xref: /linux/fs/btrfs/transaction.c (revision 564eb714f5f09ac733c26860d5f0831f213fbdf1)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 
35 #define BTRFS_ROOT_TRANS_TAG 0
36 
37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38 	[TRANS_STATE_RUNNING]		= 0U,
39 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
40 					   __TRANS_START),
41 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
42 					   __TRANS_START |
43 					   __TRANS_ATTACH),
44 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
45 					   __TRANS_START |
46 					   __TRANS_ATTACH |
47 					   __TRANS_JOIN),
48 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
49 					   __TRANS_START |
50 					   __TRANS_ATTACH |
51 					   __TRANS_JOIN |
52 					   __TRANS_JOIN_NOLOCK),
53 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
54 					   __TRANS_START |
55 					   __TRANS_ATTACH |
56 					   __TRANS_JOIN |
57 					   __TRANS_JOIN_NOLOCK),
58 };
59 
60 void btrfs_put_transaction(struct btrfs_transaction *transaction)
61 {
62 	WARN_ON(atomic_read(&transaction->use_count) == 0);
63 	if (atomic_dec_and_test(&transaction->use_count)) {
64 		BUG_ON(!list_empty(&transaction->list));
65 		WARN_ON(transaction->delayed_refs.root.rb_node);
66 		while (!list_empty(&transaction->pending_chunks)) {
67 			struct extent_map *em;
68 
69 			em = list_first_entry(&transaction->pending_chunks,
70 					      struct extent_map, list);
71 			list_del_init(&em->list);
72 			free_extent_map(em);
73 		}
74 		kmem_cache_free(btrfs_transaction_cachep, transaction);
75 	}
76 }
77 
78 static noinline void switch_commit_root(struct btrfs_root *root)
79 {
80 	free_extent_buffer(root->commit_root);
81 	root->commit_root = btrfs_root_node(root);
82 }
83 
84 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
85 					 unsigned int type)
86 {
87 	if (type & TRANS_EXTWRITERS)
88 		atomic_inc(&trans->num_extwriters);
89 }
90 
91 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
92 					 unsigned int type)
93 {
94 	if (type & TRANS_EXTWRITERS)
95 		atomic_dec(&trans->num_extwriters);
96 }
97 
98 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
99 					  unsigned int type)
100 {
101 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
102 }
103 
104 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
105 {
106 	return atomic_read(&trans->num_extwriters);
107 }
108 
109 /*
110  * either allocate a new transaction or hop into the existing one
111  */
112 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
113 {
114 	struct btrfs_transaction *cur_trans;
115 	struct btrfs_fs_info *fs_info = root->fs_info;
116 
117 	spin_lock(&fs_info->trans_lock);
118 loop:
119 	/* The file system has been taken offline. No new transactions. */
120 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
121 		spin_unlock(&fs_info->trans_lock);
122 		return -EROFS;
123 	}
124 
125 	cur_trans = fs_info->running_transaction;
126 	if (cur_trans) {
127 		if (cur_trans->aborted) {
128 			spin_unlock(&fs_info->trans_lock);
129 			return cur_trans->aborted;
130 		}
131 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
132 			spin_unlock(&fs_info->trans_lock);
133 			return -EBUSY;
134 		}
135 		atomic_inc(&cur_trans->use_count);
136 		atomic_inc(&cur_trans->num_writers);
137 		extwriter_counter_inc(cur_trans, type);
138 		spin_unlock(&fs_info->trans_lock);
139 		return 0;
140 	}
141 	spin_unlock(&fs_info->trans_lock);
142 
143 	/*
144 	 * If we are ATTACH, we just want to catch the current transaction,
145 	 * and commit it. If there is no transaction, just return ENOENT.
146 	 */
147 	if (type == TRANS_ATTACH)
148 		return -ENOENT;
149 
150 	/*
151 	 * JOIN_NOLOCK only happens during the transaction commit, so
152 	 * it is impossible that ->running_transaction is NULL
153 	 */
154 	BUG_ON(type == TRANS_JOIN_NOLOCK);
155 
156 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
157 	if (!cur_trans)
158 		return -ENOMEM;
159 
160 	spin_lock(&fs_info->trans_lock);
161 	if (fs_info->running_transaction) {
162 		/*
163 		 * someone started a transaction after we unlocked.  Make sure
164 		 * to redo the checks above
165 		 */
166 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
167 		goto loop;
168 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
169 		spin_unlock(&fs_info->trans_lock);
170 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
171 		return -EROFS;
172 	}
173 
174 	atomic_set(&cur_trans->num_writers, 1);
175 	extwriter_counter_init(cur_trans, type);
176 	init_waitqueue_head(&cur_trans->writer_wait);
177 	init_waitqueue_head(&cur_trans->commit_wait);
178 	cur_trans->state = TRANS_STATE_RUNNING;
179 	/*
180 	 * One for this trans handle, one so it will live on until we
181 	 * commit the transaction.
182 	 */
183 	atomic_set(&cur_trans->use_count, 2);
184 	cur_trans->start_time = get_seconds();
185 
186 	cur_trans->delayed_refs.root = RB_ROOT;
187 	cur_trans->delayed_refs.num_entries = 0;
188 	cur_trans->delayed_refs.num_heads_ready = 0;
189 	cur_trans->delayed_refs.num_heads = 0;
190 	cur_trans->delayed_refs.flushing = 0;
191 	cur_trans->delayed_refs.run_delayed_start = 0;
192 
193 	/*
194 	 * although the tree mod log is per file system and not per transaction,
195 	 * the log must never go across transaction boundaries.
196 	 */
197 	smp_mb();
198 	if (!list_empty(&fs_info->tree_mod_seq_list))
199 		WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
200 			"creating a fresh transaction\n");
201 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
202 		WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
203 			"creating a fresh transaction\n");
204 	atomic64_set(&fs_info->tree_mod_seq, 0);
205 
206 	spin_lock_init(&cur_trans->delayed_refs.lock);
207 	atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
208 	atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
209 	init_waitqueue_head(&cur_trans->delayed_refs.wait);
210 
211 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
212 	INIT_LIST_HEAD(&cur_trans->ordered_operations);
213 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
214 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
215 	extent_io_tree_init(&cur_trans->dirty_pages,
216 			     fs_info->btree_inode->i_mapping);
217 	fs_info->generation++;
218 	cur_trans->transid = fs_info->generation;
219 	fs_info->running_transaction = cur_trans;
220 	cur_trans->aborted = 0;
221 	spin_unlock(&fs_info->trans_lock);
222 
223 	return 0;
224 }
225 
226 /*
227  * this does all the record keeping required to make sure that a reference
228  * counted root is properly recorded in a given transaction.  This is required
229  * to make sure the old root from before we joined the transaction is deleted
230  * when the transaction commits
231  */
232 static int record_root_in_trans(struct btrfs_trans_handle *trans,
233 			       struct btrfs_root *root)
234 {
235 	if (root->ref_cows && root->last_trans < trans->transid) {
236 		WARN_ON(root == root->fs_info->extent_root);
237 		WARN_ON(root->commit_root != root->node);
238 
239 		/*
240 		 * see below for in_trans_setup usage rules
241 		 * we have the reloc mutex held now, so there
242 		 * is only one writer in this function
243 		 */
244 		root->in_trans_setup = 1;
245 
246 		/* make sure readers find in_trans_setup before
247 		 * they find our root->last_trans update
248 		 */
249 		smp_wmb();
250 
251 		spin_lock(&root->fs_info->fs_roots_radix_lock);
252 		if (root->last_trans == trans->transid) {
253 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
254 			return 0;
255 		}
256 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
257 			   (unsigned long)root->root_key.objectid,
258 			   BTRFS_ROOT_TRANS_TAG);
259 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
260 		root->last_trans = trans->transid;
261 
262 		/* this is pretty tricky.  We don't want to
263 		 * take the relocation lock in btrfs_record_root_in_trans
264 		 * unless we're really doing the first setup for this root in
265 		 * this transaction.
266 		 *
267 		 * Normally we'd use root->last_trans as a flag to decide
268 		 * if we want to take the expensive mutex.
