivery
269  * failure or error.
270  *
271  * Returns zero on success; non-zero otherwise
272  */
273 int ecryptfs_process_response(struct ecryptfs_message *msg, uid_t euid,
274 			      struct user_namespace *user_ns, struct pid *pid,
275 			      u32 seq)
276 {
277 	struct ecryptfs_daemon *uninitialized_var(daemon);
278 	struct ecryptfs_msg_ctx *msg_ctx;
279 	size_t msg_size;
280 	struct nsproxy *nsproxy;
281 	struct user_namespace *tsk_user_ns;
282 	uid_t ctx_euid;
283 	int rc;
284 
285 	if (msg->index >= ecryptfs_message_buf_len) {
286 		rc = -EINVAL;
287 		printk(KERN_ERR "%s: Attempt to reference "
288 		       "context buffer at index [%d]; maximum "
289 		       "allowable is [%d]\n", __func__, msg->index,
290 		       (ecryptfs_message_buf_len - 1));
291 		goto out;
292 	}
293 	msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
294 	mutex_lock(&msg_ctx->mux);
295 	mutex_lock(&ecryptfs_daemon_hash_mux);
296 	rcu_read_lock();
297 	nsproxy = task_nsproxy(msg_ctx->task);
298 	if (nsproxy == NULL) {
299 		rc = -EBADMSG;
300 		printk(KERN_ERR "%s: Receiving process is a zombie. Dropping "
301 		       "message.\n", __func__);
302 		rcu_read_unlock();
303 		mutex_unlock(&ecryptfs_daemon_hash_mux);
304 		goto wake_up;
305 	}
306 	tsk_user_ns = __task_cred(msg_ctx->task)->user->user_ns;
307 	ctx_euid = task_euid(msg_ctx->task);
308 	rc = ecryptfs_find_daemon_by_euid(&daemon, ctx_euid, tsk_user_ns);
309 	rcu_read_unlock();
310 	mutex_unlock(&ecryptfs_daemon_hash_mux);
311 	if (rc) {
312 		rc = -EBADMSG;
313 		printk(KERN_WARNING "%s: User [%d] received a "
314 		       "message response from process [0x%p] but does "
315 		       "not have a registered daemon\n", __func__,
316 		       ctx_euid, pid);
317 		goto wake_up;
318 	}
319 	if (ctx_euid != euid) {
320 		rc = -EBADMSG;
321 		printk(KERN_WARNING "%s: Received message from user "
322 		       "[%d]; expected message from user [%d]\n", __func__,
323 		       euid, ctx_euid);
324 		goto unlock;
325 	}
326 	if (tsk_user_ns != user_ns) {
327 		rc = -EBADMSG;
328 		printk(KERN_WARNING "%s: Received message from user_ns "
329 		       "[0x%p]; expected message from user_ns [0x%p]\n",
330 		       __func__, user_ns, tsk_user_ns);
331 		goto unlock;
332 	}
333 	if (daemon->pid != pid) {
334 		rc = -EBADMSG;
335 		printk(KERN_ERR "%s: User [%d] sent a message response "
336 		       "from an unrecognized process [0x%p]\n",
337 		       __func__, ctx_euid, pid);
338 		goto unlock;
339 	}
340 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
341 		rc = -EINVAL;
342 		printk(KERN_WARNING "%s: Desired context element is not "
343 		       "pending a response\n", __func__);
344 		goto unlock;
345 	} else if (msg_ctx->counter != seq) {
346 		rc = -EINVAL;
347 		printk(KERN_WARNING "%s: Invalid message sequence; "
348 		       "expected [%d]; received [%d]\n", __func__,
349 		       msg_ctx->counter, seq);
350 		goto unlock;
351 	}
352 	msg_size = (sizeof(*msg) + msg->data_len);
353 	msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
354 	if (!msg_ctx->msg) {
355 		rc = -ENOMEM;
356 		printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
357 		       "GFP_KERNEL memory\n", __func__, msg_size);
358 		goto unlock;
359 	}
360 	memcpy(msg_ctx->msg, msg, msg_size);
361 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
362 	rc = 0;
363 wake_up:
364 	wake_up_process(msg_ctx->task);
365 unlock:
366 	mutex_unlock(&msg_ctx->mux);
367 out:
368 	return rc;
369 }
370 
371 /**
372  * ecryptfs_send_message_locked
373  * @data: The data to send
374  * @data_len: The length of data
375  * @msg_ctx: The message context allocated for the send
376  *
377  * Must be called with ecryptfs_daemon_hash_mux held.
