xref: /linux/fs/btrfs/super.c (revision eeb9f5c2dcec90009d7cf12e780e7f9631993fc5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
31 #include "messages.h"
32 #include "delayed-inode.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "props.h"
39 #include "xattr.h"
40 #include "bio.h"
41 #include "export.h"
42 #include "compression.h"
43 #include "rcu-string.h"
44 #include "dev-replace.h"
45 #include "free-space-cache.h"
46 #include "backref.h"
47 #include "space-info.h"
48 #include "sysfs.h"
49 #include "zoned.h"
50 #include "tests/btrfs-tests.h"
51 #include "block-group.h"
52 #include "discard.h"
53 #include "qgroup.h"
54 #include "raid56.h"
55 #include "fs.h"
56 #include "accessors.h"
57 #include "defrag.h"
58 #include "dir-item.h"
59 #include "ioctl.h"
60 #include "scrub.h"
61 #include "verity.h"
62 #include "super.h"
63 #include "extent-tree.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66 
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69 
70 static void btrfs_put_super(struct super_block *sb)
71 {
72 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
73 
74 	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
75 	close_ctree(fs_info);
76 }
77 
78 /* Store the mount options related information. */
79 struct btrfs_fs_context {
80 	char *subvol_name;
81 	u64 subvol_objectid;
82 	u64 max_inline;
83 	u32 commit_interval;
84 	u32 metadata_ratio;
85 	u32 thread_pool_size;
86 	unsigned long mount_opt;
87 	unsigned long compress_type:4;
88 	unsigned int compress_level;
89 	refcount_t refs;
90 };
91 
92 enum {
93 	Opt_acl,
94 	Opt_clear_cache,
95 	Opt_commit_interval,
96 	Opt_compress,
97 	Opt_compress_force,
98 	Opt_compress_force_type,
99 	Opt_compress_type,
100 	Opt_degraded,
101 	Opt_device,
102 	Opt_fatal_errors,
103 	Opt_flushoncommit,
104 	Opt_max_inline,
105 	Opt_barrier,
106 	Opt_datacow,
107 	Opt_datasum,
108 	Opt_defrag,
109 	Opt_discard,
110 	Opt_discard_mode,
111 	Opt_ratio,
112 	Opt_rescan_uuid_tree,
113 	Opt_skip_balance,
114 	Opt_space_cache,
115 	Opt_space_cache_version,
116 	Opt_ssd,
117 	Opt_ssd_spread,
118 	Opt_subvol,
119 	Opt_subvol_empty,
120 	Opt_subvolid,
121 	Opt_thread_pool,
122 	Opt_treelog,
123 	Opt_user_subvol_rm_allowed,
124 
125 	/* Rescue options */
126 	Opt_rescue,
127 	Opt_usebackuproot,
128 	Opt_nologreplay,
129 	Opt_ignorebadroots,
130 	Opt_ignoredatacsums,
131 	Opt_rescue_all,
132 
133 	/* Debugging options */
134 	Opt_enospc_debug,
135 #ifdef CONFIG_BTRFS_DEBUG
136 	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
137 #endif
138 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
139 	Opt_ref_verify,
140 #endif
141 	Opt_err,
142 };
143 
144 enum {
145 	Opt_fatal_errors_panic,
146 	Opt_fatal_errors_bug,
147 };
148 
149 static const struct constant_table btrfs_parameter_fatal_errors[] = {
150 	{ "panic", Opt_fatal_errors_panic },
151 	{ "bug", Opt_fatal_errors_bug },
152 	{}
153 };
154 
155 enum {
156 	Opt_discard_sync,
157 	Opt_discard_async,
158 };
159 
160 static const struct constant_table btrfs_parameter_discard[] = {
161 	{ "sync", Opt_discard_sync },
162 	{ "async", Opt_discard_async },
163 	{}
164 };
165 
166 enum {
167 	Opt_space_cache_v1,
168 	Opt_space_cache_v2,
169 };
170 
171 static const struct constant_table btrfs_parameter_space_cache[] = {
172 	{ "v1", Opt_space_cache_v1 },
173 	{ "v2", Opt_space_cache_v2 },
174 	{}
175 };
176 
177 enum {
178 	Opt_rescue_usebackuproot,
179 	Opt_rescue_nologreplay,
180 	Opt_rescue_ignorebadroots,
181 	Opt_rescue_ignoredatacsums,
182 	Opt_rescue_parameter_all,
183 };
184 
185 static const struct constant_table btrfs_parameter_rescue[] = {
186 	{ "usebackuproot", Opt_rescue_usebackuproot },
187 	{ "nologreplay", Opt_rescue_nologreplay },
188 	{ "ignorebadroots", Opt_rescue_ignorebadroots },
189 	{ "ibadroots", Opt_rescue_ignorebadroots },
190 	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
191 	{ "idatacsums", Opt_rescue_ignoredatacsums },
192 	{ "all", Opt_rescue_parameter_all },
193 	{}
194 };
195 
196 #ifdef CONFIG_BTRFS_DEBUG
197 enum {
198 	Opt_fragment_parameter_data,
199 	Opt_fragment_parameter_metadata,
200 	Opt_fragment_parameter_all,
201 };
202 
203 static const struct constant_table btrfs_parameter_fragment[] = {
204 	{ "data", Opt_fragment_parameter_data },
205 	{ "metadata", Opt_fragment_parameter_metadata },
206 	{ "all", Opt_fragment_parameter_all },
207 	{}
208 };
209 #endif
210 
211 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
212 	fsparam_flag_no("acl", Opt_acl),
213 	fsparam_flag_no("autodefrag", Opt_defrag),
214 	fsparam_flag_no("barrier", Opt_barrier),
215 	fsparam_flag("clear_cache", Opt_clear_cache),
216 	fsparam_u32("commit", Opt_commit_interval),
217 	fsparam_flag("compress", Opt_compress),
218 	fsparam_string("compress", Opt_compress_type),
219 	fsparam_flag("compress-force", Opt_compress_force),
220 	fsparam_string("compress-force", Opt_compress_force_type),
221 	fsparam_flag_no("datacow", Opt_datacow),
222 	fsparam_flag_no("datasum", Opt_datasum),
223 	fsparam_flag("degraded", Opt_degraded),
224 	fsparam_string("device", Opt_device),
225 	fsparam_flag_no("discard", Opt_discard),
226 	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
227 	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
228 	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
229 	fsparam_string("max_inline", Opt_max_inline),
230 	fsparam_u32("metadata_ratio", Opt_ratio),
231 	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
232 	fsparam_flag("skip_balance", Opt_skip_balance),
233 	fsparam_flag_no("space_cache", Opt_space_cache),
234 	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
235 	fsparam_flag_no("ssd", Opt_ssd),
236 	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
237 	fsparam_string("subvol", Opt_subvol),
238 	fsparam_flag("subvol=", Opt_subvol_empty),
239 	fsparam_u64("subvolid", Opt_subvolid),
240 	fsparam_u32("thread_pool", Opt_thread_pool),
241 	fsparam_flag_no("treelog", Opt_treelog),
242 	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
243 
244 	/* Rescue options. */
245 	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
246 	/* Deprecated, with alias rescue=nologreplay */
247 	__fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
248 	/* Deprecated, with alias rescue=usebackuproot */
249 	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
250 
251 	/* Debugging options. */
252 	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
253 #ifdef CONFIG_BTRFS_DEBUG
254 	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
255 #endif
256 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
257 	fsparam_flag("ref_verify", Opt_ref_verify),
258 #endif
259 	{}
260 };
261 
262 /* No support for restricting writes to btrfs devices yet... */
263 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
264 {
265 	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
266 }
267 
268 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
269 {
270 	struct btrfs_fs_context *ctx = fc->fs_private;
271 	struct fs_parse_result result;
272 	int opt;
273 
274 	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
275 	if (opt < 0)
276 		return opt;
277 
278 	switch (opt) {
279 	case Opt_degraded:
280 		btrfs_set_opt(ctx->mount_opt, DEGRADED);
281 		break;
282 	case Opt_subvol_empty:
283 		/*
284 		 * This exists because we used to allow it on accident, so we're
285 		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
286 		 * empty subvol= again").