269 		 *
270 		 * But, we have to set root->last_trans before we
271 		 * init the relocation root, otherwise, we trip over warnings
272 		 * in ctree.c.  The solution used here is to flag ourselves
273 		 * with root->in_trans_setup.  When this is 1, we're still
274 		 * fixing up the reloc trees and everyone must wait.
275 		 *
276 		 * When this is zero, they can trust root->last_trans and fly
277 		 * through btrfs_record_root_in_trans without having to take the
278 		 * lock.  smp_wmb() makes sure that all the writes above are
279 		 * done before we pop in the zero below
280 		 */
281 		btrfs_init_reloc_root(trans, root);
282 		smp_wmb();
283 		root->in_trans_setup = 0;
284 	}
285 	return 0;
286 }
287 
288 
289 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
290 			       struct btrfs_root *root)
291 {
292 	if (!root->ref_cows)
293 		return 0;
294 
295 	/*
296 	 * see record_root_in_trans for comments about in_trans_setup usage
297 	 * and barriers
298 	 */
299 	smp_rmb();
300 	if (root->last_trans == trans->transid &&
301 	    !root->in_trans_setup)
302 		return 0;
303 
304 	mutex_lock(&root->fs_info->reloc_mutex);
305 	record_root_in_trans(trans, root);
306 	mutex_unlock(&root->fs_info->reloc_mutex);
307 
308 	return 0;
309 }
310 
311 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
312 {
313 	return (trans->state >= TRANS_STATE_BLOCKED &&
314 		trans->state < TRANS_STATE_UNBLOCKED &&
315 		!trans->aborted);
316 }
317 
318 /* wait for commit against the current transaction to become unblocked
319  * when this is done, it is safe to start a new transaction, but the current
320  * transaction might not be fully on disk.
321  */
322 static void wait_current_trans(struct btrfs_root *root)
323 {
324 	struct btrfs_transaction *cur_trans;
325 
326 	spin_lock(&root->fs_info->trans_lock);
327 	cur_trans = root->fs_info->running_transaction;
328 	if (cur_trans && is_transaction_blocked(cur_trans)) {
329 		atomic_inc(&cur_trans->use_count);
330 		spin_unlock(&root->fs_info->trans_lock);
331 
332 		wait_event(root->fs_info->transaction_wait,
333 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
334 			   cur_trans->aborted);
335 		btrfs_put_transaction(cur_trans);
336 	} else {
337 		spin_unlock(&root->fs_info->trans_lock);
338 	}
339 }
340 
341 static int may_wait_transaction(struct btrfs_root *root, int type)
342 {
343 	if (root->fs_info->log_root_recovering)
344 		return 0;
345 
346 	if (type == TRANS_USERSPACE)
347 		return 1;
348 
349 	if (type == TRANS_START &&
350 	    !atomic_read(&root->fs_info->open_ioctl_trans))
351 		return 1;
352 
353 	return 0;
354 }
355 
356 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
357 {
358 	if (!root->fs_info->reloc_ctl ||
359 	    !root->ref_cows ||
360 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
361 	    root->reloc_root)
362 		return false;
363 
364 	return true;
365 }
366 
367 static struct btrfs_trans_handle *
368 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
369 		  enum btrfs_reserve_flush_enum flush)
370 {
371 	struct btrfs_trans_handle *h;
372 	struct btrfs_transaction *cur_trans;
373 	u64 num_bytes = 0;
374 	u64 qgroup_reserved = 0;
375 	bool reloc_reserved = false;
376 	int ret;
377 
378 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
379 		return ERR_PTR(-EROFS);
380 
381 	if (current->journal_info) {
382 		WARN_ON(type & TRANS_EXTWRITERS);
383 		h = current->journal_info;
384 		h->use_count++;
385 		WARN_ON(h->use_count > 2);
386 		h->orig_rsv = h->block_rsv;
387 		h->block_rsv = NULL;
388 		goto got_it;
389 	}
390 
391 	/*
392 	 * Do the reservation before we join the transaction so we can do all
393 	 * the appropriate flushing if need be.
394 	 */
395 	if (num_items > 0 && root != root->fs_info->chunk_root) {
396 		if (root->fs_info->quota_enabled &&
397 		    is_fstree(root->root_key.objectid)) {
398 			qgroup_reserved = num_items * root->leafsize;
399 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
400 			if (ret)
401 				return ERR_PTR(ret);
402 		}
403 
404 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
405 		/*
406 		 * Do the reservation for the relocation root creation
407 		 */
408 		if (unlikely(need_reserve_reloc_root(root))) {
409 			num_bytes += root->nodesize;
410 			reloc_reserved = true;
411 		}
412 
413 		ret = btrfs_block_rsv_add(root,
414 					  &root->fs_info->trans_block_rsv,
415 					  num_bytes, flush);
416 		if (ret)
417 			goto reserve_fail;
418 	}
419 again:
420 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
421 	if (!h) {
422 		ret = -ENOMEM;
423 		goto alloc_fail;
424 	}
425 
426 	/*
427 	 * If we are JOIN_NOLOCK we're already committing a transaction and
428 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
429 	 * because we're already holding a ref.  We need this because we could
430 	 * have raced in and did an fsync() on a file which can kick a commit
431 	 * and then we deadlock with somebody doing a freeze.
432 	 *
433 	 * If we are ATTACH, it means we just want to catch the current
434 	 * transaction and commit it, so we needn't do sb_start_intwrite().
435 	 */
436 	if (type & __TRANS_FREEZABLE)
437 		sb_start_intwrite(root->fs_info->sb);
438 
439 	if (may_wait_transaction(root, type))
440 		wait_current_trans(root);
441 
442 	do {
443 		ret = join_transaction(root, type);
444 		if (ret == -EBUSY) {
445 			wait_current_trans(root);
446 			if (unlikely(type == TRANS_ATTACH))
447 				ret = -ENOENT;
448 		}
449 	} while (ret == -EBUSY);
450 
451 	if (ret < 0) {
452 		/* We must get the transaction if we are JOIN_NOLOCK. */
453 		BUG_ON(type == TRANS_JOIN_NOLOCK);
454 		goto join_fail;
455 	}
456 
457 	cur_trans = root->fs_info->running_transaction;
458 
459 	h->transid = cur_trans->transid;
460 	h->transaction = cur_trans;
461 	h->blocks_used = 0;
462 	h->bytes_reserved = 0;
463 	h->root = root;
464 	h->delayed_ref_updates = 0;
465 	h->use_count = 1;
466 	h->adding_csums = 0;
467 	h->block_rsv = NULL;
468 	h->orig_rsv = NULL;
469 	h->aborted = 0;
470 	h->qgroup_reserved = 0;
471 	h->delayed_ref_elem.seq = 0;
472 	h->type = type;
473 	h->allocating_chunk = false;
474 	h->reloc_reserved = false;
475 	INIT_LIST_HEAD(&h->qgroup_ref_list);
476 	INIT_LIST_HEAD(&h->new_bgs);
477 
478 	smp_mb();
479 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
480 	    may_wait_transaction(root, type)) {
481 		btrfs_commit_transaction(h, root);
482 		goto again;
483 	}
484 
485 	if (num_bytes) {
486 		trace_btrfs_space_reservation(root->fs_info, "transaction",
487 					      h->transid, num_bytes, 1);
488 		h->block_rsv = &root->fs_info->trans_block_rsv;
489 		h->bytes_reserved = num_bytes;
490 		h->reloc_reserved = reloc_reserved;
491 	}
492 	h->qgroup_reserved = qgroup_reserved;
493 
494 got_it:
495 	btrfs_record_root_in_trans(h, root);
496 
497 	if (!current->journal_info && type != TRANS_USERSPACE)
498 		current->journal_info = h;
499 	return h;
500 
501 join_fail:
502 	if (type & __TRANS_FREEZABLE)
503 		sb_end_intwrite(root->fs_info->sb);
504 	kmem_cache_free(btrfs_trans_handle_cachep, h);
505 alloc_fail:
506 	if (num_bytes)
507 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
508 					num_bytes);
509 reserve_fail:
510 	if (qgroup_reserved)
511 		btrfs_qgroup_free(root, qgroup_reserved);
512 	return ERR_PTR(ret);
513 }
514 
515 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
516 						   int num_items)
517 {
518 	return start_transaction(root, num_items, TRANS_START,
519 				 BTRFS_RESERVE_FLUSH_ALL);
520 }
521 
522 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
523 					struct btrfs_root *root, int num_items)
524 {
525 	return start_transaction(root, num_items, TRANS_START,
526 				 BTRFS_RESERVE_FLUSH_LIMIT);
527 }
528 
529 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
530 {
531 	return start_transaction(root, 0, TRANS_JOIN, 0);
532 }
533 
534 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
535 {
536 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
537 }
538 
539 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
540 {
541 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
542 }
543 
544 /*
545  * btrfs_attach_transaction() - catch the running transaction
546  *
547  * It is used when we want to commit the current the transaction, but
548  * don't want to start a new one.