378  *
379  * Returns zero on success; non-zero otherwise
380  */
381 static int
382 ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
383 			     struct ecryptfs_msg_ctx **msg_ctx)
384 {
385 	struct ecryptfs_daemon *daemon;
386 	uid_t euid = current_euid();
387 	int rc;
388 
389 	rc = ecryptfs_find_daemon_by_euid(&daemon, euid, current_user_ns());
390 	if (rc || !daemon) {
391 		rc = -ENOTCONN;
392 		printk(KERN_ERR "%s: User [%d] does not have a daemon "
393 		       "registered\n", __func__, euid);
394 		goto out;
395 	}
396 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
397 	rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
398 	if (rc) {
399 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
400 		printk(KERN_WARNING "%s: Could not claim a free "
401 		       "context element\n", __func__);
402 		goto out;
403 	}
404 	ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
405 	mutex_unlock(&(*msg_ctx)->mux);
406 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
407 	rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0,
408 				   daemon);
409 	if (rc)
410 		printk(KERN_ERR "%s: Error attempting to send message to "
411 		       "userspace daemon; rc = [%d]\n", __func__, rc);
412 out:
413 	return rc;
414 }
415 
416 /**
417  * ecryptfs_send_message
418  * @data: The data to send
419  * @data_len: The length of data
420  * @msg_ctx: The message context allocated for the send
421  *
422  * Grabs ecryptfs_daemon_hash_mux.
423  *
424  * Returns zero on success; non-zero otherwise
425  */
426 int ecryptfs_send_message(char *data, int data_len,
427 			  struct ecryptfs_msg_ctx **msg_ctx)
428 {
429 	int rc;
430 
431 	mutex_lock(&ecryptfs_daemon_hash_mux);
432 	rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST,
433 					  msg_ctx);
434 	mutex_unlock(&ecryptfs_daemon_hash_mux);
435 	return rc;
436 }
437 
438 /**
439  * ecryptfs_wait_for_response
440  * @msg_ctx: The context that was assigned when sending a message
441  * @msg: The incoming message from userspace; not set if rc != 0
442  *
443  * Sleeps until awaken by ecryptfs_receive_message or until the amount
444  * of time exceeds ecryptfs_message_wait_timeout.  If zero is
445  * returned, msg will point to a valid message from userspace; a
446  * non-zero value is returned upon failure to receive a message or an
447  * error occurs. Callee must free @msg on success.