287 		 */
288 		break;
289 	case Opt_subvol:
290 		kfree(ctx->subvol_name);
291 		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
292 		if (!ctx->subvol_name)
293 			return -ENOMEM;
294 		break;
295 	case Opt_subvolid:
296 		ctx->subvol_objectid = result.uint_64;
297 
298 		/* subvolid=0 means give me the original fs_tree. */
299 		if (!ctx->subvol_objectid)
300 			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
301 		break;
302 	case Opt_device: {
303 		struct btrfs_device *device;
304 		blk_mode_t mode = btrfs_open_mode(fc);
305 
306 		mutex_lock(&uuid_mutex);
307 		device = btrfs_scan_one_device(param->string, mode, false);
308 		mutex_unlock(&uuid_mutex);
309 		if (IS_ERR(device))
310 			return PTR_ERR(device);
311 		break;
312 	}
313 	case Opt_datasum:
314 		if (result.negated) {
315 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
316 		} else {
317 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
318 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
319 		}
320 		break;
321 	case Opt_datacow:
322 		if (result.negated) {
323 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
324 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
325 			btrfs_set_opt(ctx->mount_opt, NODATACOW);
326 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
327 		} else {
328 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
329 		}
330 		break;
331 	case Opt_compress_force:
332 	case Opt_compress_force_type:
333 		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
334 		fallthrough;
335 	case Opt_compress:
336 	case Opt_compress_type:
337 		if (opt == Opt_compress || opt == Opt_compress_force) {
338 			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
339 			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
340 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
341 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
342 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
343 		} else if (strncmp(param->string, "zlib", 4) == 0) {
344 			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
345 			ctx->compress_level =
346 				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
347 							 param->string + 4);
348 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
349 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
350 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
351 		} else if (strncmp(param->string, "lzo", 3) == 0) {
352 			ctx->compress_type = BTRFS_COMPRESS_LZO;
353 			ctx->compress_level = 0;
354 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
355 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
356 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
357 		} else if (strncmp(param->string, "zstd", 4) == 0) {
358 			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
359 			ctx->compress_level =
360 				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
361 							 param->string + 4);
362 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
363 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
364 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
365 		} else if (strncmp(param->string, "no", 2) == 0) {
366 			ctx->compress_level = 0;
367 			ctx->compress_type = 0;
368 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
369 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
370 		} else {
371 			btrfs_err(NULL, "unrecognized compression value %s",
372 				  param->string);
373 			return -EINVAL;
374 		}
375 		break;
376 	case Opt_ssd:
377 		if (result.negated) {
378 			btrfs_set_opt(ctx->mount_opt, NOSSD);
379 			btrfs_clear_opt(ctx->mount_opt, SSD);
380 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
381 		} else {
382 			btrfs_set_opt(ctx->mount_opt, SSD);
383 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
384 		}
385 		break;
386 	case Opt_ssd_spread:
387 		if (result.negated) {
388 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
389 		} else {
390 			btrfs_set_opt(ctx->mount_opt, SSD);
391 			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
392 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
393 		}
394 		break;
395 	case Opt_barrier:
396 		if (result.negated)
397 			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
398 		else
399 			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
400 		break;
401 	case Opt_thread_pool:
402 		if (result.uint_32 == 0) {
403 			btrfs_err(NULL, "invalid value 0 for thread_pool");
404 			return -EINVAL;
405 		}
406 		ctx->thread_pool_size = result.uint_32;
407 		break;
408 	case Opt_max_inline:
409 		ctx->max_inline = memparse(param->string, NULL);
410 		break;
411 	case Opt_acl:
412 		if (result.negated) {
413 			fc->sb_flags &= ~SB_POSIXACL;
414 		} else {
415 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
416 			fc->sb_flags |= SB_POSIXACL;
417 #else
418 			btrfs_err(NULL, "support for ACL not compiled in");
419 			return -EINVAL;
420 #endif
421 		}
422 		/*
423 		 * VFS limits the ability to toggle ACL on and off via remount,
424 		 * despite every file system allowing this.  This seems to be
425 		 * an oversight since we all do, but it'll fail if we're
426 		 * remounting.  So don't set the mask here, we'll check it in
427 		 * btrfs_reconfigure and do the toggling ourselves.
428 		 */
429 		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
430 			fc->sb_flags_mask |= SB_POSIXACL;
431 		break;
432 	case Opt_treelog:
433 		if (result.negated)
434 			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
435 		else
436 			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
437 		break;
438 	case Opt_nologreplay:
439 		btrfs_warn(NULL,
440 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
441 		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
442 		break;
443 	case Opt_flushoncommit:
444 		if (result.negated)
445 			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
446 		else
447 			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
448 		break;
449 	case Opt_ratio:
450 		ctx->metadata_ratio = result.uint_32;
451 		break;
452 	case Opt_discard:
453 		if (result.negated) {
454 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
455 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
456 			btrfs_set_opt(ctx->mount_opt, NODISCARD);
457 		} else {
458 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
459 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
460 		}
461 		break;
462 	case Opt_discard_mode:
463 		switch (result.uint_32) {
464 		case Opt_discard_sync:
465 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
466 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
467 			break;
468 		case Opt_discard_async:
469 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
470 			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
471 			break;
472 		default:
473 			btrfs_err(NULL, "unrecognized discard mode value %s",
474 				  param->key);
475 			return -EINVAL;
476 		}
477 		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
478 		break;
479 	case Opt_space_cache:
480 		if (result.negated) {
481 			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
482 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
483 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
484 		} else {
485 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
486 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
487 		}
488 		break;
489 	case Opt_space_cache_version:
490 		switch (result.uint_32) {
491 		case Opt_space_cache_v1:
492 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
493 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
494 			break;
495 		case Opt_space_cache_v2:
496 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
497 			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
498 			break;
499 		default:
500 			btrfs_err(NULL, "unrecognized space_cache value %s",
501 				  param->key);
502 			return -EINVAL;
503 		}
504 		break;
505 	case Opt_rescan_uuid_tree:
506 		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
507 		break;
508 	case Opt_clear_cache:
509 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
510 		break;
511 	case Opt_user_subvol_rm_allowed:
512 		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
513 		break;
514 	case Opt_enospc_debug:
515 		if (result.negated)
516 			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
517 		else
518 			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
519 		break;
520 	case Opt_defrag:
521 		if (result.negated)
522 			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
523 		else
524 			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
525 		break;
526 	case Opt_usebackuproot:
527 		btrfs_warn(NULL,
528 			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
529 		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
530 
531 		/* If we're loading the backup roots we can't trust the space cache. */
532 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
533 		break;
534 	case Opt_skip_balance:
535 		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
536 		break;
537 	case Opt_fatal_errors:
538 		switch (result.uint_32) {
539 		case Opt_fatal_errors_panic:
540 			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
541 			break;
542 		case Opt_fatal_errors_bug:
543 			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
544 			break;
545 		default:
546 			btrfs_err(NULL, "unrecognized fatal_errors value %s",
547 				  param->key);
548 			return -EINVAL;
549 		}
550 		break;
551 	case Opt_commit_interval:
552 		ctx->commit_interval = result.uint_32;
553 		if (ctx->commit_interval == 0)
554 			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
555 		break;
556 	case Opt_rescue:
557 		switch (result.uint_32) {
558 		case Opt_rescue_usebackuproot:
559 			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
560 			break;
561 		case Opt_rescue_nologreplay:
562 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
563 			break;
564 		case Opt_rescue_ignorebadroots:
565 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
566 			break;
567 		case Opt_rescue_ignoredatacsums:
568 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
569 			break;
570 		case Opt_rescue_parameter_all:
571 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
572 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
573 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
574 			break;
575 		default:
576 			btrfs_info(NULL, "unrecognized rescue option '%s'",
577 				   param->key);
578 			return -EINVAL;
579 		}
580 		break;
581 #ifdef CONFIG_BTRFS_DEBUG
582 	case Opt_fragment:
583 		switch (result.uint_32) {
584 		case Opt_fragment_parameter_all:
585 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
586 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
587 			break;
588 		case Opt_fragment_parameter_metadata:
589 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
590 			break;
591 		case Opt_fragment_parameter_data:
592 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
593 			break;
594 		default:
595 			btrfs_info(NULL, "unrecognized fragment option '%s'",
596 				   param->key);
597 			return -EINVAL;
598 		}
599 		break;
600 #endif
601 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
602 	case Opt_ref_verify:
603 		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
604 		break;
605 #endif
606 	default:
607 		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
608 		return -EINVAL;
609 	}
610 
611 	return 0;
612 }
613 
614 /*
615  * Some options only have meaning at mount time and shouldn't persist across
616  * remounts, or be displayed. Clear these at the end of mount and remount code
617  * paths.
618  */
619 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
620 {
621 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
622 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
623 	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
624 }
625 
626 static bool check_ro_option(struct btrfs_fs_info *fs_info,
627 			    unsigned long mount_opt, unsigned long opt,
628 			    const char *opt_name)
629 {
630 	if (mount_opt & opt) {
631 		btrfs_err(fs_info, "%s must be used with ro mount option",
632 			  opt_name);
633 		return true;
634 	}
635 	return false;
636 }
637 
638 bool btrfs_check_options(struct btrfs_fs_info *info, unsigned long *mount_opt,
639 			 unsigned long flags)
640 {
641 	bool ret = true;
642 
643 	if (!(flags & SB_RDONLY) &&
644 	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
645 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
646 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")))
647 		ret = false;
648 
649 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
650 	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
651 	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
652 		btrfs_err(info, "cannot disable free-space-tree");
653 		ret = false;
654 	}
655 	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
656 	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
657 		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
658 		ret = false;
659 	}
660 
661 	if (btrfs_check_mountopts_zoned(info, mount_opt))
662 		ret = false;
663 
664 	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
665 		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE))
666 			btrfs_info(info, "disk space caching is enabled");
667 		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
668 			btrfs_info(info, "using free-space-tree");
669 	}
670 
671 	return ret;
672 }
673 
674 /*
675  * This is subtle, we only call this during open_ctree().  We need to pre-load
676  * the mount options with the on-disk settings.  Before the new mount API took
677  * effect we would do this on mount and remount.  With the new mount API we'll
678  * only do this on the initial mount.
679  *
680  * This isn't a change in behavior, because we're using the current state of the
681  * file system to set the current mount options.  If you mounted with special
682  * options to disable these features and then remounted we wouldn't revert the
683  * settings, because mounting without these features cleared the on-disk
684  * settings, so this being called on re-mount is not needed.
685  */
686 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
687 {
688 	if (fs_info->sectorsize < PAGE_SIZE) {
689 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
690 		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
691 			btrfs_info(fs_info,
692 				   "forcing free space tree for sector size %u with page size %lu",
693 				   fs_info->sectorsize, PAGE_SIZE);
694 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
695 		}
696 	}
697 
698 	/*
699 	 * At this point our mount options are populated, so we only mess with
700 	 * these settings if we don't have any settings already.
701 	 */
702 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
703 		return;
704 
705 	if (btrfs_is_zoned(fs_info) &&
706 	    btrfs_free_space_cache_v1_active(fs_info)) {
707 		btrfs_info(fs_info, "zoned: clearing existing space cache");
708 		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
709 		return;
710 	}
711 
712 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
713 		return;
714 
715 	if (btrfs_test_opt(fs_info, NOSPACECACHE))
716 		return;
717 
718 	/*
719 	 * At this point we don't have explicit options set by the user, set
720 	 * them ourselves based on the state of the file system.
721 	 */
722 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
723 		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
724 	else if (btrfs_free_space_cache_v1_active(fs_info))
725 		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
726 }
727 
728 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
729 {
730 	if (!btrfs_test_opt(fs_info, NOSSD) &&
731 	    !fs_info->fs_devices->rotating)
732 		btrfs_set_opt(fs_info->mount_opt, SSD);
733 
734 	/*
735 	 * For devices supporting discard turn on discard=async automatically,
736 	 * unless it's already set or disabled. This could be turned off by
737 	 * nodiscard for the same mount.