549  *
550  * Note: If this function return -ENOENT, it just means there is no
551  * running transaction. But it is possible that the inactive transaction
552  * is still in the memory, not fully on disk. If you hope there is no
553  * inactive transaction in the fs when -ENOENT is returned, you should
554  * invoke
555  *     btrfs_attach_transaction_barrier()
556  */
557 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
558 {
559 	return start_transaction(root, 0, TRANS_ATTACH, 0);
560 }
561 
562 /*
563  * btrfs_attach_transaction_barrier() - catch the running transaction
564  *
565  * It is similar to the above function, the differentia is this one
566  * will wait for all the inactive transactions until they fully
567  * complete.
568  */
569 struct btrfs_trans_handle *
570 btrfs_attach_transaction_barrier(struct btrfs_root *root)
571 {
572 	struct btrfs_trans_handle *trans;
573 
574 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
575 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
576 		btrfs_wait_for_commit(root, 0);
577 
578 	return trans;
579 }
580 
581 /* wait for a transaction commit to be fully complete */
582 static noinline void wait_for_commit(struct btrfs_root *root,
583 				    struct btrfs_transaction *commit)
584 {
585 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
586 }
587 
588 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
589 {
590 	struct btrfs_transaction *cur_trans = NULL, *t;
591 	int ret = 0;
592 
593 	if (transid) {
594 		if (transid <= root->fs_info->last_trans_committed)
595 			goto out;
596 
597 		ret = -EINVAL;
598 		/* find specified transaction */
599 		spin_lock(&root->fs_info->trans_lock);
600 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
601 			if (t->transid == transid) {
602 				cur_trans = t;
603 				atomic_inc(&cur_trans->use_count);
604 				ret = 0;
605 				break;
606 			}
607 			if (t->transid > transid) {
608 				ret = 0;
609 				break;
610 			}
611 		}
612 		spin_unlock(&root->fs_info->trans_lock);
613 		/* The specified transaction doesn't exist */
614 		if (!cur_trans)
615 			goto out;
616 	} else {
617 		/* find newest transaction that is committing | committed */
618 		spin_lock(&root->fs_info->trans_lock);
619 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
620 					    list) {
621 			if (t->state >= TRANS_STATE_COMMIT_START) {
622 				if (t->state == TRANS_STATE_COMPLETED)
623 					break;
624 				cur_trans = t;
625 				atomic_inc(&cur_trans->use_count);
626 				break;
627 			}
628 		}
629 		spin_unlock(&root->fs_info->trans_lock);
630 		if (!cur_trans)
631 			goto out;  /* nothing committing|committed */
632 	}
633 
634 	wait_for_commit(root, cur_trans);
635 	btrfs_put_transaction(cur_trans);
636 out:
637 	return ret;
638 }
639 
640 void btrfs_throttle(struct btrfs_root *root)
641 {
642 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
643 		wait_current_trans(root);
644 }
645 
646 static int should_end_transaction(struct btrfs_trans_handle *trans,
647 				  struct btrfs_root *root)
648 {
649 	if (root->fs_info->global_block_rsv.space_info->full &&
650 	    btrfs_should_throttle_delayed_refs(trans, root))
651 		return 1;
652 
653 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
654 }
655 
656 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
657 				 struct btrfs_root *root)
658 {
659 	struct btrfs_transaction *cur_trans = trans->transaction;
660 	int updates;
661 	int err;
662 
663 	smp_mb();
664 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
665 	    cur_trans->delayed_refs.flushing)
666 		return 1;
667 
668 	updates = trans->delayed_ref_updates;
669 	trans->delayed_ref_updates = 0;
670 	if (updates) {
671 		err = btrfs_run_delayed_refs(trans, root, updates);
672 		if (err) /* Error code will also eval true */
673 			return err;
674 	}
675 
676 	return should_end_transaction(trans, root);
677 }
678 
679 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
680 			  struct btrfs_root *root, int throttle)
681 {
682 	struct btrfs_transaction *cur_trans = trans->transaction;
683 	struct btrfs_fs_info *info = root->fs_info;
684 	unsigned long cur = trans->delayed_ref_updates;
685 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
686 	int err = 0;
687 
688 	if (--trans->use_count) {
689 		trans->block_rsv = trans->orig_rsv;
690 		return 0;
691 	}
692 
693 	/*
694 	 * do the qgroup accounting as early as possible
695 	 */
696 	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
697 
698 	btrfs_trans_release_metadata(trans, root);
699 	trans->block_rsv = NULL;
700 
701 	if (trans->qgroup_reserved) {
702 		/*
703 		 * the same root has to be passed here between start_transaction
704 		 * and end_transaction. Subvolume quota depends on this.
705 		 */
706 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
707 		trans->qgroup_reserved = 0;
708 	}
709 
710 	if (!list_empty(&trans->new_bgs))
711 		btrfs_create_pending_block_groups(trans, root);
712 
713 	trans->delayed_ref_updates = 0;
714 	if (btrfs_should_throttle_delayed_refs(trans, root)) {
715 		cur = max_t(unsigned long, cur, 1);
716 		trans->delayed_ref_updates = 0;
717 		btrfs_run_delayed_refs(trans, root, cur);
718 	}
719 
720 	btrfs_trans_release_metadata(trans, root);
721 	trans->block_rsv = NULL;
722 
723 	if (!list_empty(&trans->new_bgs))
724 		btrfs_create_pending_block_groups(trans, root);
725 
726 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
727 	    should_end_transaction(trans, root) &&
728 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
729 		spin_lock(&info->trans_lock);
730 		if (cur_trans->state == TRANS_STATE_RUNNING)
731 			cur_trans->state = TRANS_STATE_BLOCKED;
732 		spin_unlock(&info->trans_lock);
733 	}
734 
735 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
736 		if (throttle) {
737 			/*
738 			 * We may race with somebody else here so end up having
739 			 * to call end_transaction on ourselves again, so inc
740 			 * our use_count.