448  */
449 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
450 			       struct ecryptfs_message **msg)
451 {
452 	signed long timeout = ecryptfs_message_wait_timeout * HZ;
453 	int rc = 0;
454 
455 sleep:
456 	timeout = schedule_timeout_interruptible(timeout);
457 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
458 	mutex_lock(&msg_ctx->mux);
459 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
460 		if (timeout) {
461 			mutex_unlock(&msg_ctx->mux);
462 			mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
463 			goto sleep;
464 		}
465 		rc = -ENOMSG;
466 	} else {
467 		*msg = msg_ctx->msg;
468 		msg_ctx->msg = NULL;
469 	}
470 	ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
471 	mutex_unlock(&msg_ctx->mux);
472 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
473 	return rc;
474 }
475 
476 int __init ecryptfs_init_messaging(void)
477 {
478 	int i;
479 	int rc = 0;
480 
481 	if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
482 		ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
483 		printk(KERN_WARNING "%s: Specified number of users is "
484 		       "too large, defaulting to [%d] users\n", __func__,
485 		       ecryptfs_number_of_users);
486 	}
487 	mutex_init(&ecryptfs_daemon_hash_mux);
488 	mutex_lock(&ecryptfs_daemon_hash_mux);
489 	ecryptfs_hash_bits = 1;
490 	while (ecryptfs_number_of_users >> ecryptfs_hash_bits)
491 		ecryptfs_hash_bits++;
492 	ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
493 					* (1 << ecryptfs_hash_bits)),
494 				       GFP_KERNEL);
495 	if (!ecryptfs_daemon_hash) {
496 		rc = -ENOMEM;
497 		printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
498 		mutex_unlock(&ecryptfs_daemon_hash_mux);
499 		goto out;
500 	}
501 	for (i = 0; i < (1 << ecryptfs_hash_bits); i++)
502 		INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
503 	mutex_unlock(&ecryptfs_daemon_hash_mux);
504 	ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
505 					* ecryptfs_message_buf_len),
506 				       GFP_KERNEL);
507 	if (!ecryptfs_msg_ctx_arr) {
508 		rc = -ENOMEM;
509 		printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
510 		goto out;
511 	}
512 	mutex_init(&ecryptfs_msg_ctx_lists_mux);
513 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
514 	ecryptfs_msg_counter = 0;
515 	for (i = 0; i < ecryptfs_message_buf_len; i++) {
516 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
517 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
518 		mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
519 		mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
520 		ecryptfs_msg_ctx_arr[i].index = i;
521 		ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
522 		ecryptfs_msg_ctx_arr[i].counter = 0;
523 		ecryptfs_msg_ctx_arr[i].task = NULL;
524 		ecryptfs_msg_ctx_arr[i].msg = NULL;
525 		list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
526 			      &ecryptfs_msg_ctx_free_list);
527 		mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
528 	}
529 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
530 	rc = ecryptfs_init_ecryptfs_miscdev();
531 	if (rc)
532 		ecryptfs_release_messaging();
533 out:
534 	return rc;
535 }
536 
537 void ecryptfs_release_messaging(void)
538 {
539 	if (ecryptfs_msg_ctx_arr) {
540 		int i;
541 
542 		mutex_lock(&ecryptfs_msg_ctx_lists_mux);
543 		for (i = 0; i < ecryptfs_message_buf_len; i++) {
544 			mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
545 			if (ecryptfs_msg_ctx_arr[i].msg)
546 				kfree(ecryptfs_msg_ctx_arr[i].msg);
547 			mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
548 		}
549 		kfree(ecryptfs_msg_ctx_arr);
550 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
551 	}
552 	if (ecryptfs_daemon_hash) {
553 		struct hlist_node *elem;
554 		struct ecryptfs_daemon *daemon;
555 		int i;
556 
557 		mutex_lock(&ecryptfs_daemon_hash_mux);
558 		for (i = 0; i < (1 << ecryptfs_hash_bits); i++) {
559 			int rc;
560 
561 			hlist_for_each_entry(daemon, elem,
562 					     &ecryptfs_daemon_hash[i],
563 					     euid_chain) {
564 				rc = ecryptfs_exorcise_daemon(daemon);
565 				if (rc)
566 					printk(KERN_ERR "%s: Error whilst "
567 					       "attempting to destroy daemon; "
568 					       "rc = [%d]. Dazed and confused, "
569 					       "but trying to continue.\n",
570 					       __func__, rc);
571 			}
572 		}
573 		kfree(ecryptfs_daemon_hash);
574 		mutex_unlock(&ecryptfs_daemon_hash_mux);
575 	}
576 	ecryptfs_destroy_ecryptfs_miscdev();
577 	return;
578 }
579