738 	 *
739 	 * The zoned mode piggy backs on the discard functionality for
740 	 * resetting a zone. There is no reason to delay the zone reset as it is
741 	 * fast enough. So, do not enable async discard for zoned mode.
742 	 */
743 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
744 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
745 	      btrfs_test_opt(fs_info, NODISCARD)) &&
746 	    fs_info->fs_devices->discardable &&
747 	    !btrfs_is_zoned(fs_info))
748 		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
749 }
750 
751 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
752 					  u64 subvol_objectid)
753 {
754 	struct btrfs_root *root = fs_info->tree_root;
755 	struct btrfs_root *fs_root = NULL;
756 	struct btrfs_root_ref *root_ref;
757 	struct btrfs_inode_ref *inode_ref;
758 	struct btrfs_key key;
759 	struct btrfs_path *path = NULL;
760 	char *name = NULL, *ptr;
761 	u64 dirid;
762 	int len;
763 	int ret;
764 
765 	path = btrfs_alloc_path();
766 	if (!path) {
767 		ret = -ENOMEM;
768 		goto err;
769 	}
770 
771 	name = kmalloc(PATH_MAX, GFP_KERNEL);
772 	if (!name) {
773 		ret = -ENOMEM;
774 		goto err;
775 	}
776 	ptr = name + PATH_MAX - 1;
777 	ptr[0] = '\0';
778 
779 	/*
780 	 * Walk up the subvolume trees in the tree of tree roots by root
781 	 * backrefs until we hit the top-level subvolume.
782 	 */
783 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
784 		key.objectid = subvol_objectid;
785 		key.type = BTRFS_ROOT_BACKREF_KEY;
786 		key.offset = (u64)-1;
787 
788 		ret = btrfs_search_backwards(root, &key, path);
789 		if (ret < 0) {
790 			goto err;
791 		} else if (ret > 0) {
792 			ret = -ENOENT;
793 			goto err;
794 		}
795 
796 		subvol_objectid = key.offset;
797 
798 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
799 					  struct btrfs_root_ref);
800 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
801 		ptr -= len + 1;
802 		if (ptr < name) {
803 			ret = -ENAMETOOLONG;
804 			goto err;
805 		}
806 		read_extent_buffer(path->nodes[0], ptr + 1,
807 				   (unsigned long)(root_ref + 1), len);
808 		ptr[0] = '/';
809 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
810 		btrfs_release_path(path);
811 
812 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
813 		if (IS_ERR(fs_root)) {
814 			ret = PTR_ERR(fs_root);
815 			fs_root = NULL;
816 			goto err;
817 		}
818 
819 		/*
820 		 * Walk up the filesystem tree by inode refs until we hit the
821 		 * root directory.
822 		 */
823 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
824 			key.objectid = dirid;
825 			key.type = BTRFS_INODE_REF_KEY;
826 			key.offset = (u64)-1;
827 
828 			ret = btrfs_search_backwards(fs_root, &key, path);
829 			if (ret < 0) {
830 				goto err;
831 			} else if (ret > 0) {
832 				ret = -ENOENT;
833 				goto err;
834 			}
835 
836 			dirid = key.offset;
837 
838 			inode_ref = btrfs_item_ptr(path->nodes[0],
839 						   path->slots[0],
840 						   struct btrfs_inode_ref);
841 			len = btrfs_inode_ref_name_len(path->nodes[0],
842 						       inode_ref);
843 			ptr -= len + 1;
844 			if (ptr < name) {
845 				ret = -ENAMETOOLONG;
846 				goto err;
847 			}
848 			read_extent_buffer(path->nodes[0], ptr + 1,
849 					   (unsigned long)(inode_ref + 1), len);
850 			ptr[0] = '/';
851 			btrfs_release_path(path);
852 		}
853 		btrfs_put_root(fs_root);
854 		fs_root = NULL;
855 	}
856 
857 	btrfs_free_path(path);
858 	if (ptr == name + PATH_MAX - 1) {
859 		name[0] = '/';
860 		name[1] = '\0';
861 	} else {
862 		memmove(name, ptr, name + PATH_MAX - ptr);
863 	}
864 	return name;
865 
866 err:
867 	btrfs_put_root(fs_root);
868 	btrfs_free_path(path);
869 	kfree(name);
870 	return ERR_PTR(ret);
871 }
872 
873 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
874 {
875 	struct btrfs_root *root = fs_info->tree_root;
876 	struct btrfs_dir_item *di;
877 	struct btrfs_path *path;
878 	struct btrfs_key location;
879 	struct fscrypt_str name = FSTR_INIT("default", 7);
880 	u64 dir_id;
881 
882 	path = btrfs_alloc_path();
883 	if (!path)
884 		return -ENOMEM;
885 
886 	/*
887 	 * Find the "default" dir item which points to the root item that we
888 	 * will mount by default if we haven't been given a specific subvolume
889 	 * to mount.
890 	 */
891 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
892 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
893 	if (IS_ERR(di)) {
894 		btrfs_free_path(path);
895 		return PTR_ERR(di);
896 	}
897 	if (!di) {
898 		/*
899 		 * Ok the default dir item isn't there.  This is weird since
900 		 * it's always been there, but don't freak out, just try and
901 		 * mount the top-level subvolume.
902 		 */
903 		btrfs_free_path(path);
904 		*objectid = BTRFS_FS_TREE_OBJECTID;
905 		return 0;
906 	}
907 
908 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
909 	btrfs_free_path(path);
910 	*objectid = location.objectid;
911 	return 0;
912 }
913 
914 static int btrfs_fill_super(struct super_block *sb,
915 			    struct btrfs_fs_devices *fs_devices,
916 			    void *data)
917 {
918 	struct inode *inode;
919 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
920 	int err;
921 
922 	sb->s_maxbytes = MAX_LFS_FILESIZE;
923 	sb->s_magic = BTRFS_SUPER_MAGIC;
924 	sb->s_op = &btrfs_super_ops;
925 	sb->s_d_op = &btrfs_dentry_operations;
926 	sb->s_export_op = &btrfs_export_ops;
927 #ifdef CONFIG_FS_VERITY
928 	sb->s_vop = &btrfs_verityops;
929 #endif
930 	sb->s_xattr = btrfs_xattr_handlers;
931 	sb->s_time_gran = 1;
932 	sb->s_iflags |= SB_I_CGROUPWB;
933 
934 	err = super_setup_bdi(sb);
935 	if (err) {
936 		btrfs_err(fs_info, "super_setup_bdi failed");
937 		return err;
938 	}
939 
940 	err = open_ctree(sb, fs_devices, (char *)data);
941 	if (err) {
942 		btrfs_err(fs_info, "open_ctree failed");
943 		return err;
944 	}
945 
946 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
947 	if (IS_ERR(inode)) {
948 		err = PTR_ERR(inode);
949 		btrfs_handle_fs_error(fs_info, err, NULL);
950 		goto fail_close;
951 	}
952 
953 	sb->s_root = d_make_root(inode);
954 	if (!sb->s_root) {
955 		err = -ENOMEM;
956 		goto fail_close;
957 	}
958 
959 	sb->s_flags |= SB_ACTIVE;
960 	return 0;
961 
962 fail_close:
963 	close_ctree(fs_info);
964 	return err;
965 }
966 
967 int btrfs_sync_fs(struct super_block *sb, int wait)
968 {
969 	struct btrfs_trans_handle *trans;
970 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
971 	struct btrfs_root *root = fs_info->tree_root;
972 
973 	trace_btrfs_sync_fs(fs_info, wait);
974 
975 	if (!wait) {
976 		filemap_flush(fs_info->btree_inode->i_mapping);
977 		return 0;
978 	}
979 
980 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
981 
982 	trans = btrfs_attach_transaction_barrier(root);
983 	if (IS_ERR(trans)) {
984 		/* no transaction, don't bother */
985 		if (PTR_ERR(trans) == -ENOENT) {
986 			/*
987 			 * Exit unless we have some pending changes
988 			 * that need to go through commit
989 			 */
990 			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
991 				      &fs_info->flags))
992 				return 0;
993 			/*
994 			 * A non-blocking test if the fs is frozen. We must not
995 			 * start a new transaction here otherwise a deadlock
996 			 * happens. The pending operations are delayed to the
997 			 * next commit after thawing.