741 			 */
742 			trans->use_count++;
743 			return btrfs_commit_transaction(trans, root);
744 		} else {
745 			wake_up_process(info->transaction_kthread);
746 		}
747 	}
748 
749 	if (trans->type & __TRANS_FREEZABLE)
750 		sb_end_intwrite(root->fs_info->sb);
751 
752 	WARN_ON(cur_trans != info->running_transaction);
753 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
754 	atomic_dec(&cur_trans->num_writers);
755 	extwriter_counter_dec(cur_trans, trans->type);
756 
757 	smp_mb();
758 	if (waitqueue_active(&cur_trans->writer_wait))
759 		wake_up(&cur_trans->writer_wait);
760 	btrfs_put_transaction(cur_trans);
761 
762 	if (current->journal_info == trans)
763 		current->journal_info = NULL;
764 
765 	if (throttle)
766 		btrfs_run_delayed_iputs(root);
767 
768 	if (trans->aborted ||
769 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
770 		wake_up_process(info->transaction_kthread);
771 		err = -EIO;
772 	}
773 	assert_qgroups_uptodate(trans);
774 
775 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
776 	return err;
777 }
778 
779 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
780 			  struct btrfs_root *root)
781 {
782 	return __btrfs_end_transaction(trans, root, 0);
783 }
784 
785 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
786 				   struct btrfs_root *root)
787 {
788 	return __btrfs_end_transaction(trans, root, 1);
789 }
790 
791 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
792 				struct btrfs_root *root)
793 {
794 	return __btrfs_end_transaction(trans, root, 1);
795 }
796 
797 /*
798  * when btree blocks are allocated, they have some corresponding bits set for
799  * them in one of two extent_io trees.  This is used to make sure all of
800  * those extents are sent to disk but does not wait on them
801  */
802 int btrfs_write_marked_extents(struct btrfs_root *root,
803 			       struct extent_io_tree *dirty_pages, int mark)
804 {
805 	int err = 0;
806 	int werr = 0;
807 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
808 	struct extent_state *cached_state = NULL;
809 	u64 start = 0;
810 	u64 end;
811 
812 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
813 				      mark, &cached_state)) {
814 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
815 				   mark, &cached_state, GFP_NOFS);
816 		cached_state = NULL;
817 		err = filemap_fdatawrite_range(mapping, start, end);
818 		if (err)
819 			werr = err;
820 		cond_resched();
821 		start = end + 1;
822 	}
823 	if (err)
824 		werr = err;
825 	return werr;
826 }
827 
828 /*
829  * when btree blocks are allocated, they have some corresponding bits set for
830  * them in one of two extent_io trees.  This is used to make sure all of
831  * those extents are on disk for transaction or log commit.  We wait
832  * on all the pages and clear them from the dirty pages state tree
833  */
834 int btrfs_wait_marked_extents(struct btrfs_root *root,
835 			      struct extent_io_tree *dirty_pages, int mark)
836 {
837 	int err = 0;
838 	int werr = 0;
839 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
840 	struct extent_state *cached_state = NULL;
841 	u64 start = 0;
842 	u64 end;
843 
844 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
845 				      EXTENT_NEED_WAIT, &cached_state)) {
846 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
847 				 0, 0, &cached_state, GFP_NOFS);
848 		err = filemap_fdatawait_range(mapping, start, end);
849 		if (err)
850 			werr = err;
851 		cond_resched();
852 		start = end + 1;
853 	}
854 	if (err)
855 		werr = err;
856 	return werr;
857 }
858 
859 /*
860  * when btree blocks are allocated, they have some corresponding bits set for
861  * them in one of two extent_io trees.  This is used to make sure all of
862  * those extents are on disk for transaction or log commit
863  */
864 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
865 				struct extent_io_tree *dirty_pages, int mark)
866 {
867 	int ret;
868 	int ret2;
869 	struct blk_plug plug;
870 
871 	blk_start_plug(&plug);
872 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
873 	blk_finish_plug(&plug);
874 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
875 
876 	if (ret)
877 		return ret;
878 	if (ret2)
879 		return ret2;
880 	return 0;
881 }
882 
883 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
884 				     struct btrfs_root *root)
885 {
886 	if (!trans || !trans->transaction) {
887 		struct inode *btree_inode;
888 		btree_inode = root->fs_info->btree_inode;
889 		return filemap_write_and_wait(btree_inode->i_mapping);
890 	}
891 	return btrfs_write_and_wait_marked_extents(root,
892 					   &trans->transaction->dirty_pages,
893 					   EXTENT_DIRTY);
894 }
895 
896 /*
897  * this is used to update the root pointer in the tree of tree roots.
898  *
899  * But, in the case of the extent allocation tree, updating the root
900  * pointer may allocate blocks which may change the root of the extent
901  * allocation tree.
902  *
903  * So, this loops and repeats and makes sure the cowonly root didn't
904  * change while the root pointer was being updated in the metadata.
905  */
906 static int update_cowonly_root(struct btrfs_trans_handle *trans,
907 			       struct btrfs_root *root)
908 {
909 	int ret;
910 	u64 old_root_bytenr;
911 	u64 old_root_used;
912 	struct btrfs_root *tree_root = root->fs_info->tree_root;
913 
914 	old_root_used = btrfs_root_used(&root->root_item);
915 	btrfs_write_dirty_block_groups(trans, root);
916 
917 	while (1) {
918 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
919 		if (old_root_bytenr == root->node->start &&
920 		    old_root_used == btrfs_root_used(&root->root_item))
921 			break;
922 
923 		btrfs_set_root_node(&root->root_item, root->node);
924 		ret = btrfs_update_root(trans, tree_root,
925 					&root->root_key,
926 					&root->root_item);
927 		if (ret)
928 			return ret;
929 
930 		old_root_used = btrfs_root_used(&root->root_item);
931 		ret = btrfs_write_dirty_block_groups(trans, root);
932 		if (ret)
933 			return ret;
934 	}
935 
936 	if (root != root->fs_info->extent_root)
937 		switch_commit_root(root);
938 
939 	return 0;
940 }
941 
942 /*
943  * update all the cowonly tree roots on disk
944  *
945  * The error handling in this function may not be obvious. Any of the
946  * failures will cause the file system to go offline. We still need
947  * to clean up the delayed refs.
948  */
949 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
950 					 struct btrfs_root *root)
951 {
952 	struct btrfs_fs_info *fs_info = root->fs_info;
953 	struct list_head *next;
954 	struct extent_buffer *eb;
955 	int ret;
956 
957 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
958 	if (ret)
959 		return ret;
960 
961 	eb = btrfs_lock_root_node(fs_info->tree_root);
962 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
963 			      0, &eb);
964 	btrfs_tree_unlock(eb);
965 	free_extent_buffer(eb);
966 
967 	if (ret)
968 		return ret;
969 
970 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
971 	if (ret)
972 		return ret;
973 
974 	ret = btrfs_run_dev_stats(trans, root->fs_info);
975 	if (ret)
976 		return ret;
977 	ret = btrfs_run_dev_replace(trans, root->fs_info);
978 	if (ret)
979 		return ret;
980 	ret = btrfs_run_qgroups(trans, root->fs_info);
981 	if (ret)
982 		return ret;
983 
984 	/* run_qgroups might have added some more refs */
985 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
986 	if (ret)
987 		return ret;
988 
989 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
990 		next = fs_info->dirty_cowonly_roots.next;
991 		list_del_init(next);
992 		root = list_entry(next, struct btrfs_root, dirty_list);
993 
994 		ret = update_cowonly_root(trans, root);
995 		if (ret)
996 			return ret;
997 	}
998 
999 	down_write(&fs_info->extent_commit_sem);
1000 	switch_commit_root(fs_info->extent_root);
1001 	up_write(&fs_info->extent_commit_sem);
1002 
1003 	btrfs_after_dev_replace_commit(fs_info);
1004 
1005 	return 0;
1006 }
1007 
1008 /*
1009  * dead roots are old snapshots that need to be deleted.  This allocates
1010  * a dirty root struct and adds it into the list of dead roots that need to
1011  * be deleted
1012  */
1013 void btrfs_add_dead_root(struct btrfs_root *root)
1014 {
1015 	spin_lock(&root->fs_info->trans_lock);
1016 	if (list_empty(&root->root_list))
1017 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1018 	spin_unlock(&root->fs_info->trans_lock);
1019 }
1020 
1021 /*
1022  * update all the cowonly tree roots on disk
1023  */
1024 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1025 				    struct btrfs_root *root)
1026 {
1027 	struct btrfs_root *gang[8];
1028 	struct btrfs_fs_info *fs_info = root->fs_info;
1029 	int i;
1030 	int ret;
1031 	int err = 0;
1032 
1033 	spin_lock(&fs_info->fs_roots_radix_lock);
1034 	while (1) {
1035 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1036 						 (void **)gang, 0,
1037 						 ARRAY_SIZE(gang),
1038 						 BTRFS_ROOT_TRANS_TAG);
1039 		if (ret == 0)
1040 			break;
1041 		for (i = 0; i < ret; i++) {
1042 			root = gang[i];
1043 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1044 					(unsigned long)root->root_key.objectid,
1045 					BTRFS_ROOT_TRANS_TAG);
1046 			spin_unlock(&fs_info->fs_roots_radix_lock);
1047 
1048 			btrfs_free_log(trans, root);
1049 			btrfs_update_reloc_root(trans, root);
1050 			btrfs_orphan_commit_root(trans, root);
1051 
1052 			btrfs_save_ino_cache(root, trans);
1053 
1054 			/* see comments in should_cow_block() */
1055 			root->force_cow = 0;
1056 			smp_wmb();
1057 
1058 			if (root->commit_root != root->node) {
1059 				mutex_lock(&root->fs_commit_mutex);
1060 				switch_commit_root(root);
1061 				btrfs_unpin_free_ino(root);
1062 				mutex_unlock(&root->fs_commit_mutex);
1063 
1064 				btrfs_set_root_node(&root->root_item,
1065 						    root->node);
1066 			}
1067 
1068 			err = btrfs_update_root(trans, fs_info->tree_root,
1069 						&root->root_key,
1070 						&root->root_item);
1071 			spin_lock(&fs_info->fs_roots_radix_lock);
1072 			if (err)
1073 				break;
1074 		}
1075 	}
1076 	spin_unlock(&fs_info->fs_roots_radix_lock);
1077 	return err;
1078 }
1079 
1080 /*
1081  * defrag a given btree.