998 			 */
999 			if (sb_start_write_trylock(sb))
1000 				sb_end_write(sb);
1001 			else
1002 				return 0;
1003 			trans = btrfs_start_transaction(root, 0);
1004 		}
1005 		if (IS_ERR(trans))
1006 			return PTR_ERR(trans);
1007 	}
1008 	return btrfs_commit_transaction(trans);
1009 }
1010 
1011 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1012 {
1013 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1014 	*printed = true;
1015 }
1016 
1017 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1018 {
1019 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1020 	const char *compress_type;
1021 	const char *subvol_name;
1022 	bool printed = false;
1023 
1024 	if (btrfs_test_opt(info, DEGRADED))
1025 		seq_puts(seq, ",degraded");
1026 	if (btrfs_test_opt(info, NODATASUM))
1027 		seq_puts(seq, ",nodatasum");
1028 	if (btrfs_test_opt(info, NODATACOW))
1029 		seq_puts(seq, ",nodatacow");
1030 	if (btrfs_test_opt(info, NOBARRIER))
1031 		seq_puts(seq, ",nobarrier");
1032 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1033 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1034 	if (info->thread_pool_size !=  min_t(unsigned long,
1035 					     num_online_cpus() + 2, 8))
1036 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1037 	if (btrfs_test_opt(info, COMPRESS)) {
1038 		compress_type = btrfs_compress_type2str(info->compress_type);
1039 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1040 			seq_printf(seq, ",compress-force=%s", compress_type);
1041 		else
1042 			seq_printf(seq, ",compress=%s", compress_type);
1043 		if (info->compress_level)
1044 			seq_printf(seq, ":%d", info->compress_level);
1045 	}
1046 	if (btrfs_test_opt(info, NOSSD))
1047 		seq_puts(seq, ",nossd");
1048 	if (btrfs_test_opt(info, SSD_SPREAD))
1049 		seq_puts(seq, ",ssd_spread");
1050 	else if (btrfs_test_opt(info, SSD))
1051 		seq_puts(seq, ",ssd");
1052 	if (btrfs_test_opt(info, NOTREELOG))
1053 		seq_puts(seq, ",notreelog");
1054 	if (btrfs_test_opt(info, NOLOGREPLAY))
1055 		print_rescue_option(seq, "nologreplay", &printed);
1056 	if (btrfs_test_opt(info, USEBACKUPROOT))
1057 		print_rescue_option(seq, "usebackuproot", &printed);
1058 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1059 		print_rescue_option(seq, "ignorebadroots", &printed);
1060 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1061 		print_rescue_option(seq, "ignoredatacsums", &printed);
1062 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1063 		seq_puts(seq, ",flushoncommit");
1064 	if (btrfs_test_opt(info, DISCARD_SYNC))
1065 		seq_puts(seq, ",discard");
1066 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1067 		seq_puts(seq, ",discard=async");
1068 	if (!(info->sb->s_flags & SB_POSIXACL))
1069 		seq_puts(seq, ",noacl");
1070 	if (btrfs_free_space_cache_v1_active(info))
1071 		seq_puts(seq, ",space_cache");
1072 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1073 		seq_puts(seq, ",space_cache=v2");
1074 	else
1075 		seq_puts(seq, ",nospace_cache");
1076 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1077 		seq_puts(seq, ",rescan_uuid_tree");
1078 	if (btrfs_test_opt(info, CLEAR_CACHE))
1079 		seq_puts(seq, ",clear_cache");
1080 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1081 		seq_puts(seq, ",user_subvol_rm_allowed");
1082 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1083 		seq_puts(seq, ",enospc_debug");
1084 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1085 		seq_puts(seq, ",autodefrag");
1086 	if (btrfs_test_opt(info, SKIP_BALANCE))
1087 		seq_puts(seq, ",skip_balance");
1088 	if (info->metadata_ratio)
1089 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1090 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1091 		seq_puts(seq, ",fatal_errors=panic");
1092 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1093 		seq_printf(seq, ",commit=%u", info->commit_interval);
1094 #ifdef CONFIG_BTRFS_DEBUG
1095 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1096 		seq_puts(seq, ",fragment=data");
1097 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1098 		seq_puts(seq, ",fragment=metadata");
1099 #endif
1100 	if (btrfs_test_opt(info, REF_VERIFY))
1101 		seq_puts(seq, ",ref_verify");
1102 	seq_printf(seq, ",subvolid=%llu",
1103 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1104 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1105 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1106 	if (!IS_ERR(subvol_name)) {
1107 		seq_puts(seq, ",subvol=");
1108 		seq_escape(seq, subvol_name, " \t\n\\");
1109 		kfree(subvol_name);
1110 	}
1111 	return 0;
1112 }
1113 
1114 /*
1115  * subvolumes are identified by ino 256
1116  */
1117 static inline int is_subvolume_inode(struct inode *inode)
1118 {
1119 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1120 		return 1;
1121 	return 0;
1122 }
1123 
1124 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1125 				   struct vfsmount *mnt)
1126 {
1127 	struct dentry *root;
1128 	int ret;
1129 
1130 	if (!subvol_name) {
1131 		if (!subvol_objectid) {
1132 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1133 							  &subvol_objectid);
1134 			if (ret) {
1135 				root = ERR_PTR(ret);
1136 				goto out;
1137 			}
1138 		}
1139 		subvol_name = btrfs_get_subvol_name_from_objectid(
1140 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1141 		if (IS_ERR(subvol_name)) {
1142 			root = ERR_CAST(subvol_name);
1143 			subvol_name = NULL;
1144 			goto out;
1145 		}
1146 
1147 	}
1148 
1149 	root = mount_subtree(mnt, subvol_name);
1150 	/* mount_subtree() drops our reference on the vfsmount. */
1151 	mnt = NULL;
1152 
1153 	if (!IS_ERR(root)) {
1154 		struct super_block *s = root->d_sb;
1155 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1156 		struct inode *root_inode = d_inode(root);
1157 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1158 
1159 		ret = 0;
1160 		if (!is_subvolume_inode(root_inode)) {
1161 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1162 			       subvol_name);
1163 			ret = -EINVAL;
1164 		}
1165 		if (subvol_objectid && root_objectid != subvol_objectid) {
1166 			/*
1167 			 * This will also catch a race condition where a
1168 			 * subvolume which was passed by ID is renamed and
1169 			 * another subvolume is renamed over the old location.
1170 			 */
1171 			btrfs_err(fs_info,
1172 				  "subvol '%s' does not match subvolid %llu",
1173 				  subvol_name, subvol_objectid);
1174 			ret = -EINVAL;
1175 		}
1176 		if (ret) {
1177 			dput(root);
1178 			root = ERR_PTR(ret);
1179 			deactivate_locked_super(s);
1180 		}
1181 	}
1182 
1183 out:
1184 	mntput(mnt);
1185 	kfree(subvol_name);
1186 	return root;
1187 }
1188 
1189 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1190 				     u32 new_pool_size, u32 old_pool_size)
1191 {
1192 	if (new_pool_size == old_pool_size)
1193 		return;
1194 
1195 	fs_info->thread_pool_size = new_pool_size;
1196 
1197 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1198 	       old_pool_size, new_pool_size);
1199 
1200 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1201 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1202 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1203 	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1204 	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1205 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1206 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1207 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1208 }
1209 
1210 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1211 				       unsigned long old_opts, int flags)
1212 {
1213 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1214 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1215 	     (flags & SB_RDONLY))) {
1216 		/* wait for any defraggers to finish */
1217 		wait_event(fs_info->transaction_wait,
1218 			   (atomic_read(&fs_info->defrag_running) == 0));
1219 		if (flags & SB_RDONLY)
1220 			sync_filesystem(fs_info->sb);
1221 	}
1222 }
1223 
1224 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1225 					 unsigned long old_opts)
1226 {
1227 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1228 
1229 	/*
1230 	 * We need to cleanup all defragable inodes if the autodefragment is
1231 	 * close or the filesystem is read only.
1232 	 */
1233 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1234 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1235 		btrfs_cleanup_defrag_inodes(fs_info);
1236 	}
1237 
1238 	/* If we toggled discard async */
1239 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1240 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1241 		btrfs_discard_resume(fs_info);
1242 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1243 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1244 		btrfs_discard_cleanup(fs_info);
1245 
1246 	/* If we toggled space cache */
1247 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1248 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1249 }
1250 
1251 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1252 {
1253 	int ret;
1254 
1255 	if (BTRFS_FS_ERROR(fs_info)) {
1256 		btrfs_err(fs_info,
1257 			  "remounting read-write after error is not allowed");
1258 		return -EINVAL;
1259 	}
1260 
1261 	if (fs_info->fs_devices->rw_devices == 0)
1262 		return -EACCES;
1263 
1264 	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1265 		btrfs_warn(fs_info,
1266 			   "too many missing devices, writable remount is not allowed");
1267 		return -EACCES;
1268 	}
1269 
1270 	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1271 		btrfs_warn(fs_info,
1272 			   "mount required to replay tree-log, cannot remount read-write");
1273 		return -EINVAL;
1274 	}
1275 
1276 	/*
1277 	 * NOTE: when remounting with a change that does writes, don't put it
1278 	 * anywhere above this point, as we are not sure to be safe to write
1279 	 * until we pass the above checks.
1280 	 */
1281 	ret = btrfs_start_pre_rw_mount(fs_info);
1282 	if (ret)
1283 		return ret;
1284 
1285 	btrfs_clear_sb_rdonly(fs_info->sb);
1286 
1287 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1288 
1289 	/*
1290 	 * If we've gone from readonly -> read-write, we need to get our
1291 	 * sync/async discard lists in the right state.
1292 	 */
1293 	btrfs_discard_resume(fs_info);
1294 
1295 	return 0;
1296 }
1297 
1298 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1299 {
1300 	/*
1301 	 * This also happens on 'umount -rf' or on shutdown, when the
1302 	 * filesystem is busy.
1303 	 */
1304 	cancel_work_sync(&fs_info->async_reclaim_work);
1305 	cancel_work_sync(&fs_info->async_data_reclaim_work);
1306 
1307 	btrfs_discard_cleanup(fs_info);
1308 
1309 	/* Wait for the uuid_scan task to finish */
1310 	down(&fs_info->uuid_tree_rescan_sem);
1311 	/* Avoid complains from lockdep et al. */
1312 	up(&fs_info->uuid_tree_rescan_sem);
1313 
1314 	btrfs_set_sb_rdonly(fs_info->sb);
1315 
1316 	/*
1317 	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1318 	 * loop if it's already active.  If it's already asleep, we'll leave
1319 	 * unused block groups on disk until we're mounted read-write again
1320 	 * unless we clean them up here.
1321 	 */
1322 	btrfs_delete_unused_bgs(fs_info);
1323 
1324 	/*
1325 	 * The cleaner task could be already running before we set the flag
1326 	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1327 	 * sure that after we finish the remount, i.e. after we call
1328 	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1329 	 * - either because it was dropping a dead root, running delayed iputs
1330 	 *   or deleting an unused block group (the cleaner picked a block
1331 	 *   group from the list of unused block groups before we were able to
1332 	 *   in the previous call to btrfs_delete_unused_bgs()).
1333 	 */
1334 	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1335 
1336 	/*
1337 	 * We've set the superblock to RO mode, so we might have made the
1338 	 * cleaner task sleep without running all pending delayed iputs. Go
1339 	 * through all the delayed iputs here, so that if an unmount happens
1340 	 * without remounting RW we don't end up at finishing close_ctree()
1341 	 * with a non-empty list of delayed iputs.
1342 	 */
1343 	btrfs_run_delayed_iputs(fs_info);
1344 
1345 	btrfs_dev_replace_suspend_for_unmount(fs_info);
1346 	btrfs_scrub_cancel(fs_info);
1347 	btrfs_pause_balance(fs_info);
1348 
1349 	/*
1350 	 * Pause the qgroup rescan worker if it is running. We don't want it to
1351 	 * be still running after we are in RO mode, as after that, by the time
1352 	 * we unmount, it might have left a transaction open, so we would leak
1353 	 * the transaction and/or crash.
1354 	 */
1355 	btrfs_qgroup_wait_for_completion(fs_info, false);
1356 
1357 	return btrfs_commit_super(fs_info);
1358 }
1359 
1360 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1361 {
1362 	fs_info->max_inline = ctx->max_inline;
1363 	fs_info->commit_interval = ctx->commit_interval;
1364 	fs_info->metadata_ratio = ctx->metadata_ratio;
1365 	fs_info->thread_pool_size = ctx->thread_pool_size;
1366 	fs_info->mount_opt = ctx->mount_opt;
1367 	fs_info->compress_type = ctx->compress_type;
1368 	fs_info->compress_level = ctx->compress_level;
1369 }
1370 
1371 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1372 {
1373 	ctx->max_inline = fs_info->max_inline;
1374 	ctx->commit_interval = fs_info->commit_interval;
1375 	ctx->metadata_ratio = fs_info->metadata_ratio;
1376 	ctx->thread_pool_size = fs_info->thread_pool_size;
1377 	ctx->mount_opt = fs_info->mount_opt;
1378 	ctx->compress_type = fs_info->compress_type;
1379 	ctx->compress_level = fs_info->compress_level;
1380 }
1381 
1382 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1383 do {										\
1384 	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1385 	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1386 		btrfs_info(fs_info, fmt, ##args);				\
1387 } while (0)
1388 
1389 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1390 do {									\
1391 	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1392 	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1393 		btrfs_info(fs_info, fmt, ##args);			\
1394 } while (0)
1395 
1396 static void btrfs_emit_options(struct btrfs_fs_info *info,
1397 			       struct btrfs_fs_context *old)
1398 {
1399 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1400 	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1401 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1402 	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1403 	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1404 	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1405 	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1406 	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1407 	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1408 	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1409 	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1410 	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1411 	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1412 	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1413 	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1414 	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1415 	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1416 	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1417 	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1418 	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1419 	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1420 
1421 	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1422 	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1423 	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1424 	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1425 	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1426 	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1427 	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1428 	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1429 	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1430 
1431 	/* Did the compression settings change? */
1432 	if (btrfs_test_opt(info, COMPRESS) &&
1433 	    (!old ||
1434 	     old->compress_type != info->compress_type ||
1435 	     old->compress_level != info->compress_level ||
1436 	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1437 	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1438 		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1439 
1440 		btrfs_info(info, "%s %s compression, level %d",
1441 			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1442 			   compress_type, info->compress_level);
1443 	}
1444 
1445 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1446 		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1447 }
1448 
1449 static int btrfs_reconfigure(struct fs_context *fc)
1450 {
1451 	struct super_block *sb = fc->root->d_sb;
1452 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1453 	struct btrfs_fs_context *ctx = fc->fs_private;
1454 	struct btrfs_fs_context old_ctx;
1455 	int ret = 0;
1456 	bool mount_reconfigure = (fc->s_fs_info != NULL);
1457 
1458 	btrfs_info_to_ctx(fs_info, &old_ctx);
1459 
1460 	/*
1461 	 * This is our "bind mount" trick, we don't want to allow the user to do
1462 	 * anything other than mount a different ro/rw and a different subvol,
1463 	 * all of the mount options should be maintained.
1464 	 */
1465 	if (mount_reconfigure)
1466 		ctx->mount_opt = old_ctx.mount_opt;
1467 
1468 	sync_filesystem(sb);
1469 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1470 
1471 	if (!mount_reconfigure &&
1472 	    !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1473 		return -EINVAL;
1474 
1475 	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1476 	if (ret < 0)
1477 		return ret;
1478 
1479 	btrfs_ctx_to_info(fs_info, ctx);
1480 	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1481 	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1482 				 old_ctx.thread_pool_size);
1483 
1484 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1485 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1486 	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1487 		btrfs_warn(fs_info,
1488 		"remount supports changing free space tree only from RO to RW");
1489 		/* Make sure free space cache options match the state on disk. */
1490 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1491 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1492 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1493 		}
1494 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1495 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1496 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1497 		}
1498 	}
1499 
1500 	ret = 0;
1501 	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1502 		ret = btrfs_remount_ro(fs_info);
1503 	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1504 		ret = btrfs_remount_rw(fs_info);
1505 	if (ret)
1506 		goto restore;
1507 
1508 	/*
1509 	 * If we set the mask during the parameter parsing VFS would reject the
1510 	 * remount.  Here we can set the mask and the value will be updated
1511 	 * appropriately.
1512 	 */
1513 	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1514 		fc->sb_flags_mask |= SB_POSIXACL;
1515 
1516 	btrfs_emit_options(fs_info, &old_ctx);
1517 	wake_up_process(fs_info->transaction_kthread);
1518 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1519 	btrfs_clear_oneshot_options(fs_info);
1520 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1521 
1522 	return 0;
1523 restore:
1524 	btrfs_ctx_to_info(fs_info, &old_ctx);
1525 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1526 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1527 	return ret;
1528 }
1529 
1530 /* Used to sort the devices by max_avail(descending sort) */
1531 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1532 {
1533 	const struct btrfs_device_info *dev_info1 = a;
1534 	const struct btrfs_device_info *dev_info2 = b;
1535 
1536 	if (dev_info1->max_avail > dev_info2->max_avail)
1537 		return -1;
1538 	else if (dev_info1->max_avail < dev_info2->max_avail)
1539 		return 1;
1540 	return 0;
1541 }
1542 
1543 /*
1544  * sort the devices by max_avail, in which max free extent size of each device
1545  * is stored.(Descending Sort)
1546  */
1547 static inline void btrfs_descending_sort_devices(
1548 					struct btrfs_device_info *devices,
1549 					size_t nr_devices)
1550 {
1551 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1552 	     btrfs_cmp_device_free_bytes, NULL);
1553 }
1554 
1555 /*
1556  * The helper to calc the free space on the devices that can be used to store
1557  * file data.
1558  */
1559 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1560 					      u64 *free_bytes)
1561 {
1562 	struct btrfs_device_info *devices_info;
1563 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1564 	struct btrfs_device *device;
1565 	u64 type;
1566 	u64 avail_space;
1567 	u64 min_stripe_size;
1568 	int num_stripes = 1;
1569 	int i = 0, nr_devices;
1570 	const struct btrfs_raid_attr *rattr;
1571 
1572 	/*
1573 	 * We aren't under the device list lock, so this is racy-ish, but good
1574 	 * enough for our purposes.
1575 	 */
1576 	nr_devices = fs_info->fs_devices->open_devices;
1577 	if (!nr_devices) {
1578 		smp_mb();
1579 		nr_devices = fs_info->fs_devices->open_devices;
1580 		ASSERT(nr_devices);
1581 		if (!nr_devices) {
1582 			*free_bytes = 0;
1583 			return 0;
1584 		}
1585 	}
1586 
1587 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1588 			       GFP_KERNEL);
1589 	if (!devices_info)
1590 		return -ENOMEM;
1591 
1592 	/* calc min stripe number for data space allocation */
1593 	type = btrfs_data_alloc_profile(fs_info);
1594 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1595 
1596 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1597 		num_stripes = nr_devices;
1598 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1599 		num_stripes = rattr->ncopies;
1600 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1601 		num_stripes = 4;
1602 
1603 	/* Adjust for more than 1 stripe per device */
1604 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1605 
1606 	rcu_read_lock();
1607 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1608 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1609 						&device->dev_state) ||
1610 		    !device->bdev ||
1611 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1612 			continue;
1613 
1614 		if (i >= nr_devices)
1615 			break;
1616 
1617 		avail_space = device->total_bytes - device->bytes_used;
1618 
1619 		/* align with stripe_len */
1620 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1621 
1622 		/*
1623 		 * Ensure we have at least min_stripe_size on top of the
1624 		 * reserved space on the device.
1625 		 */
1626 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1627 			continue;
1628 
1629 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1630 
1631 		devices_info[i].dev = device;
1632 		devices_info[i].max_avail = avail_space;
1633 
1634 		i++;
1635 	}
1636 	rcu_read_unlock();
1637 
1638 	nr_devices = i;
1639 
1640 	btrfs_descending_sort_devices(devices_info, nr_devices);
1641 
1642 	i = nr_devices - 1;
1643 	avail_space = 0;
1644 	while (nr_devices >= rattr->devs_min) {
1645 		num_stripes = min(num_stripes, nr_devices);
1646 
1647 		if (devices_info[i].max_avail >= min_stripe_size) {
1648 			int j;
1649 			u64 alloc_size;
1650 
1651 			avail_space += devices_info[i].max_avail * num_stripes;
1652 			alloc_size = devices_info[i].max_avail;
1653 			for (j = i + 1 - num_stripes; j <= i; j++)
1654 				devices_info[j].max_avail -= alloc_size;
1655 		}
1656 		i--;
1657 		nr_devices--;
1658 	}
1659 
1660 	kfree(devices_info);
1661 	*free_bytes = avail_space;
1662 	return 0;
1663 }
1664 
1665 /*
1666  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1667  *
1668  * If there's a redundant raid level at DATA block groups, use the respective
1669  * multiplier to scale the sizes.
1670  *
1671  * Unused device space usage is based on simulating the chunk allocator
1672  * algorithm that respects the device sizes and order of allocations.  This is
1673  * a close approximation of the actual use but there are other factors that may
1674  * change the result (like a new metadata chunk).
1675  *
1676  * If metadata is exhausted, f_bavail will be 0.