1082  * Every leaf in the btree is read and defragged.
1083  */
1084 int btrfs_defrag_root(struct btrfs_root *root)
1085 {
1086 	struct btrfs_fs_info *info = root->fs_info;
1087 	struct btrfs_trans_handle *trans;
1088 	int ret;
1089 
1090 	if (xchg(&root->defrag_running, 1))
1091 		return 0;
1092 
1093 	while (1) {
1094 		trans = btrfs_start_transaction(root, 0);
1095 		if (IS_ERR(trans))
1096 			return PTR_ERR(trans);
1097 
1098 		ret = btrfs_defrag_leaves(trans, root);
1099 
1100 		btrfs_end_transaction(trans, root);
1101 		btrfs_btree_balance_dirty(info->tree_root);
1102 		cond_resched();
1103 
1104 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1105 			break;
1106 
1107 		if (btrfs_defrag_cancelled(root->fs_info)) {
1108 			printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1109 			ret = -EAGAIN;
1110 			break;
1111 		}
1112 	}
1113 	root->defrag_running = 0;
1114 	return ret;
1115 }
1116 
1117 /*
1118  * new snapshots need to be created at a very specific time in the
1119  * transaction commit.  This does the actual creation.
1120  *
1121  * Note:
1122  * If the error which may affect the commitment of the current transaction
1123  * happens, we should return the error number. If the error which just affect
1124  * the creation of the pending snapshots, just return 0.
1125  */
1126 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1127 				   struct btrfs_fs_info *fs_info,
1128 				   struct btrfs_pending_snapshot *pending)
1129 {
1130 	struct btrfs_key key;
1131 	struct btrfs_root_item *new_root_item;
1132 	struct btrfs_root *tree_root = fs_info->tree_root;
1133 	struct btrfs_root *root = pending->root;
1134 	struct btrfs_root *parent_root;
1135 	struct btrfs_block_rsv *rsv;
1136 	struct inode *parent_inode;
1137 	struct btrfs_path *path;
1138 	struct btrfs_dir_item *dir_item;
1139 	struct dentry *dentry;
1140 	struct extent_buffer *tmp;
1141 	struct extent_buffer *old;
1142 	struct timespec cur_time = CURRENT_TIME;
1143 	int ret = 0;
1144 	u64 to_reserve = 0;
1145 	u64 index = 0;
1146 	u64 objectid;
1147 	u64 root_flags;
1148 	uuid_le new_uuid;
1149 
1150 	path = btrfs_alloc_path();
1151 	if (!path) {
1152 		pending->error = -ENOMEM;
1153 		return 0;
1154 	}
1155 
1156 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1157 	if (!new_root_item) {
1158 		pending->error = -ENOMEM;
1159 		goto root_item_alloc_fail;
1160 	}
1161 
1162 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1163 	if (pending->error)
1164 		goto no_free_objectid;
1165 
1166 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1167 
1168 	if (to_reserve > 0) {
1169 		pending->error = btrfs_block_rsv_add(root,
1170 						     &pending->block_rsv,
1171 						     to_reserve,
1172 						     BTRFS_RESERVE_NO_FLUSH);
1173 		if (pending->error)
1174 			goto no_free_objectid;
1175 	}
1176 
1177 	pending->error = btrfs_qgroup_inherit(trans, fs_info,
1178 					      root->root_key.objectid,
1179 					      objectid, pending->inherit);
1180 	if (pending->error)
1181 		goto no_free_objectid;
1182 
1183 	key.objectid = objectid;
1184 	key.offset = (u64)-1;
1185 	key.type = BTRFS_ROOT_ITEM_KEY;
1186 
1187 	rsv = trans->block_rsv;
1188 	trans->block_rsv = &pending->block_rsv;
1189 	trans->bytes_reserved = trans->block_rsv->reserved;
1190 
1191 	dentry = pending->dentry;
1192 	parent_inode = pending->dir;
1193 	parent_root = BTRFS_I(parent_inode)->root;
1194 	record_root_in_trans(trans, parent_root);
1195 
1196 	/*
1197 	 * insert the directory item
1198 	 */
1199 	ret = btrfs_set_inode_index(parent_inode, &index);
1200 	BUG_ON(ret); /* -ENOMEM */
1201 
1202 	/* check if there is a file/dir which has the same name. */
1203 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1204 					 btrfs_ino(parent_inode),
1205 					 dentry->d_name.name,
1206 					 dentry->d_name.len, 0);
1207 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1208 		pending->error = -EEXIST;
1209 		goto dir_item_existed;
1210 	} else if (IS_ERR(dir_item)) {
1211 		ret = PTR_ERR(dir_item);
1212 		btrfs_abort_transaction(trans, root, ret);
1213 		goto fail;
1214 	}
1215 	btrfs_release_path(path);
1216 
1217 	/*
1218 	 * pull in the delayed directory update
1219 	 * and the delayed inode item
1220 	 * otherwise we corrupt the FS during
1221 	 * snapshot
1222 	 */
1223 	ret = btrfs_run_delayed_items(trans, root);
1224 	if (ret) {	/* Transaction aborted */
1225 		btrfs_abort_transaction(trans, root, ret);
1226 		goto fail;
1227 	}
1228 
1229 	record_root_in_trans(trans, root);
1230 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1231 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1232 	btrfs_check_and_init_root_item(new_root_item);
1233 
1234 	root_flags = btrfs_root_flags(new_root_item);
1235 	if (pending->readonly)
1236 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1237 	else
1238 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1239 	btrfs_set_root_flags(new_root_item, root_flags);
1240 
1241 	btrfs_set_root_generation_v2(new_root_item,
1242 			trans->transid);
1243 	uuid_le_gen(&new_uuid);
1244 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1245 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1246 			BTRFS_UUID_SIZE);
1247 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1248 		memset(new_root_item->received_uuid, 0,
1249 		       sizeof(new_root_item->received_uuid));
1250 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1251 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1252 		btrfs_set_root_stransid(new_root_item, 0);
1253 		btrfs_set_root_rtransid(new_root_item, 0);
1254 	}
1255 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1256 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1257 	btrfs_set_root_otransid(new_root_item, trans->transid);
1258 
1259 	old = btrfs_lock_root_node(root);
1260 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1261 	if (ret) {
1262 		btrfs_tree_unlock(old);
1263 		free_extent_buffer(old);
1264 		btrfs_abort_transaction(trans, root, ret);
1265 		goto fail;
1266 	}
1267 
1268 	btrfs_set_lock_blocking(old);
1269 
1270 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1271 	/* clean up in any case */
1272 	btrfs_tree_unlock(old);
1273 	free_extent_buffer(old);
1274 	if (ret) {
1275 		btrfs_abort_transaction(trans, root, ret);
1276 		goto fail;
1277 	}
1278 
1279 	/* see comments in should_cow_block() */
1280 	root->force_cow = 1;
1281 	smp_wmb();
1282 
1283 	btrfs_set_root_node(new_root_item, tmp);
1284 	/* record when the snapshot was created in key.offset */
1285 	key.offset = trans->transid;
1286 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1287 	btrfs_tree_unlock(tmp);
1288 	free_extent_buffer(tmp);
1289 	if (ret) {
1290 		btrfs_abort_transaction(trans, root, ret);
1291 		goto fail;
1292 	}
1293 
1294 	/*
1295 	 * insert root back/forward references
1296 	 */
1297 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1298 				 parent_root->root_key.objectid,