1677  */
1678 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1679 {
1680 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1681 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1682 	struct btrfs_space_info *found;
1683 	u64 total_used = 0;
1684 	u64 total_free_data = 0;
1685 	u64 total_free_meta = 0;
1686 	u32 bits = fs_info->sectorsize_bits;
1687 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1688 	unsigned factor = 1;
1689 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1690 	int ret;
1691 	u64 thresh = 0;
1692 	int mixed = 0;
1693 
1694 	list_for_each_entry(found, &fs_info->space_info, list) {
1695 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1696 			int i;
1697 
1698 			total_free_data += found->disk_total - found->disk_used;
1699 			total_free_data -=
1700 				btrfs_account_ro_block_groups_free_space(found);
1701 
1702 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1703 				if (!list_empty(&found->block_groups[i]))
1704 					factor = btrfs_bg_type_to_factor(
1705 						btrfs_raid_array[i].bg_flag);
1706 			}
1707 		}
1708 
1709 		/*
1710 		 * Metadata in mixed block group profiles are accounted in data
1711 		 */
1712 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1713 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1714 				mixed = 1;
1715 			else
1716 				total_free_meta += found->disk_total -
1717 					found->disk_used;
1718 		}
1719 
1720 		total_used += found->disk_used;
1721 	}
1722 
1723 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1724 	buf->f_blocks >>= bits;
1725 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1726 
1727 	/* Account global block reserve as used, it's in logical size already */
1728 	spin_lock(&block_rsv->lock);
1729 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1730 	if (buf->f_bfree >= block_rsv->size >> bits)
1731 		buf->f_bfree -= block_rsv->size >> bits;
1732 	else
1733 		buf->f_bfree = 0;
1734 	spin_unlock(&block_rsv->lock);
1735 
1736 	buf->f_bavail = div_u64(total_free_data, factor);
1737 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1738 	if (ret)
1739 		return ret;
1740 	buf->f_bavail += div_u64(total_free_data, factor);
1741 	buf->f_bavail = buf->f_bavail >> bits;
1742 
1743 	/*
1744 	 * We calculate the remaining metadata space minus global reserve. If
1745 	 * this is (supposedly) smaller than zero, there's no space. But this
1746 	 * does not hold in practice, the exhausted state happens where's still
1747 	 * some positive delta. So we apply some guesswork and compare the
1748 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1749 	 *
1750 	 * We probably cannot calculate the exact threshold value because this
1751 	 * depends on the internal reservations requested by various
1752 	 * operations, so some operations that consume a few metadata will
1753 	 * succeed even if the Avail is zero. But this is better than the other
1754 	 * way around.
1755 	 */
1756 	thresh = SZ_4M;
1757 
1758 	/*
1759 	 * We only want to claim there's no available space if we can no longer
1760 	 * allocate chunks for our metadata profile and our global reserve will
1761 	 * not fit in the free metadata space.  If we aren't ->full then we
1762 	 * still can allocate chunks and thus are fine using the currently
1763 	 * calculated f_bavail.
1764 	 */
1765 	if (!mixed && block_rsv->space_info->full &&
1766 	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1767 		buf->f_bavail = 0;
1768 
1769 	buf->f_type = BTRFS_SUPER_MAGIC;
1770 	buf->f_bsize = dentry->d_sb->s_blocksize;
1771 	buf->f_namelen = BTRFS_NAME_LEN;
1772 
1773 	/* We treat it as constant endianness (it doesn't matter _which_)
1774 	   because we want the fsid to come out the same whether mounted
1775 	   on a big-endian or little-endian host */
1776 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1777 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1778 	/* Mask in the root object ID too, to disambiguate subvols */
1779 	buf->f_fsid.val[0] ^=
1780 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
1781 	buf->f_fsid.val[1] ^=
1782 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
1783 
1784 	return 0;
1785 }
1786 
1787 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1788 {
1789 	struct btrfs_fs_info *p = fc->s_fs_info;
1790 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1791 
1792 	return fs_info->fs_devices == p->fs_devices;
1793 }
1794 
1795 static int btrfs_get_tree_super(struct fs_context *fc)
1796 {
1797 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1798 	struct btrfs_fs_context *ctx = fc->fs_private;
1799 	struct btrfs_fs_devices *fs_devices = NULL;
1800 	struct block_device *bdev;
1801 	struct btrfs_device *device;
1802 	struct super_block *sb;
1803 	blk_mode_t mode = btrfs_open_mode(fc);
1804 	int ret;
1805 
1806 	btrfs_ctx_to_info(fs_info, ctx);
1807 	mutex_lock(&uuid_mutex);
1808 
1809 	/*
1810 	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1811 	 * either a valid device or an error.
1812 	 */
1813 	device = btrfs_scan_one_device(fc->source, mode, true);
1814 	ASSERT(device != NULL);
1815 	if (IS_ERR(device)) {
1816 		mutex_unlock(&uuid_mutex);
1817 		return PTR_ERR(device);
1818 	}
1819 
1820 	fs_devices = device->fs_devices;
1821 	fs_info->fs_devices = fs_devices;
1822 
1823 	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1824 	mutex_unlock(&uuid_mutex);
1825 	if (ret)
1826 		return ret;
1827 
1828 	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1829 		ret = -EACCES;
1830 		goto error;
1831 	}
1832 
1833 	bdev = fs_devices->latest_dev->bdev;
1834 
1835 	/*
1836 	 * From now on the error handling is not straightforward.
1837 	 *
1838 	 * If successful, this will transfer the fs_info into the super block,
1839 	 * and fc->s_fs_info will be NULL.  However if there's an existing
1840 	 * super, we'll still have fc->s_fs_info populated.  If we error
1841 	 * completely out it'll be cleaned up when we drop the fs_context,
1842 	 * otherwise it's tied to the lifetime of the super_block.
1843 	 */
1844 	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1845 	if (IS_ERR(sb)) {
1846 		ret = PTR_ERR(sb);
1847 		goto error;
1848 	}
1849 
1850 	set_device_specific_options(fs_info);
1851 
1852 	if (sb->s_root) {
1853 		btrfs_close_devices(fs_devices);
1854 		if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY)
1855 			ret = -EBUSY;
1856 	} else {
1857 		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1858 		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1859 		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1860 		ret = btrfs_fill_super(sb, fs_devices, NULL);
1861 	}
1862 
1863 	if (ret) {
1864 		deactivate_locked_super(sb);
1865 		return ret;
1866 	}
1867 
1868 	btrfs_clear_oneshot_options(fs_info);
1869 
1870 	fc->root = dget(sb->s_root);
1871 	return 0;
1872 
1873 error:
1874 	btrfs_close_devices(fs_devices);
1875 	return ret;
1876 }
1877 
1878 /*
1879  * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1880  * with different ro/rw options") the following works:
1881  *
1882  *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1883  *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1884  *
1885  * which looks nice and innocent but is actually pretty intricate and deserves
1886  * a long comment.
1887  *
1888  * On another filesystem a subvolume mount is close to something like:
1889  *
1890  *	(iii) # create rw superblock + initial mount
1891  *	      mount -t xfs /dev/sdb /opt/
1892  *
1893  *	      # create ro bind mount
1894  *	      mount --bind -o ro /opt/foo /mnt/foo
1895  *
1896  *	      # unmount initial mount
1897  *	      umount /opt
1898  *
1899  * Of course, there's some special subvolume sauce and there's the fact that the
1900  * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1901  * it's very close and will help us understand the issue.
1902  *
1903  * The old mount API didn't cleanly distinguish between a mount being made ro
1904  * and a superblock being made ro.  The only way to change the ro state of
1905  * either object was by passing ms_rdonly. If a new mount was created via
1906  * mount(2) such as:
1907  *
1908  *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1909  *
1910  * the MS_RDONLY flag being specified had two effects:
1911  *
1912  * (1) MNT_READONLY was raised -> the resulting mount got
1913  *     @mnt->mnt_flags |= MNT_READONLY raised.
1914  *
1915  * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1916  *     made the superblock ro. Note, how SB_RDONLY has the same value as
1917  *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1918  *
1919  * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1920  * subtree mounted ro.
1921  *
1922  * But consider the effect on the old mount API on btrfs subvolume mounting
1923  * which combines the distinct step in (iii) into a single step.
1924  *
1925  * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1926  * is issued the superblock is ro and thus even if the mount created for (ii) is
1927  * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1928  * to rw for (ii) which it did using an internal remount call.
1929  *
1930  * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1931  * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1932  * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1933  * passed by mount(8) to mount(2).
1934  *
1935  * Enter the new mount API. The new mount API disambiguates making a mount ro
1936  * and making a superblock ro.
1937  *
1938  * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1939  *     fsmount() or mount_setattr() this is a pure VFS level change for a
1940  *     specific mount or mount tree that is never seen by the filesystem itself.
1941  *
1942  * (4) To turn a superblock ro the "ro" flag must be used with
1943  *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1944  *     in fc->sb_flags.
1945  *
1946  * This disambiguation has rather positive consequences.  Mounting a subvolume
1947  * ro will not also turn the superblock ro. Only the mount for the subvolume
1948  * will become ro.
1949  *
1950  * So, if the superblock creation request comes from the new mount API the
1951  * caller must have explicitly done:
1952  *
1953  *      fsconfig(FSCONFIG_SET_FLAG, "ro")
1954  *      fsmount/mount_setattr(MOUNT_ATTR_RDONLY)
1955  *
1956  * IOW, at some point the caller must have explicitly turned the whole
1957  * superblock ro and we shouldn't just undo it like we did for the old mount
1958  * API. In any case, it lets us avoid the hack in the new mount API.
1959  *
1960  * Consequently, the remounting hack must only be used for requests originating
1961  * from the old mount API and should be marked for full deprecation so it can be
1962  * turned off in a couple of years.
1963  *
1964  * The new mount API has no reason to support this hack.
1965  */
1966 static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc)
1967 {
1968 	struct vfsmount *mnt;
1969 	int ret;
1970 	const bool ro2rw = !(fc->sb_flags & SB_RDONLY);
1971 
1972 	/*
1973 	 * We got an EBUSY because our SB_RDONLY flag didn't match the existing
1974 	 * super block, so invert our setting here and retry the mount so we
1975 	 * can get our vfsmount.