1299 				 btrfs_ino(parent_inode), index,
1300 				 dentry->d_name.name, dentry->d_name.len);
1301 	if (ret) {
1302 		btrfs_abort_transaction(trans, root, ret);
1303 		goto fail;
1304 	}
1305 
1306 	key.offset = (u64)-1;
1307 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1308 	if (IS_ERR(pending->snap)) {
1309 		ret = PTR_ERR(pending->snap);
1310 		btrfs_abort_transaction(trans, root, ret);
1311 		goto fail;
1312 	}
1313 
1314 	ret = btrfs_reloc_post_snapshot(trans, pending);
1315 	if (ret) {
1316 		btrfs_abort_transaction(trans, root, ret);
1317 		goto fail;
1318 	}
1319 
1320 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1321 	if (ret) {
1322 		btrfs_abort_transaction(trans, root, ret);
1323 		goto fail;
1324 	}
1325 
1326 	ret = btrfs_insert_dir_item(trans, parent_root,
1327 				    dentry->d_name.name, dentry->d_name.len,
1328 				    parent_inode, &key,
1329 				    BTRFS_FT_DIR, index);
1330 	/* We have check then name at the beginning, so it is impossible. */
1331 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1332 	if (ret) {
1333 		btrfs_abort_transaction(trans, root, ret);
1334 		goto fail;
1335 	}
1336 
1337 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1338 					 dentry->d_name.len * 2);
1339 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1340 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1341 	if (ret) {
1342 		btrfs_abort_transaction(trans, root, ret);
1343 		goto fail;
1344 	}
1345 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1346 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1347 	if (ret) {
1348 		btrfs_abort_transaction(trans, root, ret);
1349 		goto fail;
1350 	}
1351 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1352 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1353 					  new_root_item->received_uuid,
1354 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1355 					  objectid);
1356 		if (ret && ret != -EEXIST) {
1357 			btrfs_abort_transaction(trans, root, ret);
1358 			goto fail;
1359 		}
1360 	}
1361 fail:
1362 	pending->error = ret;
1363 dir_item_existed:
1364 	trans->block_rsv = rsv;
1365 	trans->bytes_reserved = 0;
1366 no_free_objectid:
1367 	kfree(new_root_item);
1368 root_item_alloc_fail:
1369 	btrfs_free_path(path);
1370 	return ret;
1371 }
1372 
1373 /*
1374  * create all the snapshots we've scheduled for creation
1375  */
1376 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1377 					     struct btrfs_fs_info *fs_info)
1378 {
1379 	struct btrfs_pending_snapshot *pending, *next;
1380 	struct list_head *head = &trans->transaction->pending_snapshots;
1381 	int ret = 0;
1382 
1383 	list_for_each_entry_safe(pending, next, head, list) {
1384 		list_del(&pending->list);
1385 		ret = create_pending_snapshot(trans, fs_info, pending);
1386 		if (ret)
1387 			break;
1388 	}
1389 	return ret;
1390 }
1391 
1392 static void update_super_roots(struct btrfs_root *root)
1393 {
1394 	struct btrfs_root_item *root_item;
1395 	struct btrfs_super_block *super;
1396 
1397 	super = root->fs_info->super_copy;
1398 
1399 	root_item = &root->fs_info->chunk_root->root_item;
1400 	super->chunk_root = root_item->bytenr;
1401 	super->chunk_root_generation = root_item->generation;
1402 	super->chunk_root_level = root_item->level;
1403 
1404 	root_item = &root->fs_info->tree_root->root_item;
1405 	super->root = root_item->bytenr;
1406 	super->generation = root_item->generation;
1407 	super->root_level = root_item->level;
1408 	if (btrfs_test_opt(root, SPACE_CACHE))
1409 		super->cache_generation = root_item->generation;
1410 	if (root->fs_info->update_uuid_tree_gen)
1411 		super->uuid_tree_generation = root_item->generation;
1412 }
1413 
1414 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1415 {
1416 	struct btrfs_transaction *trans;
1417 	int ret = 0;
1418 
1419 	spin_lock(&info->trans_lock);
1420 	trans = info->running_transaction;
1421 	if (trans)
1422 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1423 	spin_unlock(&info->trans_lock);
1424 	return ret;
1425 }
1426 
1427 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1428 {
1429 	struct btrfs_transaction *trans;
1430 	int ret = 0;
1431 
1432 	spin_lock(&info->trans_lock);
1433 	trans = info->running_transaction;
1434 	if (trans)
1435 		ret = is_transaction_blocked(trans);
1436 	spin_unlock(&info->trans_lock);
1437 	return ret;
1438 }
1439 
1440 /*
1441  * wait for the current transaction commit to start and block subsequent
1442  * transaction joins
1443  */
1444 static void wait_current_trans_commit_start(struct btrfs_root *root,
1445 					    struct btrfs_transaction *trans)
1446 {
1447 	wait_event(root->fs_info->transaction_blocked_wait,
1448 		   trans->state >= TRANS_STATE_COMMIT_START ||
1449 		   trans->aborted);
1450 }
1451 
1452 /*
1453  * wait for the current transaction to start and then become unblocked.
1454  * caller holds ref.
1455  */
1456 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1457 					 struct btrfs_transaction *trans)
1458 {
1459 	wait_event(root->fs_info->transaction_wait,
1460 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1461 		   trans->aborted);
1462 }
1463 
1464 /*
1465  * commit transactions asynchronously. once btrfs_commit_transaction_async
1466  * returns, any subsequent transaction will not be allowed to join.
1467  */
1468 struct btrfs_async_commit {
1469 	struct btrfs_trans_handle *newtrans;
1470 	struct btrfs_root *root;
1471 	struct work_struct work;
1472 };
1473 
1474 static void do_async_commit(struct work_struct *work)
1475 {
1476 	struct btrfs_async_commit *ac =
1477 		container_of(work, struct btrfs_async_commit, work);
1478 
1479 	/*
1480 	 * We've got freeze protection passed with the transaction.
1481 	 * Tell lockdep about it.
1482 	 */
1483 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1484 		rwsem_acquire_read(
1485 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1486 		     0, 1, _THIS_IP_);
1487 
1488 	current->journal_info = ac->newtrans;
1489 
1490 	btrfs_commit_transaction(ac->newtrans, ac->root);
1491 	kfree(ac);
1492 }
1493 
1494 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1495 				   struct btrfs_root *root,
1496 				   int wait_for_unblock)
1497 {
1498 	struct btrfs_async_commit *ac;
1499 	struct btrfs_transaction *cur_trans;
1500 
1501 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1502 	if (!ac)
1503 		return -ENOMEM;
1504 
1505 	INIT_WORK(&ac->work, do_async_commit);
1506 	ac->root = root;
1507 	ac->newtrans = btrfs_join_transaction(root);
1508 	if (IS_ERR(ac->newtrans)) {
1509 		int err = PTR_ERR(ac->newtrans);
1510 		kfree(ac);
1511 		return err;
1512 	}
1513 
1514 	/* take transaction reference */
1515 	cur_trans = trans->transaction;
1516 	atomic_inc(&cur_trans->use_count);
1517 
1518 	btrfs_end_transaction(trans, root);
1519 
1520 	/*
1521 	 * Tell lockdep we've released the freeze rwsem, since the
1522 	 * async commit thread will be the one to unlock it.
1523 	 */
1524 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1525 		rwsem_release(
1526 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1527 			1, _THIS_IP_);
1528 
1529 	schedule_work(&ac->work);
1530 
1531 	/* wait for transaction to start and unblock */
1532 	if (wait_for_unblock)
1533 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1534 	else
1535 		wait_current_trans_commit_start(root, cur_trans);
1536 
1537 	if (current->journal_info == trans)
1538 		current->journal_info = NULL;
1539 
1540 	btrfs_put_transaction(cur_trans);
1541 	return 0;
1542 }
1543 
1544 
1545 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1546 				struct btrfs_root *root, int err)
1547 {
1548 	struct btrfs_transaction *cur_trans = trans->transaction;
1549 	DEFINE_WAIT(wait);
1550 
1551 	WARN_ON(trans->use_count > 1);
1552 
1553 	btrfs_abort_transaction(trans, root, err);
1554 
1555 	spin_lock(&root->fs_info->trans_lock);
1556 
1557 	/*
1558 	 * If the transaction is removed from the list, it means this
1559 	 * transaction has been committed successfully, so it is impossible
1560 	 * to call the cleanup function.
1561 	 */
1562 	BUG_ON(list_empty(&cur_trans->list));
1563 
1564 	list_del_init(&cur_trans->list);
1565 	if (cur_trans == root->fs_info->running_transaction) {
1566 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1567 		spin_unlock(&root->fs_info->trans_lock);
1568 		wait_event(cur_trans->writer_wait,
1569 			   atomic_read(&cur_trans->num_writers) == 1);
1570 
1571 		spin_lock(&root->fs_info->trans_lock);
1572 	}
1573 	spin_unlock(&root->fs_info->trans_lock);
1574 
1575 	btrfs_cleanup_one_transaction(trans->transaction, root);
1576 
1577 	spin_lock(&root->fs_info->trans_lock);
1578 	if (cur_trans == root->fs_info->running_transaction)
1579 		root->fs_info->running_transaction = NULL;
1580 	spin_unlock(&root->fs_info->trans_lock);
1581 
1582 	if (trans->type & __TRANS_FREEZABLE)
1583 		sb_end_intwrite(root->fs_info->sb);
1584 	btrfs_put_transaction(cur_trans);
1585 	btrfs_put_transaction(cur_trans);
1586 
1587 	trace_btrfs_transaction_commit(root);
1588 
1589 	btrfs_scrub_continue(root);
1590 
1591 	if (current->journal_info == trans)
1592 		current->journal_info = NULL;
1593 
1594 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1595 }
1596 
1597 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1598 					  struct btrfs_root *root)
1599 {
1600 	int ret;
1601 
1602 	ret = btrfs_run_delayed_items(trans, root);
1603 	/*
1604 	 * running the delayed items may have added new refs. account
1605 	 * them now so that they hinder processing of more delayed refs
1606 	 * as little as possible.
1607 	 */
1608 	if (ret) {
1609 		btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1610 		return ret;
1611 	}
1612 
1613 	ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1614 	if (ret)
1615 		return ret;
1616 
1617 	/*
1618 	 * rename don't use btrfs_join_transaction, so, once we
1619 	 * set the transaction to blocked above, we aren't going
1620 	 * to get any new ordered operations.  We can safely run
1621 	 * it here and no for sure that nothing new will be added
1622 	 * to the list
1623 	 */
1624 	ret = btrfs_run_ordered_operations(trans, root, 1);
1625 
1626 	return ret;
1627 }
1628 
1629 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1630 {
1631 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1632 		return btrfs_start_delalloc_roots(fs_info, 1);
1633 	return 0;
1634 }
1635 
1636 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1637 {
1638 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1639 		btrfs_wait_ordered_roots(fs_info, -1);
1640 }
1641 
1642 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1643 			     struct btrfs_root *root)
1644 {
1645 	struct btrfs_transaction *cur_trans = trans->transaction;
1646 	struct btrfs_transaction *prev_trans = NULL;
1647 	int ret;
1648 
1649 	ret = btrfs_run_ordered_operations(trans, root, 0);
1650 	if (ret) {
1651 		btrfs_abort_transaction(trans, root, ret);
1652 		btrfs_end_transaction(trans, root);
1653 		return ret;
1654 	}
1655 
1656 	/* Stop the commit early if ->aborted is set */
1657 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1658 		ret = cur_trans->aborted;
1659 		btrfs_end_transaction(trans, root);
1660 		return ret;
1661 	}
1662 
1663 	/* make a pass through all the delayed refs we have so far
1664 	 * any runnings procs may add more while we are here
1665 	 */
1666 	ret = btrfs_run_delayed_refs(trans, root, 0);
1667 	if (ret) {
1668 		btrfs_end_transaction(trans, root);
1669 		return ret;
1670 	}
1671 
1672 	btrfs_trans_release_metadata(trans, root);
1673 	trans->block_rsv = NULL;
1674 	if (trans->qgroup_reserved) {
1675 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1676 		trans->qgroup_reserved = 0;
1677 	}
1678 
1679 	cur_trans = trans->transaction;
1680 
1681 	/*
1682 	 * set the flushing flag so procs in this transaction have to
1683 	 * start sending their work down.
1684 	 */
1685 	cur_trans->delayed_refs.flushing = 1;
1686 	smp_wmb();
1687 
1688 	if (!list_empty(&trans->new_bgs))
1689 		btrfs_create_pending_block_groups(trans, root);
1690 
1691 	ret = btrfs_run_delayed_refs(trans, root, 0);
1692 	if (ret) {
1693 		btrfs_end_transaction(trans, root);
1694 		return ret;
1695 	}
1696 
1697 	spin_lock(&root->fs_info->trans_lock);
1698 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1699 		spin_unlock(&root->fs_info->trans_lock);
1700 		atomic_inc(&cur_trans->use_count);
1701 		ret = btrfs_end_transaction(trans, root);
1702 
1703 		wait_for_commit(root, cur_trans);
1704 
1705 		btrfs_put_transaction(cur_trans);
1706 
1707 		return ret;
1708 	}
1709 
1710 	cur_trans->state = TRANS_STATE_COMMIT_START;
1711 	wake_up(&root->fs_info->transaction_blocked_wait);
1712 
1713 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1714 		prev_trans = list_entry(cur_trans->list.prev,
1715 					struct btrfs_transaction, list);
1716 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1717 			atomic_inc(&prev_trans->use_count);
1718 			spin_unlock(&root->fs_info->trans_lock);
1719 
1720 			wait_for_commit(root, prev_trans);
1721 
1722 			btrfs_put_transaction(prev_trans);
1723 		} else {
1724 			spin_unlock(&root->fs_info->trans_lock);
1725 		}
1726 	} else {
1727 		spin_unlock(&root->fs_info->trans_lock);
1728 	}
1729 
1730 	extwriter_counter_dec(cur_trans, trans->type);
1731 
1732 	ret = btrfs_start_delalloc_flush(root->fs_info);
1733 	if (ret)
1734 		goto cleanup_transaction;
1735 
1736 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1737 	if (ret)
1738 		goto cleanup_transaction;
1739 
1740 	wait_event(cur_trans->writer_wait,
1741 		   extwriter_counter_read(cur_trans) == 0);
1742 
1743 	/* some pending stuffs might be added after the previous flush. */
1744 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1745 	if (ret)
1746 		goto cleanup_transaction;
1747 
1748 	btrfs_wait_delalloc_flush(root->fs_info);
1749 	/*
1750 	 * Ok now we need to make sure to block out any other joins while we
1751 	 * commit the transaction.  We could have started a join before setting
1752 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1753 	 */
1754 	spin_lock(&root->fs_info->trans_lock);
1755 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1756 	spin_unlock(&root->fs_info->trans_lock);
1757 	wait_event(cur_trans->writer_wait,
1758 		   atomic_read(&cur_trans->num_writers) == 1);
1759 
1760 	/* ->aborted might be set after the previous check, so check it */
1761 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1762 		ret = cur_trans->aborted;
1763 		goto cleanup_transaction;
1764 	}
1765 	/*
1766 	 * the reloc mutex makes sure that we stop
1767 	 * the balancing code from coming in and moving
1768 	 * extents around in the middle of the commit
1769 	 */
1770 	mutex_lock(&root->fs_info->reloc_mutex);
1771 
1772 	/*
1773 	 * We needn't worry about the delayed items because we will
1774 	 * deal with them in create_pending_snapshot(), which is the
1775 	 * core function of the snapshot creation.