1976 	 */
1977 	if (ro2rw)
1978 		fc->sb_flags |= SB_RDONLY;
1979 	else
1980 		fc->sb_flags &= ~SB_RDONLY;
1981 
1982 	mnt = fc_mount(fc);
1983 	if (IS_ERR(mnt))
1984 		return mnt;
1985 
1986 	if (!fc->oldapi || !ro2rw)
1987 		return mnt;
1988 
1989 	/* We need to convert to rw, call reconfigure. */
1990 	fc->sb_flags &= ~SB_RDONLY;
1991 	down_write(&mnt->mnt_sb->s_umount);
1992 	ret = btrfs_reconfigure(fc);
1993 	up_write(&mnt->mnt_sb->s_umount);
1994 	if (ret) {
1995 		mntput(mnt);
1996 		return ERR_PTR(ret);
1997 	}
1998 	return mnt;
1999 }
2000 
2001 static int btrfs_get_tree_subvol(struct fs_context *fc)
2002 {
2003 	struct btrfs_fs_info *fs_info = NULL;
2004 	struct btrfs_fs_context *ctx = fc->fs_private;
2005 	struct fs_context *dup_fc;
2006 	struct dentry *dentry;
2007 	struct vfsmount *mnt;
2008 
2009 	/*
2010 	 * Setup a dummy root and fs_info for test/set super.  This is because
2011 	 * we don't actually fill this stuff out until open_ctree, but we need
2012 	 * then open_ctree will properly initialize the file system specific
2013 	 * settings later.  btrfs_init_fs_info initializes the static elements
2014 	 * of the fs_info (locks and such) to make cleanup easier if we find a
2015 	 * superblock with our given fs_devices later on at sget() time.
2016 	 */
2017 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2018 	if (!fs_info)
2019 		return -ENOMEM;
2020 
2021 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2022 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2023 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2024 		btrfs_free_fs_info(fs_info);
2025 		return -ENOMEM;
2026 	}
2027 	btrfs_init_fs_info(fs_info);
2028 
2029 	dup_fc = vfs_dup_fs_context(fc);
2030 	if (IS_ERR(dup_fc)) {
2031 		btrfs_free_fs_info(fs_info);
2032 		return PTR_ERR(dup_fc);
2033 	}
2034 
2035 	/*
2036 	 * When we do the sget_fc this gets transferred to the sb, so we only
2037 	 * need to set it on the dup_fc as this is what creates the super block.
2038 	 */
2039 	dup_fc->s_fs_info = fs_info;
2040 
2041 	/*
2042 	 * We'll do the security settings in our btrfs_get_tree_super() mount
2043 	 * loop, they were duplicated into dup_fc, we can drop the originals
2044 	 * here.
2045 	 */
2046 	security_free_mnt_opts(&fc->security);
2047 	fc->security = NULL;
2048 
2049 	mnt = fc_mount(dup_fc);
2050 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY)
2051 		mnt = btrfs_reconfigure_for_mount(dup_fc);
2052 	put_fs_context(dup_fc);
2053 	if (IS_ERR(mnt))
2054 		return PTR_ERR(mnt);
2055 
2056 	/*
2057 	 * This free's ->subvol_name, because if it isn't set we have to
2058 	 * allocate a buffer to hold the subvol_name, so we just drop our
2059 	 * reference to it here.
2060 	 */
2061 	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2062 	ctx->subvol_name = NULL;
2063 	if (IS_ERR(dentry))
2064 		return PTR_ERR(dentry);
2065 
2066 	fc->root = dentry;
2067 	return 0;
2068 }
2069 
2070 static int btrfs_get_tree(struct fs_context *fc)
2071 {
2072 	/*
2073 	 * Since we use mount_subtree to mount the default/specified subvol, we
2074 	 * have to do mounts in two steps.
2075 	 *
2076 	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2077 	 * wrapper around fc_mount() to call back into here again, and this time
2078 	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2079 	 * everything to open the devices and file system.  Then we return back
2080 	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2081 	 * from there we can do our mount_subvol() call, which will lookup
2082 	 * whichever subvol we're mounting and setup this fc with the
2083 	 * appropriate dentry for the subvol.
2084 	 */
2085 	if (fc->s_fs_info)
2086 		return btrfs_get_tree_super(fc);
2087 	return btrfs_get_tree_subvol(fc);
2088 }
2089 
2090 static void btrfs_kill_super(struct super_block *sb)
2091 {
2092 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2093 	kill_anon_super(sb);
2094 	btrfs_free_fs_info(fs_info);
2095 }
2096 
2097 static void btrfs_free_fs_context(struct fs_context *fc)
2098 {
2099 	struct btrfs_fs_context *ctx = fc->fs_private;
2100 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2101 
2102 	if (fs_info)
2103 		btrfs_free_fs_info(fs_info);
2104 
2105 	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2106 		kfree(ctx->subvol_name);
2107 		kfree(ctx);
2108 	}
2109 }
2110 
2111 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2112 {
2113 	struct btrfs_fs_context *ctx = src_fc->fs_private;
2114 
2115 	/*
2116 	 * Give a ref to our ctx to this dup, as we want to keep it around for
2117 	 * our original fc so we can have the subvolume name or objectid.
2118 	 *
2119 	 * We unset ->source in the original fc because the dup needs it for
2120 	 * mounting, and then once we free the dup it'll free ->source, so we
2121 	 * need to make sure we're only pointing to it in one fc.
2122 	 */
2123 	refcount_inc(&ctx->refs);
2124 	fc->fs_private = ctx;
2125 	fc->source = src_fc->source;
2126 	src_fc->source = NULL;
2127 	return 0;
2128 }
2129 
2130 static const struct fs_context_operations btrfs_fs_context_ops = {
2131 	.parse_param	= btrfs_parse_param,
2132 	.reconfigure	= btrfs_reconfigure,
2133 	.get_tree	= btrfs_get_tree,
2134 	.dup		= btrfs_dup_fs_context,
2135 	.free		= btrfs_free_fs_context,
2136 };
2137 
2138 static int btrfs_init_fs_context(struct fs_context *fc)
2139 {
2140 	struct btrfs_fs_context *ctx;
2141 
2142 	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2143 	if (!ctx)
2144 		return -ENOMEM;
2145 
2146 	refcount_set(&ctx->refs, 1);
2147 	fc->fs_private = ctx;
2148 	fc->ops = &btrfs_fs_context_ops;
2149 
2150 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2151 		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2152 	} else {
2153 		ctx->thread_pool_size =
2154 			min_t(unsigned long, num_online_cpus() + 2, 8);
2155 		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2156 		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2157 	}
2158 
2159 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2160 	fc->sb_flags |= SB_POSIXACL;
2161 #endif
2162 	fc->sb_flags |= SB_I_VERSION;
2163 
2164 	return 0;
2165 }
2166 
2167 static struct file_system_type btrfs_fs_type = {
2168 	.owner			= THIS_MODULE,
2169 	.name			= "btrfs",
2170 	.init_fs_context	= btrfs_init_fs_context,
2171 	.parameters		= btrfs_fs_parameters,
2172 	.kill_sb		= btrfs_kill_super,
2173 	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2174  };
2175 
2176 MODULE_ALIAS_FS("btrfs");
2177 
2178 static int btrfs_control_open(struct inode *inode, struct file *file)
2179 {
2180 	/*
2181 	 * The control file's private_data is used to hold the
2182 	 * transaction when it is started and is used to keep
2183 	 * track of whether a transaction is already in progress.
2184 	 */
2185 	file->private_data = NULL;
2186 	return 0;
2187 }
2188 
2189 /*
2190  * Used by /dev/btrfs-control for devices ioctls.
2191  */
2192 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2193 				unsigned long arg)
2194 {
2195 	struct btrfs_ioctl_vol_args *vol;
2196 	struct btrfs_device *device = NULL;
2197 	dev_t devt = 0;
2198 	int ret = -ENOTTY;
2199 
2200 	if (!capable(CAP_SYS_ADMIN))
2201 		return -EPERM;
2202 
2203 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2204 	if (IS_ERR(vol))
2205 		return PTR_ERR(vol);
2206 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2207 
2208 	switch (cmd) {
2209 	case BTRFS_IOC_SCAN_DEV:
2210 		mutex_lock(&uuid_mutex);
2211 		/*
2212 		 * Scanning outside of mount can return NULL which would turn
2213 		 * into 0 error code.
2214 		 */
2215 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2216 		ret = PTR_ERR_OR_ZERO(device);
2217 		mutex_unlock(&uuid_mutex);
2218 		break;
2219 	case BTRFS_IOC_FORGET_DEV:
2220 		if (vol->name[0] != 0) {
2221 			ret = lookup_bdev(vol->name, &devt);
2222 			if (ret)
2223 				break;
2224 		}
2225 		ret = btrfs_forget_devices(devt);
2226 		break;
2227 	case BTRFS_IOC_DEVICES_READY:
2228 		mutex_lock(&uuid_mutex);
2229 		/*
2230 		 * Scanning outside of mount can return NULL which would turn
2231 		 * into 0 error code.
2232 		 */
2233 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2234 		if (IS_ERR_OR_NULL(device)) {
2235 			mutex_unlock(&uuid_mutex);
2236 			ret = PTR_ERR(device);
2237 			break;
2238 		}
2239 		ret = !(device->fs_devices->num_devices ==
2240 			device->fs_devices->total_devices);
2241 		mutex_unlock(&uuid_mutex);
2242 		break;
2243 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2244 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2245 		break;
2246 	}
2247 
2248 	kfree(vol);
2249 	return ret;
2250 }
2251 
2252 static int btrfs_freeze(struct super_block *sb)
2253 {
2254 	struct btrfs_trans_handle *trans;
2255 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2256 	struct btrfs_root *root = fs_info->tree_root;
2257 
2258 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2259 	/*
2260 	 * We don't need a barrier here, we'll wait for any transaction that
2261 	 * could be in progress on other threads (and do delayed iputs that
2262 	 * we want to avoid on a frozen filesystem), or do the commit
2263 	 * ourselves.
2264 	 */
2265 	trans = btrfs_attach_transaction_barrier(root);
2266 	if (IS_ERR(trans)) {
2267 		/* no transaction, don't bother */
2268 		if (PTR_ERR(trans) == -ENOENT)
2269 			return 0;
2270 		return PTR_ERR(trans);
2271 	}
2272 	return btrfs_commit_transaction(trans);
2273 }
2274 
2275 static int check_dev_super(struct btrfs_device *dev)
2276 {
2277 	struct btrfs_fs_info *fs_info = dev->fs_info;
2278 	struct btrfs_super_block *sb;
2279 	u64 last_trans;
2280 	u16 csum_type;
2281 	int ret = 0;
2282 
2283 	/* This should be called with fs still frozen. */
2284 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2285 
2286 	/* Missing dev, no need to check. */
2287 	if (!dev->bdev)
2288 		return 0;
2289 
2290 	/* Only need to check the primary super block. */
2291 	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2292 	if (IS_ERR(sb))
2293 		return PTR_ERR(sb);
2294 
2295 	/* Verify the checksum. */
2296 	csum_type = btrfs_super_csum_type(sb);
2297 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2298 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2299 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2300 		ret = -EUCLEAN;
2301 		goto out;
2302 	}
2303 
2304 	if (btrfs_check_super_csum(fs_info, sb)) {
2305 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2306 		ret = -EUCLEAN;
2307 		goto out;
2308 	}
2309 
2310 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2311 	ret = btrfs_validate_super(fs_info, sb, 0);
2312 	if (ret < 0)
2313 		goto out;
2314 
2315 	last_trans = btrfs_get_last_trans_committed(fs_info);
2316 	if (btrfs_super_generation(sb) != last_trans) {
2317 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2318 			  btrfs_super_generation(sb), last_trans);
2319 		ret = -EUCLEAN;
2320 		goto out;
2321 	}
2322 out:
2323 	btrfs_release_disk_super(sb);
2324 	return ret;
2325 }
2326 
2327 static int btrfs_unfreeze(struct super_block *sb)
2328 {
2329 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2330 	struct btrfs_device *device;
2331 	int ret = 0;
2332 
2333 	/*
2334 	 * Make sure the fs is not changed by accident (like hibernation then
2335 	 * modified by other OS).
2336 	 * If we found anything wrong, we mark the fs error immediately.
2337 	 *
2338 	 * And since the fs is frozen, no one can modify the fs yet, thus
2339 	 * we don't need to hold device_list_mutex.
2340 	 */
2341 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2342 		ret = check_dev_super(device);
2343 		if (ret < 0) {
2344 			btrfs_handle_fs_error(fs_info, ret,
2345 				"super block on devid %llu got modified unexpectedly",
2346 				device->devid);
2347 			break;
2348 		}
2349 	}
2350 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2351 
2352 	/*
2353 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2354 	 * above checks failed. Since the fs is either fine or read-only, we're
2355 	 * safe to continue, without causing further damage.
2356 	 */
2357 	return 0;
2358 }
2359 
2360 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2361 {
2362 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2363 
2364 	/*
2365 	 * There should be always a valid pointer in latest_dev, it may be stale
2366 	 * for a short moment in case it's being deleted but still valid until
2367 	 * the end of RCU grace period.
2368 	 */
2369 	rcu_read_lock();
2370 	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2371 	rcu_read_unlock();
2372 
2373 	return 0;
2374 }
2375 
2376 static const struct super_operations btrfs_super_ops = {
2377 	.drop_inode	= btrfs_drop_inode,
2378 	.evict_inode	= btrfs_evict_inode,
2379 	.put_super	= btrfs_put_super,
2380 	.sync_fs	= btrfs_sync_fs,
2381 	.show_options	= btrfs_show_options,
2382 	.show_devname	= btrfs_show_devname,
2383 	.alloc_inode	= btrfs_alloc_inode,
2384 	.destroy_inode	= btrfs_destroy_inode,
2385 	.free_inode	= btrfs_free_inode,
2386 	.statfs		= btrfs_statfs,
2387 	.freeze_fs	= btrfs_freeze,
2388 	.unfreeze_fs	= btrfs_unfreeze,
2389 };
2390 
2391 static const struct file_operations btrfs_ctl_fops = {
2392 	.open = btrfs_control_open,
2393 	.unlocked_ioctl	 = btrfs_control_ioctl,
2394 	.compat_ioctl = compat_ptr_ioctl,
2395 	.owner	 = THIS_MODULE,
2396 	.llseek = noop_llseek,
2397 };
2398 
2399 static struct miscdevice btrfs_misc = {
2400 	.minor		= BTRFS_MINOR,
2401 	.name		= "btrfs-control",
2402 	.fops		= &btrfs_ctl_fops
2403 };
2404 
2405 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2406 MODULE_ALIAS("devname:btrfs-control");
2407 
2408 static int __init btrfs_interface_init(void)
2409 {
2410 	return misc_register(&btrfs_misc);
2411 }
2412 
2413 static __cold void btrfs_interface_exit(void)
2414 {
2415 	misc_deregister(&btrfs_misc);
2416 }
2417 
2418 static int __init btrfs_print_mod_info(void)
2419 {
2420 	static const char options[] = ""
2421 #ifdef CONFIG_BTRFS_DEBUG
2422 			", debug=on"
2423 #endif
2424 #ifdef CONFIG_BTRFS_ASSERT
2425 			", assert=on"
2426 #endif
2427 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2428 			", ref-verify=on"
2429 #endif
2430 #ifdef CONFIG_BLK_DEV_ZONED
2431 			", zoned=yes"
2432 #else
2433 			", zoned=no"
2434 #endif
2435 #ifdef CONFIG_FS_VERITY
2436 			", fsverity=yes"
2437 #else
2438 			", fsverity=no"
2439 #endif
2440 			;
2441 	pr_info("Btrfs loaded%s\n", options);
2442 	return 0;
2443 }
2444 
2445 static int register_btrfs(void)
2446 {
2447 	return register_filesystem(&btrfs_fs_type);
2448 }
2449 
2450 static void unregister_btrfs(void)
2451 {
2452 	unregister_filesystem(&btrfs_fs_type);
2453 }
2454 
2455 /* Helper structure for long init/exit functions. */
2456 struct init_sequence {
2457 	int (*init_func)(void);
2458 	/* Can be NULL if the init_func doesn't need cleanup. */
2459 	void (*exit_func)(void);
2460 };
2461 
2462 static const struct init_sequence mod_init_seq[] = {
2463 	{
2464 		.init_func = btrfs_props_init,
2465 		.exit_func = NULL,
2466 	}, {
2467 		.init_func = btrfs_init_sysfs,
2468 		.exit_func = btrfs_exit_sysfs,
2469 	}, {
2470 		.init_func = btrfs_init_compress,
2471 		.exit_func = btrfs_exit_compress,
2472 	}, {
2473 		.init_func = btrfs_init_cachep,
2474 		.exit_func = btrfs_destroy_cachep,
2475 	}, {
2476 		.init_func = btrfs_transaction_init,
2477 		.exit_func = btrfs_transaction_exit,
2478 	}, {
2479 		.init_func = btrfs_ctree_init,
2480 		.exit_func = btrfs_ctree_exit,
2481 	}, {
2482 		.init_func = btrfs_free_space_init,
2483 		.exit_func = btrfs_free_space_exit,
2484 	}, {
2485 		.init_func = extent_state_init_cachep,
2486 		.exit_func = extent_state_free_cachep,
2487 	}, {
2488 		.init_func = extent_buffer_init_cachep,
2489 		.exit_func = extent_buffer_free_cachep,
2490 	}, {
2491 		.init_func = btrfs_bioset_init,
2492 		.exit_func = btrfs_bioset_exit,
2493 	}, {
2494 		.init_func = extent_map_init,
2495 		.exit_func = extent_map_exit,
2496 	}, {
2497 		.init_func = ordered_data_init,
2498 		.exit_func = ordered_data_exit,
2499 	}, {
2500 		.init_func = btrfs_delayed_inode_init,
2501 		.exit_func = btrfs_delayed_inode_exit,
2502 	}, {
2503 		.init_func = btrfs_auto_defrag_init,
2504 		.exit_func = btrfs_auto_defrag_exit,
2505 	}, {
2506 		.init_func = btrfs_delayed_ref_init,
2507 		.exit_func = btrfs_delayed_ref_exit,
2508 	}, {
2509 		.init_func = btrfs_prelim_ref_init,
2510 		.exit_func = btrfs_prelim_ref_exit,
2511 	}, {
2512 		.init_func = btrfs_interface_init,
2513 		.exit_func = btrfs_interface_exit,
2514 	}, {
2515 		.init_func = btrfs_print_mod_info,
2516 		.exit_func = NULL,
2517 	}, {
2518 		.init_func = btrfs_run_sanity_tests,
2519 		.exit_func = NULL,
2520 	}, {
2521 		.init_func = register_btrfs,
2522 		.exit_func = unregister_btrfs,
2523 	}
2524 };
2525 
2526 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2527 
2528 static __always_inline void btrfs_exit_btrfs_fs(void)
2529 {
2530 	int i;
2531 
2532 	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2533 		if (!mod_init_result[i])
2534 			continue;
2535 		if (mod_init_seq[i].exit_func)
2536 			mod_init_seq[i].exit_func();
2537 		mod_init_result[i] = false;
2538 	}
2539 }
2540 
2541 static void __exit exit_btrfs_fs(void)
2542 {
2543 	btrfs_exit_btrfs_fs();
2544 	btrfs_cleanup_fs_uuids();
2545 }
2546 
2547 static int __init init_btrfs_fs(void)
2548 {
2549 	int ret;
2550 	int i;
2551 
2552 	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2553 		ASSERT(!mod_init_result[i]);
2554 		ret = mod_init_seq[i].init_func();
2555 		if (ret < 0) {
2556 			btrfs_exit_btrfs_fs();
2557 			return ret;
2558 		}
2559 		mod_init_result[i] = true;
2560 	}
2561 	return 0;
2562 }
2563 
2564 late_initcall(init_btrfs_fs);
2565 module_exit(exit_btrfs_fs)
2566 
2567 MODULE_LICENSE("GPL");
2568 MODULE_SOFTDEP("pre: crc32c");
2569 MODULE_SOFTDEP("pre: xxhash64");
2570 MODULE_SOFTDEP("pre: sha256");
2571 MODULE_SOFTDEP("pre: blake2b-256");
2572