1776 	 */
1777 	ret = create_pending_snapshots(trans, root->fs_info);
1778 	if (ret) {
1779 		mutex_unlock(&root->fs_info->reloc_mutex);
1780 		goto cleanup_transaction;
1781 	}
1782 
1783 	/*
1784 	 * We insert the dir indexes of the snapshots and update the inode
1785 	 * of the snapshots' parents after the snapshot creation, so there
1786 	 * are some delayed items which are not dealt with. Now deal with
1787 	 * them.
1788 	 *
1789 	 * We needn't worry that this operation will corrupt the snapshots,
1790 	 * because all the tree which are snapshoted will be forced to COW
1791 	 * the nodes and leaves.
1792 	 */
1793 	ret = btrfs_run_delayed_items(trans, root);
1794 	if (ret) {
1795 		mutex_unlock(&root->fs_info->reloc_mutex);
1796 		goto cleanup_transaction;
1797 	}
1798 
1799 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1800 	if (ret) {
1801 		mutex_unlock(&root->fs_info->reloc_mutex);
1802 		goto cleanup_transaction;
1803 	}
1804 
1805 	/*
1806 	 * make sure none of the code above managed to slip in a
1807 	 * delayed item
1808 	 */
1809 	btrfs_assert_delayed_root_empty(root);
1810 
1811 	WARN_ON(cur_trans != trans->transaction);
1812 
1813 	btrfs_scrub_pause(root);
1814 	/* btrfs_commit_tree_roots is responsible for getting the
1815 	 * various roots consistent with each other.  Every pointer
1816 	 * in the tree of tree roots has to point to the most up to date
1817 	 * root for every subvolume and other tree.  So, we have to keep
1818 	 * the tree logging code from jumping in and changing any
1819 	 * of the trees.
1820 	 *
1821 	 * At this point in the commit, there can't be any tree-log
1822 	 * writers, but a little lower down we drop the trans mutex
1823 	 * and let new people in.  By holding the tree_log_mutex
1824 	 * from now until after the super is written, we avoid races
1825 	 * with the tree-log code.
1826 	 */
1827 	mutex_lock(&root->fs_info->tree_log_mutex);
1828 
1829 	ret = commit_fs_roots(trans, root);
1830 	if (ret) {
1831 		mutex_unlock(&root->fs_info->tree_log_mutex);
1832 		mutex_unlock(&root->fs_info->reloc_mutex);
1833 		goto cleanup_transaction;
1834 	}
1835 
1836 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1837 	 * safe to free the root of tree log roots
1838 	 */
1839 	btrfs_free_log_root_tree(trans, root->fs_info);
1840 
1841 	ret = commit_cowonly_roots(trans, root);
1842 	if (ret) {
1843 		mutex_unlock(&root->fs_info->tree_log_mutex);
1844 		mutex_unlock(&root->fs_info->reloc_mutex);
1845 		goto cleanup_transaction;
1846 	}
1847 
1848 	/*
1849 	 * The tasks which save the space cache and inode cache may also
1850 	 * update ->aborted, check it.
1851 	 */
1852 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1853 		ret = cur_trans->aborted;
1854 		mutex_unlock(&root->fs_info->tree_log_mutex);
1855 		mutex_unlock(&root->fs_info->reloc_mutex);
1856 		goto cleanup_transaction;
1857 	}
1858 
1859 	btrfs_prepare_extent_commit(trans, root);
1860 
1861 	cur_trans = root->fs_info->running_transaction;
1862 
1863 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1864 			    root->fs_info->tree_root->node);
1865 	switch_commit_root(root->fs_info->tree_root);
1866 
1867 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1868 			    root->fs_info->chunk_root->node);
1869 	switch_commit_root(root->fs_info->chunk_root);
1870 
1871 	assert_qgroups_uptodate(trans);
1872 	update_super_roots(root);
1873 
1874 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1875 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1876 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1877 	       sizeof(*root->fs_info->super_copy));
1878 
1879 	spin_lock(&root->fs_info->trans_lock);
1880 	cur_trans->state = TRANS_STATE_UNBLOCKED;
1881 	root->fs_info->running_transaction = NULL;
1882 	spin_unlock(&root->fs_info->trans_lock);
1883 	mutex_unlock(&root->fs_info->reloc_mutex);
1884 
1885 	wake_up(&root->fs_info->transaction_wait);
1886 
1887 	ret = btrfs_write_and_wait_transaction(trans, root);
1888 	if (ret) {
1889 		btrfs_error(root->fs_info, ret,
1890 			    "Error while writing out transaction");
1891 		mutex_unlock(&root->fs_info->tree_log_mutex);
1892 		goto cleanup_transaction;
1893 	}
1894 
1895 	ret = write_ctree_super(trans, root, 0);
1896 	if (ret) {
1897 		mutex_unlock(&root->fs_info->tree_log_mutex);
1898 		goto cleanup_transaction;
1899 	}
1900 
1901 	/*
1902 	 * the super is written, we can safely allow the tree-loggers
1903 	 * to go about their business
1904 	 */
1905 	mutex_unlock(&root->fs_info->tree_log_mutex);
1906 
1907 	btrfs_finish_extent_commit(trans, root);
1908 
1909 	root->fs_info->last_trans_committed = cur_trans->transid;
1910 	/*
1911 	 * We needn't acquire the lock here because there is no other task
1912 	 * which can change it.
1913 	 */
1914 	cur_trans->state = TRANS_STATE_COMPLETED;
1915 	wake_up(&cur_trans->commit_wait);
1916 
1917 	spin_lock(&root->fs_info->trans_lock);
1918 	list_del_init(&cur_trans->list);
1919 	spin_unlock(&root->fs_info->trans_lock);
1920 
1921 	btrfs_put_transaction(cur_trans);
1922 	btrfs_put_transaction(cur_trans);
1923 
1924 	if (trans->type & __TRANS_FREEZABLE)
1925 		sb_end_intwrite(root->fs_info->sb);
1926 
1927 	trace_btrfs_transaction_commit(root);
1928 
1929 	btrfs_scrub_continue(root);
1930 
1931 	if (current->journal_info == trans)
1932 		current->journal_info = NULL;
1933 
1934 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1935 
1936 	if (current != root->fs_info->transaction_kthread)
1937 		btrfs_run_delayed_iputs(root);
1938 
1939 	return ret;
1940 
1941 cleanup_transaction:
1942 	btrfs_trans_release_metadata(trans, root);
1943 	trans->block_rsv = NULL;
1944 	if (trans->qgroup_reserved) {
1945 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1946 		trans->qgroup_reserved = 0;
1947 	}
1948 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1949 	if (current->journal_info == trans)
1950 		current->journal_info = NULL;
1951 	cleanup_transaction(trans, root, ret);
1952 
1953 	return ret;
1954 }
1955 
1956 /*
1957  * return < 0 if error
1958  * 0 if there are no more dead_roots at the time of call
1959  * 1 there are more to be processed, call me again
1960  *
1961  * The return value indicates there are certainly more snapshots to delete, but
1962  * if there comes a new one during processing, it may return 0. We don't mind,
1963  * because btrfs_commit_super will poke cleaner thread and it will process it a
1964  * few seconds later.
1965  */
1966 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1967 {
1968 	int ret;
1969 	struct btrfs_fs_info *fs_info = root->fs_info;
1970 
1971 	spin_lock(&fs_info->trans_lock);
1972 	if (list_empty(&fs_info->dead_roots)) {
1973 		spin_unlock(&fs_info->trans_lock);
1974 		return 0;
1975 	}
1976 	root = list_first_entry(&fs_info->dead_roots,
1977 			struct btrfs_root, root_list);
1978 	list_del_init(&root->root_list);
1979 	spin_unlock(&fs_info->trans_lock);
1980 
1981 	pr_debug("btrfs: cleaner removing %llu\n", root->objectid);
1982 
1983 	btrfs_kill_all_delayed_nodes(root);
1984 
1985 	if (btrfs_header_backref_rev(root->node) <
1986 			BTRFS_MIXED_BACKREF_REV)
1987 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1988 	else
1989 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1990 	/*
1991 	 * If we encounter a transaction abort during snapshot cleaning, we
1992 	 * don't want to crash here
1993 	 */
1994 	return (ret < 0) ? 0 : 1;
1995 }
1996